
The e�e
t of redu
ed integration in the Stekloveigenvalue problemMar��a G. Armentano �
Abstra
tIn this paper we analyze the e�e
t of introdu
ing a numeri
al integration in the pie
ewise linear�nite element approximation of the Steklov eigenvalue problem. We obtain optimal order errorestimates for the eigenfun
tions when this numeri
al integration is used and we prove that, for singulareigenfun
tions, the eigenvalues obtained using this redu
ed integration are better approximations thanthose obtained using exa
t integration when the mesh size is small enough.Key words: Finite elements, Steklov eigenvalue problem, Redu
ed integrationAMS subje
t 
lassi�
ation: 65D30,65N25,65N30.1 Introdu
tionThe aim of this paper is to analyze the e�e
t of introdu
ing a numeri
al integration in the pie
ewiselinear �nite element approximation of the Steklov eigenvalue problem.In
reasing attention has re
ently been paid to the problem of approximating the vibration modes ofa stru
ture in 
onta
t with an in
ompressible 
uid. The most usual pro
edure in engineering pra
ti
eis to eliminate the 
uid variable by using the so-
alled added mass formulation [4℄, [9℄. This 
onsistsof taking into a

ount the e�e
t of the 
uid by means of a Neumann-to-Diri
hlet operator on the 
uid-solid interfa
e. This approa
h yields an eigenvalue problem similar to the Steklov eigenvalue problem
onsidered here.There are relatively few papers treating the e�e
t of numeri
al integration on eigenvalue approxima-tion. For se
ond order selfadjoint eigenvalue problems Banerjee and Osborn [3℄ prove that �nite elementapproximations with quadrature rules satisfy the same estimates that hold with exa
t integration whenthe quadrature rules have appropriate degrees of pre
ision. In [1℄ Armentano and Dur�an analyze thee�e
t of a quadrature rule known as \mass-lumping" for se
ond order selfadjoint eigenvalue problems.For a Steklov eigenvalue problem optimal order error estimates in H1 norm are obtained in [4℄ for thepie
ewise linear �nite element approximation when exa
t integration is used. As far as we know, errorestimates for the eigenfun
tion have not been proved when some quadrature rule is introdu
ed.The goal of this paper is to obtain optimal error estimates in H1 and L2 norms for the eigenfun
tionswhen a quadrature rule is introdu
ed in the 
omputation of the rigth-hand side of the weak form of the�Departamento de Matem�ati
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equation of the Steklov eingenvalue problem. In order to obtain these estimates we prove that the orderof the di�eren
e between the eigenfun
tion approximation obtained using the quadrature rule and theeigenfun
tion approximation with exa
t integration is higher than the order between the eigenfun
tionapproximation with exa
t integration and the exa
t one.Moreover, using our error estimates we will show that, for singular eigenfun
tions, the eigenvaluesobtained using redu
ed integration are better approximations that those obtained using exa
t integra-tion when the mesh size is small enough. So, we extend the results obtained in [1℄ for the se
ond orderselfadjoint eigenvalue problems to the Steklov eigenvalue problem.The paper is organized as follows. First, in se
tion 2, we present the Steklov eigenvalue problemand the approximation problem with and without quadrature rule. Se
