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Abstract
In this paper we analyze the effect of introducing a numerical integration in the piecewise linear
finite element approximation of the Steklov eigenvalue problem. We obtain optimal order error
estimates for the eigenfunctions when this numerical integration is used and we prove that, for singular
eigenfunctions, the eigenvalues obtained using this reduced integration are better approximations than
those obtained using exact integration when the mesh size is small enough.
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1 Introduction

The aim of this paper is to analyze the effect of introducing a numerical integration in the piecewise
linear finite element approximation of the Steklov eigenvalue problem.

Increasing attention has recently been paid to the problem of approximating the vibration modes of
a structure in contact with an incompressible fluid. The most usual procedure in engineering practice
is to eliminate the fluid variable by using the so-called added mass formulation [4], [9]. This consists
of taking into account the effect of the fluid by means of a Neumann-to-Dirichlet operator on the fluid-
solid interface. This approach yields an eigenvalue problem similar to the Steklov eigenvalue problem
considered here.

There are relatively few papers treating the effect of numerical integration on eigenvalue approxima-
tion. For second order selfadjoint eigenvalue problems Banerjee and Osborn [3] prove that finite element
approximations with quadrature rules satisfy the same estimates that hold with exact integration when
the quadrature rules have appropriate degrees of precision. In [1] Armentano and Durdn analyze the
effect of a quadrature rule known as “mass-lumping” for second order selfadjoint eigenvalue problems.

For a Steklov eigenvalue problem optimal order error estimates in H' norm are obtained in [4] for the
piecewise linear finite element approximation when exact integration is used. As far as we know, error
estimates for the eigenfunction have not been proved when some quadrature rule is introduced.

The goal of this paper is to obtain optimal error estimates in H' and L? norms for the eigenfunctions
when a quadrature rule is introduced in the computation of the rigth-hand side of the weak form of the
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equation of the Steklov eingenvalue problem. In order to obtain these estimates we prove that the order
of the difference between the eigenfunction approximation obtained using the quadrature rule and the
eigenfunction approximation with exact integration is higher than the order between the eigenfunction
approximation with exact integration and the exact one.

Moreover, using our error estimates we will show that, for singular eigenfunctions, the eigenvalues
obtained using reduced integration are better approximations that those obtained using exact integra-
tion when the mesh size is small enough. So, we extend the results obtained in [1] for the second order
selfadjoint eigenvalue problems to the Steklov eigenvalue problem.

The paper is organized as follows. First, in section 2, we present the Steklov eigenvalue problem
and the approximation problem with and without quadrature rule. Section 3 deals with error estimates
in H' and L? norms for the eigenfuntions. Finally in section 4 we use the error estimates obtained in
section 3 to prove that, for singular eigenfunctions, the eigenvalues obtained using the reduced integration
introduced in section 2 are better approximations that those obtained using exact integration when the
mesh size is small enough.

2 The Steklov Eigenvalue Problem

Let Q C R? be a bounded polygonal domain. We consider the following Steklov eigenvalue problem [2]:

—Au+u = 0 in Q (2.1)
Ou

n Au onI'=00

The variational problem associated with (2.1) is given by:
Find X and u € H'(Q), u # 0 satisfying

a(u,v) = /\/uv Yv e H'(Q) (2.2)
r
llull 2y = 1

where a(u,v) = [, VuVv + [, uv, which is continuous and coercive on H'(Q).

It is known that the solution of this problem is given by a sequence of pairs (A;,u;), with positive
eigenvalues A; diverging to +oc [10]. We assume the eigenvalues to be increasingly ordered: 0 < Ay <
-+ < X\j < ---. The associated eigenfunctions satisfy u; € H'*"(Q), where r = 1 if Q is convex and
r < I (with w being the largest inner angle of 2) otherwise (see for example [8]).

In order to approximate the eigenvalue A and its associated eigenfunction u we consider {7,} a
triangulation of €2 such that any two triangles in 7, share at most a vertex or an edge. Let h stand for
the mesh-size; namely h = maxre7, hr, with hr being the diameter of the triangle 7. We assume that
the family of triangulations 7} satisfies a minimal angle condition, i.e., there exists a constant o > 0 such
that Z—z < o, where pr is the diameter of the largest circle contained in T'.

We consider the standard finite element space:
Vi = {’U € Hl(Q) : ’U|T eP VT € 771}

where P; denotes the space of linear polynomials.



