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ABSTRACT

A circular-arc graph is the intersection graph of a family of arcs on a circle. A char-

acterization by forbidden induced subgraphs for this class of graphs is not known, and

in this work we present a partial result in this direction. We characterize circular-arc

graphs by a list of minimal forbidden induced subgraphs when the graph belongs to any

of the following classes: P4-free graphs, paw-free graphs, claw-free chordal graphs and
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1. INTRODUCTION

A graph G is a circular-arc (CA) graph if it is the intersection graph of a set S of arcs
on a circle, i.e., if there exists a one-to-one correspondence between the vertices of G and
the arcs of S such that two vertices of G are adjacent if and only if the corresponding
arcs in S intersect. Such a family of arcs is called a circular-arc model (CA model) of
G. CA graphs can be recognized in linear time [13]. A graph is an interval graph if it is
the intersection graph of a set of intervals on the real line. Equivalently, a graph is an
interval graph if it admits a CA model such that the set of arcs does not cover the circle.
Interval graphs have been characterized by minimal forbidden induced subgraphs [11]. A
graph G is a proper circular-arc (PCA) graph if it admits a CA model in which no arc
is contained in another arc. Tucker gave a characterization of PCA graphs by minimal
forbidden induced subgraphs [18]. Furthermore, this subclass can be recognized in linear
time [7]. A graph G is a unit circular-arc (UCA) graph if it admits a CA model in which
all the arcs have the same length. Tucker gave a characterization by minimal forbidden
induced subgraphs for this class [18]. Recently, linear and quadratic-time recognition
algorithms for this class have been shown [12, 8]. Finally, the class of CA graphs that
are complements of bipartite graphs was characterized by minimal forbidden induced
subgraphs [17].

Nevertheless, the problem of characterizing the whole class of CA graphs by forbidden
induced subgraphs remains open. In this work we present some steps in this direction
by providing characterizations of CA graphs by minimal forbidden induced subgraphs
when the graph belongs to any of four different classes: P4-free graphs, paw-free graphs,
claw-free chordal graphs and diamond-free graphs. All of these classes were studied along
the way towards the proof of the Strong Perfect Graph Theorem [4, 14, 15, 16, 19].

2. DEFINITIONS

Let G be a finite, simple, loopless, undirected graph, with vertex set V (G) and edge set
E(G). The graph G will be called empty if V (G) = ∅ and trivial if |V (G)| = 1. Denote
by N(v) the set of neighbours of v ∈ V (G). G[W ] denotes the subgraph of G induced by
W . For any W ⊆ V (G), denote by G the complement of G. If H is an induced subgraph
of G and v a vertex of G, we denote by NH(v) the set N(v) ∩ V (H) and by G − H the
graph G[V (G) − V (H)].

Let A,B ⊆ V (G). We say that A is complete to B if every vertex of A is adjacent
to every vertex of B; and A is anticomplete to B if A is complete to B in G. A stable

set is a subset of pairwise non-adjacent vertices. A graph G is bipartite if V (G) can be
partitioned into two stable sets V1, V2; G is complete bipartite if V1 is complete to V2.
Denote by Kr,s the complete bipartite graph with |V1| = r and |V2| = s. A claw is the
complete bipartite graph K1,3.

Denote by Kr (r ≥ 0) the complete graph on r vertices; K3 will be also called a
triangle. A clique is a subset of vertices inducing a complete subgraph. A paw is the
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graph obtained from a triangle T by adding a vertex adjacent to exactly one vertex of
T . A diamond is the graph obtained from a complete K4 by removing exactly one edge.

Let P = v1 . . . vk be a path. Vertices v1 and vk will be called the endpoints of P ,
while V (P )− {v1, vk} will be called the interior points of P . Denote by |P | the number
of vertices of P . An edge joining two non-consecutive vertices of a path or a cycle in a
graph will be called a chord. An induced path is a chordless path in a graph. Likewise,
an induced cycle is a chordless cycle in a graph. The graph P4 is an induced path on 4
vertices. A hole is an induced cycle of length at least 4. A graph is chordal if it does not
contain any hole.

Let G and H be two graphs; we say that G is H-free if G does not contain an induced
subgraph isomorphic to H. If H is a family of graphs, we say that G is H-free if G is
H-free for every H ∈ H.

Denote by G∗ the graph obtained from G by adding an isolated vertex. If t is a non-
negative integer, then tG will denote the disjoint union of t copies of G. A graph G is
a multiple of another graph H if G can be obtained from H by replacing each vertex x

of H by a non-empty complete graph Mx and adding all possible edges between Mx and
My if and only if x and y are adjacent in H.

A universal vertex is a vertex adjacent to every other vertex of the graph. Let G and
H be graphs. G is an augmented H if G is isomorphic to H or if G can be obtained
from H by repeatedly adding a universal vertex. G is a bloomed H if there exists a
subset W ⊆ V (G) such that G[W ] is isomorphic to H and V (G)−W is either empty or
it induces in G a disjoint union of non-empty complete graphs B1, B2, . . . , Bj for some
j ≥ 1, where each Bi is complete to one vertex of G[W ], but anticomplete to any other
vertex of G[W ]. If each vertex in W is complete to at least one of B1, B2, . . . , Bj , we
say that G is a fully bloomed H. The complete graphs B1, . . . , Bj will be referred as the
blooms. A bloom is trivial if it is composed of only one vertex.

Given two graphs G and H such that V (G) ∩ V (H) = ∅, the disjoint union G ∪ H is
the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). The join of G and
H is obtained from G ∪ H by adding all the edges between V (G) and V (H).

