Graded homotopy classification of Leavitt path algebras

Guido Arnone

IMAS UBA-CONICET

Leavitt Path Algebra Group
Research Center for Theoretical Physics, Philippines
December 21st 2023

Leavitt path algebras

Let ℓ be a commutative ring equipped with an involution $*: \ell \rightarrow \ell$.
(E.g.: $\ell=\mathbb{C},(a+i b)^{*}=a-i b$).

Leavitt path algebras

Let ℓ be a commutative ring equipped with an involution $*: \ell \rightarrow \ell$.
(E.g.: $\ell=\mathbb{C},(a+i b)^{*}=a-i b$).

A graph E consists of a pair of functions $s, r: E^{1} \rightarrow E^{0}$.

In this talk we will always assume that $\# E^{0}, \# E^{1}<\infty$ and that ℓ is a field.

Leavitt path algebras

Let ℓ be a commutative ring equipped with an involution $*: \ell \rightarrow \ell$.
(E.g.: $\ell=\mathbb{C},(a+i b)^{*}=a-i b$).

A graph E consists of a pair of functions $s, r: E^{1} \rightarrow E^{0}$.

In this talk we will always assume that $\# E^{0}, \# E^{1}<\infty$ and that ℓ is a field.
The Leavitt path ℓ-algebra $L(E)$ of E is a quotient of the path algebra of the double graph of E.

Leavitt path algebras

A Leavitt path algebra $L(E)$ is:

Leavitt path algebras

A Leavitt path algebra $L(E)$ is:

- graded over \mathbb{Z} via $|v|=0,|e|=1,\left|e^{*}\right|=-1$;

Leavitt path algebras

A Leavitt path algebra $L(E)$ is:

- graded over \mathbb{Z} via $|v|=0,|e|=1,\left|e^{*}\right|=-1$;
- a $*$-algebra, extending $*$ to $v^{*}=v,(e)^{*}=e^{*}$;

Leavitt path algebras

A Leavitt path algebra $L(E)$ is:

- graded over \mathbb{Z} via $|v|=0,|e|=1,\left|e^{*}\right|=-1$;
- a $*$-algebra, extending $*$ to $v^{*}=v,(e)^{*}=e^{*}$;

Examples:

- $M_{n}(\ell)$
- $M_{n}\left(\ell\left[t, t^{-1}\right]\right)$
- $\ell\left\{x, x^{*}: x^{*} x=1\right\}$
- $L_{2}=\frac{\ell\left\{x_{1}, x_{2}, x_{1}^{*}, x_{2}^{*}\right\}}{\left\langle x_{i}^{*} x_{i}-1, x_{1}^{*} x_{2}, x_{2}^{*} x_{1}, x_{1} x_{1}^{*}+x_{2} x_{2}^{*}-1\right\rangle}$.

The graded classification conjecture

The graded classification conjecture states that LPAs can be characterized by their graded Grothendieck group:

$$
K_{0}^{\mathrm{gr}}(L(E))=\frac{\mathbb{Z}\{[P]: P \text { graded projective } L(E) \text {-module }\}}{\langle[P \oplus Q]=[P]+[Q]\rangle}
$$

This group comes equipped with:

The graded classification conjecture

The graded classification conjecture states that LPAs can be characterized by their graded Grothendieck group:

$$
K_{0}^{\mathrm{gr}}(L(E))=\frac{\mathbb{Z}\{[P]: P \text { graded projective } L(E) \text {-module }\}}{\langle[P \oplus Q]=[P]+[Q]\rangle}
$$

This group comes equipped with:

- an action from $C_{\infty}=\langle\sigma\rangle$ given by degree shifting;

The graded classification conjecture

The graded classification conjecture states that LPAs can be characterized by their graded Grothendieck group:

$$
K_{0}^{\mathrm{gr}}(L(E))=\frac{\mathbb{Z}\{[P]: P \text { graded projective } L(E) \text {-module }\}}{\langle[P \oplus Q]=[P]+[Q]\rangle}
$$

This group comes equipped with:

- an action from $C_{\infty}=\langle\sigma\rangle$ given by degree shifting;
- a submonoid $K_{0}^{\mathrm{gr}}(L(E))_{+}=\langle[P]$: P graded projective module \rangle;

