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Abstract. The goal of this paper is the unified approximation of the two-dimensional
Stokes-Darcy coupled problem by a Taylor-Hood method, which uses the space of contin-
uous and piecewise quadratic functions for the velocities and the space of continuous and
piecewise linear functions for the pressures. The Taylor-Hood methods are one of the most
classical stable finite element approximations for the Stokes problem, however they may not
be appropriate for Darcy problem and as a consequence for the coupled problem. In this
paper we consider a reformulation of Stokes-Darcy problem which allows us to apply the
classical Taylor-Hood elements. An appropriate Fortin operator is constructed in order to
show the stability of our method. We show that the method proposed has optimal accuracy
and a simple implementation. We also present numerical experiments which confirm the
excellent performance of our method.

1. Introduction

The numerical resolution of the Stokes-Darcy coupled problem has been widely studied
across multiple articles (see, for example, [4, 5, 22, 23, 27, 28, 30, 31], and the references
therein). Some of these articles are devoted to the unified approximation of the coupled
problem, i.e., the Stokes and Darcy parts be discretized using the same continuous finite
element space. Indeed, in two recent works [4, 5] the authors modified the mixed formulation
of the problem in such a way that the new problem has the same solution as the original
and, independent of the mesh size, the stability condition for the new Stokes-Darcy problem
reduces to the same as the Stokes problem. Based on this approach they approximate the
solution by using the MINI-elements for the two-dimensional problem in polygonal domains
[4] and in curved domains [5].

In this paper, by using the same modified Stokes-Darcy problem introduced in [4], we
solve the Stokes-Darcy problem with a P2P1 Taylor-Hood method, i.e., we basically use
continuous and piecewise quadratic functions for the velocities and continuous and piecewise
linear functions for the pressures.

A standard method for proving the inf-sup condition implying stability of finite element
approximations is to construct a Fortin operator. The Taylor-Hood methods, which was
introduced by Hood and Taylor in [26], are one of the most classical stable finite element
approximations for the Stokes problem, however the construction of a Fortin operator for
this family of methods is not easy to perform (even several stability proofs present in the
literature use alternative approaches). Therefore, there are multiple works devoted to proof
the stability of the method and the construction of the Fortin operator (see [16, 18, 21, 29, 32]
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and the references therein) Following the ideas given in the recent work of R. Scott [32] and
those given in [4], we construct a Fortin operator for the lowest order Taylor-Hood element
in two space dimensions which, under proper conditions, is uniformly bounded both in H1

norm and allows us to conclude the stability of our approximation method and so optimal
accuracy with respect to solution regularity. We also present numerical experiments which
confirm the excellent performance of our method.

The rest of the paper is organized as follows. In Section 2 we state the classical Stokes-
Darcy coupled problem and we introduce the modified coupled Stokes-Darcy problem. In
Section 3 we present the finite element discretization with a Taylor-Hood method and we an-
alyze the stability of the proposed method. Finally, in section 4, we present several numerical
examples.

2. Problem Statement

We consider an open, bounded and polygonal domain Ω ⊂ R2 divided into two open
subdomains with Lipschitz continuous boundaries ΩS and ΩD, where the indices S and D
stand for fluid and porous, respectively. We assume that Ω = ΩS ∪ ΩD, ΩS ∩ ΩD = ∅ and
ΩS ∩ΩD = ΓI so, ΓI represents the interface between the fluid and the porous medium. The
remaining parts of the boundaries are denoted by ΓS = ∂ΩS \ ΓI and ΓD = ∂ΩD \ ΓI , as
illustrated in Figure 1.

Figure 1. Examples of two-dimensional domains Ω

We denote by nS the unit outward normal direction on ∂ΩS and by nD the normal direction
on ∂ΩD, oriented outward. On the interface ΓI , we have nS = −nD. We also use, as usual,
boldface for vector value functions.

The Stokes-Darcy coupled problem describes the motion of an incompressible viscous fluid
occupying a region ΩS which flows across the common interface into a porous medium living
in another region ΩD saturated with the same fluid. The mathematical model of this problem
can be defined by two separate groups of equations and a set of coupling terms.

For any function v defined in Ω, taking into account that its restriction to ΩS or to ΩD

could play a different mathematical roles, we define vS = v |ΩS
and vD = v |ΩD

.
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In ΩS , the fluid motion is governed by the Stokes equations for the velocity uS and the
pressure pS : 

−µ∆uS +∇pS = fS , in ΩS ,

div uS = 0, in ΩS ,

uS = 0, in ΓS ,

(2.1)

where fS ∈ (L2(ΩS))2 represents the force per unit mass and µ > 0 the viscosity.
In ΩD, the porous media flow motion is governed by Darcy’ law for the velocity uD and

the pressure pD: 
µ

K
uD +∇pD = fD, in ΩD,

div uD = gD, in ΩD,

uD · nD = 0, in ΓD,

(2.2)

where fD ∈ (L2(ΩD))2 represents the force per unit mass, gD ∈ L2(ΩD) a source and K
denoting the permeability tensor reduced to a positive scalar in the isotropic case considered
here.

In ΓI , we consider the following boundary conditions:
uD · nD + uS · nS = 0,

pS nS − µ∇uS nS − pD nS − µ
α√
K

(uS · t) t = 0,
(2.3)

where, as usual, ∇u =
(
∂ui
∂xj

)
1≤i,j≤2

. The first equation represents mass conservation and

the second is due to the balance of normal forces and the Beavers-Joseph-Saffman condition,
α a parameter determined by experimental evidence and t the tangent vector on ΓI (we
recommend [9] for more details on the interface conditions).

We denote with boldface the spaces consisting of vector value functions. The norms and
seminorms in Hm(D), with m an integer, are denoted by ‖ ·‖m,D and | · |m,D respectively and
(·, ·)D denotes the inner product in L2(D) or L2(D) for any subdomain D ⊂ Ω. The domain
subscript is dropped for the case D = Ω. Let H(div,Ω) = {v ∈ L2(Ω) : div v ∈ L2(Ω)},
H0(div,Ω) = {v ∈ L2(Ω) : div v ∈ L2(Ω),v · nD = 0 on ΓD} and L2

0(Ω) = {q ∈ L2(Ω) :∫
Ω q = 0}.

