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AbstratIn this paper we analyze the e�et of introduing a numerial integration in the pieewise linear�nite element approximation of the Steklov eigenvalue problem. We obtain optimal order errorestimates for the eigenfuntions when this numerial integration is used and we prove that, for singulareigenfuntions, the eigenvalues obtained using this redued integration are better approximations thanthose obtained using exat integration when the mesh size is small enough.Key words: Finite elements, Steklov eigenvalue problem, Redued integrationAMS subjet lassi�ation: 65D30,65N25,65N30.1 IntrodutionThe aim of this paper is to analyze the e�et of introduing a numerial integration in the pieewiselinear �nite element approximation of the Steklov eigenvalue problem.Inreasing attention has reently been paid to the problem of approximating the vibration modes ofa struture in ontat with an inompressible uid. The most usual proedure in engineering pratieis to eliminate the uid variable by using the so-alled added mass formulation [4℄, [9℄. This onsistsof taking into aount the e�et of the uid by means of a Neumann-to-Dirihlet operator on the uid-solid interfae. This approah yields an eigenvalue problem similar to the Steklov eigenvalue problemonsidered here.There are relatively few papers treating the e�et of numerial integration on eigenvalue approxima-tion. For seond order selfadjoint eigenvalue problems Banerjee and Osborn [3℄ prove that �nite elementapproximations with quadrature rules satisfy the same estimates that hold with exat integration whenthe quadrature rules have appropriate degrees of preision. In [1℄ Armentano and Dur�an analyze thee�et of a quadrature rule known as \mass-lumping" for seond order selfadjoint eigenvalue problems.For a Steklov eigenvalue problem optimal order error estimates in H1 norm are obtained in [4℄ for thepieewise linear �nite element approximation when exat integration is used. As far as we know, errorestimates for the eigenfuntion have not been proved when some quadrature rule is introdued.The goal of this paper is to obtain optimal error estimates in H1 and L2 norms for the eigenfuntionswhen a quadrature rule is introdued in the omputation of the rigth-hand side of the weak form of the�Departamento de Matem�atia, Faultad de Cienias Exatas y Naturales, Universidad de Buenos Aires, 1428 BuenosAires, Argentina (garmenta�dm.uba.ar)Supported by ANPCyT under grant PICT 03-05009 and by CONICET under grant PIP 0660/98.1



equation of the Steklov eingenvalue problem. In order to obtain these estimates we prove that the orderof the di�erene between the eigenfuntion approximation obtained using the quadrature rule and theeigenfuntion approximation with exat integration is higher than the order between the eigenfuntionapproximation with exat integration and the exat one.Moreover, using our error estimates we will show that, for singular eigenfuntions, the eigenvaluesobtained using redued integration are better approximations that those obtained using exat integra-tion when the mesh size is small enough. So, we extend the results obtained in [1℄ for the seond orderselfadjoint eigenvalue problems to the