tion 3 deals with error estimatesin H1 and L2 norms for the eigenfuntions. Finally in se
tion 4 we use the error estimates obtained inse
tion 3 to prove that, for singular eigenfun
tions, the eigenvalues obtained using the redu
ed integrationintrodu
ed in se
tion 2 are better approximations that those obtained using exa
t integration when themesh size is small enough.2 The Steklov Eigenvalue ProblemLet 
 � IR2 be a bounded polygonal domain. We 
onsider the following Steklov eigenvalue problem [2℄:�4u+ u = 0 in 
 (2.1)�u�n = �u on � = �
The variational problem asso
iated with (2.1) is given by:Find � and u 2 H1(
), u 6= 0 satisfyinga(u; v) = � Z� uv 8v 2 H1(
) (2.2)kukL2(�) = 1where a(u; v) = R
rurv + R
 uv, whi
h is 
ontinuous and 
oer
ive on H1(
).It is known that the solution of this problem is given by a sequen
e of pairs (�j ; uj), with positiveeigenvalues �j diverging to +1 [10℄. We assume the eigenvalues to be in
reasingly ordered: 0 < �1 �� � � � �j � � � �. The asso
iated eigenfun
tions satisfy uj 2 H1+r(
), where r = 1 if 
 is 
onvex andr < �! (with ! being the largest inner angle of 
) otherwise (see for example [8℄).In order to approximate the eigenvalue � and its asso
iated eigenfun
tion u we 
onsider fThg atriangulation of 
 su
h that any two triangles in Th share at most a vertex or an edge. Let h stand forthe mesh-size; namely h = maxT2Th hT , with hT being the diameter of the triangle T . We assume thatthe family of triangulations Th satis�es a minimal angle 
ondition, i.e., there exists a 
onstant � > 0 su
hthat hT�T � �, where �T is the diameter of the largest 
ir
le 
ontained in T .We 
onsider the standard �nite element spa
e:Vh = fv 2 H1(
) : vjT 2 P1 8T 2 Thgwhere P1 denotes the spa
e of linear polynomials. 2



Then, the standard �nite element approximation problem is the following:Find �h and uh 2 Vh, uh 6= 0 su
h thata(uh; v) = �h Z� uhv 8v 2 Vh (2.3)kuhkL2(�) = 1Let �j , 1 � j � Nh (Nh = number of nodes) be the Lagrange basis of degree one, i.e., �j 2 P1 su
hthat �j(ni) = Æi;j where ni denotes the node i. The generalized eigenvalue problem is given by: Finduh =PNhj=1 zj�j su
h that Az = �hBzwhere Ai;j = Z
r�ir�j + Z
 �i�jand Bi;j = Z� �i�jAnother possible dis
retization is obtained by using quadrature rule on the right hand side of (2.3).If we use in the 
omputation of the matrix B the trapezoid rule we obtain another generalized eigenvalueproblem Az = �Ih ~Bzwhere the matrix ~B is diagonal. The variational problem is in this 
ase:Find �Ih and uIh 2 Vh, uIh 6= 0 su
h thata(uIh; v) = �Ih Z� Ih(uIhv) 8 v 2 Vh; (2.4)kuIhkL2(�) = 1where Ih denotes the pie
ewise linear interpolation on the verti
es of the triangulation Th whi
h lies on � .The two problems given above redu
e to generalized eigenvalue problems where the matrixA is positivede�nite and symmetri
, and the matri
es B and ~B are non-negative de�nite, symmetri
, and both ofthem have rankMh = number of verti
es on �. They attain a �nite number of eigenpairs (�j;h; uj;h) and(�Ij;h; uIj;h), 1 � j � Mh, respe
tively, with positive eigenvalues whi
h we assume in
reasingly ordered:0 < �1;h � � � � � �Mh;h and 0 < �I1;h � � � � � �IMh;h.In order to simplify notation from now on we will drop the subindex j in �j ; �h;j ; �Ih;j ; uj ; uh;j ; uIh;jand we denote by C a generi
 