A graph G is anticonnected if G is connected; an anticomponent of G is the subgraph
of G induced by the vertices of a component of G.

3. PRELIMINARY RESULTS

Special graphs needed throughout this work are depicted in Figures 1 and 2. We use net

and tent as abbreviations for 2-net and 3-tent, respectively.

Bang-Jensen and Hell proved the following result.

Theorem 1. [1] Let G be a connected graph containing no induced claw, net, C4, or
C5. If G contains a tent as induced subgraph, then G is a multiple of a tent.
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FIGURE 1. Minimal forbidden induced subgraphs for the class of interval graphs.

Theorem 1 allows to provide the following description of all the minimal non-PCA

graphs within the class of connected chordal graphs.

Theorem 2. [1] Let G be a connected chordal graph. Then, G is PCA if and only if
it contains no induced claw or net.

Lekkerkerker and Boland determined all the minimal forbidden induced subgraphs for
the class of interval graphs.

Theorem 3. [11] The minimal forbidden induced subgraphs for the class of interval
graphs are: bipartite claw, n-net for every n ≥ 2, umbrella, n-tent for every n ≥ 3, and
Cn for every n ≥ 4 (cf. Figure 1).

This characterization yields some minimal forbidden induced subgraphs for the class
of CA graphs. Let H be a minimal forbidden induced subgraph for the class of interval
graphs. Note that if H is non-CA, then H is minimally non-CA; i.e., all of its proper
induced subgraphs are CA. Otherwise, if H is CA, then H∗ is minimally non-CA, and
furthermore all non-connected minimally non-CA graphs are obtained this way. Since
the umbrella, net, n-tent for all n ≥ 3, and Cn for all n ≥ 4 are CA, but the bipartite
claw and n-net for all n ≥ 3 are not, this observation and Theorem 3 lead to the following
result.

Corollary 4. [17] The following graphs are minimally non-CA graphs: bipartite claw,
net∗, n-net for all n ≥ 3, umbrella∗, (n-tent)∗ for all n ≥ 3, and C∗

n for every n ≥ 4. Any
other minimally non-CA graph is connected.

We call the graphs listed in Corollary 4 basic minimally non-CA graphs. Any other
minimally non-CA graph will be called non-basic. The following result, which gives a
structural property for all non-basic minimally non-CA graphs, can be deduced from
Theorem 3 and Corollary 4.
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FIGURE 2. Some minimally non-CA graphs.

Corollary 5. If G is a non-basic minimally non-CA graph, then G has an induced
subgraph H that is isomorphic to an umbrella, a net, a j-tent for some j ≥ 3, or Cj for
some j ≥ 4. In addition, each vertex v of G − H is adjacent to at least one vertex of H.

Proof. Since G is non-CA, in particular, G is not an interval graph. By Theorem 3,
G has an induced subgraph H isomorphic to a bipartite claw, umbrella, j-net for j ≥ 2,
j-tent for j ≥ 3, or Cj for some j ≥ 4. Since G is non-basic minimally non-CA, H is
isomorphic to umbrella, net, j-tent for some j ≥ 3, or Cj for some j ≥ 4. Moreover, since
G is not isomorphic to H∗, every vertex v of G −H is adjacent to at least one vertex of
H.

Figure 2 introduces the graphs Gi, for i ∈ {1, 2, . . . , 9}.

Theorem 6. Let G be a minimally non-CA graph. If G is not isomorphic to K2,3, G2,
G3, G4, or C∗

j , for j ≥ 4, then for every hole H of G and for each vertex v of G − H,
either v is complete to H, or NH(v) induces a non-empty path in H.

Proof. Let G be a minimally non-CA graph, and suppose that G is not isomorphic to
K2,3, G2, G3, G4, or C∗

j for j ≥ 4. Suppose, by way of contradiction, that there is a hole
H of G and there is a vertex v of G − H such that v is not complete to H and NH(v)
does not induce a path in H. Note that NH(v) is non-empty because G is minimally
non-CA and it is not isomorphic to C∗

j for j ≥ 4.
So, H−NH(v) is non-empty and is neither a path nor a hole, hence it is not connected.

Let Q1 and Q2 be two components of H − NH(v). Then, there are induced paths P 1

and P 2 on H such that the interior vertices of P i are Qi, for i = 1, 2. Therefore, the
following conditions hold:
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(1) each of P 1 and P 2 has at least three vertices,
(2) v is adjacent to none of the interior vertices of P 1 and P 2, and
(3) v is adjacent to the endpoints of P 1 and the endpoints of P 2.

By definition, P 1 and P 2 have no interior vertices in common.
Suppose, by way of contradiction, that P 1 and P 2 have no common endpoints. Let w

be an interior vertex of P 1, so w is anticomplete to the hole induced by {v} ∪ V (P 2) on
G. Then, {v, w} ∪ V (P 2) induces a proper subgraph of G (it is proper since it does not
contain the endpoints of P 1) that is not a CA graph, a contradiction.

Suppose next that P 1 and P 2 have exactly one endpoint in common. Suppose, by
way of contradiction, that P 1 has at least two interior vertices. Then, there is an interior
vertex w of P 1 that is non-adjacent to the common endpoint of P 1 and P 2. Since {w}
is anticomplete to {v} ∪ V (P 2), {v, w} ∪ V (P 2) induces a proper subgraph in G (it
is proper because it does not contain the endpoint of P 1 that is not a vertex of P 2)
that is non-CA, a contradiction. This contradiction proves that each one of P 1 and
P 2 has exactly one interior vertex. Then, {v} ∪ V (P 1) ∪ V (P 2) would induce on G a
subgraph isomorphic to either G3 or G7, both of which are non-CA graphs. Since G

is minimally non-CA, V (G) = {v} ∪ V (P 1) ∪ V (P 2). Since V (P 1) ∪ V (P 2) ⊆ V (H),
necessarily V (H) = V (P 1) ∪ V (P 2). Since H induces a hole in G, G is isomorphic to
G3, a contradiction.