Then, the standard finite element approximation problem is the following;:
Find A\, and up, € Vi, up # 0 such that

a(up,v) = /\h/uhv Yv € Vj, (2.3)
r

lunll2ry = 1

Let 8;, 1 < j < Nj (N, = number of nodes) be the Lagrange basis of degree one, i.e., 8; € P; such
that §;(n;) = 0;; where n; denotes the node i. The generalized eigenvalue problem is given by: Find

Up = Zjvzhl zjB; such that
Az = )\hBZ

where
Ay = / VBB, + / 5.8,
Q Q
and

B;,; Z/Fﬁzﬂj

Another possible discretization is obtained by using quadrature rule on the right hand side of (2.3).
If we use in the computation of the matrix B the trapezoid rule we obtain another generalized eigenvalue

problem .
Az = M\ Bz

where the matrix B is diagonal. The variational problem is in this case:

Find A/ and u} € Vi, u} # 0 such that

a(ul,v) )\,Il/FIh(u,Ilv) Yo e Vy, (2.4)

||U£||L2(r) =1

where I}, denotes the piecewise linear interpolation on the vertices of the triangulation 7, which lies on T" .

The two problems given above reduce to generalized eigenvalue problems where the matrix A is positive
definite and symmetric, and the matrices B and B are non-negative definite, symmetric, and both of
them have rank M}, = number of vertices on I'. They attain a finite number of eigenpairs (\; 5, ;) and
(/\]I-’h,u]{h), 1 < j < My, respectively, with positive eigenvalues which we assume increasingly ordered:

0<An<-<Amnand 0 <A, <o < Afy g

In order to simplify notation from now on we will drop the subindex j in A;, Ap j, /\,Im., Uj, upj, u,Im
and we denote by C a generic constant not necessarily the same at each ocurrence.

3 Error estimates

Following the arguments given in [4] error estimates in H' norm can be obtained for the eigenfunction
approximation using the standard finite element method (2.3), i.e, it can be seen that there exists a
constant C' such that

llu = unllm @) < CR" (3.5)

In order to obtain error estimates for the eigenfunction, when a quadrature rule is introduced, we will
use the spectral aproximation theory given in [2].



Let T, Ty : H'(Q) — H'(Q) be the bounded linear operators defined by

Tfe H(Q)
{ a(Tf,v) =b(f,v) Yve H'(Q) (3.6)
Thf €V
{ G?Thﬁ Ul)l =b(f,v) YveV, (3.7)

where b(f,v) = [;. fv. The non-zero eigenvalues of T' are the reciprocals of the eigenvalues of (2.2) and
the non-zero eigenvalues of T}, are the reciprocals of the eigenvalues of (2.3) and T and (2.2), T}, and (2.3)
have the same eigenfunctions. Now, we introduce another operator T/ : H*(Q) — H'(Q) defined by

T,{f eV (3.8)
a(Tj f,v) =b'(f,v) YveV, '
where b (f, v) fr v) with Py, being the L2 projection on I onto the piecewise linear continuos

functions, i.e.,

/FPh(f)v = /Ffv Yv €V (3.9)

It is easy to see that the non-zero eigenvalues of T,{ are the reciprocals of those of (2.4) and T,{ and
(2.4) have the same eigenfunctions.

First, we will obtain error estimates in L?(T) for the eigenfunction approximation when exact inte-
gration is used. The following estimate holds

Proposition 3.1 Let (Ap,upn) and (A, u) be the solutions of problems (2.2) and (2.3), respectively. Then
there exists a constant C' such that ,
[|up, — U||L2(F) < Ch2"

Proof. Let e = T'f — T}, f with f being an eigenfunction of the problem (2.2). In order to obtain error
estimates in L2(T") we consider the following auxiliary problem:

-Np+¢ = 0 in Q
99
n e onT

Let ¢ € Vi, be the Lagrange interpolation of ¢. By subtracting (3.7) from (3.6) we have that a(e, ¢;) =

Then,
/ /6n /v¢v6+/¢e

= e) =a(p — ¢r,e) < ||¢ — b1l llellm

Using standard finite element estimates ([6], [7]) and the same arguments given in Proposition 4.4 of [4]
we have that

||€||%2(r)

lellZ2(ry < ChEN@ll 45 g llellm o) < ChEllellzm)llellm o)