onstant not ne
essarily the same at ea
h o
urren
e.3 Error estimatesFollowing the arguments given in [4℄ error estimates in H1 norm 
an be obtained for the eigenfun
tionapproximation using the standard �nite element method (2.3), i.e, it 
an be seen that there exists a
onstant C su
h that ku� uhkH1(
) � Chr (3.5)In order to obtain error estimates for the eigenfun
tion, when a quadrature rule is introdu
ed, we willuse the spe
tral aproximation theory given in [2℄. 3



Let T; Th : H1(
)! H1(
) be the bounded linear operators de�ned by� Tf 2 H1(
)a(Tf; v) = b(f; v) 8v 2 H1(
) (3.6)� Thf 2 Vha(Thf; v) = b(f; v) 8v 2 Vh (3.7)where b(f; v) = R� fv. The non-zero eigenvalues of T are the re
ipro
als of the eigenvalues of (2.2) andthe non-zero eigenvalues of Th are the re
ipro
als of the eigenvalues of (2.3) and T and (2.2), Th and (2.3)have the same eigenfun
tions. Now, we introdu
e another operator T Ih : H1(
)! H1(
) de�ned by� T Ihf 2 Vha(T Ihf; v) = bI(f; v) 8v 2 Vh (3.8)where bI(f; v) = R� I(Ph(f)v) with Ph being the L2 proje
tion on � onto the pie
ewise linear 
ontinuosfun
tions, i.e., Z� Ph(f)v = Z� fv 8v 2 Vh (3.9)It is easy to see that the non-zero eigenvalues of T Ih are the re
ipro
als of those of (2.4) and T Ih and(2.4) have the same eigenfun
tions.First, we will obtain error estimates in L2(�) for the eigenfun
tion approximation when exa
t inte-gration is used. The following estimate holdsProposition 3.1 Let (�h; uh) and (�; u) be the solutions of problems (2.2) and (2.3), respe
tively. Thenthere exists a 
onstant C su
h that kuh � ukL2(�) � Ch 32 rProof. Let e = Tf � Thf with f being an eigenfun
tion of the problem (2.2). In order to obtain errorestimates in L2(�) we 
onsider the following auxiliary problem:�4�+ � = 0 in 
���n = e on �Let �I 2 Vh be the Lagrange interpolation of �. By subtra
ting (3.7) from (3.6) we have that a(e; �I) = 0.Then, kek2L2(�) = Z� e2 = Z� ���ne = Z
r�re+ Z
 �e= a(�; e) = a(�� �I ; e) � k�� �IkH1(
)kekH1(
)Using standard �nite element estimates ([6℄, [7℄) and the same arguments given in Proposition 4.4 of [4℄we have that kek2L2(�) � Ch r2 k�kH1+ r2 (
)kekH1(
) � Ch r2 kekL2(�)kekH1(
)Therefore by using the error estimates in H1 (see [4℄) we have thatkek2L2(�) � Ch 32 rkekL2(�)kfkH1(
)but, sin
e f is an eigenfun
tion we have that there exists a 
onstant C su
h that kfkH1(
) � CkfkL2(�)and so, kekL2(�) � Ch 32 rkfkL2(�) (3.10)4



and using the spe
tral approximation theory (see [2℄) we obtain the desired result.For se
ond order-ellipti
 eigenvalue problems, referen
e [3℄ 
ontains error estimates 
onsidering numer-i
al integration under the assumption that the eigenfun
tion is smooth. However, their arguments 
an beused to obtain error estimates when the eigenfun
tion are non-smooth. As far as we know, error estimatesfor the Steklov eigenvalue problem have not been proved when some integration rule is introdu
ed. Ournext goal is to obtain error estimates for the Steklov eigenvalue problem using the redu
ed integrationde�ned in (2.4). We will prove that the order of the di�eren
e between the eigenfun
tion approximationobtained using the quadrature rule and the eigenfun
tion approximation with exa
t integration is higherthan the order between the eigenfun
tion approximation with exa
t integration and the exa