We define the spaces

V = {v ∈ H(div,Ω) : vS ∈ H1(ΩS),v = 0 on ΓS , and v · nD = 0 on ΓD}
and

Q = L2
0(Ω),

with the norms ‖v‖V = (| v |21,ΩS
+‖v‖20,ΩD

+ ‖ div v‖20,ΩD
)

1
2 = (| v |21,ΩS

+‖v‖2
H(div,ΩD)

)
1
2

and ‖q‖Q = ‖q‖0 respectively.
The mixed variational formulation of the coupled problem (2.1)-(2.3) can be stated as

follow [4, 5, 28, 30]: Find (u, p) ∈ V ×Q that satisfies{
a(u,v) + b(v, p) = F (v) ∀v ∈ V,

b(u, q) = G(q) ∀ q ∈ Q,
(2.4)



A UNIFIED APPROXIMATION OF STOKES-DARCY COUPLED PROBLEM BY A TAYLOR-HOOD METHOD4

where the bilinear forms a(·, ·) and b(·, ·) are defined on V ×V and V ×Q, respectively, as:

a(u,v) = µ

∫
ΩS

∇u : ∇v + µ
α√
K

∫
ΓI

(uS · t) (vS · t) +
µ

K

∫
ΩD

u · v,

and

b(v, q) = −
∫

Ω
div v q.

By last, the linear forms F and G are defined as:

F (v) =

∫
ΩD

fD · v +

∫
ΩS

fS · v and G(q) = −
∫

ΩD

gD q.

From the classical theory of mixed methods (see, e.g., Theorem and Corollary 4.1 in Chap-
ter I of [25]) it follows the well-posedness of the continuous formulation (2.4) and so the
following theorem holds.

Theorem 2.1. There exists a unique (u, p) ∈ V × Q solution to (2.4). In addition, there
exists C, depending on the continuous inf-sup condition constant for b, the coercivity constant
(on the null space of b) for a and the boundedness constants for a and b, such that

‖u‖V + ‖p‖Q ≤ C{‖fS‖0,ΩS
+ ‖fD‖0,ΩD

+ ‖gD‖0,ΩD
}.

It is well known that the discretization of the velocity and the pressure, for both Stokes and
Darcy problems, and the coupled problem, has to be in a particular way to avoid instabilities
[1, 2, 3, 6, 7, 8, 10, 11, 12, 14, 19, 24]. In addition, the stable finite element approximations
to the Stokes problem could not be appropriate for Darcy problem and, therefore, to the
coupled problem under consideration.

In order to develop a unified discretization for the coupled problem, that is, the Stokes and
Darcy parts be discretized using the same continuous finite element space, we consider the
modification of the Darcy equation introduced in [4, 5]. Indeed, taking the second equation
of Darcy’ problem (2.2) we can write, for any v ∈ V,∫

ΩD

(div uD − gD) div v = 0. (2.5)

Then, by adding this equation to the variational form (see, [4] for details), we get the
following modified Stokes-Darcy problem: Find (u, p) ∈ V ×Q satisfying{

ã(u,v) + b(v, p) = L(v) ∀v ∈ V,

b(u, q) = G(q) ∀ q ∈ Q,
(2.6)

where the bilinear forms ã(·, ·) and b(·, ·) are defined on V ×V, V ×Q, respectively, as:

ã(u,v) = µ

∫
ΩS

∇u : ∇v +
µ

K

∫
ΩD

u · v +

∫
ΩD

div u div v + µ
α√
K

∫
ΓI

(uS · t) (vS · t),

and

b(v, q) = −
∫

Ω
div v q.
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By last, the linear forms L and G are defined as:

L(v) =

∫
ΩD

fD · v +

∫
ΩS

fS · v +

∫
ΩD

gD div v and G(q) = −
∫

ΩD

gD q.

From the classical theory of mixed methods it follows the well-posedness of the continuous
formulation (2.6).

Theorem 2.2. There exists a unique (u, p) ∈ V × Q solution to (2.6). In addition, there

exists a positive constant C̃, depending on the continuous inf-sup condition constant for b,
the coercivity constant for ã and the boundedness constants for ã and b, such that

‖u‖V + ‖p‖Q ≤ C̃{‖fS‖0,ΩS
+ ‖fD‖0,ΩD

+ ‖gD‖0,ΩD
}.

3. Finite element approximation of the modified Stokes-Darcy problem

In this section, we use the well known P2P1 Taylor-Hood elements (see, for example,
[13, 16, 17, 21, 26]) in order to approach the velocity and the pressure in the whole domain.
Taking into account the modification that we introduced in the section above, this element
can be successfully applied to the modified coupled Stokes-Darcy problem.

Let {Th}h>0 be a family of triangulations of Ω such that any two triangles in Th share at
most a vertex or an edge and each element T ∈ Th is in either ΩS or ΩD. Let T Sh and T Dh be
the corresponding induced triangulations of ΩS and ΩD. For any T ∈ Th, we denote by hT
the diameter of T and ρT the diameter of the largest ball inscribed into T and ηT = hT

ρT
. We

assume that the family of triangulations is regular, i.e., there exists η > 0 such that ηT ≤ η
for all T ∈ Th and h > 0.

Hypothesis (H1): We assume that the triangulation Th satisfies that: for T ∈ Th, we have
that T and Γj share at most a vertex or an edge (in particular, T can not have two edges in
Γj) for j = S,D, I.

