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ABSTRACT. The goal of this paper is the unified approximation of the two-dimensional
Stokes-Darcy coupled problem by a Taylor-Hood method, which uses the space of contin-
uous and piecewise quadratic functions for the velocities and the space of continuous and
piecewise linear functions for the pressures. The Taylor-Hood methods are one of the most
classical stable finite element approximations for the Stokes problem, however they may not
be appropriate for Darcy problem and as a consequence for the coupled problem. In this
paper we consider a reformulation of Stokes-Darcy problem which allows us to apply the
classical Taylor-Hood elements. An appropriate Fortin operator is constructed in order to
show the stability of our method. We show that the method proposed has optimal accuracy
and a simple implementation. We also present numerical experiments which confirm the
excellent performance of our method.

1. INTRODUCTION

The numerical resolution of the Stokes-Darcy coupled problem has been widely studied
across multiple articles (see, for example, [4, 5, 22, 23, 27, 28, 30, 31], and the references
therein). Some of these articles are devoted to the unified approximation of the coupled
problem, i.e., the Stokes and Darcy parts be discretized using the same continuous finite
element space. Indeed, in two recent works [4, 5] the authors modified the mixed formulation
of the problem in such a way that the new problem has the same solution as the original
and, independent of the mesh size, the stability condition for the new Stokes-Darcy problem
reduces to the same as the Stokes problem. Based on this approach they approximate the
solution by using the MINI-elements for the two-dimensional problem in polygonal domains
[4] and in curved domains [5].

In this paper, by using the same modified Stokes-Darcy problem introduced in [4], we
solve the Stokes-Darcy problem with a PoP; Taylor-Hood method, i.e., we basically use
continuous and piecewise quadratic functions for the velocities and continuous and piecewise
linear functions for the pressures.

A standard method for proving the inf-sup condition implying stability of finite element
approximations is to construct a Fortin operator. The Taylor-Hood methods, which was
introduced by Hood and Taylor in [26], are one of the most classical stable finite element
approximations for the Stokes problem, however the construction of a Fortin operator for
this family of methods is not easy to perform (even several stability proofs present in the
literature use alternative approaches). Therefore, there are multiple works devoted to proof
the stability of the method and the construction of the Fortin operator (see [16, 18, 21, 29, 32]
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and the references therein) Following the ideas given in the recent work of R. Scott [32] and
those given in [4], we construct a Fortin operator for the lowest order Taylor-Hood element
in two space dimensions which, under proper conditions, is uniformly bounded both in H!
norm and allows us to conclude the stability of our approximation method and so optimal
accuracy with respect to solution regularity. We also present numerical experiments which
confirm the excellent performance of our method.

The rest of the paper is organized as follows. In Section 2 we state the classical Stokes-
Darcy coupled problem and we introduce the modified coupled Stokes-Darcy problem. In
Section 3 we present the finite element discretization with a Taylor-Hood method and we an-
alyze the stability of the proposed method. Finally, in section 4, we present several numerical
examples.

2. PROBLEM STATEMENT

We consider an open, bounded and polygonal domain  C R? divided into two open
subdomains with Lipschitz continuous boundaries g and p, where the indices S and D
stand for fluid and porous, respectively. We assume that Q = Qg U Qp, Qs N Qp = 0 and
QsNQp =T so, I'; represents the interface between the fluid and the porous medium. The
remaining parts of the boundaries are denoted by I's = 9Qg \ 'y and I'p = 9Qp \ I';, as
illustrated in Figure 1.

Tng T g

r
E Qg Lty Qs
r Ts
1 o
Q
r, D
—>t >t
I g

FiGURE 1. Examples of two-dimensional domains {2

We denote by ng the unit outward normal direction on 0{2g and by np the normal direction
on 0¥ p, oriented outward. On the interface I'y, we have ng = —np. We also use, as usual,
boldface for vector value functions.

The Stokes-Darcy coupled problem describes the motion of an incompressible viscous fluid
occupying a region £2g which flows across the common interface into a porous medium living
in another region 2p saturated with the same fluid. The mathematical model of this problem
can be defined by two separate groups of equations and a set of coupling terms.

For any function v defined in 2, taking into account that its restriction to Qg or to Qp
could play a different mathematical roles, we define vg = v |q, and vp = v |q,,.
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In Qg, the fluid motion is governed by the Stokes equations for the velocity ug and the
pressure pg:
—uAug + Vpg = fg, in Qg,
div ug =0, in Qg, (2.1)
ug =0, in I'g,

where fg € (L?(2s))? represents the force per unit mass and p > 0 the viscosity.
In Qp, the porous media flow motion is governed by Darcy’ law for the velocity up and
the pressure pp:

7 .
— Vpp =1 Q
KU-D + Vpp D, In {lp,

div up =43gp, in QD, (2'2)
up -np =0, in I'p,

where fp € (L%(Qp))? represents the force per unit mass, gp € L?(2p) a source and K
denoting the permeability tensor reduced to a positive scalar in the isotropic case considered
here.