Steklov eigenvalue problem.The paper is organized as follows. First, in setion 2, we present the Steklov eigenvalue problemand the approximation problem with and without quadrature rule. Setion 3 deals with error estimatesin H1 and L2 norms for the eigenfuntions. Finally in setion 4 we use the error estimates obtained insetion 3 to prove that, for singular eigenfuntions, the eigenvalues obtained using the redued integrationintrodued in setion 2 are better approximations that those obtained using exat integration when themesh size is small enough.2 The Steklov Eigenvalue ProblemLet 
 � IR2 be a bounded polygonal domain. We onsider the following Steklov eigenvalue problem [2℄:�4u+ u = 0 in 
 (2.1)�u�n = �u on � = �
The variational problem assoiated with (2.1) is given by:Find � and u 2 H1(
), u 6= 0 satisfyinga(u; v) = � Z� uv 8v 2 H1(
) (2.2)kukL2(�) = 1where a(u; v) = R
rurv + R
 uv, whih is ontinuous and oerive on H1(
).It is known that the solution of this problem is given by a sequene of pairs (�j ; uj), with positiveeigenvalues �j diverging to +1 [10℄. We assume the eigenvalues to be inreasingly ordered: 0 < �1 �� � � � �j � � � �. The assoiated eigenfuntions satisfy uj 2 H1+r(
), where r = 1 if 
 is onvex andr < �! (with ! being the largest inner angle of 
) otherwise (see for example [8℄).In order to approximate the eigenvalue � and its assoiated eigenfuntion u we onsider fThg atriangulation of 
 suh that any two triangles in Th share at most a vertex or an edge. Let h stand forthe mesh-size; namely h = maxT2Th hT , with hT being the diameter of the triangle T . We assume thatthe family of triangulations Th satis�es a minimal angle ondition, i.e., there exists a onstant � > 0 suhthat hT�T � �, where �T is the diameter of the largest irle ontained in T .We onsider the standard �nite element spae:Vh = fv 2 H1(
) : vjT 2 P1 8T 2 Thgwhere P1 denotes the spae of linear polynomials. 2



Then, the standard �nite element approximation problem is the following:Find �h and uh 2 Vh, uh 6= 0 suh thata(uh; v) = �h Z� uhv 8v 2 Vh (2.3)kuhkL2(�) = 1Let �j , 1 � j � Nh (Nh = number of nodes) be the Lagrange basis of degree one, i.e., �j 2 P1 suhthat �j(ni) = Æi;j where ni denotes the node i. The generalized eigenvalue problem is given by: Finduh =PNhj=1 zj�j suh that Az = �hBzwhere Ai;j = Z
r�ir�j + Z
 �i�jand Bi;j = Z� �i�jAnother possible disretization is obtained by using quadrature rule on the right hand side of (2.3).If we use in the omputation of the matrix B the trapezoid rule we obtain another generalized eigenvalueproblem Az = �Ih ~Bzwhere the matrix ~B is diagonal. The variational problem is in this ase:Find �Ih and uIh 2 Vh, uIh 6= 0 suh thata(uIh; v) = �Ih Z� Ih(uIhv) 8 v 2 Vh; (2.4)kuIhkL2(�) = 1where Ih denotes the pieewise linear interpolation on the verties of the triangulation Th whih lies on � .The two problems given above redue to generalized eigenvalue problems where the matrixA is positivede�nite and symmetri, and the matries B and ~B are non-negative de�nite, symmetri, and both ofthem have rankMh = number of verties on �. They attain a �nite number of eigenpairs (�j;h; uj;h) and(�Ij;h; uIj;h), 1 � j � Mh, respetively, with positive eigenvalues whih we