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Leavitt path algebras

Let ℓ be a commutative ring equipped with an involution ∗: ℓ→ ℓ.

(E.g.: ℓ= C, (a+ ib)∗ = a− ib).

A graph E consists of a pair of functions s, r: E1→ E0.

•s(e) •r(e)

e

In this talk we will always assume that #E0,#E1 <∞ and that ℓ is a field.

The Leavitt path ℓ-algebra L(E) of E is a quotient of the path algebra of the double graph of E.
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Leavitt path algebras

A Leavitt path algebra L(E) is:

graded over Z via |v|= 0, |e|= 1, |e∗|= −1;

a ∗-algebra, extending ∗ to v∗ = v, (e)∗ = e∗;

Examples:

Mn(ℓ)

Mn(ℓ[t, t−1])

ℓ{x, x∗ : x∗x = 1}

L2 =
ℓ{x1,x2,x∗1,x∗2}

〈x∗i xi−1, x∗1x2, x∗2x1, x1x∗1+x2x∗2−1〉 .
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The graded classification conjecture

The graded classification conjecture states that LPAs can be characterized by their graded
Grothendieck group:

Kgr
0 (L(E)) =

Z{[P] : P graded projective L(E)-module}
〈[P⊕Q] = [P] + [Q]〉

.

This group comes equipped with:

an action from C∞ = 〈σ〉 given by degree shifting;

a submonoid Kgr
0 (L(E))+ = 〈[P] : P graded projective module〉;

an order unit [L(E)] ∈ Kgr
0 (L(E))+.

Conjecture (Hazrat, ’13)

If E and F are two finite graphs, then L(E)∼=gr L(F) if and only if Kgr
0 (L(E))

∼= Kgr
0 (L(F)) as pointed

preordered modules.
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The graded homotopy classification conjecture

In this talk we will consider a weaker version of the conjecture, replacing graded isomorphism
by graded homotopy equivalence.

One first considers elementary homotopies between graded ℓ-algebra homomorphisms
f0, f1 : A→ B.

f0 ∼ f1 ⇐⇒
B[t]

A B

evi
∃h

fi

i= 0, 1.

Two maps are homotopic if there is a finite chain

f ≈ g ⇐⇒ f = f0 ∼ f1 ∼ · · · ∼ fn = g.
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The graded homotopy classification conjecture

Conjecture

Let E and F be two finite graphs. The following statements are equivalent:

(i) There is a pointed preordered module isomorphism Kgr
0 (L(E))

∼= Kgr
0 (L(F)).

(ii) There are unital, graded algebra homomorphisms f : L(E)←→ L(F): g such that gf ≈ 1L(E) and
fg≈ 1L(F).



Primitive graphs

The adjacency matrix AE ∈ NE0×E0

0 of a graph E is defined as

(AE)v,w = #

�

•v •w

e
�

.

We will assume all graphs to be primitive, meaning that there exists some N > 1 such that all
entries of AN

E are positive.

Example

•

( 2 )

Non-example
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0 1

�



Primitive graphs

The adjacency matrix AE ∈ NE0×E0

0 of a graph E is defined as

(AE)v,w = #

�

•v •w

e
�

.

We will assume all graphs to be primitive, meaning that there exists some N > 1 such that all
entries of AN

E are positive.

Example

•

( 2 )

Non-example

• •

�

1 1
0 1

�



Primitive graphs

The tools that we use come from the (ungraded) homotopy classification of purely infinite
simple LPAs (Cortiñas, Montero, ’20, Cortiñas ’22).

We consider primitive graphs in order to be able to adapt some of these techniques.

Lemma

If E is a primitive graph and e ∈ E1 then ee∗ is a full idempotent of L(E)0.

Goal: prove the graded homotopy classification conjecture for primitive graphs.



Graded bivariant K-theory

To understand the assingment

homgr−Alg(L(E), L(F)) −→ homZ[σ](K
gr
0 (L(E)), Kgr

0 (L(F)))

we will consider an intermediate category, graded algebraic bivariant K-theory (Ellis, ’14).

homgr−Alg(L(E), L(F)) kkgr(j(L(E)), j(L(F))) homZ[σ](K
gr
0 (E), Kgr

0 (F))

Kgr
0

j ev
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Graded bivariant K-theory

The objects of kkgr are graded algebras; the description of morphisms is more complicated.

We can characterize this category as the “smallest” triangulated category recieving a comparison
functor j: gr− Alg→ kkgr satisfying the following properties:

homotopy invariance: j(A)∼= j(A[t]);

matricial stability: j(A)∼= j(M∞A);

excision: 0→ A→ B→ C→ 0 ⇝ j(A)→ j(B)→ j(C)→ j(A)[+1].

Theorem (A., Cortiñas, ’22)

We have:

(i) kkgr(ℓ, L(E))∼= Kgr
0 (L(E));

(ii) Kgr
0 (E)

∼= Kgr
0 (F) as modules if and only if j(L(E))∼= j(L(F)).
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Grdaded homotopy classification

The starting point for graded homotopy classification is the following “universal coefficient
theorem”:

Theorem (A., Cortiñas, ’22)

There is a short exact sequence:

0 Kgr
0 (Et)⊗Z[σ] Kgr

1 (L(F)) kkgr(L(E), L(F)) homZ[σ](K
gr
0 (E), Kgr

0 (L(F))) 0∂

Here Et is the dual graph of E.