Finally suppose that P 1 and P 2 have exactly two endpoints in common. Suppose, by
way of contradiction, that P 1 has more than two interior points. Let w be an interior
vertex of P 1 that is adjacent to none of its endpoints. Then, w is anticomplete to
{v} ∪ V (P 2) and thus {v, w} ∪ V (P 2) induces a proper subgraph on G (it is proper
because it does not contain the neighbours of w in H) that is non-CA, a contradiction.
This contradiction shows that each one of P 1 and P 2 has at most two interior vertices.
Thus, {v} ∪ V (P 1) ∪ V (P 2) induces on G either K2,3, G2 or G4, which are minimally
non-CA graphs. Since G is minimally non-CA, G is isomorphic to one of them, a
contradiction.

4. PARTIAL CHARACTERIZATIONS

4.1. Cographs

A cograph is a graph with no induced P4. Cographs were studied in several previous
works as, e.g., [5, 6, 16]. Seinsche proved the following well-known fact about cographs.

Theorem 7. [16] If G is a cograph, then G is either not connected or not anticonnected.

Define semicircular graphs to be the intersection graphs of open semicircles on a circle.
By definition, semicircular graphs are UCA graphs.

Theorem 8. Let G be a graph. The following conditions are equivalent:
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(1) G is {P4, 3K1}-free.

(2) G is an augmented multiple of tK2 for some non-negative integer t.

(3) G is a semicircular graph.

Proof. (1) ⇒ (2) Assume that G is a {P4, 3K1}-free graph. If G has less than two
vertices, then G is a complete (note that tK2 with t = 0 is an empty graph). So, we can
assume that G has at least two vertices. Since G is P4-free, by Theorem 7, G is either
not connected or not anticonnected.

Since G is 3K1-free, if G is not connected, then G has exactly two components.
Moreover, both components are complete graphs. Thus, G is a multiple of K2. Suppose
now that G is non-anticonnected, and let H be an anticomponent of G. Since H is
{P4, 3K1}-free and anticonnected, H is either trivial or non-connected and, in the second
case, by the arguments above H induces on G a multiple of K2. Let s be the number of
anticomponents of G that are trivial and t be the number of anticomponents of G that
induce on G a multiple of K2. Since G is the join of its anticomponents, G is the join of a
multiple of tK2 and a complete Ks for some non-negative integers t and s. Equivalently,
G is an augmented multiple of tK2 for some non-negative integer t.

(2) ⇒ (3) Assume that G is an augmented multiple of tK2 for some non-negative t. In
particular, G is a multiple of tK2 ∪ sK1 for some non-negative t and some s = 0 or 1. In
order to prove that G is a semicircular graph, it will suffice to prove that tK2 ∪ sK1 is a
semicircular graph. Fix a circle C. Let {p1, p

′
1}, . . . , {pt, p

′
t}, {q1, q

′
1}, . . . , {qs, q

′
s} be t + s

pairwise distinct pairs of antipodal points of C. For i = 1, . . . , t, let S1
i and S2

i be the two
disjoint open semicircles on C whose endpoints are pi and p′i. For j = 1, . . . , s let Tj be an
open semicircle on C whose endpoints are qj and q′j . Then S1

1 , S2
1 , . . . , S1

t , S2
t , T1, . . . , Ts

is a semicircular model for tK2 ∪ sK1.
(3) ⇒ (1) We now prove that semicircular graphs are {P4, 3K1}-free graphs. It is clear

that 3K1 is not a semicircular graph because there is not enough space on a circle for three
pairwise disjoint semicircles. We now show that P4 is not a semicircular graph. Assume,
by way of contradiction, that there is a semicircular graph model for P4. Let V (P4) =
{v1, v2, v3, v4}, where vi is adjacent to vi+1 for i = 1, 2, 3 and let S = {S1, S2, S3, S4} be
a semicircular model for P4, where the semicircle Si corresponds to the vertex vi. Since
v1 and v3 are non-adjacent, S1 and S3 are disjoint and have the same endpoints. Since
v1 and v4 are also non-adjacent, the same holds for S1 and S4, hence S3 = S4. This
contradicts the fact that S2 ∩ S3 is non-empty but S2 ∩ S4 is empty. This contradiction
shows that P4 is not a semicircular graph. Since the class of semicircular graphs is
hereditary, a semicircular graph is {3K1, P4}-free.

Theorem 9. Let G be a cograph that contains an induced C4, and such that all its
proper induced subgraphs are CA graphs. Then, exactly one of the following conditions
holds:

(1) G is isomorphic to K2,3 or C∗
4 .

(2) G is an augmented multiple of tK2, for some integer t ≥ 2.
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Proof. Clearly, K2,3 and C∗
4 are not augmented multiples of tK2, for any integer

t ≥ 2.
Assume that G is isomorphic to neither C∗

4 nor K2,3. Since all proper induced sub-
graphs of G are CA graphs, C∗

4 and K2,3 are not proper induced subgraphs of G.
We must prove that G is an augmented multiple of tK2, for some integer t ≥ 2. Let

H be the induced subgraph of G that is isomorphic to C4. Since C4 = 2K2, we may
suppose that there is a vertex v in G − H. Since C∗

4 is not an induced subgraph of G, v

is adjacent to at least one vertex of H. Since G is {P4,K2,3}-free, either v is adjacent to
three vertices of H or v is complete to H. In case that v is adjacent to three vertices of
H we will denote by C(v) the interior vertex of the path induced by NH(v) in H.