The graded classification conjecture

The graded classification conjecture states that LPAs can be characterized by their graded Grothendieck group:

$$
K_{0}^{\mathrm{gr}}(L(E))=\frac{\mathbb{Z}\{[P]: P \text { graded projective } L(E) \text {-module }\}}{\langle[P \oplus Q]=[P]+[Q]\rangle}
$$

This group comes equipped with:

- an action from $C_{\infty}=\langle\sigma\rangle$ given by degree shifting;
- a submonoid $K_{0}^{\mathrm{gr}}(L(E))_{+}=\langle[P]$: P graded projective module $\rangle ;$
- an order unit $[L(E)] \in K_{0}^{\mathrm{gr}}(L(E))_{+}$.

The graded classification conjecture

The graded classification conjecture states that LPAs can be characterized by their graded Grothendieck group:

$$
K_{0}^{\mathrm{gr}}(L(E))=\frac{\mathbb{Z}\{[P]: P \text { graded projective } L(E) \text {-module }\}}{\langle[P \oplus Q]=[P]+[Q]\rangle} .
$$

This group comes equipped with:

- an action from $C_{\infty}=\langle\sigma\rangle$ given by degree shifting;
- a submonoid $K_{0}^{\mathrm{gr}}(L(E))_{+}=\langle[P]$: P graded projective module \rangle;
- an order unit $[L(E)] \in K_{0}^{\mathrm{gr}}(L(E))_{+}$.

If E and F are two finite graphs, then $L(E) \cong \cong_{\mathrm{gr}} L(F)$ if and only if $K_{0}^{\mathrm{gr}}(L(E)) \cong K_{0}^{\mathrm{gr}}(L(F))$ as pointed preordered modules.

The graded homotopy classification conjecture

In this talk we will consider a weaker version of the conjecture, replacing graded isomorphism by graded homotopy equivalence.

The graded homotopy classification conjecture

In this talk we will consider a weaker version of the conjecture, replacing graded isomorphism by graded homotopy equivalence.
One first considers elementary homotopies between graded ℓ-algebra homomorphisms $f_{0}, f_{1}: A \rightarrow B$.

The graded homotopy classification conjecture

In this talk we will consider a weaker version of the conjecture, replacing graded isomorphism by graded homotopy equivalence.
One first considers elementary homotopies between graded ℓ-algebra homomorphisms $f_{0}, f_{1}: A \rightarrow B$.

Two maps are homotopic if there is a finite chain

$$
f \approx g \Longleftrightarrow f=f_{0} \sim f_{1} \sim \cdots \sim f_{n}=g
$$

The graded homotopy classification conjecture

Conjecture

Let E and F be two finite graphs. The following statements are equivalent:
(i) There is a pointed preordered module isomorphism $K_{0}^{\mathrm{gr}}(L(E)) \cong K_{0}^{\mathrm{gr}}(L(F))$.
(ii) There are unital, graded algebra homomorphisms $f: L(E) \longleftrightarrow L(F): g$ such that $g f \approx 1_{L(E)}$ and $f g \approx 1_{L(F)}$.

Primitive graphs

The adjacency matrix $A_{E} \in \mathbb{N}_{0}^{E^{0} \times E^{0}}$ of a graph E is defined as

$$
\left(A_{E}\right)_{v, w}=\#\left\{\bullet_{v} \xrightarrow{e} \bullet_{w}\right\} .
$$

Primitive graphs

The adjacency matrix $A_{E} \in \mathbb{N}_{0}^{E^{0} \times E^{0}}$ of a graph E is defined as

$$
\left(A_{E}\right)_{v, w}=\#\left\{\bullet_{v} \xrightarrow{e} \bullet_{w}\right\} .
$$

We will assume all graphs to be primitive, meaning that there exists some $N>1$ such that all entries of A_{E}^{N} are positive.

Example

(2)

Non-example

$\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$

Primitive graphs

The tools that we use come from the (ungraded) homotopy classification of purely infinite simple LPAs (Cortiñas, Montero, '20, Cortiñas '22).

We consider primitive graphs in order to be able to adapt some of these techniques.

Lemma

If E is a primitive graph and $e \in E^{1}$ then $e e^{*}$ is a full idempotent of $L(E)_{0}$.