In I'7, we consider the following boundary conditions:

up -np+ug-ng =0,
o' _ (2.3)
psns — puVusng —ppns M\/F(us t)t =0,
)
9% ) 1< <2
the second is due to the balance of normal forces and the Beavers-Joseph-Saffman condition,
a a parameter determined by experimental evidence and ¢ the tangent vector on I'r (we
recommend [9] for more details on the interface conditions).

We denote with boldface the spaces consisting of vector value functions. The norms and
seminorms in H™(D), with m an integer, are denoted by || - ||, p and | - |, p respectively and
(-,-)p denotes the inner product in L?(D) or L2(D) for any subdomain D C €. The domain
subscript is dropped for the case D = Q. Let H(div,Q) = {v € L2(Q) : divv € L?(Q)},
Ho(div,Q) = {v € L?(Q) : divv € L*(Q),v-np = 0on I'p} and L3(Q) = {q € L*(Q) :
Joa=0}.

We define the spaces
V ={vecH(iv,Q):vs € H(Qs5),v=00nTg, and v-np=0onT'p}

where, as usual, Vu = ( . The first equation represents mass conservation and

and
Q = L§(Q),

. . 1 1
with the norms [[vllv = (| v [{ o, +[IVI5 0, + I div vIG0,)2 = (I v oy +IvI5, 2

diV,QD))
and ||q|lg = l/¢llo respectively.
The mixed variational formulation of the coupled problem (2.1)-(2.3) can be stated as

follow [4, 5, 28, 30]: Find (u,p) € V x @ that satisfies
{ a(u,v) +b(v,p) =F(v) VveV,

b(u,q) =G(q) YqeqQ, (24)
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where the bilinear forms a(-,-) and b(-,-) are defined on V x V and V x @Q, respectively, as:

a(u,v) =p Vu:Vv—i—u& (ug-t)(vs-t)+'u/ u-v,
K Jo,

Qg \/? I'y

and
b(v,q) = —/ div vgq.
Q

By last, the linear forms F' and G are defined as:

F(V):/ fD-v+/ fg-v and G’(q):/ gp q.
QD QS QD

From the classical theory of mixed methods (see, e.g., Theorem and Corollary 4.1 in Chap-
ter I of [25]) it follows the well-posedness of the continuous formulation (2.4) and so the
following theorem holds.

Theorem 2.1. There exists a unique (u,p) € V x Q solution to (2.4). In addition, there
exists C', depending on the continuous inf-sup condition constant for b, the coercivity constant
(on the null space of b) for a and the boundedness constants for a and b, such that

lullv +liplle < Cllifslloes + Ifpllo.on + lgpllo.pn}-

It is well known that the discretization of the velocity and the pressure, for both Stokes and
Darcy problems, and the coupled problem, has to be in a particular way to avoid instabilities
1, 2,3, 6,7, 8,10, 11, 12, 14, 19, 24]. In addition, the stable finite element approximations
to the Stokes problem could not be appropriate for Darcy problem and, therefore, to the
coupled problem under consideration.

In order to develop a unified discretization for the coupled problem, that is, the Stokes and
Darcy parts be discretized using the same continuous finite element space, we consider the
modification of the Darcy equation introduced in [4, 5]. Indeed, taking the second equation
of Darcy’ problem (2.2) we can write, for any v € V,

/ (div up — gp) div v =0. (2.5)
Qp

Then, by adding this equation to the variational form (see, [4] for details), we get the
following modified Stokes-Darcy problem: Find (u,p) € V x @ satisfying
{ a(u,v)+b(v,p) =L(v) VveV,

b(u,q) =G(q) YqeQ, (2:6)

where the bilinear forms a(-,-) and b(-, ) are defined on V x V, V x @, respectively, as:
i

a(u,v) =p Vu:Vv+ —
Qg K Qp

(07

VK Jr,

u-v+/ div udiv v + p (us-t)(vs-t),
Qp

and

b(v,q) = —/Qdiv vyq.
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By last, the linear forms L and G are defined as:

L(v):/ fD'v+/ fs-v+/ gp div v and G(Q):_/ 9D q-
QD QS QD QD

From the classical theory of mixed methods it follows the well-posedness of the continuous
formulation (2.6).

Theorem 2.2. There exists a unique (u,p) € V x Q solution to (2.6). In addition, there
erists a positive constant C, depending on the continuous inf-sup condition constant for b,
the coercivity constant for a and the boundedness constants for a and b, such that

lllv +llple < C{lifsllo.ns + Ifpllogs, + l9p

O7QD}'
3. FINITE ELEMENT APPROXIMATION OF THE MODIFIED STOKES-DARCY PROBLEM

In this section, we use the well known PyP; Taylor-Hood elements (see, for example,
[13, 16, 17, 21, 26]) in order to approach the velocity and the pressure in the whole domain.
Taking into account the modification that we introduced in the section above, this element
can be successfully applied to the modified coupled Stokes-Darcy problem.

Let {7Tn}n>0 be a family of triangulations of € such that any two triangles in 7, share at
most a vertex or an edge and each element T' € T}, is in either (2g or Qp. Let ’7715 and 7;LD be
the corresponding induced triangulations of 2¢ and Qp. For any T € Tj, we denote by hp
the diameter of T" and pr the diameter of the largest ball inscribed into 7" and nr = Z—;. We
assume that the family of triangulations is regular, i.e., there exists n > 0 such that nr <n
for all T € T, and h > 0.