t one.The following approximation result holds:Theorem 3.1 There exists a 
onstant C > 0 su
h that for any f 2 H1(
) we havek(Th � T Ih )fkH1(
) � ChkfkH1(
):Moreover, if f is an eigenfun
tion of the problem (2.2), we havek(Th � T Ih )fkH1(
) � Ch 32 kfkH1(
)Proof. For any f 2 H1(
) and v 2 Vh from (3.7), (3.8) and (3.9) we have thata((Th � T Ih )f; v) = Z� fv � I(Ph(f)v) = Z� Ph(f)v � I(Ph(f)v) (3.11)Let f`kg1�k�Mh be the edges of the mesh lying on � then,Z� Ph(f)v � I(Ph(f)v) = X̀�� Z`k Ph(f)v � I(Ph(f)v) � X̀�� kPh(f)v � I(Ph(f)v)kL1(`k)Using standard error estimates for interpolation (see for example [7℄), the fa
t that Ph(f) and v arefun
tions in Vh and Cau
hy-S
hwarz inequality we haveX̀�� kPh(f)v � I(Ph(f)v)kL1(`k) � C X̀�� j`kj2jPh(f)vjW 2;1(`k) � C X̀�� j`kj2jk�Ph(f)�`k kL2(`k)k �v�`k kL2(`k)Now using the following inverse estimate: k �w�`k kL2(`k) � Cj`kj 12 kwkH 12 (`k) 8w 2 Vh ([6℄, [7℄) and Cau
hy-S
hwarz inequality we getZ� Ph(f)v�I(Ph(f)v) � ChX̀�� kPh(f)kH 12 (`k)kvkH 12 (`k) � Ch X̀�� kPh(f)k2H 12 (`k)! 12  X̀�� kvk2H 12 (`k)! 12(3.12)Sin
e P`�� kwk2H 12 (`k) � Ckwk2H 12 (�) for any w 2 H 12 (�) we haveZ� Ph(f)v � I(Ph(f)v) � ChkPh(f)kH 12 (�)kvkH 12 (�)Then using that there exits a 
onstant C su
h that kPh(f)kH 12 (�) � CkfkH 12 (�) ([6℄, [7℄) and a tra
etheorem we getZ� Ph(f)v � I(Ph(f)v) � ChkfkH 12 (�)kvkH 12 (�) � ChkfkH1(
)kvkH1(
)5



So, the �rst result follows by taking v = Thf � T Ihf .If f is an eigenfun
tion of the problem (2.2) f lies in H1+r(
) with 12 < r � 1.So, instead of (3.12) we have in this 
aseZ� Ph(f)v � I(Ph(f)v) � C X̀�� j`kj2jk�Ph(f)�`k kL2(`k)k �v�`k kL2(`k) � Ch 32 X̀�� kPh(f)kH1(`k)kvkH 12 (`k)� Ch 32  X̀�� kPh(f)k2H1(`k)! 12  X̀�� kvk2H 12 (`k)! 12 (3.13)and using the same arguments given above we haveZ� Ph(f)v � I(Ph(f)v) � Ch 32 kPh(f)kH1(�)kvkH 12 (�) � Ch 32 kfkH1(�)kvkH 12 (�)� Ch 32 kfkH1+r(
)kvkH 12 (�) � Ch 32 kfkH1+r(
)kvkH1(
)Sin
e f is an eigenfun
tion from the same arguments given in Proposition 4.4 in [4℄ and the tra
etheorem we know that there exists a 
onstant C su
h that kfkH1+r(
) � CkfkH 12 (�) � CkfkH1(
).Therefore, the proof 
on
ludes by taking v = Thf � T Ihf .Corollary 3.1 Let u and uIh be the eigenfun
tions of the problems (2.2) and (2.4) respe
tively. Thereexists a 
onstant C su
h that ku� uIhkH1(
) � ChrProof. It is a 
onsequen
e of the error estimate k(T � Th)fkH1(
) � ChrkfkH1(
) [4℄, Theorem 3.1 andTheorem 7.1 in [2℄.In order to obtain L2(�) error estimates for eigenfun
tions when redu
ed integration is used we
onsider the following Theorem.Theorem 3.2 Let f be the eigenfun
tion of the problem (2.2). There exists a 
onstant C > 0 su
h thatk(Th � T Ih )fkL2(�) � Ch 32 kfkL2(�): (3.14)Moreover, if fThg is quasi-uniform, i.e., there exists a 
onstant Æ > 0 su
h that hhT � Æ, 8T 2 Th, then,for any 
 2 (0; 12 ), 
 � r2 there exists a 
onstant C = C(
) su
h thatk(Th � T Ih )fkL2(�) � Ch 32+
kfkL2(�)In parti
ular, if r < 1 we have k(Th � T Ih )fkL2(�) � Ch 32+ r2 kfkL2(�).Proof. Let e = Thf � T Ihf with f being an eigenfun
tion of the problem (2.2) and � being the solutionof the auxiliary problem �4�+ � = 0 in 
 (3.15)���n = e on �The variational problem asso
iated with (3.15) is given bya(�; v) = Z� ev 8v 2 H1(
)6



Let �h 2 Vh be the solution of the dis