Goal: prove the graded homotopy classification conjecture for primitive graphs.

Graded bivariant K-theory

To understand the assingment

$$
\operatorname{hom}_{g r-A l g}(L(E), L(F)) \longrightarrow \operatorname{hom}_{\mathbb{Z}[\sigma]}\left(K_{0}^{\mathrm{gr}}(L(E)), K_{0}^{\mathrm{gr}}(L(F))\right)
$$

we will consider an intermediate category, graded algebraic bivariant K-theory (Ellis, '14).

Graded bivariant K-theory

To understand the assingment

$$
\operatorname{hom}_{g r-A l g}(L(E), L(F)) \longrightarrow \operatorname{hom}_{\mathbb{Z}[\sigma]}\left(K_{0}^{\mathrm{gr}}(L(E)), K_{0}^{\mathrm{gr}}(L(F))\right)
$$

we will consider an intermediate category, graded algebraic bivariant K-theory (Ellis, '14).

Graded bivariant K-theory

The objects of $k k^{g r}$ are graded algebras; the description of morphisms is more complicated.
We can characterize this category as the "smallest" triangulated category recieving a comparison functor $j: g r-A l g \rightarrow k k^{\text {gr }}$ satisfying the following properties:

Graded bivariant K-theory

The objects of $k k^{g r}$ are graded algebras; the description of morphisms is more complicated.
We can characterize this category as the "smallest" triangulated category recieving a comparison functor $j: g r-A l g \rightarrow k k^{\text {gr }}$ satisfying the following properties:

- homotopy invariance: $j(A) \cong j(A[t])$;

Graded bivariant K-theory

The objects of $k k^{g r}$ are graded algebras; the description of morphisms is more complicated.
We can characterize this category as the "smallest" triangulated category recieving a comparison functor $j: g r-A l g \rightarrow k k^{\text {gr }}$ satisfying the following properties:

- homotopy invariance: $j(A) \cong j(A[t])$;
- matricial stability: $j(A) \cong j\left(M_{\infty} A\right)$;

Graded bivariant K-theory

The objects of $k k^{g r}$ are graded algebras; the description of morphisms is more complicated.
We can characterize this category as the "smallest" triangulated category recieving a comparison functor $j: g r-A l g \rightarrow k k^{\text {gr }}$ satisfying the following properties:

- homotopy invariance: $j(A) \cong j(A[t])$;
- matricial stability: $j(A) \cong j\left(M_{\infty} A\right)$;
- excision: $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 \quad \rightsquigarrow \quad j(A) \rightarrow j(B) \rightarrow j(C) \rightarrow j(A)[+1]$.

Graded bivariant K-theory

The objects of $k k^{g r}$ are graded algebras; the description of morphisms is more complicated.
We can characterize this category as the "smallest" triangulated category recieving a comparison functor $j: g r-A l g \rightarrow k k^{g r}$ satisfying the following properties:

- homotopy invariance: $j(A) \cong j(A[t])$;
- matricial stability: $j(A) \cong j\left(M_{\infty} A\right)$;
- excision: $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 \quad \rightsquigarrow \quad j(A) \rightarrow j(B) \rightarrow j(C) \rightarrow j(A)[+1]$.

Theorem (A., Cortiñas, '22)

We have:
(i) $k k^{\mathrm{gr}}(\ell, L(E)) \cong K_{0}^{\mathrm{gr}}(L(E))$;
(ii) $K_{0}^{\mathrm{gr}}(E) \cong K_{0}^{\mathrm{gr}}(F)$ as modules if and only if $j(L(E)) \cong j(L(F))$.

Grdaded homotopy classification

The starting point for graded homotopy classification is the following "universal coefficient theorem":

Theorem (A., Cortiñas, '22)

There is a short exact sequence:

$$
0 \longrightarrow K_{0}^{\mathrm{gr}}\left(E_{t}\right) \otimes_{\mathbb{Z}[\sigma]} K_{1}^{\mathrm{gr}}(L(F)) \xrightarrow{\partial} k k^{\mathrm{gr}}(L(E), L(F)) \longrightarrow \operatorname{hom}_{\mathbb{Z}[\sigma]}\left(K_{0}^{\mathrm{gr}}(E), K_{0}^{\mathrm{gr}}(L(F))\right) \longrightarrow 0
$$

Here E_{t} is the dual graph of E.