Hypothesis (H1): We assume that the triangulation 7, satisfies that: for T' € Ty, we have
that 7" and I'; share at most a vertex or an edge (in particular, 7' can not have two edges in
I;) for j=5,D,1.

Let Vi, € V and @} C @ be finite element spaces. The weak formulation (2.6) leads to
the following discrete problem: Find (vp,pp) € Vi, x Qp that satisfies

d(uh,vh) + b(Vh,ph) = L(Vh) Vv € Vi,
b(up, qn) = Glan) Yan € Q.

The discretization is said to be uniformly stable if there exist constants §,v > 0, indepen-
dent of h, such that

(3.7)

&(Vh,vh) > (SHVhH%— Vv, € Vy,

(3.8)
>Ylanlle Yan € Qn-
ozveevy, |[Vallv

From now on, we will denote by C a generic positive constant, not necessarily the same at
each occurrence, which may depend on the mesh only through the parameter 7.

For any subdomain D C Q, £k € N, we denote by V,’?L(D) be the space of continuous
piecewise polynomial vectors of total degree < k on 7', with T' € 7, N D, and let Q} (D) =
{qe C°D):q|re P,(T)VY T € T,ND}.

We introduce the following notation

& ={all edges in 75}, N = {all vertices in T},
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M = { all midpoints of the edges in Tj}.

and we denote by N the number of vertices on N and by M the number of midpoints on M.
Let A be a set, we define

Ea={te&:0CA}, Na={neN:neA}, Ma={meM:me A}
We decompose
€ = Equ U&ay UEry UEH, UEr,.
For n € N and / € £ we denote
wn:U{T]TEEandneT} Wy 1= U T
NeNNp#0D

We observe that, if M,,, denotes the numbers of triangles in w, then M, = 2 if £ is an interior
edge or £ C I'r and M,,, = 1 if £ is a boundary edge.
For any T € Tj, we define

wr = U{wn | nis a vertex of T }.

For ¢ € &r,, we denote by T and Tp the two triangles sharing ¢, with Tg € 7;15 and
Tp € ’7'hD ,and by wy = TsUTp. We enumerate the vertices of Tg and T so that the vertices
of £ are numbered first, i.e., let e; and es be the vertices of ¢/ we denote by eg and e? the
vertices in Qg and Qp respectively. Now, we consider the bubble space introduced in [4]

Bs g = {vy, € CUQ) : vpy |w,= betb,, YL € Er, with 1y, € C(wy), Y, |1,€ PL(T})
and ¢, (e}) =0, i = S or D}.

where by denotes the classical edge-bubble function:

by = { Oe 1;0¢,; 0Ty, i=Sor D,
0 in Q\ wy,
The finite element space for the velocities is given by
Vi, = {vi, € (C%(Q9))%,vi € (CO(2))? : v |7€ (Po(T))* VT €Ty : ErNér, =10,
and vy, |7€ (Po(T))? @ Bsy|r m¢ VT €T : ErNér, =4,
vp=0onIg,vy-np=0onIp and v,?‘np—l—v;?-ng:OonF]}
where n, stands for the unit normal vector on £ oriented outward Qp.
On the other hand, the finite element space for the pressures is
Qn :={aqn € C°(Qs),qn € C°(Up) : qn [r€ PU(T) V T € T} N L5(9).
Examples of bases for the space Bs, have been obtained in [4], we include the description

of them here for the sake of completeness. Let 7' be the classical reference triangle, i.e. the
triangle of vertices (0,0), (1,0) and (0, 1). For each triangle T' C wy, we denote by e, ey and
e3 the vertices of T', such that e; and ey are the vertices of £ and e3 is the vertex of T that
is not on I'. If we denote by (z;,y;), 1 < j < 3, the coordinates of the vertices e; of T', then

the affine transformation from 7" onto the triangle of vertices eq, eo and eg can be defined as:

F(z,9) = (z3 + (1 — x3)% + (z2 — 23)7,y3 + (y1 — y3)& + (y2 — y3)9) ,
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which maps the edge (1,0)(0,1) into £. In T' we consider the Lagrange bases 1 and S
such that: Bl(zlu %) =1, Bl(%,é—i) =0 and Bl(0,0) =0, and ,62(‘—11,%) =0, 32(%, i) =1 and
Bg (0,0) = 0. Therefore, the corresponding bases functions in T are 5511. = BZ oFTl i=1,2.

Then, the cubic bubbles vy; and vy such that, vy; |r= 561,T662’Tﬂ§1ﬂ-, i = 1,2 where
ey, 75 0ey, 7 and O, 7 denote the barycentric coordinates of T' € Tj,. (see Figure 2).