rete variational problema(�h; v) = Z� ev 8v 2 VhThen, kek2L2(�) = a(e; �h) = a(Thf � T Ihf; �h) = Z� f�h � I(Ph(f)�h)= Z� Ph(f)�h � I(Ph(f)�h) (3.16)Then,Z� Ph(f)�h � I(Ph(f)�h) � X̀�� kPh(f)�h � I(Ph(f)�h)kL1(`k) � C X̀�� j`kj2jPh(f)�hjW 2;1(`k)� C X̀�� j`kj2jk�Ph(f)�`k kL2(`k)k��h�`k kL2(`k)By the same arguments used in the proof of Theorem 3.1 we havekPh(f)�h � I(Ph(f)�h)kL1(�) � Ch 32 kPh(f)kH1(�)k�hkH 12 (�) � Ch 32 kfkH1+r(
)k�hkH1(
) (3.17)Sin
e k�hkH1(
) � CkekL2(�) and kfkH1+r(
) � CkfkH 12 (�) � CkfkH1(
) � CkfkL2(�) we have thatkThf � T IhfkL2(�) � Ch 32 kfkL2(�):and the �rst result holds.Now, we assume that the triangulation fThg satis�es the quasi-uniform 
ondition, i.e., there is a
onstant Æ > 0 su
h that hhT � Æ, 8T 2 Th.Let 
 2 (0; 12 ), 
 � r2 then, using the inverse estimate k��h�`k kL2(`k) � Cj`kj 12�
 k�hkH 12+
(`k) and Cau
hy-S
hwarz inequality, instead of (3.17) we have in this 
asekPh(f)�h � I(Ph(f)�h)kL1(�) � Ch 32+
kPh(f)kH1(�)k�hkH 12+
(�) � Ch 32+
kfkH1+r(
)k�hkH 12+
(�)� Ch 32+
kfkH1+r(
)k�hkH1+
(
)Let �h be the Lagrange interpolation operator, from Theorem 2.6 in [5℄ we know that there exists a
onstant C su
h that k���h�kH1+
 (
) � Ck�kH1+
(
)and therefore k�h�kH1+
 (
) � Ck�kH1+
 (
)On the other hand from the inverse inequality given in Theorem 2.9 in [5℄ and standard error estimateswe have that k�h ��h�kH1+
 (
) � C 1h
 k�h ��h�kH1(
) � Ck�kH1+
(
)So, k�hkH1+
 (
) � k�h ��h�hkH1+
(
) + k�h�kH1+
 (
) � Ck�kH1+
 (
).Sin
e k�kH1+
 (
) � Ck�kH1+ r2 (
) � CkekL2(�) and kfkH1+r(
) � CkfkL2(�) we 
on
lude thatkThf � T IhfkL2(�) � Ch 32+
kfkL2(�):and we 
omplete the proof.Now, we have the L2(�) error estimates for eigenfun
tions when redu
ed integration is used.7



Corollary 3.2 Let (�; u) and (�Ih; uIh) be the solutions of problems (2.2) and (2.4) respe
tively. Thenthere exists a 
onstant C su
h that ku� uIhkL2(�) � Ch 32 rProof. The result is a 
onsequen
e of (3.10), Theorem 3.2 and the spe
tral aproximation theory [2℄.4 Advantages of redu
ed integrationThe goal of this se
tion is to show that if the eigenfun
tion of problem (2.2) is singular the eigenvalueapproximation given by using redu
ed integration (2.4) is better than the eigenvalue approximation givenby the standard �nite element (2.3) for h small enough. So, we extend the results obtained in [1℄ forse
ond order-ellipti
 eigenvalue problems to the Steklov eigenvalue problem.First, we will show that the eigenvalue obtained by redu
ed integration is always below the oneobtained by the standard �nite element approximation, i.e, �Ih � �h.For ea
h boundary edge f`kg1�k�Mh we denote by p1(`k) and p2(`k) the extremes of the edge `k.Then we haveLemma 4.1 For any vh 2 Vh,Z� �Ih(v2h)� v2h� = 16 X̀�� (vh(p1(`k))� vh(p2(`k)))2 j`kjin parti
ular Z� Ih(v2h) � Z� v2hProof. Sin
e vh is a pie
ewise linear fun
tion we observe thatZ� v2h = X̀�� �v2h(p1(`k)) + v2h(p2(`k)) + 4v2h(m`k)� j`kj6where m`k denote the midpoint of the edge `k. From vh(m`k ) = vh(p1(`k))+vh(p2(`k))2 andZ� Ih(v2h) = X`k2� �v2h(p1(`k)) + v2h(p2(`k))� j`kj2we have thatZ�(I(v2h)� v2h) = X`k2� �v2h(p1(`k)) + v2h(p2(`k))� j`kj2 � �v2h(p1(`k)) + v2h(p2(`k)) + vh(p1(`k)vh(p2(`k))� j`kj3= X`k2� �v2h(p1(`k)) + v2h(p2(`k))� 2vh(p1(`k))vh(p2(`))� j`kj6and therefore the Lemma holds.As a 
onsequen
e of the previous Lemma we have thatCorollary 4.1 For any vh 2 Vh , 