Grdaded homotopy classification

$$
\begin{aligned}
0 \longrightarrow K_{0}^{\mathrm{gr}}\left(E_{t}\right) \otimes_{\mathbb{Z}[\sigma]} K_{1}^{\mathrm{gr}}(L(F)) \xrightarrow{\partial} & k k^{\mathrm{gr}}(L(E), L(F)) \longrightarrow \operatorname{hom}_{\mathbb{Z}[\sigma]}\left(K_{0}^{\mathrm{gr}}(E), K_{0}^{\mathrm{gr}}(L(F))\right) \longrightarrow 0 \\
& \operatorname{hom}_{g r-A l g}(L(E), L(F))
\end{aligned}
$$

The argument can be summarized as follows:

Grdaded homotopy classification

The argument can be summarized as follows:
(1) every arrow in $k k^{g r}(L(E), L(F))$ that induces a preordered module map is of the form $j(f)$ for some unital graded algebra homomorphism $f: L(E) \rightarrow L(F)$. ("surjectivity")

Grdaded homotopy classification

The argument can be summarized as follows:
(1) every arrow in $k k^{g r}(L(E), L(F))$ that induces a preordered module map is of the form $j(f)$ for some unital graded algebra homomorphism $f: L(E) \rightarrow L(F)$. ("surjectivity")
(2) $j(f)=j(g)$ implies that there exists $u \in L(F)_{0}^{\times}$such that $f \approx u g u^{-1}$. ("injectivity")

Grdaded homotopy classification

The argument can be summarized as follows:
(1) every arrow in $k k^{g r}(L(E), L(F))$ that induces a preordered module map is of the form $j(f)$ for some unital graded algebra homomorphism $f: L(E) \rightarrow L(F)$. ("surjectivity")
(2) $j(f)=j(g)$ implies that there exists $u \in L(F)_{0}^{\times}$such that $f \approx u g u^{-1}$. ("injectivity")

Let us first see why (1) and (2) together imply that K_{0}^{gr} classifies LPAs up to graded homotopy.

Grdaded homotopy classification

$$
\begin{aligned}
& 0 \longrightarrow K_{0}^{\mathrm{gr}}\left(E_{t}\right) \otimes_{\mathbb{Z}[\sigma]} K_{1}^{\mathrm{gr}}(L(F)) \longrightarrow \hat{j}^{2} \prod^{\mathrm{gr}}(L(E), L(F)) \longrightarrow \operatorname{hom}_{\mathbb{Z}[\sigma]}\left(K_{0}^{\mathrm{gr}}(E), K_{0}^{\mathrm{gr}}(L(F))\right) \longrightarrow 0 \\
& \operatorname{hom}_{g r-A l g}(L(E), L(F))
\end{aligned}
$$

Grdaded homotopy classification

$$
\begin{aligned}
0 \longrightarrow K_{0}^{\mathrm{gr}}\left(E_{t}\right) \otimes_{\mathbb{Z}[\sigma]} K_{1}^{\mathrm{gr}}(L(F)) \xrightarrow{\longrightarrow} & k \mathrm{k}^{\mathrm{gr}}(L(E), L(F)) \longrightarrow \operatorname{hom}_{\mathbb{Z}[\sigma]}\left(K_{0}^{\mathrm{gr}}(E), K_{0}^{\mathrm{gr}}(L(F))\right) \longrightarrow 0 \\
& \operatorname{hom}_{g r-A l g}(L(E), L(F))
\end{aligned}
$$

- an isomorphism $\phi: K_{0}^{\mathrm{gr}}(L(E)) \rightarrow K_{0}^{\mathrm{gr}}(L(F))$ can be lifted to an isomorphism $\xi: j(L(E)) \rightarrow j(L(F))$ at the level of $k k^{g r}$.