FIGURE 2. The bubble functions vg; |7 and v2 |7 (top) and vg; and v 2 on wy (bottom)

We denote by {f;}ieq1,... N}, the classical quadratic Lagrange basis of 7y, such that 3;(n;) =
1 and it is zero at the rest of the nodes of the mesh 7, and in all the midpoints of 7j; and we
denote by {¢;};eq1,... iy be the quadratic bubble Lagrange basis of 7j, such that ¢;(m;) = 1,
m; € M, and it is zero at the rest of the midpoints of the mesh 7; and in all vertices of 7.
The velocity space V}, consists of all functions v = (v1,v2) of the form

viz,y) = > vn)Bilzy)+ Y i@ y) + D (v (@, y) + arsvea(@, y)ne,

n; eN m; eM ZESFI

where v; = (vj,1,7;,2) and ay 1, a2 are constants.
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The corresponding pressure space @ consists of continuous piecewise linear functions on
Qp and Qg, i.e, functions ¢ of the form

gz, y) = > qni)Xi(x,y),
mEN
where \; € Q}L, 1 <i<N,ie., {\}li<i<ny denote the classical Lagrange basis \; |re Pi(T)
and )\Z(TLJ) =0;5, 1 <1,5 < N.
We emphasize that all functions in Vj, and @), are allowed to be discontinuous across I';.

In order to prove the discrete inf-sup (3.8), we seek for an operator IIj, : H(l) — V,, such

that
(P1) b(v—TIv,q,) =0 YveH) Vg, <€Qy

(P2) |Myvllv < Cliv|li Vv eH;
1
where [[v]ly = (for[[§ + [[oalff)z.
To define the operator IT;, we follow the ideas given in [4] and [32].

For any n € N and v € L?(w,), we can define P, : L?*(w,) — Py(w,) the orthogonal
projection of v on Py(w,) with respect to the internal product in L?(w,) that fulfills

/ v Po —/ P, (V) Do Vpo € Po(wn),

1
Pw"(v):]w ‘/ v.

For any v = (v1,v2) € L2(Q) and n € N we can define P, (v) = (P, (v1), P, (v2)).
We modify the projector in order to consider the different conditions imposed over the
vertices when we define the operator

P (0;) = Pu,, (vj) ifn; € Qg, n; € Qp or n; € I°,
s 0 ifTLZ‘EFS orn; € I'p.

and therefore

For any v = (v1,v2) € L*(Q2) let us consider the following Clément’s interpolator in V} as:

N
Tiv(z,y) = Y Ai(x,y)Pu,, ().
=1

We observe that Zyv =0 on I'p and I'g.
For the Clément’s interpolator Z;v we have the following approximation properties (see,
[4, 15, 33]), for any v € HY(Q), T € Ty,

IV =LVl < Chy ™ |[Vll1w, m=0,1,
1
v =Ziv(@)lloe < C LI [[Viwr, (3.9)
Vi < Clviiw,-

For any, n € N, we define II;v(n) = Zyv(n) = Py, (v), i.e.,
Ziv(n) =P, (v) ifneQg,nepornecl?,

II,v(n) = { o

other case,
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where I'° denotes, as usual, the interior of I'.
We consider IT,v = (II 1 v, IIj ov) € V), of the particular form

M

IL,v=71v+ Z vjqu(x, y) + Z (Oéz,1we,1(i€, y) + Oéé,2w£,2(xa y))me
j=1 5651"1

=Tiv+ Ry + Y (ag1we(,y) + agwea (2, y))n
KESFI
=Tiv+Rpv+ Syv.
First of all, we take v; = (v;1,7;,2) = (0,0) for all j such that m; € Mr,, k= 5,D, 1.

We observe that, for each ¢ € £r;, we have two degrees of freedom more on ¢ and therefore
we can choose vy = b1),,, such that

(3.10)

/HhV “Nyo = /VD -ngo, Yo&E Pl(f), (3.11)
)4 4

or equivalently (in view of v; = 0, when m; € I'y),

/b€¢w40 = /(VD —Twv) -ngo, VoeP{).
)4 l

We note that this relation impose exactly two conditions on %, and since we have two
degrees of freedom of 1, the existence (and so the uniqueness) of v, is guarantee (see [4]
for details). Indeed, since for each T" C wy, the function v, |r can be written as v, |[7=
06471,3%1 + 0‘&2%‘,27 the parameters oy and a2 can be easily obtained by solving the non
singular system (3.11). Moreover, if we denote by £, ; the linear continuous functions defined
in wy such that B, ; |[r= B%j, Jj = 1,2, we can compute ay; and oy 2 and an easy calculation
shows that

C
| |< 7] e | /K(VD —Iiv(n)) - mg By | - (3.12)

Therefore, the operator Syv is uniquely determined.
Now, we define ~, for each £ € £q, U £q,, as follows

| we |

-1
Yo = (Ve,1:e2) = (3> > /TtZ’T (v—=T1v—Spv) | t; (3.13)

Tewy

where t, is a unit tangent vector to £ and the dual vectors tQ’T are chosen as follows.
For each T € 7}, the edge /¢ is numbered first by ¢1 and the others edges of T by ¢> and
l3. Let t1 7,t2 7 and t3 7 be the tangential vectors to the edges /1,2 and f3 respectively.
Then, if T' € wy, with £ € Eng U Eq,y, the dual vectors t) 1, t) 7 and t5 7 are defined as:

2
thr = Apitir, k=12 thr=0
i=1

with
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A= 1 ( 1 _tl,T . t27T> . 1 < 1 — COS(QT)>
1— (t17-to7)? \—ti,r-tor 1 sin(fr) \— cos(fr) 1

with tir-tor = COS(HT), 0<Or <.
In view of Lemma 2.1 of [32], we have that for any z € R?, T € Ty, we can write

2 3
z=) (tjr 2ty =) (tjr 2)t)r. (3.14)
j=1 j=1
Thus,
wy | -1
<> Z/th (v—Tyv—Spv) | t; if ¢t € Eqq orl € &gy,
Ve = 3 Tew,
0 if ¢ € &p, for k=5,D,1.
(3.15)

Now, we are in conditions of verify the (P1) property of the operator IT,v.
Lemma 3.1. Let be v € H(l). The operator IIv is such that
b(v—IIpv,qn) =0  Van € Qp.

Proof of Lemma 3.1. Since b(v—II,v, q) = — fQ div (v—TI,v) g, — fQ div (v—TI,v) g,
adding on all triangles in both domains, mtegratlng by parts on each trlangle we get

b(v—IIpv,qn) = — Z / div (v —IIyv) qp — Z / div (v —IIyv) qp

TCOp TCOs
= TCXQ:D (/T(V —Iyv) - Vg, — Ath(v —1II,v) - nD> +

For any ¢ € £qgq U Eq,, we choose a unit normal vector ny and denote the two triangles
sharing this edge T;, and Ty, with n, pointing outwards Ty,. We define
[v-nd, = (v |T0ut) ng— (v |Tm) "N,
which corresponds to the jump of the normal component of v across the edge £. Notice that
this value is independent of the chosen direction of the normal vector .
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Rewriting the integrals on the borders of the triangles, we obtain

b(v—TIIpv,qn) = Z /T(v—l_[hv)-th—}— Z /T(V—Hhv)-th

TCcQp TCOg
1
2 Z Z /[(V_Hhv)‘ndzqh_ Z/(V—HhV)-nDQh
TCQp te€rnQp ¢ tegry,
tegp 7t ¢
T
1
2 Z Z /[(V_Hhv)‘ndzqh_ Z /(V—HhV)-nsqh.
TCQs beErNQg ¢ ZEEFS l

Now, since ITpv = 0 in I'g and I'p, from the boundary conditions and continuity of the
normal component of v and IT,v we have that

b(v—TIIpv,qn) = Z /T(V—l'[hv).th—i— Z /T(V—Hhv).th

TCQD TCQS
- Z [/(VD —IIv) - mpapn + /(VS —IIpv) - nsqs)
tegp, It ¢
I'r
= / (V—HhV)'VQh+/ (v —IIpv) - Vay,
Qp Qs
- Z [/(VD —IIv) - mpapn + /(VS —IIpv) - nsqspl
tegp, 7t ¢
Ly
= I+ II+1I1I.

We analyze the value of each of the previous terms:
I - II) For any w € V7 we have that

T
/w:| Z w(m) (3.16)
T 3
meTNM
since the integration rule of the midpoints is exact for quadratic functions. As
qn € Q,ll, its gradient is constant and since Rpv(my) = 0 if my € I'r,I'p or I'g, we
have

2
Ty ;i
Ryv Vg, = E E 7’ 3’] ’th ‘Tf,j Rpv(my)
Qg tekq, j=1

where Ty ;, j = 1,2, denotes the two triangles on wy.
Then, from (3.15) we get
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Ryv -V

Q
2 | Ty 5 | | we | -1 2 ,
- Z Z 7 th ‘Tg}j : Z / tf,Tu . (V —Ilv — ShV) tg.
j 3 3 Tei ’

eEng 7=1 =1

For any ¢ € Eq,U&q,,, T,T' € wyand q € Q}L we have that Vg, |7 t; = Van |17 -ty
which we can simply denote as (Vqy, - t),. Thus,

2 -1
| T2, | | we | /
= Z Z 3 Van |1y, - . Z b tor,  (v—=11v—Spv) | t;

ZGSQ 7j=1

2 1 2
= <| we ’> Z (/T tZ,Te,i (v—=Tyv — Shv))
i— 0

Le€q, j=1 i=1
= Z (Vg - t) Z </ ty 1, (v=Tiv— Shv)>
teq, i=1 \"Tti

Using again that, for Ty; and Tp 2 in wy, we have that (Vg t), = Vay |1, ter,, =
Van |1y, ‘te1,, and grouping the terms we get

Ryv-Vg,= Y /(Zv% T - sTtsT> (v —T1v —Spv).