Suppose there exists a vertex w of G − H, w 6= v, that is non-adjacent to v. If v

were adjacent to three vertices of H and w were complete to H, then the subgraph
induced by {v, w} ∪ V (H) in G would contain an induced P4, a contradiction. Thus, v

and w are both adjacent to three vertices of H or they are both complete to H. Next
assume that v and w are both adjacent to three vertices of G. If C(v) = C(w), then
{v, w} ∪ (V (H) − {C(v)}) would induce in G a graph isomorphic to K2,3. If C(v) and
C(w) were adjacent, then {v, w}∪V (H) would contain an induced P4. We conclude that
if v and w are both adjacent to three vertices of H, then C(v) and C(w) must be distinct
and non-adjacent vertices of H.

We now prove that G does not contain 3K1 as induced subgraph. Assume, by way of
contradiction, that there is an induced subgraph S of G isomorphic to 3K1. Clearly H

and S have at most two vertices in common. If H and S had two vertices in common,
then the remaining vertex of S would be a vertex of G − H adjacent to at most two
vertices of H, a contradiction. If H and S had exactly one vertex in common, then the
other two vertices of S would be adjacent to the same three vertices of H. As we noticed
above, this leads to a contradiction. We conclude that H and S must have no vertices
in common. Let {v1, v2, v3} = V (S). Since the vertices of S are vertices of G − H and
pairwise non-adjacent, all of them are adjacent to three vertices of H or all of them are
complete to H. If all of them were adjacent to three vertices of H, then C(v1), C(v2),
C(v3) would be pairwise distinct and non-adjacent vertices of H, a contradiction. If all
of them were complete to H, then H∪{v1, v2, v3} induces in G a graph which contains an
induced K2,3, a contradiction. We conclude that G is 3K1-free. Since G is also P4-free,
by Theorem 8, G is an augmented multiple of tK2. Finally, since G contains C4 as an
induced subgraph, t ≥ 2.

We can now prove the main result of this section.

Corollary 10. Let G be a cograph. Then, G is a CA graph if and only if G contains
no induced K2,3 or C∗

4 .
Proof. Let H be a cograph. Suppose, by way of contradiction, that H is a minimally

non-CA graph but H is not isomorphic to K2,3 or C∗
4 . Since H is not an interval graph

and it is P4-free, by Theorem 3, H contains an induced C4. By Theorem 9, H is an



PARTIAL CHARACTERIZATIONS OF CIRCULAR-ARC GRAPHS 9

augmented multiple of tK2, for some t ≥ 2. Thus, by Theorem 8, H is a CA graph, a
contradiction.

4.2. Paw-free graphs

A paw-free graph is a graph with no induced paw. Paw-free graphs were studied in [14].

Theorem 11. Let G be a paw-free graph containing an induced C4 and such that
all its proper induced subgraphs are CA graphs. Then, at least one of the following
conditions holds:

(1) G is isomorphic to K2,3, G2, G7, or C∗
4 .

(2) G is a bloomed C4 with trivial blooms.

(3) G is an augmented multiple of tK2 for some t ≥ 2.

Proof. Assume that G is not isomorphic to K2,3, G2, G7, or C∗
4 . Since all proper

induced subgraphs of G are CA, G does not contain any of these graphs as induced
subgraphs.

Let H be an induced subgraph of G isomorphic to C4. If G = H, then the theorem
holds. Otherwise, let v be any vertex of G − H. Since G is C∗

4 -free, v is adjacent to at
least one vertex of H. Since G is paw-free, v cannot be adjacent to either exactly three
vertices of H or exactly two adjacent vertices of H. Since G is K2,3-free, v cannot be
adjacent to exactly two non-adjacent vertices of H. We conclude that each vertex v of
G − H is either adjacent to exactly one vertex of H or complete to H.

Suppose that there are two vertices w, w′ in G − H such that w is complete to H

and w′ is adjacent to exactly one vertex x of H. If w and w′ are non-adjacent, then
w,w′, x and any neighbour of x in H induce a paw in G; if w and w′ are adjacent, then
w,w′, x and the non-neighbour of x in H induce a paw in G. Since G is paw-free, either
all vertices of G − H are complete to H, or each vertex of G − H is adjacent to exactly
one vertex of H (not necessarily all of them to the same vertex).

Assume first that each vertex of G−H is adjacent to exactly one vertex of H. Let us
prove that G − H is a stable set. Assume, by way of contradiction, that there are two
adjacent vertices v and w in G − H. Since G is paw-free, v and w cannot be adjacent
to the same vertex. Since G contains no induced G7, v and w must be adjacent to
non-adjacent vertices of H. Similarly, since G contains no induced G2, v and w cannot
be adjacent to non-adjacent vertices of H, a contradiction. Thus, G − H is a stable set.
Since each vertex of G − H is adjacent to exactly one vertex of H, G is a bloomed C4

with trivial blooms.
Assume now that all vertices of G − H are complete to H. If G − H contains three

pairwise non-adjacent vertices, then these vertices and two non-adjacent vertices of H

induce K2,3, a contradiction. If G − H contains P4, then three non-consecutive vertices
of P4 and any vertex of H induce a paw, a contradiction. Thus, G−H is {3K1, P4}-free.
Since H is complete to G − H, every induced subgraph of G with at least one vertex
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in H and at least one vertex in G − H is non-anticonnected. Since P4 and 3K1 are
anticonnected, if G contains an induced subgraph isomorphic to either 3K1 or P4, then
it must be entirely contained in either H or G−H. As observed above, this situation is
not possible, hence G is {3K1, P4}-free. By Theorem 8, G is an augmented multiple of
tK2 for some non-negative t. Finally, since G contains an induced C4, t ≥ 2.