assume inreasingly ordered:0 < �1;h � � � � � �Mh;h and 0 < �I1;h � � � � � �IMh;h.In order to simplify notation from now on we will drop the subindex j in �j ; �h;j ; �Ih;j ; uj ; uh;j ; uIh;jand we denote by C a generi onstant not neessarily the same at eah ourrene.3 Error estimatesFollowing the arguments given in [4℄ error estimates in H1 norm an be obtained for the eigenfuntionapproximation using the standard �nite element method (2.3), i.e, it an be seen that there exists aonstant C suh that ku� uhkH1(
) � Chr (3.5)In order to obtain error estimates for the eigenfuntion, when a quadrature rule is introdued, we willuse the spetral aproximation theory given in [2℄. 3



Let T; Th : H1(
)! H1(
) be the bounded linear operators de�ned by� Tf 2 H1(
)a(Tf; v) = b(f; v) 8v 2 H1(
) (3.6)� Thf 2 Vha(Thf; v) = b(f; v) 8v 2 Vh (3.7)where b(f; v) = R� fv. The non-zero eigenvalues of T are the reiproals of the eigenvalues of (2.2) andthe non-zero eigenvalues of Th are the reiproals of the eigenvalues of (2.3) and T and (2.2), Th and (2.3)have the same eigenfuntions. Now, we introdue another operator T Ih : H1(
)! H1(
) de�ned by� T Ihf 2 Vha(T Ihf; v) = bI(f; v) 8v 2 Vh (3.8)where bI(f; v) = R� I(Ph(f)v) with Ph being the L2 projetion on � onto the pieewise linear ontinuosfuntions, i.e., Z� Ph(f)v = Z� fv 8v 2 Vh (3.9)It is easy to see that the non-zero eigenvalues of T Ih are the reiproals of those of (2.4) and T Ih and(2.4) have the same eigenfuntions.First, we will obtain error estimates in L2(�) for the eigenfuntion approximation when exat inte-gration is used. The following estimate holdsProposition 3.1 Let (�h; uh) and (�; u) be the solutions of problems (2.2) and (2.3), respetively. Thenthere exists a onstant C suh that kuh � ukL2(�) � Ch 32 rProof. Let e = Tf � Thf with f being an eigenfuntion of the problem (2.2). In order to obtain errorestimates in L2(�) we onsider the following auxiliary problem:�4�+ � = 0 in 
���n = e on �Let �I 2 Vh be the Lagrange interpolation of �. By subtrating (3.7) from (3.6) we have that a(e; �I) = 0.Then, kek2L2(�) = Z� e2 = Z� ���ne = Z
r�re+ Z
 �e= a(�; e) = a(�� �I ; e) � k�� �IkH1(
)kekH1(
)Using standard �nite element estimates ([6℄, [7℄) and the same arguments given in Proposition 4.4 of [4℄we have that kek2L2(�) � Ch r2 k�kH1+ r2 (
)kekH1(
) � Ch r2 kekL2(�)kekH1(
)Therefore by using the error estimates in H1 (see [4℄) we have thatkek2L2(�) � Ch 32 rkekL2(�)kfkH1(
)but, sine f is an eigenfuntion we have that there exists a onstant C suh that kfkH1(
) � CkfkL2(�)and so, kekL2(�) � Ch 32 rkfkL2(�) (3.10)4



and using the spetral approximation theory (see [2℄) we obtain the desired result.For seond order-ellipti eigenvalue problems, referene [3℄ ontains error estimates onsidering numer-ial integration under the assumption that the eigenfuntion is smooth. However, their arguments an beused to obtain error estimates when the eigenfuntion are non-smooth. As far as we know, error estimatesfor the Steklov eigenvalue problem have not been proved when some integration rule is introdued. Ournext goal is to obtain error estimates for the Steklov eigenvalue problem using the redued integrationde�ned in (2.4). We will prove that the order of the di�erene between the eigenfuntion approximationobtained using the quadrature rule and the eigenfuntion approximation with exat integration is higherthan the order between the eigenfuntion approximation with exat integration and the exat one.The following approximation result holds:Theorem 3.1 There exists a onstant C > 0 suh that for any f 2 H1(