O TETHN%
Now, from (3.14) we conclude that

II,v - th—/ Iiv -V, + Z /th |7 (v —Zyv — Spv)

Qp Qx TeThNQy,
+/ S,v - Vg
Qi
= Van - v.
Qg
II) If ¢ € &r,, as v € H(Q) its normal component is continuous and np = —ng, we

have that [,(v¥ — II,v) - ngqsy = [,(II,v — vP) - npgsy. Thus, to prove that
Ik (vP —TII,v) - npapy + fz(vs —II,v) - nggsy = 0 it is enough to see that

/HhV ’I’LDU_/ D npo VUGPl(Z),
V4
which holds from (3.11).
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O
Now, we obtain the H' bound of our operator.
Lemma 3.2. There exists a constant C' > 0, independent of h, such that

1
Iy lly = (| T oy HITVIE gio,)? < Clvli Vv e HY,

divQp)

Proof of Lemma 3.2. We observe that, it is enough to prove that there exists a constant C
such that

| T v |i§25:‘ Iy v ‘%,QS + [T ov |%,QS§ C|vl3,

in view of HHhVHH(diV,QD) < |[TIyvlj1,0,, and the fact that bound for | II, ;v |10, is
completely analogous.

We write
2 2 2 .
| v [Ty = Z | v {0 + Z | v |ip=1+11 j=0,1.
TCQg:ErNEr=0 TCQg:ErNEr#D
First, we analyze the term I = > | I, ;v |2 1 . Here the operator is

TCQg:ErNEr=0
;v 7= 115V [7 +Rigv |1 -
If we denote by ¢1, ¢2 and ¢3 the quadratic Lagrange bases of T', such that ¢;(m;) = d;;,
m; € My, 4,7 =1,2,3 and it is zero in all vertices of T" then,

3
I<c Z | Tugv i + Z Z | ve,.5%i 157

TCQg:ErNEr=0 TCQg:ErNEr=0 i=1
with m; € ¢;, 1 =1,2,3.
It’s easy to prove that | Zi jv |1, 7< C||V|1,wy, 7 = 1,2 (see [4] for details). On the other
hand, from (3.15) (we recall that in the case under consideration S;v = 0) it concludes

_ 1
| 1S Clwg 78 D Iv=Tuvllor [T |2 .

TEWQ

Now, using |T' |% ~ hp, the Clément’s properties (3.9) and the regularity of the mesh we
obtain

%5 1S Clwe 178 ) BiIVIwy <C Y IVIier i=1,23.
TEwgi Tewgi

Therefore, since the regularity of the mesh we have that the number of triangles in a
neighborhood wr is bounded by a uniform constant we get

I<c > | Zigv e+ Y Ivlier | £ClVILes-
TCQs‘:STﬁgI‘:@ TCQs‘:gTﬂgF:@
Now, we analyze the term I] = > | I, ;v E,T’ i.e., the case in which T has

TeNs:ErNEr#£D
only one side on the interface that we denoted by .
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ngc< S mvBet Y Ry

TCQg:ErNErAD TCQg:ETNErAD

b suvEs )

TCQs:ErNEr#£D

(3.17)

Hence,

/T (vene,)? = /T (Ser 1 Oep 1 Yyt )’

2
¢ ¢
= / ((044,1561,T ey, 7 Br1 + 0206y 1 0cy, T 5T,2)W,j)
T

< Cmax|ag; *116e,,7 Sea 7137

1
< CWHV — IlV(.%')H%’eH(Sel,T 5627TH3,T

T
< CWHV — Iiv(@)l[ge < ChE VIR oy
Ing!2!
where we use that [0, ;002 pdx = iyl T and (3.9).
Now, by using a classical inverse inequality, we get

1
[ vene urs Crllvenegllor < Cliviier

and therefore
| SV 1.0 ClIviiwr- (3.18)
On the other hand, in view of vy, = 0 for m; € I'y, if we denote by ¢1, ¢2 and ¢3 the

Lagrange basis associated to the midpoints of T such that m; is the midpoint in ¢; C I'y,
then from (3.10), (3.15) and (3.18) we have

| Ry v e <[ ves,i82 [ + [ V6,593 11
1
<CY w7 YD (v = hivllor + Skvllor) T2

i=2,3 TCuy,
<Oy D IVl
i=2,3 TCuy,

Therefore, by using these estimations in the expression (3.17) of the operator we get

m<c > VI <CIVIE
Tcﬂsthﬁgr‘;é@
Finally,

| v [104< Clv]1
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and the proof concludes. O

Remark 3.1. We observe that, if we define the operator I, : H}(Q) — V), as

M
Lv =Y 8dj(x,y)+ D (anivei(e,y) + agavea(z,y))ne,
j=1 Letr,

with 6; =0 if m; € 'y, k=5,D,1, and oy and oy such that

/Ihv- ’I"LDO':/VD' npo Vo€ P({),
¢ ¢

and

5. — (el -
/ 3

where Spv = Z (1001 (2, ) + g 2ve2(, y)) 1.
teér,
This operator satisfies the property (P1) and there exists a constant C' such that |[Inv|op <
C||v|lo. However, this operator does not satisfy property (P2).

Z/tZ,T'(V—ghV) ty if mj € Qg ormj € Qp
T

Tewy

Theorem 3.1. There exists a unique solution (up,pr) € Vi X Qp to the problem (3.7).

Proof of Theorem 3.1. From Lemmas 3.1 and 3.2, we have that our interpolator II,v satis-
fies the conditions (P;) and (P,). Therefore this theorem is a direct consequence of the fact
that the bilinear form a is coercive and continuous, b is continuous and satisfies the discrete
inf-sup condition, together with the abstract theory of mixed problems [13]. O

Hence, from theory of mixed problems, we immediately have the following.