Let Vh ⊂ V and Qh ⊂ Q be finite element spaces. The weak formulation (2.6) leads to
the following discrete problem: Find (vh, ph) ∈ Vh ×Qh that satisfies{

ã(uh,vh) + b(vh, ph) = L(vh) ∀vh ∈ Vh,

b(uh, qh) = G(qh) ∀ qh ∈ Qh.
(3.7)

The discretization is said to be uniformly stable if there exist constants δ, γ > 0, indepen-
dent of h, such that

ã(vh,vh) ≥ δ‖vh‖2V ∀vh ∈ Vh,

sup
06=vh∈Vh

b(vh, qh)

||vh||V
≥ γ||qh||Q ∀ qh ∈ Qh.

(3.8)

From now on, we will denote by C a generic positive constant, not necessarily the same at
each occurrence, which may depend on the mesh only through the parameter η.

For any subdomain D ⊆ Ω, k ∈ N, we denote by Vk
h(D) be the space of continuous

piecewise polynomial vectors of total degree ≤ k on T , with T ∈ Th ∩ D, and let Qrh(D) =
{q ∈ C0(D) : q |T∈ Pr(T ) ∀ T ∈ Th ∩ D}.

We introduce the following notation

E = {all edges in Th}, N = {all vertices in Th},
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M = { all midpoints of the edges in Th}.
and we denote by N the number of vertices on N and by M the number of midpoints onM.

Let A be a set, we define

EA = {` ∈ E : ` ⊂ A}, NA = {n ∈ N : n ∈ A}, MA = {m ∈M : m ∈ A}.
We decompose

E = EΩS
∪ EΩD

∪ EΓS
∪ EΓD

∪ EΓI
.

For n ∈ N and ` ∈ E we denote

ωn =
⋃
{T | T ∈ Th and n ∈ T} ω` :=

⋃
N`∩NT ′ 6=∅

T ′.

We observe that, if Mω`
denotes the numbers of triangles in ω` then Mω`

= 2 if ` is an interior
edge or ` ⊂ ΓI and Mω`

= 1 if ` is a boundary edge.
For any T ∈ Th we define

ωT =
⋃
{ωn | n is a vertex of T }.

For ` ∈ EΓI
, we denote by TS and TD the two triangles sharing `, with TS ∈ T Sh and

TD ∈ T Dh , and by ω` = TS ∪TD. We enumerate the vertices of TS and TD so that the vertices

of ` are numbered first, i.e., let e1 and e2 be the vertices of ` we denote by eS3 and eD3 the
vertices in ΩS and ΩD respectively. Now, we consider the bubble space introduced in [4]

B3,` := {vh ∈ C0(Ω) : vh |ω`
= b`ψω`

, ∀ ` ∈ EΓ, with ψω`
∈ C0(ω`), ψω`

|Ti∈ P1(Ti)

and ψω`
(ei3) = 0, i = S or D}.

where b` denotes the classical edge-bubble function:

b` =

{
δe1,Tiδe2,Ti in Ti, i = S or D,

0 in Ω \ ω`,
The finite element space for the velocities is given by

Vh := {vh ∈ (C0(ΩS))2,vh ∈ (C0(ΩD))2 : vh |T∈ (P2(T ))2 ∀T ∈ Th : ET ∩ EΓI
= ∅,

and vh |T∈ (P2(T ))2 ⊕B3,` |T n` ∀T ∈ Th : ET ∩ EΓI
= `,

vh = 0 on ΓS ,vh · nD = 0 on ΓD and vDh · nD + vSh · nS = 0 on ΓI}
where n` stands for the unit normal vector on ` oriented outward ΩD.

On the other hand, the finite element space for the pressures is

Qh := {qh ∈ C0(ΩS), qh ∈ C0(ΩD) : qh |T∈ P1(T ) ∀ T ∈ Th} ∩ L2
0(Ω).

Examples of bases for the space B3,` have been obtained in [4], we include the description

of them here for the sake of completeness. Let T̂ be the classical reference triangle, i.e. the
triangle of vertices (0, 0), (1, 0) and (0, 1). For each triangle T ⊂ ω`, we denote by e1, e2 and
e3 the vertices of T , such that e1 and e2 are the vertices of ` and e3 is the vertex of T that
is not on Γ. If we denote by (xj , yj), 1 ≤ j ≤ 3, the coordinates of the vertices ej of T , then

the affine transformation from T̂ onto the triangle of vertices e1, e2 and e3 can be defined as:

F (x̂, ŷ) = (x3 + (x1 − x3)x̂+ (x2 − x3)ŷ, y3 + (y1 − y3)x̂+ (y2 − y3)ŷ) ,
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which maps the edge (1, 0)(0, 1) into `. In T̂ we consider the Lagrange bases β̂1 and β̂2

such that: β̂1(1
4 ,

3
4) = 1, β̂1(3

4 ,
1
4) = 0 and β̂1(0, 0) = 0, and β̂2(1

4 ,
3
4) = 0, β̂2(3

4 ,
1
4) = 1 and

β̂2(0, 0) = 0. Therefore, the corresponding bases functions in T are β`T,i = β̂i ◦F−1, i = 1, 2.

Then, the cubic bubbles v`,1 and v`,2 such that, v`,i |T= δe1,T δe2,Tβ
`
T,i, i = 1, 2 where

δe1,T , δe2,T and δe3,T denote the barycentric coordinates of T ∈ Th. (see Figure 2).

Figure 2. The bubble functions v`,1 |T and v`,2 |T (top) and v`,1 and v`,2 on ω` (bottom)

We denote by {βi}i∈{1,··· ,N}, the classical quadratic Lagrange basis of Th such that βi(ni) =
1 and it is zero at the rest of the nodes of the mesh Th and in all the midpoints of Th; and we
denote by {φj}j∈{1,··· ,M} be the quadratic bubble Lagrange basis of Th such that φj(mj) = 1,
mj ∈M, and it is zero at the rest of the midpoints of the mesh Th and in all vertices of Th.