Grdaded homotopy classification

0 Kgr
0 (Et)⊗Z[σ] Kgr

1 (L(F)) kkgr(L(E), L(F)) homZ[σ](K
gr
0 (E), Kgr

0 (L(F))) 0

homgr−Alg(L(E), L(F))

∂

j

Kgr
0

The argument can be summarized as follows:

(1) every arrow in kkgr(L(E), L(F)) that induces a preordered module map is of the form j(f) for
some unital graded algebra homomorphism f : L(E)→ L(F). (“surjectivity”)

(2) j(f) = j(g) implies that there exists u ∈ L(F)×0 such that f ≈ ugu−1. (“injectivity”)

Let us first see why (1) and (2) together imply that Kgr
0 classifies LPAs up to graded homotopy.
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an isomorphism φ : Kgr
0 (L(E))→ Kgr

0 (L(F)) can be lifted to an isomorphism
ξ: j(L(E))→ j(L(F)) at the level of kkgr.

by (1), there are graded algebra homomorphisms f : L(E)←→ L(F): g such that j(f) = ξ and
j(g) = ξ−1.

since j(fg) = j(f)j(g) = 1L(F) and likewise j(gf) = 1L(E), by (2) we have that both fg and gf
are homotopic to conjugation by some degree zero unit.

this implies that f is a graded homotopy equivalence.
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We now enumerate the main tools used in the proof.

Theorem (A. ’22, Vaš ’22)

Preordered module maps Kgr
0 (L(E))→ Kgr

0 (L(F)) can be lifted to graded unital maps L(E)→ L(F).

We also need a further understanding of the map ∂ and of Kgr
1 (L(F)).
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Poincaré duality

To understand ∂ we used a graded analogoue of the algebraic version of Poincaré duality for
LPAs (Cortiñas ’22).

Theorem (A. ’23)

Given R and S two graded algebras we have a natural isomorphism

kkgr(R⊗ℓ L(E), S)∼= kkgr(R, S⊗ℓ L(Et)[+1]).

Corollary

We have an isomorphism kkgr(L(E), L(F))∼= KHgr
1 (L(F)⊗ℓ L(E)).



Graded K1 in terms of units

For an arbitrary graded ring R, the description of Kgr
1 (R) in terms of units is not as satisfactory as

in the ungraded setting.

A graded unital ring R is strongly graded if RkRl = Rk+l for each k, l ∈ Z. An algebra is
ultramatricial if it is a union of products of matrix rings.

Lemma

If R is a strongly graded ring such that R0 is ultramatricial, then Kgr
1 (R)

∼= (R0)×ab. In particular
Kgr

1 (L(E))
∼= (L(E)0)×ab.

Sketch of proof.

By Dade’s theorem Kgr
1 (R)

∼= K1(R0). Both K1 and (−)×ab commute with finite products and
unions; hence, the result boils down to the fact that K1(Mn(ℓ)) =Mn(ℓ)×ab = ℓ

×.
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The action on K1 for corner skew Laurent polynomial rings

We wish to see how the isomorphism Kgr
1 (R)

∼= (R0)×ab translates the shift action on Kgr
1 (R) to an

action on (R0)×ab.

A graded ring R is a corner skew Laurent polynomial ring if there exist t+ ∈ R1, t− ∈ R−1 such
that t−t+ = 1. Writing p= t+t−, we have an endomorphism

α: R0→ R0, x 7→ t+xt−

which corestricts to an isomorphism R0
∼= pR0p.

Example

Let E be an essential graph and consider {ev : v ∈ E0} ⊂ E1 such that each edge ev ends at v. The
elements t+ =
∑

v∈E0 ev and t− = t∗+ satisfy t−t+ = 1, hence L(E) is a corner skew Laurent
polynomial ring.
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The action on K1 for corner skew Laurent polynomial rings

Let E be an essential graph and α: L(E)0→ L(E)0 the endomorphism associated to its corner
skew Laurent polynomial structure.

Theorem (Ara, Pardo, ’14)

Under the isomorphism Kgr
0 (L(E))

∼= K0(L(E)0) the shift automorphism on Kgr
0 (L(E)) corresponds to

K0(α): K0(L(E)0)→ K0(L(E)0).

Theorem (A. ’23)

If E is an essential graph, then under the isomorphism Kgr
1 (L(E))

∼= K1(L(E)0) the shift
automorphism on Kgr

1 (L(E)) corresponds to K1(α): K1(L(E)0)→ K1(L(E)0).

Question

These theorems have been proved at the level of (graded) K-theory groups. Can we lift them to a
statement at the level of categories of (graded) modules?
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Graded homotopy classification

With all of this in place, we have the following classification result.

Theorem (A. ’23)

Let ℓ be a field and let E and F be two finite, primitve graphs. The following statements are
equivalent:

(i) there is an isomorphism (Kgr
0 (L(E)), Kgr

0 (L(E))+, [L(E)])∼= (Kgr
0 (L(F)), Kgr

0 (L(F))+, [L(F)]);

(ii) there is a unital graded homotopy equivalence f : Lℓ(E)→ Lℓ(F).