Theorem 12. Let k ≥ 5. Let G be a paw-free graph such that all its proper induced
subgraphs are CA graphs. If G contains an induced subgraph H isomorphic to Ck, then
exactly one of the following conditions holds:

(1) G is isomorphic to G2, G4, or C∗
k .

(2) G is a bloomed Ck with trivial blooms.

Proof. Assume that G is not isomorphic to G2, G4, or C∗
k . Since all proper induced

subgraphs of G are CA, G does not contain any of these graphs as induced subgraph.
Moreover, G contains no induced C∗

j , for any j ≥ 4. G is paw-free, so it is not isomorphic
to G3; G contains an induced cycle of length at least five, so it is not isomorphic to K2,3.
If G = H, then the theorem holds. Otherwise, by Theorem 6, if v is a vertex of G − H,
then either v is complete to H or NH(v) induces a non-empty path on H. But, since H

is isomorphic to Ck, k ≥ 5, and G is paw-free, every vertex of G − H must be adjacent
to exactly one vertex of H.

We will show now that G − H is a stable set of G. Let v and w be two vertices of
G−H. Suppose, by way of contradiction, that v and w are adjacent. Since G is paw-free,
v and w cannot be adjacent to the same vertex of H. If v and w were adjacent to two
adjacent vertices of H, then G would properly contain an induced C∗

4 . We can assume
now that v and w are adjacent to non-adjacent vertices of H. Let P 1 and P 2 be the
two distinct paths joining the neighbours of v and w within H. By hypothesis, each of
P 1 and P 2 has at least three vertices, and at least one of them has four vertices, since
H has at least five vertices. Since G contains no induced C∗

j , j ≥ 4, each of P 1 and P 2

has at most four vertices. If P 1 and P 2 have three and four vertices respectively, then
{v, w} ∪ V (H) would induce in G the graph G4, a contradiction. Finally, if each of P 1

and P 2 has four vertices, then {v, w}∪V (H)−NH(v) induces properly on G a bipartite
claw, a contradiction. We conclude that G−H is a stable set of G, and since each vertex
of G−H is adjacent to exactly one vertex of H, G is a bloomed Ck with trivial blooms.

We can prove now the main result of this section.

Corollary 13. Let G be a paw-free graph. Then, G is a CA graph if and only if G

contains no induced bipartite claw, K2,3, G2, G4, G7, or C∗
j , for any j ≥ 4.

Proof. Let H be a paw-free graph. Suppose, by way of contradiction, that H is not
isomorphic to the bipartite claw, K2,3, G2, G4, G7, or C∗

j , for j ≥ 4, but H is still a
minimally non-CA graph. Since H is paw free, H is non-basic and, by Corollary 5, H

contains an induced Cj for some j ≥ 4. By Theorem 11 and Theorem 12, H is either
an augmented multiple of tK2 for some t ≥ 2 or a bloomed Cj with trivial blooms. It is
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easy to see that a bloomed Cj with trivial blooms is CA, and an augmented multiple of
tK2 is shown to be CA in Theorem 8. In both cases, we get a contradiction.

4.3. Claw-free chordal graphs

A graph is claw-free chordal if it contains neither an induced claw nor a hole. Claw-
free graphs are widely studied in the literature, see for example [15] or recent results in
[3]. Besides, as PCA graphs are claw-free, the study of claw-free chordal graphs arises
naturally from the characterization of PCA graphs within the class of chordal graphs.

Lemma 1. Let G be a {claw,net∗,G5,G6}-free chordal graph that contains a net L

induced by {t1, t2, t3, b1, b2, b3}, where {t1, t2, t3} induces a triangle and bi is adjacent to
ti for i = 1, 2, 3. If v is a vertex in G − L, then NL(v) is either {bi, ti}, or {t1, t2, t3, bi}
or {bi+1, ti+1, ti+2, bi+2}, for some i ∈ {1, 2, 3} (indices should be understood modulo 3).

Proof. We will analyze the different cases for |NL(v)|. If |NL(v)| = 0, then L ∪ {v}
induces net∗, a contradiction. If |NL(v)| = 1, then either NL(v) = {bi} or NL(v) = {ti}
for some i ∈ {1, 2, 3}. In the first case, L∪{v} induces G5; in the second case, bi, ti, ti+1, v

induce a claw. In both cases, we get a contradiction.
If |NL(v)| = 2, then the representative cases for NL(v) up to symmetry are: {bi, bi+1},

{ti, ti+1}, {bi, ti+1}, {bi, ti}. In the first case, bititi+1bi+1v is a hole; in the second and
third cases, ti+1, ti+2, bi+1, v induce a claw. So, if |NL(v)| = 2, then NL(v) = {bi, ti} for
some i ∈ {1, 2, 3}.

If |NL(v)| = 3, then the representative cases up to symmetry are: {b1, b2, b3}, {bi,
bi+1, ti+2}, {t1, t2, t3}, {bi, bi+1, ti+1}, {bi, ti+1, ti+2}, {bi, ti, ti+1}. In the first two
cases, NL(v) ∪ {v} induces a claw; in the third case, NL(v) ∪ {v} induces G6; in the
fourth an fifth cases, bititi+1v is a hole; in the last case ti+1, bi+1, ti+2, v induce a claw.
In all the cases we get a contradiction.