) we havek(Th � T Ih )fkH1(
) � ChkfkH1(
):Moreover, if f is an eigenfuntion of the problem (2.2), we havek(Th � T Ih )fkH1(
) � Ch 32 kfkH1(
)Proof. For any f 2 H1(
) and v 2 Vh from (3.7), (3.8) and (3.9) we have thata((Th � T Ih )f; v) = Z� fv � I(Ph(f)v) = Z� Ph(f)v � I(Ph(f)v) (3.11)Let f`kg1�k�Mh be the edges of the mesh lying on � then,Z� Ph(f)v � I(Ph(f)v) = X̀�� Z`k Ph(f)v � I(Ph(f)v) � X̀�� kPh(f)v � I(Ph(f)v)kL1(`k)Using standard error estimates for interpolation (see for example [7℄), the fat that Ph(f) and v arefuntions in Vh and Cauhy-Shwarz inequality we haveX̀�� kPh(f)v � I(Ph(f)v)kL1(`k) � C X̀�� j`kj2jPh(f)vjW 2;1(`k) � C X̀�� j`kj2jk�Ph(f)�`k kL2(`k)k �v�`k kL2(`k)Now using the following inverse estimate: k �w�`k kL2(`k) � Cj`kj 12 kwkH 12 (`k) 8w 2 Vh ([6℄, [7℄) and Cauhy-Shwarz inequality we getZ� Ph(f)v�I(Ph(f)v) � ChX̀�� kPh(f)kH 12 (`k)kvkH 12 (`k) � Ch X̀�� kPh(f)k2H 12 (`k)! 12  X̀�� kvk2H 12 (`k)! 12(3.12)Sine P`�� kwk2H 12 (`k) � Ckwk2H 12 (�) for any w 2 H 12 (�) we haveZ� Ph(f)v � I(Ph(f)v) � ChkPh(f)kH 12 (�)kvkH 12 (�)Then using that there exits a onstant C suh that kPh(f)kH 12 (�) � CkfkH 12 (�) ([6℄, [7℄) and a traetheorem we getZ� Ph(f)v � I(Ph(f)v) � ChkfkH 12 (�)kvkH 12 (�) � ChkfkH1(
)kvkH1(
)5



So, the �rst result follows by taking v = Thf � T Ihf .If f is an eigenfuntion of the problem (2.2) f lies in H1+r(
) with 12 < r � 1.So, instead of (3.12) we have in this aseZ� Ph(f)v � I(Ph(f)v) � C X̀�� j`kj2jk�Ph(f)�`k kL2(`k)k �v�`k kL2(`k) � Ch 32 X̀�� kPh(f)kH1(`k)kvkH 12 (`k)� Ch 32  X̀�� kPh(f)k2H1(`k)! 12  X̀�� kvk2H 12 (`k)! 12 (3.13)and using the same arguments given above we haveZ� Ph(f)v � I(Ph(f)v) � Ch 32 kPh(f)kH1(�)kvkH 12 (�) � Ch 32 kfkH1(�)kvkH 12 (�)� Ch 32 kfkH1+r(
)kvkH 12 (�) � Ch 32 kfkH1+r(
)kvkH1(
)Sine f is an eigenfuntion from the same arguments given in Proposition 4.4 in [4℄ and the traetheorem we know that there exists a onstant C suh that kfkH1+r(
) � CkfkH 12 (�) � CkfkH1(
).Therefore, the proof onludes by taking v = Thf � T Ihf .Corollary 3.1 Let u and uIh be the eigenfuntions of the problems (2.2) and (2.4) respetively. Thereexists a onstant C suh that ku� uIhkH1(
) � ChrProof. It is a onsequene of the error estimate k(T � Th)fkH1(
) � ChrkfkH1(
) [4℄, Theorem 3.1 andTheorem 7.1 in [2℄.In order to obtain L2(�) error estimates for eigenfuntions when redued integration is used weonsider the following Theorem.Theorem 3.2 Let f be the eigenfuntion of the problem (2.2). There exists a onstant C > 0 suh thatk(Th � T Ih )fkL2(�) � Ch 32 kfkL2(�): (3.14)Moreover, if fThg is quasi-uniform, i.e., there exists a onstant Æ > 0 suh that hhT � Æ, 8T 2 Th, then,for any  2 (0; 12 ),  � r2 there exists a onstant C = C() suh thatk(Th � T Ih )fkL2(�) � Ch 32+kfkL2(�)In partiular, if r < 1 we have k(Th � T Ih )fkL2(�) � Ch 32+ r2 kfkL2(�).Proof. Let e = Thf � T Ihf with f being an eigenfuntion of the problem (2.2) and � being the solutionof the auxiliary problem �4�+ � = 0 in 