Grdaded homotopy classification

$$
\begin{aligned}
0 \longrightarrow K_{0}^{\mathrm{gr}}\left(E_{t}\right) \otimes_{\mathbb{Z}[\sigma]} K_{1}^{\mathrm{gr}}(L(F)) \xrightarrow{\partial} & k k^{\mathrm{gr}}(L(E), L(F)) \longrightarrow \operatorname{hom}_{\mathbb{Z}[\sigma]}\left(K_{0}^{\mathrm{gr}}(E), K_{0}^{\mathrm{gr}}(L(F))\right) \longrightarrow 0 \\
& \operatorname{hom}_{g r-A l g}(L(E), L(F))
\end{aligned}
$$

- an isomorphism $\phi: K_{0}^{\mathrm{gr}}(L(E)) \rightarrow K_{0}^{\mathrm{gr}}(L(F))$ can be lifted to an isomorphism $\xi: j(L(E)) \rightarrow j(L(F))$ at the level of $k k^{\text {gr }}$.
- by (1), there are graded algebra homomorphisms $f: L(E) \longleftrightarrow L(F): g$ such that $j(f)=\xi$ and $j(g)=\xi^{-1}$.

Grdaded homotopy classification

$$
\begin{aligned}
0 \longrightarrow K_{0}^{\mathrm{gr}}\left(E_{t}\right) \otimes_{\mathbb{Z}[\sigma]} K_{1}^{\mathrm{gr}}(L(F)) \xrightarrow{\partial} & k k^{\mathrm{gr}}(L(E), L(F)) \longrightarrow \operatorname{hom}_{\mathbb{Z}[\sigma]}\left(K_{0}^{\mathrm{gr}}(E), K_{0}^{\mathrm{gr}}(L(F))\right) \longrightarrow 0 \\
& \operatorname{hom}_{g r-A l g}(L(E), L(F))
\end{aligned}
$$

- an isomorphism $\phi: K_{0}^{\mathrm{gr}}(L(E)) \rightarrow K_{0}^{\mathrm{gr}}(L(F))$ can be lifted to an isomorphism $\xi: j(L(E)) \rightarrow j(L(F))$ at the level of $k k^{\text {gr }}$.
- by (1), there are graded algebra homomorphisms $f: L(E) \longleftrightarrow L(F): g$ such that $j(f)=\xi$ and $j(g)=\xi^{-1}$.
- since $j(f g)=j(f) j(g)=1_{L(F)}$ and likewise $j(g f)=1_{L(E)}$, by (2) we have that both $f g$ and $g f$ are homotopic to conjugation by some degree zero unit.

Grdaded homotopy classification

$$
\begin{aligned}
0 \longrightarrow K_{0}^{\mathrm{gr}}\left(E_{t}\right) \otimes_{\mathbb{Z}[\sigma]} K_{1}^{\mathrm{gr}}(L(F)) \xrightarrow{\partial} & k k^{\mathrm{gr}}(L(E), L(F)) \longrightarrow \operatorname{hom}_{\mathbb{Z}[\sigma]}\left(K_{0}^{\mathrm{gr}}(E), K_{0}^{\mathrm{gr}}(L(F))\right) \longrightarrow 0 \\
& \operatorname{hom}_{g r-A l g}(L(E), L(F))
\end{aligned}
$$

- an isomorphism $\phi: K_{0}^{\mathrm{gr}}(L(E)) \rightarrow K_{0}^{\mathrm{gr}}(L(F))$ can be lifted to an isomorphism $\xi: j(L(E)) \rightarrow j(L(F))$ at the level of $k k^{\text {gr }}$.
- by (1), there are graded algebra homomorphisms $f: L(E) \longleftrightarrow L(F): g$ such that $j(f)=\xi$ and $j(g)=\xi^{-1}$.
- since $j(f g)=j(f) j(g)=1_{L(F)}$ and likewise $j(g f)=1_{L(E)}$, by (2) we have that both $f g$ and $g f$ are homotopic to conjugation by some degree zero unit.
- this implies that f is a graded homotopy equivalence.

Grdaded homotopy classification

We now enumerate the main tools used in the proof.

Grdaded homotopy classification

We now enumerate the main tools used in the proof.

Theorem (A. '22, Vaš '22)

Preordered module maps $K_{0}^{\mathrm{gr}}(L(E)) \rightarrow K_{0}^{\mathrm{gr}}(L(F))$ can be lifted to graded unital maps $L(E) \rightarrow L(F)$.
We also need a further understanding of the map ∂ and of $K_{1}^{\mathrm{gr}}(L(F))$.