The velocity space Vh consists of all functions v = (v1, v2) of the form

v(x, y) =
∑
ni∈N

v(ni)βi(x, y) +
∑

mj∈M
γjφj(x, y) +

∑
`∈EΓI

(α`,1v`,1(x, y) + α`,2v`,2(x, y))n`,

where γj = (γj,1, γj,2) and α`,1, α`,2 are constants.
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The corresponding pressure space Qh consists of continuous piecewise linear functions on
ΩD and ΩS , i.e, functions q of the form

q(x, y) =
∑
ni∈N

q(ni)λi(x, y),

where λi ∈ Q1
h, 1 ≤ i ≤ N , i.e., {λi}1≤i≤N denote the classical Lagrange basis λi |T∈ P1(T )

and λi(nj) = δij , 1 ≤ i, j ≤ N .
We emphasize that all functions in Vh and Qh are allowed to be discontinuous across ΓI .
In order to prove the discrete inf-sup (3.8), we seek for an operator Πh : H1

0 −→ Vh, such
that

(P1) b(v −Πhv, qh) = 0 ∀v ∈ H1
0 ∀ qh ∈ Qh

(P2) ||Πhv||V ≤ C||v||1 ∀v ∈ H1
0

where ‖v‖1 = (‖v1‖21 + ‖v2‖21)
1
2 .

To define the operator Πh we follow the ideas given in [4] and [32].
For any n ∈ N and v ∈ L2(ωn), we can define Pωn : L2(ωn) → P0(ωn) the orthogonal

projection of v on P0(ωn) with respect to the internal product in L2(ωn) that fulfills∫
ωn

v p0 =

∫
ωn

Pωn(v) p0 ∀ p0 ∈ P0(ωn),

and therefore

Pωn(v) =
1

| ωn |

∫
ωn

v.

For any v = (v1, v2) ∈ L2(Ω) and n ∈ N we can define Pωn(v) = (Pωn(v1),Pωn(v2)).
We modify the projector in order to consider the different conditions imposed over the

vertices when we define the operator

P̃ωni
(vj) =

{
Pωni

(vj) if ni ∈ ΩS , ni ∈ ΩD or ni ∈ Γ◦,

0 if ni ∈ ΓS or ni ∈ ΓD.

For any v = (v1, v2) ∈ L2(Ω) let us consider the following Clément’s interpolator in V1
h as:

I1v(x, y) =

N∑
i=1

λi(x, y)P̃ωni
(v).

We observe that I1v = 0 on ΓD and ΓS .
For the Clément’s interpolator I1v we have the following approximation properties (see,

[4, 15, 33]), for any v ∈ H1(Ω), T ∈ Th,

‖v − I1v‖m,T ≤ Ch1−m
T ‖v‖1,ωT m = 0, 1,

‖v − I1v(x)‖0,` ≤ C | ` |
1
2 ‖v‖1,ωT ,

‖v‖1,T ≤ C‖v‖1,ωT .

(3.9)

For any, n ∈ N , we define Πhv(n) = I1v(n) = P̃ωni
(v), i.e.,

Πhv(n) =

{ I1v(n) = Pωn(v) if n ∈ ΩS , n ∈ ΩD or n ∈ Γ◦,

0 other case,



A UNIFIED APPROXIMATION OF STOKES-DARCY COUPLED PROBLEM BY A TAYLOR-HOOD METHOD9

where Γ◦ denotes, as usual, the interior of Γ.
We consider Πhv = (Πh,1v,Πh,2v) ∈ Vh of the particular form

Πhv = I1v +
M∑
j=1

γjφj(x, y) +
∑
`∈EΓI

(α`,1w`,1(x, y) + α`,2w`,2(x, y))n`

= I1v + Rhv +
∑
`∈EΓI

(α`,1w`,1(x, y) + α`,2w`,2(x, y))n`

= I1v + Rhv + Shv.

(3.10)

First of all, we take γj = (γj,1, γj,2) = (0, 0) for all j such that mj ∈MΓk
, k = S,D, I.

We observe that, for each ` ∈ EΓI
, we have two degrees of freedom more on ` and therefore

we can choose v` = b`ψω`
such that∫
`
Πhv · n` σ =

∫
`
vD · n` σ, ∀σ ∈ P1(`), (3.11)

or equivalently (in view of γj = 0, when mj ∈ ΓI),∫
`
b`ψω`

σ =

∫
`
(vD − I1v) · n` σ, ∀σ ∈ P1(`).

We note that this relation impose exactly two conditions on ψω`
, and since we have two

degrees of freedom of ψω`
the existence (and so the uniqueness) of ψω`

is guarantee (see [4]
for details). Indeed, since for each T ⊂ ω`, the function ψω`

|T can be written as ψω`
|T=

α`,1β
`
T,1 + α`,2β

`
T,2, the parameters α`,1 and α`,2 can be easily obtained by solving the non

singular system (3.11). Moreover, if we denote by βω`,j the linear continuous functions defined

in ω` such that βω`,j |T= β`T,j , j = 1, 2, we can compute α`,1 and α`,2 and an easy calculation
shows that

| α`,j |≤
C

| ` |
max
j=1,2

|
∫
`
(vD − I1v(n)) · n` βω`,j | . (3.12)

Therefore, the operator Shv is uniquely determined.
Now, we define γ` for each ` ∈ EΩS

∪ EΩD
as follows

γ` = (γ`,1, γ`,2) =

(
| ω` |

3

)−1
∑
T∈ω`

∫
T

t′`,T · (v − I1v − Shv)

 t` (3.13)

where t` is a unit tangent vector to ` and the dual vectors t′`,T are chosen as follows.
For each T ∈ Th, the edge ` is numbered first by `1 and the others edges of T by `2 and

`3. Let t1,T , t2,T and t3,T be the tangential vectors to the edges `1, `2 and `3 respectively.
Then, if T ∈ ω`, with ` ∈ EΩS

∪ EΩD
, the dual vectors t′1,T , t′2,T and t′3,T are defined as:

t′k,T =
2∑
i=1

Ak,iti,T , k = 1, 2 t′3,T = 0

with
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A =
1

1− (t1,T · t2,T )2

(
1 −t1,T · t2,T

−t1,T · t2,T 1

)
=

1

sin2(θT )

(
1 − cos(θT )

− cos(θT ) 1

)
with t1,T · t2,T = cos(θT ), 0 < θT < π.
In view of Lemma 2.1 of [32], we have that for any z ∈ R2, T ∈ Th, we can write

z =
2∑
j=1

(tj,T · z)t′j,T =
3∑
j=1

(tj,T · z)t′j,T . (3.14)

Thus,

γ` =


(
| ω` |

3

)−1
∑
T∈ω`

∫
T

t′`,T · (v − I1v − Shv)

 t` if ` ∈ EΩS
or ` ∈ EΩD

,

0 if ` ∈ EΓk
for k = S,D, I.