 (3.15)���n = e on �The variational problem assoiated with (3.15) is given bya(�; v) = Z� ev 8v 2 H1(
)6



Let �h 2 Vh be the solution of the disrete variational problema(�h; v) = Z� ev 8v 2 VhThen, kek2L2(�) = a(e; �h) = a(Thf � T Ihf; �h) = Z� f�h � I(Ph(f)�h)= Z� Ph(f)�h � I(Ph(f)�h) (3.16)Then,Z� Ph(f)�h � I(Ph(f)�h) � X̀�� kPh(f)�h � I(Ph(f)�h)kL1(`k) � C X̀�� j`kj2jPh(f)�hjW 2;1(`k)� C X̀�� j`kj2jk�Ph(f)�`k kL2(`k)k��h�`k kL2(`k)By the same arguments used in the proof of Theorem 3.1 we havekPh(f)�h � I(Ph(f)�h)kL1(�) � Ch 32 kPh(f)kH1(�)k�hkH 12 (�) � Ch 32 kfkH1+r(
)k�hkH1(
) (3.17)Sine k�hkH1(
) � CkekL2(�) and kfkH1+r(
) � CkfkH 12 (�) � CkfkH1(
) � CkfkL2(�) we have thatkThf � T IhfkL2(�) � Ch 32 kfkL2(�):and the �rst result holds.Now, we assume that the triangulation fThg satis�es the quasi-uniform ondition, i.e., there is aonstant Æ > 0 suh that hhT � Æ, 8T 2 Th.Let  2 (0; 12 ),  � r2 then, using the inverse estimate k��h�`k kL2(`k) � Cj`kj 12� k�hkH 12+(`k) and Cauhy-Shwarz inequality, instead of (3.17) we have in this asekPh(f)�h � I(Ph(f)�h)kL1(�) � Ch 32+kPh(f)kH1(�)k�hkH 12+(�) � Ch 32+kfkH1+r(
)k�hkH 12+(�)� Ch 32+kfkH1+r(
)k�hkH1+(
)Let �h be the Lagrange interpolation operator, from Theorem 2.6 in [5℄ we know that there exists aonstant C suh that k���h�kH1+ (
) � Ck�kH1+(
)and therefore k�h�kH1+ (
) � Ck�kH1+ (
)On the other hand from the inverse inequality given in Theorem 2.9 in [5℄ and standard error estimateswe have that k�h ��h�kH1+ (
) � C 1h k�h ��h�kH1(
) � Ck�kH1+(
)So, k�hkH1+ (
) � k�h ��h�hkH1+(
) + k�h�kH1+ (
) � Ck�kH1+ (
).Sine k�kH1+ (
) � Ck�kH1+ r2 (
) � CkekL2(�) and kfkH1+r(
) � CkfkL2(�) we onlude thatkThf � T IhfkL2(�) � Ch 32+kfkL2(�):and we omplete the proof.Now, we have the L2(�) error estimates for eigenfuntions when redued integration is used.7



Corollary 3.2 Let (�; u) and (�Ih; uIh) be the solutions of problems (2.2) and (2.4) respetively. Thenthere exists a onstant C suh that ku� uIhkL2(�) � Ch 32 rProof. The result is a onsequene of (3.10), Theorem 3.2 and the spetral aproximation theory [2℄.4 Advantages of redued integrationThe goal of this setion is to show that if the eigenfuntion of problem (2.2) is singular the eigenvalueapproximation given by using redued integration (2.4) is better than the eigenvalue approximation givenby the standard �nite element (2.3) for h small enough. So, we extend the results obtained in [1℄ forseond order-ellipti eigenvalue problems to the Steklov eigenvalue problem.First, we will show that the eigenvalue obtained by redued integration is always below the oneobtained by the standard �nite element approximation, i.e, �Ih � �h.For eah boundary edge f`kg1�k�Mh we denote by p1(`k) and p2(`k) the extremes of the edge `k.Then we haveLemma 4.1 For any vh 2 Vh,Z� �Ih(v2h)� v2h� = 16 X̀�� (vh(p1(`k))� vh(p2(`k)))2 j`kjin partiular Z� Ih(v2h) � Z� v2hProof. Sine vh is a pieewise linear funtion we observe thatZ� v2h = X̀�� �v2h(p1(`k)) + v2h(p2(`k)) + 4v2h(m`k)� j`kj6where m`k denote the midpoint of the edge `k. From vh(m`k ) = vh(p1(`k))+vh(p2(`k))2 andZ� Ih(v2h) = X`k2� �v2h(p1(`k)) + v2h(p2(`k))� j`kj2we have thatZ�(I(v2h)� v2h) = X`k2� �v2h(p1(`k)) + v2h(p2(`k))� j`kj2 � �v2h(p1(`k)) + v2h(p2(`k)) + vh(p1(`k)vh(p2(`k))� j`kj3= X`k2� �v2h(p1(`k)) + v2h(p2(`k))� 2vh(p1(`k))vh(p2(`))� j`kj6and therefore the Lemma holds.As a onsequene of the previous Lemma we have thatCorollary 4.1 For any vh 2 Vh ,  2 (0; 12 ), there exists a onstant C = C() suh that0 � Z� Ih(v2h)� v2h � Ch1+2kvhk2H 12+(�)8