Poincaré duality

To understand ∂ we used a graded analogoue of the algebraic version of Poincaré duality for LPAs (Cortiñas '22).

Theorem (A. '23)

Given R and S two graded algebras we have a natural isomorphism

$$
k k^{\mathrm{gr}}\left(R \otimes_{\ell} L(E), S\right) \cong k k^{\mathrm{gr}}\left(R, S \otimes_{\ell} L\left(E_{t}\right)[+1]\right)
$$

Corollary

We have an isomorphism $k k^{\mathrm{gr}}(L(E), L(F)) \cong K H_{1}^{\mathrm{gr}}\left(L(F) \otimes_{\ell} L(E)\right)$.

Graded K_{1} in terms of units

For an arbitrary graded ring R, the description of $K_{1}^{\mathrm{gr}}(R)$ in terms of units is not as satisfactory as in the ungraded setting.

Graded K_{1} in terms of units

For an arbitrary graded ring R, the description of $K_{1}^{\mathrm{gr}}(R)$ in terms of units is not as satisfactory as in the ungraded setting.

A graded unital ring R is strongly graded if $R_{k} R_{l}=R_{k+l}$ for each $k, l \in \mathbb{Z}$. An algebra is ultramatricial if it is a union of products of matrix rings.

Graded K_{1} in terms of units

For an arbitrary graded ring R, the description of $K_{1}^{\mathrm{gr}}(R)$ in terms of units is not as satisfactory as in the ungraded setting.

A graded unital ring R is strongly graded if $R_{k} R_{l}=R_{k+l}$ for each $k, l \in \mathbb{Z}$. An algebra is ultramatricial if it is a union of products of matrix rings.

Lemma

If R is a strongly graded ring such that R_{0} is ultramatricial, then $K_{1}^{g \mathrm{gr}}(R) \cong\left(R_{0}\right)_{\mathrm{ab}}^{\times}$. In particular $K_{1}^{\mathrm{gr}}(L(E)) \cong\left(L(E)_{0}\right)_{\mathrm{ab}}^{\times}$.

Graded K_{1} in terms of units

For an arbitrary graded ring R, the description of $K_{1}^{\mathrm{gr}}(R)$ in terms of units is not as satisfactory as in the ungraded setting.

A graded unital ring R is strongly graded if $R_{k} R_{l}=R_{k+l}$ for each $k, l \in \mathbb{Z}$. An algebra is ultramatricial if it is a union of products of matrix rings.

Lemma

If R is a strongly graded ring such that R_{0} is ultramatricial, then $K_{1}^{\mathrm{gr}}(R) \cong\left(R_{0}\right)_{\mathrm{ab}}^{\times}$. In particular $K_{1}^{\mathrm{gr}}(L(E)) \cong\left(L(E)_{0}\right)_{\mathrm{ab}}^{\times}$.

Sketch of proof.

By Dade's theorem $K_{1}^{\mathrm{gr}}(R) \cong K_{1}\left(R_{0}\right)$. Both K_{1} and $(-)_{\mathrm{ab}}^{\times}$commute with finite products and unions; hence, the result boils down to the fact that $K_{1}\left(M_{n}(\ell)\right)=M_{n}(\ell)_{\mathrm{ab}}^{\times}=\ell^{\times}$.

The action on K_{1} for corner skew Laurent polynomial rings

We wish to see how the isomorphism $K_{1}^{\mathrm{gr}}(R) \cong\left(R_{0}\right)_{\mathrm{ab}}^{\times}$translates the shift action on $K_{1}^{\mathrm{gr}}(R)$ to an action on $\left(R_{0}\right)_{\mathrm{ab}}^{\times}$.