(3.15)
Now, we are in conditions of verify the (P1) property of the operator Πhv.

Lemma 3.1. Let be v ∈ H1
0. The operator Πhv is such that

b(v −Πhv, qh) = 0 ∀ qh ∈ Qh.

Proof of Lemma 3.1. Since b(v−Πhv, qh) = −
∫

ΩD
div (v−Πhv) qh−

∫
ΩS

div (v−Πhv) qh,

adding on all triangles in both domains, integrating by parts on each triangle we get

b(v −Πhv, qh) = −
∑
T⊂ΩD

∫
T

div (v −Πhv) qh −
∑
T⊂ΩS

∫
T

div (v −Πhv) qh

=
∑
T⊂ΩD

(∫
T

(v −Πhv) · ∇qh −
∫
∂T
qh(v −Πhv) · nD

)
+

∑
T⊂ΩS

(∫
T

(v −Πhv) · ∇qh −
∫
∂T
qh(v −Πhv) · nS

)
.

For any ` ∈ EΩS
∪ EΩD

we choose a unit normal vector n` and denote the two triangles
sharing this edge Tin and Tout, with n` pointing outwards Tout. We define

[[v · n`]]` :=
(
v |Tout

)
· n` −

(
v |Tin

)
· n`,

which corresponds to the jump of the normal component of v across the edge `. Notice that
this value is independent of the chosen direction of the normal vector n`.
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Rewriting the integrals on the borders of the triangles, we obtain

b(v −Πhv, qh) =
∑
T⊂ΩD

∫
T

(v −Πhv) · ∇qh +
∑
T⊂ΩS

∫
T

(v −Πhv) · ∇qh

− 1

2

∑
T⊂ΩD

∑
`∈ET∩ΩD

∫
`
[[(v −Πhv) · n`]]` qh −

∑
`∈EΓD

∫
`
(v −Πhv) · nD qh

−
∑
`∈EΓ

[

∫
`
(vD −Πhv) · nD qD,h +

∫
`
(vS −Πhv) · nS qS,h]

− 1

2

∑
T⊂ΩS

∑
`∈ET∩ΩS

∫
`
[[(v −Πhv) · n`]]` qh −

∑
`∈EΓS

∫
`
(v −Πhv) · nS qh.

Now, since Πhv = 0 in ΓS and ΓD, from the boundary conditions and continuity of the
normal component of v and Πhv we have that

b(v −Πhv, qh) =
∑
T⊂ΩD

∫
T

(v −Πhv) · ∇qh +
∑
T⊂ΩS

∫
T

(v −Πhv) · ∇qh

−
∑
`∈EΓI

[

∫
`
(vD −Πhv) · nD qD,h +

∫
`
(vS −Πhv) · nS qS,h]

=

∫
ΩD

(v −Πhv) · ∇qh +

∫
ΩS

(v −Πhv) · ∇qh

−
∑
`∈EΓI

[

∫
`
(vD −Πhv) · nD qD,h +

∫
`
(vS −Πhv) · nS qS,h]

= I + II + III.

We analyze the value of each of the previous terms:

I - II) For any w ∈ V2
h we have that∫

T
w =

|T |
3

∑
m∈T∩M

w(m) (3.16)

since the integration rule of the midpoints is exact for quadratic functions. As
qh ∈ Q1

h, its gradient is constant and since Rhv(m`) = 0 if m` ∈ ΓI ,ΓD or ΓS , we
have ∫

Ωk

Rhv · ∇qh =
∑
`∈EΩk

2∑
j=1

| T`,j |
3
∇qh |T`,j ·Rhv(m`)

where T`,j , j = 1, 2, denotes the two triangles on ω`.
Then, from (3.15) we get
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∫
Ωk

Rhv · ∇qh

=
∑
`∈EΩk

2∑
j=1

| T`,j |
3
∇qh |T`,j ·

(
| ω` |

3

)−1 2∑
i=1

(∫
T`,i

t′`,T`,i · (v − I1v − Shv)

)
t`.

For any ` ∈ EΩS
∪EΩD

, T, T ′ ∈ ω` and q ∈ Q1
h we have that ∇qh |T ·t` = ∇qh |T ′ ·t`

which we can simply denote as (∇qh · t)`. Thus,∫
Ωk

Rhv · ∇qh

=
∑
`∈EΩk

2∑
j=1

| T`,j |
3
∇qh |T`,j ·

(
| ω` |

3

)−1 2∑
i=1

(∫
T`,i

t′`,T`,i · (v − I1v − Shv)

)
t`

=
∑
`∈EΩk

(∇qh · t)`

2∑
j=1

| T`,j |
3

(
| ω` |

3

)−1 2∑
i=1

(∫
T`,i

t′`,T`,i · (v − I1v − Shv)

)

=
∑
`∈EΩk

(∇qh · t)`

2∑
i=1

(∫
T`,i

t′`,T`,i · (v − I1v − Shv)

)
.