Therefore by using the error estimates in H' (see [4]) we have that

3
lellZ2ry < CR2"[lell L2yl flla @)

but, since f is an eigenfunction we have that there exists a constant C' such that || f|| g1 () < C||f|lz2(r)
and so, ,
llellz2y < Ch2"|| fllL2(r) (3.10)



and using the spectral approximation theory (see [2]) we obtain the desired result. O

For second order-elliptic eigenvalue problems, reference [3] contains error estimates considering numer-
ical integration under the assumption that the eigenfunction is smooth. However, their arguments can be
used to obtain error estimates when the eigenfunction are non-smooth. As far as we know, error estimates
for the Steklov eigenvalue problem have not been proved when some integration rule is introduced. Our
next goal is to obtain error estimates for the Steklov eigenvalue problem using the reduced integration
defined in (2.4). We will prove that the order of the difference between the eigenfunction approximation
obtained using the quadrature rule and the eigenfunction approximation with exact integration is higher
than the order between the eigenfunction approximation with exact integration and the exact one.

The following approximation result holds:
Theorem 3.1 There exists a constant C > 0 such that for any f € H'(Q) we have

I(Th = T flla ) < ChlIflla o

Moreover, if f is an eigenfunction of the problem (2.2), we have
(T = T} fllmr () < CBEN| fllm o)

Proof. For any f € H'(Q) and v € V}, from (3.7), (3.8) and (3.9) we have that

(@ =T 1) = [ Fo=1Bu0)0) = [ Puld)o = 1P) (3.11)

r

Let {€;}1<k<m, be the edges of the mesh lying on I' then,

/thm Z/ Pu(f)o = I(Pu(f)v) < SR (v = I (H0) 1 ()

ecr ecr
Using standard error estimates for interpolation (see for example [7]), the fact that P,(f) and v are
functions in V}, and Cauchy-Schwarz inequality we have

6Ph 6’[)
S IR = TPy < € kPPl < € 3 e PN o 2 e
(T cr cr k
Now using the following inverse estimate: ||2% iz (o) < ﬁHwHH%(Z )Vw € Vi ([6], [7]) and Cauchy-
k|2 k

Schwarz inequality we get

[ P Do=TRa00) < ORI 01, <0h<2||Ph e, )(Zn 12, )

LCr (Cr (Cr
(3.12)

. 2 2 1
Since },p ||w||H%(lk) < C||w||H%(F) for any w € Hz(T') we have

[ Py = TR0 < CHIPL Dy ol

Then using that there exits a constant C' such that [|P,(f)[ ;1 ., < C||f||H%(F) ([6], [7]) and a trace

H2(T)
theorem we get

/F Pulf)o = I(Pu(£)o) < ChIF g o ol s oy < ORIl oy lells o

2(T")



So, the first result follows by taking v = T f — T} f.
If f is an eigenfunction of the problem (2.2) f lies in H'*"(Q) with £ <r < 1.
So, instead of (3.12) we have in this case

BP
[rno-1Ene < ¢S 62D sl gl < 0 S IR @llvl 4
r ey ey
< (ZHPh N (e ) (ZII || ) (3.13)
¢cr (cr

and using the same arguments given above we have

/F Pu(f)o = I(Pu(f)v) < CREPW(H) oy lloll g oy < CHENF a0l o

tr) S CR2 || fll mr+r (o) IVl 1 ()

IN

3
Ch2|[fll g+~ @ llvll,

Since f is an eigenfunction from the same arguments given in Proposition 4.4 in [4] and the trace

theorem we know that there exists a constant C' such that |[|f||gi+rq) < C’||f||H%(F) < Cllfllav @)

Therefore, the proof concludes by taking v = Ty, f — T}l f. O

Corollary 3.1 Let u and ul be the eigenfunctions of the problems (2.2) and (2.4) respectively. There
exists a constant C' such that
| — up |l ) < CR”

Proof. It is a consequence of the error estimate ||(T' — Tp) f|| g1 (o) < Ch"||fll g1 (o) [4], Theorem 3.1 and
Theorem 7.1 in [2]. O

In order to obtain L?(T') error estimates for eigenfunctions when reduced integration is used we
consider the following Theorem.