 2 (0; 12 ), there exists a 
onstant C = C(
) su
h that0 � Z� Ih(v2h)� v2h � Ch1+2
kvhk2H 12+
(�)8



Proof. Using Lemma 4.1 and the fa
t that �vh�`k = vh(p2(`k))�vh(p1(`k))j`kj we have thatZ�(Ih(v2h)� v2h) = 16 X̀�� ((vh(p1(`k))� vh(p2(`k)))2 j`kj = 16 X̀����vh�`k �2 j`kj3 = 16 X̀�� k�vh�`k k2L2(`k)j`kj2Sin
e, for any 
 2 (0; 12 ), there exists a 
onstant C = C(
) su
h that k�vh�`k kL2(`k) � Cj`kj 12�
 kvhkH 12 +
(`k)we obtain Z� Ih(v2h)� v2h � 16C X`k�� kvhk2H 12+
(`k)j`kj1+2
 � Ch1+2
kvhk2H 12+
(�)and we 
on
lude the proof .Theorem 4.1 Let �; �h and �Ih, be the eigenvalues of problems (2.2), (2.3) and (2.4) respe
tively. Then� � �h and �Ih � �h (4.18)Proof. Let T , Th and T Ih be the operators de�ned in (3.6),(3.7) and (3.8) and let �j , �h;j and �Ih;j ,the 
orresponding eigenvalues whi
h we assume nonin
reasingly ordered, i.e., �1 � �2 � � � ��j � � � �,�h;1 � �h;2 � � � � � �h;Mh and �Ih;1 � �I2;h � � � � � �Ih;Mh .It is known that the eigenvalues 
an be 
hara
terized using the maximum-minimum prin
iple ([10℄), i.e,for any j, 1 � j �Mh we have that �j = maxVj minv2Vj b(v; v)a(v; v) (4.19)and �h;j = maxVh;j minvh2Vh;j b(vh; vh)a(vh; vh) �Ih;j = maxVh;j minvh2Vh;j bI(vh; vh)a(vh; vh) (4.20)where Vj denote any subspa
e of H1(
) of dimension j and Vh;j denote any subspa
e of Vh of dimensionj. Sin
e Vh � H1(
) we have that �j � �h;j .In view of Lemma 4.1 we have that for any j, 1 � j �MhbI(vh; vh)a(vh; vh) � b(vh; vh)a(vh; vh) 8vh 2 Vh;j (4.21)So, �Ih;j � �h;j ,1 � j �Mh.The proof 
on
ludes by using that the non-zero eigenvalues of T , Th and T Ih are the re
ipro
als of theeigenvalues of (2.2), (2.3) and (2.4).The next Lemma, whi
h follows from Lemma 5.1 of [3℄ or Lemma 2.2 of [1℄, gives an expression forthe di�eren
e between � and the approximation given by redu
ed integration �Ih.Lemma 4.2 Let (�Ih; uIh) and (�; u) be the solutions of problems (2.2) and (2.4) respe
tively. Then wehave that �Ih � � = kuIh � uk2H1(
) � �kuIh � uk2L2(�) � �Ih�Z� Ih((uIh)2)� (uIh)2� (4.22)Now, we assume that the triangulation fThg satis�es the quasi-uniform 
ondition, i.e., there is a
onstant Æ > 0 su
h that hhT � Æ, 8T 2 Th. Then we have the following result.9



Corollary 4.2 Let �Ih and � be the eigenvalues of problems (2.2) and (2.4) respe
tively. If there existsa 
onstant C su
h that kuIh � ukH1(
) � Chr with r < 1 then, for h small enough, we have� � �Ih (4.23)Proof. The proof follows the same argument given in [1℄. From Lemma 4.2 we know that�Ih � � = kuIh � uk2H1(
) � �kuIh � uk2L2(�) � �Ih�Z� Ih((uIh)2)� (uIh)2� (4.24)From Corollary 4.1, taking 
 = r2 we haveZ� Ih((uIh)2)� (uIh)2 � Ch1+rkuIhk2H 12 + r2 (�)Sin
e, kuIhkH 12+ r2 (�) � CkuIhkH1+ r2 (
) � C(kuIh � �hukH1+ r2 (
) + k�hukH1+ r2 (
)) using Theorem 2.6and Theorem 2.9 in [5℄, Corollary 3.1 and standard error estimates for interpolation we obtainkuIhkH1+ r2 (
) � C( 1h r2 kuIh ��hukH1(
) + kukH1+ r2 (
)) � CSo, the order of the third term on the right hand side of (4.24) is h1+r.From our hypothesis, the �rst term on the right hand side of (4.24) is greater than a 
onstant timesh2r and, in view of Corollary 3.2, the order of the se
ond term is h3r. Therefore if h is small enough, thesign of �Ih � � is given by the �rst term on (4.24) so, we 
on
lude the proof.A
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