Using again that, for T`,1 and T`,2 in ω`, we have that (∇qh ·t)` = ∇qh |T`,1 ·t`,T`,1 =
∇qh |T`,2 ·t`,T`,2 and grouping the terms we get

∫
Ωk

Rhv · ∇qh =
∑

T∈Th∩Ωk

∫
T

(
3∑
s=1

∇qh |T ·ts,T t′s,T

)
· (v − I1v − Shv).

Now, from (3.14) we conclude that∫
Ωk

Πhv · ∇qh =

∫
Ωk

I1v · ∇qh +
∑

T∈Th∩Ωk

∫
T
∇qh |T ·(v − I1v − Shv)

+

∫
Ωk

Shv · ∇qh

=

∫
Ωk

∇qh · v.

III) If ` ∈ EΓI
, as v ∈ H1

0(Ω) its normal component is continuous and nD = −nS , we
have that

∫
`(v

S − Πhv) · nS qS,h =
∫
`(Πhv − vD) · nD qS,h. Thus, to prove that∫

` (vD −Πhv) · nD qD,h +
∫
`(v

S −Πhv) · nS qS,h = 0 it is enough to see that∫
`
Πhv · nD σ =

∫
`
vD · nD σ ∀σ ∈ P1(`),

which holds from (3.11).
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�

Now, we obtain the H1 bound of our operator.

Lemma 3.2. There exists a constant C > 0, independent of h, such that

‖Πhv‖V = (| Πhv |21,ΩS
+‖Πhv‖2H(div,ΩD)

)
1
2 ≤ C‖v‖1 ∀v ∈ H1

0.

Proof of Lemma 3.2. We observe that, it is enough to prove that there exists a constant C
such that

| Πhv |21,ΩS
=| Πh,1v |21,ΩS

+ | Πh,2v |21,ΩS
≤ C‖v‖21,

in view of ‖Πhv‖H(div,ΩD) ≤ ‖Πhv‖1,ΩD
, and the fact that bound for | Πh,jv |1,ΩD

is

completely analogous.
We write

| Πh,jv |21,ΩS
=

∑
T⊂ΩS :ET∩EΓ=∅

| Πh,jv |21,T +
∑

T⊂ΩS :ET∩EΓ 6=∅

| Πh,jv |21,T= I + II j = 0, 1.

First, we analyze the term I =
∑

T⊂ΩS :ET∩EΓ=∅
| Πh,jv |21,T . Here the operator is

Πh,jv |T= I1,jv |T +Rh,jv |T .
If we denote by φ1, φ2 and φ3 the quadratic Lagrange bases of T , such that φj(mi) = δij ,

mi ∈MT , i, j = 1, 2, 3 and it is zero in all vertices of T then,

I ≤ C

 ∑
T⊂ΩS :ET∩EΓ=∅

| I1,jv |21,T +
∑

T⊂ΩS :ET∩EΓ=∅

3∑
i=1

| γ`i,jφi |
2
1,T


with mi ∈ `i, i = 1, 2, 3.

It’s easy to prove that | I1,jv |1,T≤ C‖v‖1,ωT , j = 1, 2 (see [4] for details). On the other
hand, from (3.15) (we recall that in the case under consideration Shv = 0) it concludes

| γ`i,j |≤ C | ω`i |
−1

∑
T∈ω`i

‖v − I1v‖0,T | T |
1
2 .

Now, using |T |
1
2 ∼ hT , the Clément’s properties (3.9) and the regularity of the mesh we

obtain

| γ`i,j |≤ C | ω`i |
−1

∑
T∈ω`i

h2
T ‖v‖1,ωT ≤ C

∑
T∈ω`i

‖v‖1,ωT i = 1, 2, 3.

Therefore, since the regularity of the mesh we have that the number of triangles in a
neighborhood ωT is bounded by a uniform constant we get

I ≤ C

 ∑
T⊂ΩS :ET∩EΓ=∅

| I1,jv |21,T +
∑

T⊂ΩS :ET∩EΓ=∅

‖v‖1,ωT

 ≤ C‖v‖1,ΩS
.

Now, we analyze the term II =
∑

T∈ΩS :ET∩EΓ 6=∅
| Πh,jv |21,T , i.e., the case in which T has

only one side on the interface that we denoted by `.
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II ≤C

( ∑
T⊂ΩS :ET∩EΓ 6=∅

| I1,jv |21,T +
∑

T⊂ΩS :ET∩EΓ 6=∅

| Rh,jv |21,T

+
∑

T⊂ΩS :ET∩EΓ 6=∅

| Sh,jv |21,T

)
.

(3.17)

Hence, ∫
T

(v`n`,j)
2 =

∫
T

(δe1,T δe2,T ψω`
n`,j)

2

=

∫
T

(
(α`,1δe1,T δe2,T β

`
T,1 + α`,2δe1,T δe2,T β

`
T,2)n`,j

)2

≤ C max
i=1,2

| α`,i |2‖δe1,T δe2,T ‖20,T

≤ C
1

| ` |
‖v − I1v(x)‖20,`‖δe1,T δe2,T ‖20,T

≤ C
|T |
| ` |
‖v − I1v(x)‖20,` ≤ Ch2

T ‖v‖21,ωT

where we use that
∫
T δ

n1
e1,T

δn2
e2,T

dx = n1!n2!2!
(n1+n2+2)! |T | and (3.9).

Now, by using a classical inverse inequality, we get

| v`n`,j |1,T≤ C
1

hT
‖v`n`,j‖0,T ≤ C‖v‖1,ωT

and therefore
| Sh,jv |1,T≤ C‖v‖1,ωT . (3.18)

On the other hand, in view of γ`i = 0 for mi ∈ ΓI , if we denote by φ1, φ2 and φ3 the
Lagrange basis associated to the midpoints of T such that m1 is the midpoint in `1 ⊂ ΓI ,
then from (3.10), (3.15) and (3.18) we have

| Rh,jv |1,T ≤| γ`2,jφ2 |1,T + | γ`3,jφ3 |1,T
≤ C

∑
i=2,3

| ω`i |
−1

∑
T⊂ω`i

(‖v − I1v‖0,T + ‖Shv‖0,T ) |T |
1
2

≤ C
∑
i=2,3

∑
T⊂ω`i

‖v‖1,ωT .