Theorem 3.2 Let f be the eigenfunction of the problem (2.2). There exists a constant C' > 0 such that
3
1(Th = Ti) fll2y < Ch2[|fll2r)- (3.14)

Moreover, if {Tn} is quasi-uniform, i.e., there exists a constant 6 > 0 such that 3= < 0, VT € Ty, then,
for any v € (0,%), v < % there exists a constant C = C(v) such that

(T =TI fll 2y < CREX||Fll L2y
In particular, if r < 1 we have ||(T}, — TI)fHLz < Ch3+s 2| fll 2y

Proof. Let e = T, f — T/ f with f being an eigenfunction of the problem (2.2) and ¢ being the solution
of the auxiliary problem

—Np+¢ = 0 in Q (3.15)
¢
n e onI’

The variational problem associated with (3.15) is given by

a(p,v) Z/Fev Vv e HY(Q)



Let ¢ € V}, be the solution of the discrete variational problem

a(on,v) = / ev Yv € Vj
r

Then,

||€||2L2(r)

ale,dn) = a(Tuf — T} £, dn) = / Fon — I(Pa(F)én)

/F Pu(£)én — I(Pa(f)én) (3.16)

Then,

/FPh(f)¢h —I(Pu(H)pn) < D _NPu(£)bn = IPu(H)on)llLr(en) < C DNkl Pu(F)bnlw ()

(cr (Cr
0P ( 0¢
< OX 0PI a1 52 e
{cr

By the same arguments used in the proof of Theorem 3.1 we have

1P (Hén = I(PuHon)lle ) < CHENPL(Dll 0y l18n] 4 ) < CHH S larvni 0l ) (3.17)

Since [|gnllm1(a) < Cllellz2ry and [|fllae-@) < CllFll, 1 4

1Tt = T! fllnzwy < ChE||f]l 2y

< Cllfllar@) < Cllfllz2ry we have that

and the first result holds.

Now, we assume that the triangulation {7} satisfies the quasi-uniform condition, i.e., there is a
constant § > 0 such that % <46, VT €Ty

Let v € (0,4), v < % then, using the inverse estimate ||%%:||Lz(,;k ||¢)h|| and Cauchy-

€k \“’
Schwarz inequality, instead of (3.17) we have in this case

IPA(6n = IR (PEn)lry < CHE PN ellonl gy < CHE N Sl 3o

3
Chz fll e @) ol 140 ()

Let II, be the Lagrange interpolation operator, from Theorem 2.6 in [5] we know that there exists a
constant C' such that

IA

lp — Tpollmr+4 (@) < Clldll a1+ (o)
and therefore
Lol g1+ (@) < CllBlla++ ()

On the other hand from the inverse inequality given in Theorem 2.9 in [5] and standard error estimates
we have that

lon — || v (@) < C—||¢h = Unollar @) < Cllgll i+ (o)
So, |nllmi+v (@) < 16n — Madnll a4+ (@) + 1Tadll gy @) < Clldll g+ )
Since [[¢]| g1++(0) < C||¢||H1+§(Q) < Cllell 2y and || fllgr4- () < CllfllL2r) we conclude that
1T f — T fllrer) < Ch%ﬂ”f”m(r)
and we complete the proof. O

Now, we have the L?(T) error estimates for eigenfunctions when reduced integration is used.



Corollary 3.2 Let (\,u) and (A, ul) be the solutions of problems (2.2) and (2.4) respectively. Then
there exists a constant C such that ,
llu — upllr2ry < ChZ"

Proof. The result is a consequence of (3.10), Theorem 3.2 and the spectral aproximation theory [2]. O

4 Advantages of reduced integration

The goal of this section is to show that if the eigenfunction of problem (2.2) is singular the eigenvalue
approximation given by using reduced integration (2.4) is better than the eigenvalue approximation given
by the standard finite element (2.3) for h small enough. So, we extend the results obtained in [1] for
second order-elliptic eigenvalue problems to the Steklov eigenvalue problem.

First, we will show that the eigenvalue obtained by reduced integration is always below the one
obtained by the standard finite element approximation, i.e, /\i < Ap.

For each boundary edge {{}}i<xr<m, we denote by p; (£x) and p2({;) the extremes of the edge (.
Then we have

Lemma 4.1 For any v, € Vp,

[ 0oy =) = £ 3 (o1 (60)) = on6)* s

{cr

/Flh(vi) > /Fvi

Proof. Since vy is a piecewise linear function we observe that

in particular

/ vh =Y (Vi (p1(6r)) + Vi (p2(€r)) + 407 (M) @
r cr
where my, denote the midpoint of the edge £;. From vy, (my, ) = vh(pl(lk))‘;vh(lb(fk)) and
[ 1) = X (3 (6) + o (1) 1
el

we have that
/F(I(vi) —op) = Y (vi(pi () + i (p2(6r))) M—;‘ — (V3 (1 (€r)) + v} (p2(L)) + va(p1 (€ )vn (p2(Lr))) @