Corollary 3.1. Let (u,p) € V x Q be the solution of the weak formulation (2.6) of the
coupled problem. Let (up,pn) € Vi X Qp be the solution of the discrete problem (3.7). Let
the finite element spaces be chosen as in section 3. Then, there exists a constant C such that:

u—u + |lp — <C{ inf ||lu—vwv + inf — .
| rllv + llp — pallg {Vhevh\l nllv qhthllp anlle}

4. NUMERICAL EXPERIMENTS

We end this paper with three numerical experiments which show the good performance of
our method. We defined the individual errors by,

eo(ps) = Ips — psullogs eo(rp) = lpp — po.1llogop
eo(div vg) = ||div(vs — vsn)llo.0s eo(div vp) = ||div(vp — vp.n)llo.ap
e1(vs) =| vs — ven 1,05
and the rates of convergence given by,

(0

log((7) o |

ri(0) = —H— O € {vg,div vg,div vp,ps,pp} and i = 0,1

log(77)

where h and h’ denote two consecutive mesh-sizes with errors e; and /.
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Using the previous definition of r;, we present in Tables 1 and 2, the convergence history
for a set of shape regular triangulations of the domain for the first example, in Tables 3 and
4, the corresponding for the second one and in Tables 5 and 6 the corresponding for the
last numerical experiment. For simplicity, all the parameters such as K, o and p are set
to 1. We mention that, since is difficult to construct examples satisfying the entire coupled
Stokes-Darcy problem (2.1)-(2.3) (in particular, the homogeneous interface conditions (2.3)),
the numerical experiments could include nonhomogeneous terms for the interface conditions
and therefore conduce to modify (only) the right-hand side in (2.6).

We also comment that, in practice, mass conservation and Neumann condition have to
be impose in a weak way. Indeed, when we assembling the system matrix we must add
equations that ensure the normal continuity of the velocity and the boundary condition, i.
e, Jp(vi np + vy ng)y =0,V € {COT) : v |e€ Po(0) ® (Bsy) |¢} and [, v} -mpA =
0, VA€ {CT) : X |,€ Py(0)}.

First example : Let Qp = (—3,1) x (=3,3) and Q¢ = (-1,1) x (=1,1) \ Qp be a
porous medium completely surrounded by a fluid (see Figure 3). The particularity of this
example is that there is no I'p because the boundary of (2p represent the interface, I'. We
set the appropriate forcing term fg and the source gp, such that the following solution to the
Stokes-Darcy coupled problem, with fp = 0, is exact

—4(z* —1)%(y* — 1)
us(z,y) = ( 4(962 _ 1)(y2y_ 1)2xy>

ps(z,y) = —sin(x)e’ po(z,y) = —sin(z)e’.

In this first example it is satisfied that ug = 0 in I'g and the two boundary conditions on
the interface are nonhomogeneous. These example were also studied in [23] where the authors
apply Raviart-Thomas elements of lowest order and piecewise constants for the velocities and
pressures in both domains, and in [4] where the authors apply the classical Mini-element to
the coupled Stokes-Darcy problem.

Figures 4-6 and 7 show, respectively, the approximate and exact velocities and the ap-
proximate and exact values of the pressures for the Stokes region, while Figures 8-10 and 11
display the corresponding for the Darcy region. Tables 1 and 2 show that optimal rate of
convergence can be also reached with our method for a set of shape-regular triangulations of
the domain Qg U Qp.

We look at the efficiency of the method in approximating the velocities and the pressures.

h eo(ps) ro(ps) eolpp) 7ro(pD)
0.0884 0.00061 3.16209 0.00023 2.00030
0.0442 0.00010 2.58392 0.00005 1.99902
0.0221 0.00002 2.14321 0.00001 1.99948

TABLE 1. Mesh-sizes, errors, and rates of convergence (Example 1)

Second example : Let Qp = {(;U,y) cR?: ifzx € (0,%),0 <y < %564— % and if x €

[%,1),0 <y < —%:r: + 1} and Qg = (0,1) x (0,1) \ Qp (see Figure 12). Note that the
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h eo(div vg) 71o(div vg) eo(div vp) ro(div vp) ei(vs) 7ri(vs)

0.0884 0.01102 1.99218 0.00014 2.17030 0.01703 1.98998
0.0442 0.00276 1.99716 0.00003 2.03132 0.00426 1.99699
0.0221 0.00069 1.99900 0.000008 1.94426 0.00106 1.99898

TABLE 2. Mesh-sizes, errors, and rates of convergence (Example 1)

1 1
0.8 0.8
0.6 06
0.4 0.4
0.2 02

0 0
02 02
04 04
06 06
08 0.8

R 1

1 08 06 04 02 0 02 04 06 08 1 4 08 06 04 02 0 02 04 06 08 1

FIGURE 3. Full polygonal domain (Example 1)

