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The goal

• We will review some basic properties of bivariant K-theory for C∗-algebras, focussing
on its universal property and universal coefficient theorems.

• We will see a general scheme for the study of Assembly Maps and Universal Coef-
ficient Theorems in the context of C∗-algebra K-theory:

– the original problem is replaced by a localisation that is purely topological;
– the original problem and its localisation are related using analysis.

1 Triangulated categories of C∗-algebras

1.1 Kasparov Theory and E-theory

• We want to view Kasparov Theory as a C∗-algebraic analogue of the derived cate-
gory of motives.

• A functor F from the category C∗ of (separable) C∗-algebras to an additive cate-
gory A is called

stable if F (A)
∼=→ F (K(`2N)⊗ A);

homotopy invariant if F (A)
∼=→ F

(
C([0, 1], A)

)
;

split-exact if it is exact on split extensions;
exact if it is half-exact on all extensions.

Definition 1. Let C∗ → KK and C∗ → E be the universal functors that are stable and
split-exact or exact.

Theorem 2 (Higson). stable & split-exact =⇒ homotopy invariant

Question 3. Do KK and E exist? — Yes, obviously.Can we describe KK and E explicitly?



Some historic comments

Atiyah tried to construct K-homology via elliptic differential operators.

Brown-Douglas-Fillmore related K-homology to C∗-algebra extensions.

Kasparov defined KK via generalised elliptic operators and related it to extensions.

Cuntz described KK(A, B) as the set of homotopy classes of ∗-homomorphisms qA →
B ⊗ K or q(A ⊗ K) → q(B ⊗ K), where qA = ker

(
A t A

(id,id)−−−→ A
)
, and almost

stated its universal property.

Higson stated the universal property of KK and defined E via its universal property.

Connes-Higson realised E(A, B) using asymptotic morphisms

A⊗ C0(R, K)→ B ⊗ C0(R, K).

Equivariant generalisations
Let G be a locally compact group.

Definition 4. A functor F on G-C∗-algebras is called stable if

A⊗K(H1)→ A⊗K(H1 ⊕H2)← A⊗K(H2)

are isomorphisms for all G-Hilbert spaces.

Definition 5. KKG and EG are the universal stable (split) exact functors on the category
of G-C∗-algebras.
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Properties of KK and E

• Bott periodicity

• KKG is exact for certain extensions.

• KK∗(C, A) ∼= K∗(A) and E∗(C, A) ∼= K∗(A).

• KKG and EG are triangulated categories, with triangles defined by mapping cone
triangles.

• KKG and EG are tensor triangulated categories.

• The universal property yields a natural transformation KKG
∗ (A, B) → EG

∗ (A, B),
which is an isomorphism if G is trivial and A is nuclear.
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• Universal Coefficient Theorem: If A is KK-equivalent to a commutative C∗-algebra,
then there is a natural exact sequence

Ext
(
K∗(A), K1−∗(B)

)
� KK∗(A, B) � Hom

(
K∗(A), K∗(B)

)
.

• Is there a nuclear C∗-algebra for which this fails?

Commutative versus non-commutative topology

• Separable commutative C∗-algebras are equivalent to pointed compact metrisable
spaces.

• The thick subcategory of KK where the UCT holds is equivalent to a full subcate-
gory of a similar localisation of the stable homotopy category.

• Its right-orthogonal complement is the thick subcategory N of C∗-algebras with
K∗(A) = 0.

• This subcategory is not tractable by topological methods.

Question 6. Does N have any non-zero compact objects?

What are the thick subcategories of N ?

What is the analogy to motives?

• KKG and EG are universal homology theories (for suitable notions of homology
theory).

• We need and have a more concrete description.

• They form triangulated tensor categories.

• Correspondences from X to Y generate KK∗
(
C0(X), C0(Y )

)
(Connes-Skandalis).

– Y
f←−−−−−−

K-oriented
Z

g−−−→
proper

X

– f! ∈ KK∗
(
C0(Z), C0(Y )

)
g∗ ∈ KK∗

(
C0(X), C0(Z)

)
– f! ◦ g∗ ∈ KK∗

(
C0(X), C0(Y )

)
Other triangulated categories

• Relaxing our requirements for homology theories further, we can define other uni-
versal triangulated categories of C∗-algebras.

• Thom: add homotopy invariance, replace stability by matrix-stability, get connective
version of E-theory which is still functorial for finite correspondences.

• Other alternative: require stability for compact operators and suspensions, homo-
topy invariance, and Puppe exact sequences
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2 Assembly maps with spaces and C∗-algebras

2.1 Classifying spaces and homotopy quotients

Idea: replace a badly behaved groupoid by a homotopy equivalent one with better prop-
erties (free, proper)

EG universal free proper G-space

EG universal proper G-space

BG G\EG

BG G\EG

Definition 7. Homotopy quotient: G\(X × EG) Alternative: G\(X × EG)

Example 8 (Homeomorphism f : X → X). • take EZ = EZ = R

• homotopy quotient = mapping torus X × [0, 1]
/

(0, x) ∼
(
1, f(x)

)
Homotopy quotients and localisation

• EG→ ? is non-equivariant homotopy equivalence

• X1
f−→ X2 non-equivariant homotopy equivalence ⇐⇒ X1 × EG

f∗−→ X2 × EG
G-equivariant homotopy equivalence

• Passage to X × EG localises at non-equivariant homotopy equivalences.