Therefore, by using these estimations in the expression (3.17) of the operator we get

II ≤ C
∑

T⊂ΩS :ET∩EΓ 6=∅

‖v‖21,ωT
≤ C‖v‖21.

Finally,

| Πhv |1,ΩS
≤ C‖v‖1
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and the proof concludes. �

Remark 3.1. We observe that, if we define the operator Ih : H1
0(Ω)→ Vh as

Ihv =
M∑
j=1

δjφj(x, y) +
∑
`∈EΓI

(α`,1v`,1(x, y) + α`,2v`,2(x, y))n`,

with δj = 0 if mj ∈ Γk, k = S,D, I, and α`,1 and α`,2 such that∫
`
Ihv · nD σ =

∫
`
vD · nD σ ∀σ ∈ P1(`),

and

δj =

(
| ω` |

3

)−1
∑
T∈ω`

∫
T

t′`,T · (v − S̃hv)

 t` if mj ∈ ΩS or mj ∈ ΩD

where S̃hv =
∑
`∈EΓI

(α`,1v`,1(x, y) + α`,2v`,2(x, y))n`.

This operator satisfies the property (P1) and there exists a constant C such that ‖Ihv‖0 ≤
C‖v‖0. However, this operator does not satisfy property (P2).

Theorem 3.1. There exists a unique solution (uh, ph) ∈ Vh ×Qh to the problem (3.7).

Proof of Theorem 3.1. From Lemmas 3.1 and 3.2, we have that our interpolator Πhv satis-
fies the conditions (P1) and (P2). Therefore this theorem is a direct consequence of the fact
that the bilinear form ã is coercive and continuous, b is continuous and satisfies the discrete
inf-sup condition, together with the abstract theory of mixed problems [13]. �

Hence, from theory of mixed problems, we immediately have the following.

Corollary 3.1. Let (u, p) ∈ V × Q be the solution of the weak formulation (2.6) of the
coupled problem. Let (uh, ph) ∈ Vh × Qh be the solution of the discrete problem (3.7). Let
the finite element spaces be chosen as in section 3. Then, there exists a constant C such that:

‖u− uh‖V + ‖p− ph‖Q ≤ C{ inf
vh∈Vh

‖u− vh‖V + inf
qh∈Qh

‖p− qh‖Q}.

4. Numerical experiments

We end this paper with three numerical experiments which show the good performance of
our method. We defined the individual errors by,

e0(pS) = ‖pS − pS,h‖0,ΩS
e0(pD) = ‖pD − pD,h‖0,ΩD

e0(div vS) = ‖div(vS − vS,h)‖0,ΩS
e0(div vD) = ‖div(vD − vD,h)‖0,ΩD

e1(vS) =| vS − vS,h |1,ΩS

and the rates of convergence given by,

ri(�) =
log( ei(�)

e′i(�)
)

log( hh′ )
� ∈ {vS , div vS ,div vD, pS , pD} and i = 0, 1

where h and h′ denote two consecutive mesh-sizes with errors ei and e′i.
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Using the previous definition of ri, we present in Tables 1 and 2, the convergence history
for a set of shape regular triangulations of the domain for the first example, in Tables 3 and
4, the corresponding for the second one and in Tables 5 and 6 the corresponding for the
last numerical experiment. For simplicity, all the parameters such as K, α and µ are set
to 1. We mention that, since is difficult to construct examples satisfying the entire coupled
Stokes-Darcy problem (2.1)-(2.3) (in particular, the homogeneous interface conditions (2.3)),
the numerical experiments could include nonhomogeneous terms for the interface conditions
and therefore conduce to modify (only) the right-hand side in (2.6).

We also comment that, in practice, mass conservation and Neumann condition have to
be impose in a weak way. Indeed, when we assembling the system matrix we must add
equations that ensure the normal continuity of the velocity and the boundary condition, i.
e.,
∫

Γ(vDh · nD + vSh · nS) γ = 0, ∀ γ ∈ {C0(Γ) : γ |`∈ P2(`) ⊕ (B3,`) |`} and
∫

ΓD
vDh · nD λ =

0, ∀λ ∈ {C0(Γ) : λ |`∈ P2(`)}.
First example : Let ΩD = (−1

2 ,
1
2) × (−1

2 ,
1
2) and ΩS = (−1, 1) × (−1, 1) \ ΩD be a

porous medium completely surrounded by a fluid (see Figure 3). The particularity of this
example is that there is no ΓD because the boundary of ΩD represent the interface, Γ. We
set the appropriate forcing term fS and the source gD, such that the following solution to the
Stokes-Darcy coupled problem, with fD = 0, is exact

uS(x, y) =

(
−4(x2 − 1)2(y2 − 1)y
4(x2 − 1)(y2 − 1)2x

)
pS(x, y) = −sin(x)ey pD(x, y) = −sin(x)ey.

In this first example it is satisfied that uS = 0 in ΓS and the two boundary conditions on
the interface are nonhomogeneous. These example were also studied in [23] where the authors
apply Raviart-Thomas elements of lowest order and piecewise constants for the velocities and
pressures in both domains, and in [4] where the authors apply the classical Mini-element to
the coupled Stokes-Darcy problem.

Figures 4-6 and 7 show, respectively, the approximate and exact velocities and the ap-
proximate and exact values of the pressures for the Stokes region, while Figures 8-10 and 11
display the corresponding for the Darcy region. Tables 1 and 2 show that optimal rate of
convergence can be also reached with our method for a set of shape-regular triangulations of
the domain ΩS ∪ ΩD.