Finally, if v is adjacent to bi+1, bi+2 and to either bi or ti, then {v, bi+1, bi+2, bi} or
{v, bi+1, bi+2, ti} induces a claw, respectively. So, if |NL(v)| ≥ 4, then NL(v) is either
{t1, t2, t3, bi} or {bi+1, ti+1, ti+2, bi+2}, for some i ∈ {1, 2, 3}.

Theorem 14. Let G be a claw-free chordal graph that contains an induced net, and
such that all its proper induced subgraphs are CA graphs. Then, exactly one of the
following conditions holds:

(1) G is isomorphic to net∗, G5 or G6.

(2) G is a CA graph.

Proof. Assume that G is not isomorphic to net∗, G5 or G6. Since these graphs are
non-CA and all proper induced subgraphs of G are CA, G contains no induced net∗, G5

or G6.



12 JOURNAL OF GRAPH THEORY

T1

B1

T3

B3

T2

B2

M3M2

M1

FIGURE 3. Circles represent cliques. Two circles are adjacent, non-adjacent or joined by a dotted

line if the corresponding cliques are mutually complete, anticomplete, or not necessarily complete or

anticomplete, respectively.

We claim that G has as an induced subgraph H that is a multiple of a net; i.e., the
vertices of H can be partitioned into six non-empty cliques B1, B2, B3, T1, T2, T3 such
that T1, T2, T3 are mutually complete and Ti is complete to Bi and anticomplete to Bi+1

and Bi+2, for each i = 1, 2, 3 (from now on, the indices should be understood modulo 3).
Moreover, the vertices of G − H can be partitioned into three (possibly empty) cliques
M1,M2,M3 such that, for each i = 1, 2, 3, Mi is complete to Bi+1, Bi+2, Ti+1 and Ti+2

and anticomplete to Bi and Ti. A scheme of this situation can be seen in Figure 3.
We will prove the claim by induction on the number n of vertices of G. Clearly, if

G is a net, then the claim holds. Assume that n > 6 and that the desired result holds
for graphs with less than n vertices. Since n > 6, there exists a vertex v of G such that
G′ = G − {v} contains an induced net. By inductive hypothesis, since G′ is claw-free
chordal, G′ has an induced subgraph H that is a multiple of a net and the vertices of
G′−H can be partitioned into three cliques M1,M2,M3 satisfying the conditions above.

Choose ti ∈ Ti, bi ∈ Bi for each i = 1, 2, 3 (recall that Ti and Bi are non-empty
for i = 1, 2, 3). Let L be the subgraph induced by {t1, t2, t3, b1, b2, b3}. By Lemma 1,
either NL(v) = {bi, ti}, NL(v) = {t1, t2, t3, bi} or NL(v) = {bi+1, ti+1, ti+2, bi+2}, for
some i ∈ {1, 2, 3}.

Suppose first that NL(v) = {ti, bi} for some i ∈ {1, 2, 3}. Let j ∈ {1, 2, 3}, b′j ∈ Bj ,
and L′ be the net induced by {t1, t2, t3, b

′
j , bj+1, bj+2}. Applying Lemma 1 to L′, it follows

that v is adjacent to b′j if and only if j = i. Thus, v is complete to Bi and anticomplete
to Bi+1 and Bi+2. Using the same strategy, we can prove that v is complete to Ti and
anticomplete to Ti+1 and Ti+2. Since G is claw-free, v must be complete to Mi+1 (if
w were a non-neighbour of v in Mi+1, then ti, ti+1, w, v would induce a claw) and, by
symmetry, v is also complete to Mi+2. Moreover, since G is C4-free, v is anticomplete
to Mi (if w were a neighbour of v in Mi, then ti, ti+1, w, v would induce C4). Thus, the
claim holds for G replacing Bi by Bi ∪ {v}.

Next, suppose that NL(v) = {t1, t2, t3, bi} for some i ∈ {1, 2, 3}. Reasoning as in the
first case, it follows that v is complete to T1, T2, T3, Bi and anticomplete to Bi+1 and
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FIGURE 4. The graph S.

Bi+2. Since G is C4-free, v must be complete to Mi+1 (if w were a non-neighbour of v

in Mi+1, then bi, v, ti+2, w would induce a C4) and, by symmetry, also to Mi+2. Since
G is claw-free, v must be anticomplete to Mi (if w were a neighbour of v in Mi, then
w, bi+1, bi+2, v would induce a claw). Thus, the claim holds for G replacing Ti by Ti∪{v}.

Finally, suppose that NL(v) = {bi+1, ti+1, ti+2, bi+2} for some i ∈ {1, 2, 3}. Reasoning
again as in the first case, it follows that v is complete to Bi+1, Ti+1, Ti+2, Bi+2 and
anticomplete to Bi and Ti. Since G is claw-free, v must be complete to Mi (if w were a
non-neighbour of v in Mi, then ti, ti+1, w, v would induce a claw). Thus, the claim holds
for G replacing Mi by Mi ∪ {v}. This ends the proof of the claim.

If Mi and Mi+1 are non-empty and mi, mi+1 are vertices in Mi and Mi+1, respectively,
then either miti+1timi+1bi+2 induce a C5 or miti+1timi+1 induce a C4. Since G is
chordal, at most one of {M1,M2,M3} is non-empty. Consequently, G is either a multiple
of a net (if every Mi is empty) or a multiple of the graph S depicted in Figure 4. Since
the net and S are easily seen to be a CA graph, G is also a CA graph.

We can now prove the main result of this section.