£ €D

= % (R0t + v (6) — 200 (1 )on (0) 1
el

and therefore the Lemma holds.O

As a consequence of the previous Lemma we have that

Corollary 4.1 For any v, € V}, , v € (0, %), there ezists a constant C = C(vy) such that

2 2 142 2
0< [ 1h) =0k < Rl



Proof. Using Lemma 4.1 and the fact that g% = a2t —vn(p1(8)) o have that

[ |

2 2 1 2 1 v 2 ov 5
/F (Tn(v) = i) = & D (n (1 (0)) = vn (P2 (ta)) ek|=géczr(a—zz) 0 = ZH A

LCr

. . duy
Since, for any v € (0, 3), there exists a constant C' = C/(7) such that || 34 a2 < \f\—"’H h||H2+7(£ )

we obtain

1
[ 108 =0k <50 X onll o, 162 < R 2

P ()

and we conclude the proof O

Theorem 4.1 Let A\, A\, and ., be the eigenvalues of problems (2.2), (2.3) and (2.4) respectively. Then

A<M and N <)\ (4.18)

Proof. Let T, Tj, and T} be the operators defined in (3.6),(3.7) and (3.8) and let u;, uh] and uh] ,
the correspondlng elgenvalues Wthh we assume nonlncreasmgly ordered, i.e., pg > po > <o p; > -,
Hh1 > Hh2 >t > e, and ﬂh,l > u27h > 2> u,LMh

It is known that the eigenvalues can be characterized using the maximum-minimum principle ([10]), i.e,
for any j, 1 < j < M}, we have that

b(v,v)
= m‘}?x II)Iél‘gl a(0.0) (4.19)
and ,
fp; = max min blon, o) ,ui’j = max min b (vn, vn) (4.20)

Vh,j vh€VR,; Q ('Uh,’l)h) Vh,j vhE€EVhR,; a(Uh,Uh)

where V; denote any subspace of H'(Q) of dimension j and V} ; denote any subspace of V}, of dimension
J.

Since Vi, C H'(Q) we have that p; > up, ;.
In view of Lemma 4.1 we have that for any j, 1 < j < M}

bI(’l)h,’Uh) > b('l)h,’l)h)
a(vp,vn) — a(vp,vn)

Yo, € Vi, j (4.21)

SO: :ufll,j > uh,j:l <j< M.

The proof concludes by using that the non-zero eigenvalues of T', T}, and T,{ are the reciprocals of the
eigenvalues of (2.2), (2.3) and (2.4). O

The next Lemma, which follows from Lemma 5.1 of [3] or Lemma 2.2 of [1], gives an expression for
the difference between A and the approximation given by reduced integration )\,Il.

Lemma 4.2 Let (A, ul) and (\,u) be the solutions of problems (2.2) and (2.4) respectively. Then we
have that

N, = A =l =l = Nk = ey = A% [ Tt - ) (4.22)

Now, we assume that the triangulation {7} satisfies the quasi-uniform condition, i.e., there is a
constant 4 > 0 such that % <6, VT € T. Then we have the following result.



Corollary 4.2 Let A} and X be the eigenvalues of problems (2.2) and (2.4) respectively. If there exists
a constant C such that ||ul — ul|gr (@) > Ch"™ with r < 1 then, for h small enough, we have

A< A (4.23)

Proof. The proof follows the same argument given in [1]. From Lemma 4.2 we know that

N, = A =l = ull ) = M = ey = A% ([ () - ah?) (4.24)

r

From Corollary 4.1, taking v = £ we have

[ ) = @ < ORIy

Since, ||u,Il||H%Jr r < C’||u,11||H1+§(Q) < C(||uf - Hhu||H1+§(Q) + ||Hhu||H1+§(Q)) using Theorem 2.6

(

and Theorem 2.9 in [5], Corollary 3.1 and standard error estimates for interpolation we obtain

1
b v+ gy < CCg lluh = Madln oy + 1l 15 ) < €

So, the order of the third term on the right hand side of (4.24) is h'*".

From our hypothesis, the first term on the right hand side of (4.24) is greater than a constant times
h2" and, in view of Corollary 3.2, the order of the second term is h3". Therefore if h is small enough, the
sign of Al — X is given by the first term on (4.24) so, we conclude the proof. O
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