08 08}
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06,7 0.6

o4t bl 0.4
1

! 1
02b! 02}
"t
toy
02F | 02 b
‘.,‘
04, A 0.4}
A
06F .S 06

08F - - 08

FIGURE 4. Vector charts ug and ugy, (Example 1)

interface turns out to be a union of two segments, i.e., I' = {(z,y) € R?: for z € (0,3),y =
s+ 3 and forz € [3,1),y=—1z+1}

We select the right-hand terms fg, gg, fp, gp and the boundary conditions according to
the analytical solution given by

ustea) = ({00 wnen = (-

0
s(1—2)a(1=y)(y + 32 1) %x—é)(er;—l))
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F1GURE 5. Contours of the first components of ug and ugy, (Example 1)
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FIGURE 6. Contours of the second components of ug and ugj (Example 1)

pS(:Ba y) = $3ey pD(xv y) = (L‘38Z7’l,(y)

In this second example it is satisfied that ug = 0 in I'g, up - np = 0 in I'p and the two
boundary conditions on the interface are nonhomogeneous.

Figures 13-15 and 16 show, respectively, the approximate and exact velocities and the
approximate and exact values of the pressures for the Stokes region, while Figures 17-19 and
20 display the corresponding for the Darcy region. The obtained errors and estimated rate
of convergence are given in Table 3 and in Table 4. The numerical results also suggest that
this formulation is stable and that the optimal order of convergence is reached.

Third example : Let Qg = (0,3) x (0,3), Qp = (0,3) x (—3,0) and I = (0, 3) x {0}
(see Figure 21). We select the right-hand terms fs, gs, fp, gp and the boundary conditions
according to the analytical solution given by

—wcos(nx)sin(my) )

ug(z,y) =up(z,y) = (—frcos(wx)cos(wy) + zsin(mz)cos(Ty)
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FIGURE 7. pg and pg, pressure figures (above) and pressure contours (bel-

low) (Example 1)
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FIGURE 8. Vector charts up and upj (Example 1)

ps(z,y) = pp(x,y) = sin(ry) [ — cos(nx) + 2rasin(rz)] + dze *cos(ry) — ;(1 —5e7?).



A UNIFIED APPROXIMATION OF STOKES-DARCY COUPLED PROBLEM BY A TAYLOR-HOOD METHOI

0.5 0.5
16 16
0.4 04
15 15
0.3 0.3
13 0.2 13
5 0 05

0.1 0.4
0 1.1 0
01 ! 01
08
02 02
0.8
03 03
07
04 04
06
05 05
) 0

5 0 05

0.2

F1GURE 9. Contours of the first components of up and up j; (Example 1)
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F1GURE 10. Contours of the second components of up and up (Example 1)

h eo(ps)  molps) eo(pp) 710(pp)

0.1250 0.00094 1.96518 0.00081 1.94438
0.0625 0.00023 1.99224 0.00020 1.98862
0.0313 0.00005 1.99989 0.00005 1.99813

TABLE 3. Mesh-sizes, errors, and rates of convergence (Example 2)

In this third example it is satisfied that up -np = 0 in I'p, the Dirichlet condition for the
Stokes velocity on I'g and the two boundary conditions on the interface are nonhomogeneous.

These example were also studied in [20] where the author apply Taylor-Hood Py — P ele-
ments for approximating (ug, ps), Raviart-Thomas RT; — discP; elements for approximating
(up,pp) and P; elements for approximating the interface pressure A\. The author also used
other combinations of elements for the same example:

(1) Py — P, RTy — discP, and P,
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0.5 0.5

FIGURE 11. pp and pp 4, pressure figures (above) and pressure contours (bel-
low) (Example 1)

h eo(div vg) ro(div vg) eo(div vp) ro(divvp) ei(vs) ri(vs)

0.1250 0.00054 1.97506 0.00252 2.01308 0.00063 1.99574
0.0625 0.00013 2.00516 0.00062 2.01810 0.00015 2.00575
0.0313 0.00003 2.00748 0.00015 2.01508 0.00003 2.00547

TABLE 4. Mesh-sizes, errors, and rates of convergence (Example 2)

(2) P2 — Pl, RT2 — d’iSCPQ and P2,
(3) (P ® Bubble) — Pi, RT; — discP; and P;.

Figures 22-24 and 25 show, respectively, the approximate and exact velocities and the
approximate and exact values of the pressures for the Stokes region, while Figures 26-28 and
29 display the corresponding for the Darcy region. The obtained errors and estimated rate
of convergence are given in Table 5 and in Table 6.

We emphasize that the numerical results confirm the good performance of the mixed finite
element scheme with Taylor-Hood elements for the Stokes-Darcy coupled problem.
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FIGURE 13. Vector charts ug and ugy (Example 2)

h eo(ps)  ro(ps) eo(pp) 7To(pp)
0.03125 0.00052 2.01299 0.00055 2.01057

0.01562 0.00013 2.00506 0.00013 2.00516
0.00781 0.00003 2.00213 0.00003 2.00247

TABLE 5. Mesh-sizes, errors, and rates of convergence (Example 3)

This work was partially supported by ANPCyT under grant PICT 2018-3017, CONICET
under grant PIP (2014-2016) 11220130100184CO and by Universidad de Buenos Aires under
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