Corollary 15. Let G be a claw-free chordal graph. Then, G is CA if and only if G

contains no induced tent∗, net∗, G5 or G6.
Proof. Let H be a claw-free chordal graph. Suppose, by way of contradiction, that

H is not isomorphic to tent∗, net∗, G5 or G6, but H is still a minimally non-CA graph.
Since H is claw-free and chordal, H is non-basic and, by Corollary 5, H contains an
induced net or tent. If H contains an induced net, then by Theorem 14, H is isomorphic
to a net∗, G5 or G6, a contradiction. Thus, H contains no induced net but an induced
tent. Since H is non-basic, it is connected (Corollary 4). So, by Theorem 1, H is a
multiple of a tent and, in particular, a CA graph, a contradiction.

4.4. Diamond-free graphs

A diamond-free graph is a graph with no induced diamond. Diamond-free graphs have
been extensively studied. (See, for example, [2, 4, 19].)
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Theorem 16. Let G be a diamond-free graph that contains a hole, and such that all its
proper induced subgraphs are CA graphs. Then, exactly one of the following conditions
holds:

(1) G is isomorphic to K2,3, G2, G3, G4, G7, C6, G9, or C∗
j for some j ≥ 4.

(2) G is a CA graph. More precisely, if H is any induced hole of G, and V (H) =
{h1, . . . , hk} where hi is adjacent to hi+1 for each i = 1, . . . , k (indices should be
understood modulo k), then the vertices of G − H can be partitioned into k + 1
(possibly empty) pairwise anticomplete sets U1, . . . , Uk, S such that the following
conditions hold:

• For each i = 1, . . . , k, G[Ui] is the union of vertex-disjoint cliques and for each
u ∈ Ui, NH(u) = {hi}.

• For each s ∈ S there is an integer i, 1 ≤ i ≤ k, such that NH(s) = {hi, hi+1};
in addition, if s1, s2 ∈ S, then s1 and s2 are adjacent if and only if NH(s1) =
NH(s2).

Proof. Assume that G is not isomorphic to K2,3, G2, G3, G4, G7, C6, G9, or C∗
j for

any j ≥ 4. Since all of these graphs are non-CA and all proper induced subgraphs of G

are CA, G contains none of these graphs as induced subgraphs.
Let H be an induced hole on G of length k and let v be any vertex of G − H. Since

G is not isomorphic to K2,3, G2, G3, G4, or C∗
j , for any j ≥ 4, by Theorem 6, either v

is complete to H or NH(v) induces a non-empty path in H. Since G is diamond-free, v

is adjacent to at most two vertices of H. So, each vertex of G − H is adjacent to either
a single vertex or two adjacent vertices of H.

Let V (H) = {h1, . . . , hk}, where hi is adjacent to hi+1 for each i = 1, . . . , k (from now
on, indices should be understood modulo k). Let Ui be the set of vertices v of G − H

with NH(v) = {hi}. Since hi is adjacent to all vertices of Ui and G is diamond-free,
G[Ui] contains no induced P3 and therefore G[Ui] is the union of vertex disjoint cliques.

We now show that if i 6= j, then Ui is anticomplete to Uj . Suppose, by way of
contradiction, that there exist i and j, i 6= j, such that some vertex ui ∈ Ui is adjacent
to some vertex uj ∈ Uj . Let P 1 and P 2 be the two distinct paths on H joining hi and
hj . If P 1 has more than four vertices, then there is an interior vertex w of P 1 that
is anticomplete to P 2, so {ui, uj} ∪ V (P 2) ∪ {w} induces on G a graph isomorphic to
C∗

m for some m ≥ 4, a contradiction. Thus, each one of P 1 and P 2 has at most four
vertices. Without loss of generality, we may assume that |P 1| ≤ |P 2|. If |P 1| = 2 and
|P 2| = 4, then {ui, uj}∪V (H) induces G7; if |P 1| = 3 and |P 2| = 3, then {ui, uj}∪V (H)
induces G2; if |P 1| = 3 and |P 2| = 4, then {ui, uj} ∪ V (H) induces G4; if |P 1| = 4 and
|P 2| = 4, then {ui, uj} ∪ (V (H)−{hi}) induces a bipartite claw. In all the cases, we get
a contradiction. We conclude that if i 6= j, then Ui is anticomplete to Uj .

Let S be the set of vertices v of G−H that are adjacent to two vertices of H. Let s1, s2

be two vertices of S, i and j be such that NH(s1) = {hi, hi+1} and NH(s2) = {hj , hj+1}.
Since G is diamond-free, if i = j, then s1 and s2 must be adjacent and if |i − j| = 1,
then s1 and s2 must be non-adjacent. Suppose now that |i − j| > 1, so hi, hi+1, hj
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and hj+1 are pairwise distinct. Assume for contradiction that s1 and s2 are adjacent.
Let P 1 be the path on H whose vertices are {hi+1, hi+2, . . . , hj} and P 2 be the path on
H whose vertices are {hj+1, hj+2, . . . , hi}. If P 1 and P 2 have no internal vertices, then
{s1, s2} ∪ V (H) induces C6, a contradiction. We can assume, without loss of generality,
that P 1 has at least one internal vertex w. But, then w is anticomplete to the hole
induced on G by {s1, s2} ∪ V (P 2), hence {s1, s2, w} ∪ V (P 2) induces on G a graph
isomorphic to C∗

m for some m ≥ 4, a contradiction. So, s1 and s2 are non-adjacent.
Now we will prove that Ui is anticomplete to S for each i = 1, . . . , k. Suppose, by

way of contradiction, that there exist adjacent vertices ui ∈ Ui and s ∈ S, and let j be
such that NH(s) = {hj , hj+1}. Since G is diamond-free, i is different from j and j + 1.
Let P 1 be the path on H whose vertices are {hi, hi+1, . . . , hj} and P 2 the path on H

whose vertices are {hj+1, . . . , hi−1, hi}. If P 2 has more than three vertices, then hj+2 is
anticomplete to the hole induced by {s, ui} ∪ V (P 1), a contradiction. Analogously, P 1

has at most three vertices. If |P 1| = 2 and |P 2| = 3, then {ui, s} ∪ V (H) induces G3; if
|P 1| = 3 and |P 2| = 3, then {ui, s} ∪ V (H) induces G9. We may assume |P1| ≤ |P2|. In
both cases, we have a contradiction. We conclude that Ui is anticomplete to S for each
i = 1, . . . , k.