• EG→ ? is H-equivariant homotopy equivalence ∀ H ⊆ G compact

• X1
f−→ X2 H-equivariant homotopy equivalence ∀H ⊆ G compact ⇐⇒ X1×EG

f∗−→
X2 × EG G-equivariant homotopy equivalence

• Passage to X × EG localises at equivariant homotopy equivalences with respect to
compact subgroups.

Range of the localisation

• X × EG→ X is a G-homotopy equivalence ⇐⇒ X is free and proper G-space

• X × EG→ X is a G-homotopy equivalence ⇐⇒ X is proper G-space

• Summing up, up to G-homotopy equivalence the functors ␣×EG and ␣×EG retract
the category of G-spaces onto the subcategory of (free and) proper G-spaces.
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2.2 Transition to C∗-algebras

Transition to C∗-algebras

• we have no maps C0(X × EG) → C0(X) or C0(X × EG) → C0(X) because X 7→
C0(X) is only functorial for proper maps.

• If we use the pro-C∗-algebra C(EG) = lim←−C(K), where K runs through the com-
pact subsets of EG, we do get a map C(X × EG)→ C(X), but there is no crossed
product G n C(X × EG).

• Solution: replace spaces by duals in KKG:

Definition 9. A G-equivariant dual for a G-space X is a G-C∗-algebra PX for
which there exists a natural isomorphism

RKKG
∗ (X; A, B) ∼= KKG

∗ (PX ⊗ A, B)

compatible with tensor products.

What is RKKG?

• Consider the transformation groupoid G n X.

• G n X-C∗-algebras are G-equivariant bundles of C∗-algebras over X.

• Can define KKGnX and EGnX by universal properties, have similar properties as
KK and E.

• A C∗-algebra A yields a constant bundle C0(X, A) over X.

• RKKG
∗ (X; A, B) = KKGnX

(
C0(X, A), C0(X, B)

)
Properties of duals

• If X is compact, then RKKG
∗ (X; A, B) ∼= KKG

∗
(
A, C(X, B)

)
.

• RKK∗(X; C, C) is the representable K-theory of X.

• A Cantor set has no dual.

• If X is a smooth spin manifold with isometric action of G preserving the spin
structure, then C0(X) is a G-equivariant dual for X.

• Any locally finite, countable, finite-dimensional simplicial complex with simplicial
action of G has a G-equivariant dual.

• X 7→ RKKG
∗ (X; A, B) is a homotopy invariant contravariant functor.

• X 7→ PX is covariant functor

• Get RKKG
∗ (X; A, B) ∼= KKG

∗ (PX ⊗ A, B) from

D ∈ KKG
∗ (PX , C), Dirac morphism

Θ ∈ RKKG
∗ (X; C, PX), local dual Dirac morphism.
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Dual of EG
• ∀ locally compact groups G, EG has a dual.

• EG→ ? induces D ∈ KKG(PEG, C) (Dirac morphism)

• D becomes invertible in RKKG
∗ (EG; PEG, C) and KKH

∗ (PEG, C) for compact sub-
groups H ⊆ G

• The inverse is the local dual Dirac Θ ∈ RKKG
∗ (EG; C, PX).

• D ⊗ idA ∈ KKG(PEG ⊗ A, A) localises KKG at the weak equivalences.

• D ⊗ idA invertible ⇐⇒ A KKG-equivalent to proper G-C∗-algebra

• K∗
(
G nr (PEG⊗A)

)
→ K∗(G nr A) is the Baum-Connes assembly map with coeffi-

cients A.

2.3 How coarse geometry comes into play

Global dual Dirac
Definition 10. (Global) dual Dirac: η ∈ KKG(C, PEG) with p∗EG(η) = Θ

• equivalent: D ⊗ η = 1PEG
in KKG(PEG, PEG)

• η exists =⇒ the assembly map is split injective with section induced by η.

• The existence of η is a geometric property of G:
Theorem 11 (Emerson and Meyer). Let G1 and G2 be torsion-free discrete groups
with finite-dimensional BG. If G1 and G2 are coarsely equivalent and G1 has a dual
Dirac, so has G2.

• Idea of proof: existence of dual Dirac is equivalent to invertibility of

p∗EG : KKG
(
C, C0(G)

)
→ RKKG

(
EG; C, C0(G)

)
.

This map only depends on the coarse space underlying G.

Summary
Our treatment of assembly maps for group actions fits into a general scheme:

• We want to compute some homology theory for C∗-algebras.

• First we localise the homology theory at a suitable class of weak equivalences.

• This should replace the problem by another one that is tractable by methods from
algebraic topology.

• The comparison of the localised and the original problem will probably involve some
analysis and special geometric properties of the setup.

• This is how Kasparov theory allows us to prove statements that cannot be proven
purely topologically.
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