Proof. Using Lemma 4.1 and the fat that �vh�`k = vh(p2(`k))�vh(p1(`k))j`kj we have thatZ�(Ih(v2h)� v2h) = 16 X̀�� ((vh(p1(`k))� vh(p2(`k)))2 j`kj = 16 X̀����vh�`k �2 j`kj3 = 16 X̀�� k�vh�`k k2L2(`k)j`kj2Sine, for any  2 (0; 12 ), there exists a onstant C = C() suh that k�vh�`k kL2(`k) � Cj`kj 12� kvhkH 12 +(`k)we obtain Z� Ih(v2h)� v2h � 16C X`k�� kvhk2H 12+(`k)j`kj1+2 � Ch1+2kvhk2H 12+(�)and we onlude the proof .Theorem 4.1 Let �; �h and �Ih, be the eigenvalues of problems (2.2), (2.3) and (2.4) respetively. Then� � �h and �Ih � �h (4.18)Proof. Let T , Th and T Ih be the operators de�ned in (3.6),(3.7) and (3.8) and let �j , �h;j and �Ih;j ,the orresponding eigenvalues whih we assume noninreasingly ordered, i.e., �1 � �2 � � � ��j � � � �,�h;1 � �h;2 � � � � � �h;Mh and �Ih;1 � �I2;h � � � � � �Ih;Mh .It is known that the eigenvalues an be haraterized using the maximum-minimum priniple ([10℄), i.e,for any j, 1 � j �Mh we have that �j = maxVj minv2Vj b(v; v)a(v; v) (4.19)and �h;j = maxVh;j minvh2Vh;j b(vh; vh)a(vh; vh) �Ih;j = maxVh;j minvh2Vh;j bI(vh; vh)a(vh; vh) (4.20)where Vj denote any subspae of H1(
) of dimension j and Vh;j denote any subspae of Vh of dimensionj. Sine Vh � H1(
) we have that �j � �h;j .In view of Lemma 4.1 we have that for any j, 1 � j �MhbI(vh; vh)a(vh; vh) � b(vh; vh)a(vh; vh) 8vh 2 Vh;j (4.21)So, �Ih;j � �h;j ,1 � j �Mh.The proof onludes by using that the non-zero eigenvalues of T , Th and T Ih are the reiproals of theeigenvalues of (2.2), (2.3) and (2.4).The next Lemma, whih follows from Lemma 5.1 of [3℄ or Lemma 2.2 of [1℄, gives an expression forthe di�erene between � and the approximation given by redued integration �Ih.Lemma 4.2 Let (�Ih; uIh) and (�; u) be the solutions of problems (2.2) and (2.4) respetively. Then wehave that �Ih � � = kuIh � uk2H1(
) � �kuIh � uk2L2(�) � �Ih�Z� Ih((uIh)2)� (uIh)2� (4.22)Now, we assume that the triangulation fThg satis�es the quasi-uniform ondition, i.e., there is aonstant Æ > 0 suh that hhT � Æ, 8T 2 Th. Then we have the following result.9



Corollary 4.2 Let �Ih and � be the eigenvalues of problems (2.2) and (2.4) respetively. If there existsa onstant C suh that kuIh � ukH1(
) � Chr with r < 1 then, for h small enough, we have� � �Ih (4.23)Proof. The proof follows the same argument given in [1℄. From Lemma 4.2 we know that�Ih � � = kuIh � uk2H1(
) � �kuIh � uk2L2(�) � �Ih�Z� Ih((uIh)2)� (uIh)2� (4.24)From Corollary 4.1, taking  = r2 we haveZ� Ih((uIh)2)� (uIh)2 � Ch1+rkuIhk2H 12 + r2 (�)Sine, kuIhkH 12+ r2 (�) � CkuIhkH1+ r2 (
) � C(kuIh � �hukH1+ r2 (
) + k�hukH1+ r2 (
)) using Theorem 2.6and Theorem 2.9 in [5℄, Corollary 3.1 and standard error estimates for interpolation we obtainkuIhkH1+ r2 (
) � C( 1h r2 kuIh ��hukH1(
) + kukH1+ r2 (
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