Finally, it is not difficult to see that a graph satisfying these conditions is a CA graph.
This concludes the proof.

Theorem 17. Let G be a diamond-free chordal graph that contains an induced net,
and such that all its proper induced subgraphs are CA graphs. Then, exactly one of the
following conditions holds:

(1) G is isomorphic to a net∗, G5, or G6.

(2) G is a fully bloomed triangle, and in consequence, it is a CA graph.

Proof. Assume that G is not isomorphic to net∗, G5, or G6. Since all of these graphs
are non-CA and all proper induced subgraphs of G are CA, G contains none of these
graphs as induced subgraphs.

We will show that G is a fully bloomed triangle, and, as a consequence, a CA graph.
We will argue by induction on the number of vertices of G.

Clearly, a net is a fully bloomed triangle. Suppose that G has n > 6 vertices and that
the result holds for graphs with n− 1 vertices. Since G has more than six vertices, there
exists a vertex v of G such that G − {v} contains an induced net.

Moreover, G − {v} is diamond-free chordal, all its proper induced subgraphs are CA

graphs and it is not isomorphic to net∗, G5, or G6. So, by inductive hypothesis, G−{v}
is a fully bloomed triangle. That is, there exists a triangle T of G − {v} such that the
remaining vertices of G−{v} induce a disjoint union of complete graphs M1,M2, . . . ,Mm,
where each Mi is complete to one vertex of T and anticomplete to the others, and each
vertex of T is complete to at least one of M1,M2, . . . ,Mm. The vertex v is adjacent to
at least one vertex of G − {v} because G contains no induced net∗. On the other hand,
since G is chordal and diamond-free and G−{v} is connected, N(v) induces a complete
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graph on G. So, either N(v) ⊆ T or N(v) ⊆ Mi ∪ {t}, where t ∈ T and Mi is a bloom
complete to t. In the first case, since G contains no induced G6, |N(v)| 6= 3, and since
G is diamond free, |N(v)| 6= 2. Therefore, N(v) = {t} for some t ∈ T and {v} is a new
bloom complete to t. In the second case, since G is diamond-free, either |N(v)| = 1 or
N(v) = Mi∪{t}. If N(v) = {t} with t ∈ T , then {v} is a new bloom for t; if N(v) = {w}
with w ∈ Mi, then G contains an induced G5, a contradiction; if N(v) = Mi ∪ {t}, then
G is a fully bloomed triangle replacing Mi by Mi ∪ {v}.

Finally, we can prove the main result of this section.

Corollary 18. A diamond-free graph G is CA if and only if G contains no induced
bipartite claw, net∗, K2,3, G2, G3, G4, G5, G6, G7, C6, G9, or C∗

j , for any j ≥ 4.
Proof. Let H be a diamond-free graph. Suppose, by way of contradiction, that H

is not isomorphic to the bipartite claw, net∗, K2,3, G2, G3, G4, G5, G6, G7, C6, G9, or
C∗

j , for any j ≥ 4, but H is still a minimally non-CA graph. Since H is not an interval
graph but it does not contain a bipartite claw and it is diamond-free, by Theorem 3,
H contains either a hole or an induced net. If H contains a hole, H contradicts Theo-
rem 16. Otherwise, H is chordal. Then, H contains an induced net, and so H contradicts
Theorem 17.

5. SUMMARY AND FURTHER RESULTS

The partial characterizations of circular-arc graphs by forbidden induced subgraphs ob-
tained in this work are summarized in Table I.

TABLE I. Minimal forbidden induced subgraphs for circular-arc graphs in each studied class.

Graph classes Minimal forbidden induced subgraphs Reference

P4-free graphs K2,3, C∗
4 § 4.1.

Paw-free graphs bipartite claw, K2,3, G2, § 4.2.
G4, G7, C∗

j (j ≥ 4)

Claw-free chordal graphs tent∗, net∗, G5, G6 § 4.3.

Diamond-free graphs bipartite claw, net∗, K2,3, G2, G3, G4, § 4.4.

G5, G6, G7, C6, G9, C∗
j (j ≥ 4)

A CA graph is a normal circular-arc (NCA) graph if it admits a circular-arc model
such that no two arcs cover the whole circle. For example, interval graphs and semi-
circular graphs are NCA graphs. An example of a graph which is not NCA is given in
Figure 5. This concept was studied in [8, 9, 10], but the terminology NCA was intro-
duced in [12]. The characterization of non-NCA graphs by minimal forbidden induced
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FIGURE 5. Minimally non-NCA graph that is CA, and its circular-arc model.

subgraphs is not known. The proofs in this paper show that, for the classes analyzed
here, all CA graphs are also NCA. So, the characterizations obtained for CA graphs
also hold for NCA graphs. Moreover, we can state the following result.

Corollary 19. If H is a minimally non-NCA graph and H is a CA graph, then H

contains an induced diamond, an induced P4, an induced paw, and either an induced
claw or a hole.
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