We look at the efficiency of the method in approximating the velocities and the pressures.

h e0(pS) r0(pS) e0(pD) r0(pD)
0.0884 0.00061 3.16209 0.00023 2.00030
0.0442 0.00010 2.58392 0.00005 1.99902
0.0221 0.00002 2.14321 0.00001 1.99948

Table 1. Mesh-sizes, errors, and rates of convergence (Example 1)

Second example : Let ΩD =
{

(x, y) ∈ R2 : if x ∈ (0, 1
2), 0 < y < 1

2x + 1
2 and if x ∈

[1
2 , 1), 0 < y < −1

2x + 1
}

and ΩS = (0, 1) × (0, 1) \ ΩD (see Figure 12). Note that the
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h e0(div vS) r0(div vS) e0(div vD) r0(div vD) e1(vS) r1(vS)
0.0884 0.01102 1.99218 0.00014 2.17030 0.01703 1.98998
0.0442 0.00276 1.99716 0.00003 2.03132 0.00426 1.99699
0.0221 0.00069 1.99900 0.000008 1.94426 0.00106 1.99898

Table 2. Mesh-sizes, errors, and rates of convergence (Example 1)

Figure 3. Full polygonal domain (Example 1)

Figure 4. Vector charts uS and uS,h (Example 1)

interface turns out to be a union of two segments, i.e., Γ = {(x, y) ∈ R2 : for x ∈ (0, 1
2), y =

1
2x+ 1

2 and for x ∈ [1
2 , 1), y = −1

2x+ 1}.
We select the right-hand terms fS , gS , fD, gD and the boundary conditions according to

the analytical solution given by

uS(x, y) =

(
(1− x)x(1− y)(y + 1

2x− 1)
1
2(1− x)x(1− y)(y + 1

2x− 1)

)
uD(x, y) =

(
0

y(y − 1
2x−

1
2)(y + 1

2 − 1)

)
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Figure 5. Contours of the first components of uS and uS,h (Example 1)

Figure 6. Contours of the second components of uS and uS,h (Example 1)

pS(x, y) = x3ey pD(x, y) = x3sin(y).

In this second example it is satisfied that uS = 0 in ΓS , uD · nD = 0 in ΓD and the two
boundary conditions on the interface are nonhomogeneous.

Figures 13-15 and 16 show, respectively, the approximate and exact velocities and the
approximate and exact values of the pressures for the Stokes region, while Figures 17-19 and
20 display the corresponding for the Darcy region. The obtained errors and estimated rate
of convergence are given in Table 3 and in Table 4. The numerical results also suggest that
this formulation is stable and that the optimal order of convergence is reached.

Third example : Let ΩS = (0, 1
2) × (0, 1

2), ΩD = (0, 1
2) × (−1

2 , 0) and Γ = (0, 1
2) × {0}

(see Figure 21). We select the right-hand terms fS , gS , fD, gD and the boundary conditions
according to the analytical solution given by

uS(x, y) = uD(x, y) =

(
−xcos(πx)sin(πy)

− 2
π cos(πx)cos(πy) + xsin(πx)cos(πy)

)



A UNIFIED APPROXIMATION OF STOKES-DARCY COUPLED PROBLEM BY A TAYLOR-HOOD METHOD19

Figure 7. pS and pS,h, pressure figures (above) and pressure contours (bel-
low) (Example 1)

Figure 8. Vector charts uD and uD,h (Example 1)

pS(x, y) = pD(x, y) = sin(πy)
[
− cos(πx) + 2πxsin(πx)

]
+ 4xe−4xcos(πy)− 2

π

(
1− 5e−2

)
.
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Figure 9. Contours of the first components of uD and uD,h (Example 1)

Figure 10. Contours of the second components of uD and uD,h (Example 1)

h e0(pS) r0(pS) e0(pD) r0(pD)
0.1250 0.00094 1.96518 0.00081 1.94438
0.0625 0.00023 1.99224 0.00020 1.98862
0.0313 0.00005 1.99989 0.00005 1.99813

Table 3. Mesh-sizes, errors, and rates of convergence (Example 2)

In this third example it is satisfied that uD ·nD = 0 in ΓD, the Dirichlet condition for the
Stokes velocity on ΓS and the two boundary conditions on the interface are nonhomogeneous.

These example were also studied in [20] where the author apply Taylor-Hood P2 −P1 ele-
ments for approximating (uS , pS), Raviart-Thomas RT1−discP1 elements for approximating
(uD, pD) and P1 elements for approximating the interface pressure λ. The author also used
other combinations of elements for the same example:

(1) P2 − P1, RT2 − discP2 and P1,
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Figure 11. pD and pD,h, pressure figures (above) and pressure contours (bel-
low) (Example 1)

h e0(div vS) r0(div vS) e0(div vD) r0(div vD) e1(vS) r1(vS)
0.1250 0.00054 1.97506 0.00252 2.01308 0.00063 1.99574
0.0625 0.00013 2.00516 0.00062 2.01810 0.00015 2.00575
0.0313 0.00003 2.00748 0.00015 2.01508 0.00003 2.00547

Table 4. Mesh-sizes, errors, and rates of convergence (Example 2)

(2) P2 − P1, RT2 − discP2 and P2,
(3) (P1 ⊕Bubble)− P1, RT1 − discP1 and P1.

Figures 22-24 and 25 show, respectively, the approximate and exact velocities and the
approximate and exact values of the pressures for the Stokes region, while Figures 26-28 and
29 display the corresponding for the Darcy region. The obtained errors and estimated rate
of convergence are given in Table 5 and in Table 6.

We emphasize that the numerical results confirm the good performance of the mixed finite
element scheme with Taylor-Hood elements for the Stokes-Darcy coupled problem.
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Figure 12. Full polygonal domain (Example 2)

Figure 13. Vector charts uS and uS,h (Example 2)

h e0(pS) r0(pS) e0(pD) r0(pD)
0.03125 0.00052 2.01299 0.00055 2.01057
0.01562 0.00013 2.00506 0.00013 2.00516
0.00781 0.00003 2.00213 0.00003 2.00247

Table 5. Mesh-sizes, errors, and rates of convergence (Example 3)
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