The action on K_{1} for corner skew Laurent polynomial rings

We wish to see how the isomorphism $K_{1}^{\mathrm{gr}}(R) \cong\left(R_{0}\right)_{\mathrm{ab}}^{\times}$translates the shift action on $K_{1}^{\mathrm{gr}}(R)$ to an action on $\left(R_{0}\right)_{\mathrm{ab}}^{\times}$.
A graded ring R is a corner skew Laurent polynomial ring if there exist $t_{+} \in R_{1}, t_{-} \in R_{-1}$ such that $t_{-} t_{+}=1$. Writing $p=t_{+} t_{-}$, we have an endomorphism

$$
\alpha: R_{0} \rightarrow R_{0}, \quad x \mapsto t_{+} x t_{-}
$$

which corestricts to an isomorphism $R_{0} \cong p R_{0} p$.

The action on K_{1} for corner skew Laurent polynomial rings

We wish to see how the isomorphism $K_{1}^{\mathrm{gr}}(R) \cong\left(R_{0}\right)_{\mathrm{ab}}^{\times}$translates the shift action on $K_{1}^{\mathrm{gr}}(R)$ to an action on $\left(R_{0}\right)_{\mathrm{ab}}^{\times}$.
A graded ring R is a corner skew Laurent polynomial ring if there exist $t_{+} \in R_{1}, t_{-} \in R_{-1}$ such that $t_{-} t_{+}=1$. Writing $p=t_{+} t_{-}$, we have an endomorphism

$$
\alpha: R_{0} \rightarrow R_{0}, \quad x \mapsto t_{+} x t_{-}
$$

which corestricts to an isomorphism $R_{0} \cong p R_{0} p$.

Example

Let E be an essential graph and consider $\left\{e_{v}: v \in E^{0}\right\} \subset E^{1}$ such that each edge e_{v} ends at v. The elements $t_{+}=\sum_{v \in E^{0}} e_{v}$ and $t_{-}=t_{+}^{*}$ satisfy $t_{-} t_{+}=1$, hence $L(E)$ is a corner skew Laurent polynomial ring.

The action on K_{1} for corner skew Laurent polynomial rings

Let E be an essential graph and $\alpha: L(E)_{0} \rightarrow L(E)_{0}$ the endomorphism associated to its corner skew Laurent polynomial structure.

Theorem (Ara, Pardo, '14)

Under the isomorphism $K_{0}^{\mathrm{gr}}(L(E)) \cong K_{0}\left(L(E)_{0}\right)$ the shift automorphism on $K_{0}^{\mathrm{gr}}(L(E))$ corresponds to $K_{0}(\alpha): K_{0}\left(L(E)_{0}\right) \rightarrow K_{0}\left(L(E)_{0}\right)$.

The action on K_{1} for corner skew Laurent polynomial rings

Let E be an essential graph and $\alpha: L(E)_{0} \rightarrow L(E)_{0}$ the endomorphism associated to its corner skew Laurent polynomial structure.

Theorem (Ara, Pardo, '14)

Under the isomorphism $K_{0}^{\mathrm{gr}}(L(E)) \cong K_{0}\left(L(E)_{0}\right)$ the shift automorphism on $K_{0}^{\mathrm{gr}}(L(E))$ corresponds to $K_{0}(\alpha): K_{0}\left(L(E)_{0}\right) \rightarrow K_{0}\left(L(E)_{0}\right)$.

Theorem (A. '23)

If E is an essential graph, then under the isomorphism $K_{1}^{\mathrm{gr}}(L(E)) \cong K_{1}\left(L(E)_{0}\right)$ the shift automorphism on $K_{1}^{\mathrm{gr}}(L(E))$ corresponds to $K_{1}(\alpha): K_{1}\left(L(E)_{0}\right) \rightarrow K_{1}\left(L(E)_{0}\right)$.

Question

These theorems have been proved at the level of (graded) K-theory groups. Can we lift them to a statement at the level of categories of (graded) modules?

Graded homotopy classification

With all of this in place, we have the following classification result.

Theorem (A. '23)

Let ℓ be a field and let E and F be two finite, primitve graphs. The following statements are equivalent:
(i) there is an isomorphism $\left(K_{0}^{\mathrm{gr}}(L(E)), K_{0}^{\mathrm{gr}}(L(E))_{+},[L(E)]\right) \cong\left(K_{0}^{\mathrm{gr}}(L(F)), K_{0}^{\mathrm{gr}}(L(F))_{+},[L(F)]\right)$;
(ii) there is a unital graded homotopy equivalence $f: L_{\ell}(E) \rightarrow L_{\ell}(F)$.

