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Abstract. We analyze the approximation obtained for the eigenvalues of the Laplace operator by
the nonconforming piecewise linear finite element of Crouzeix-Raviart . For singular eigenfunctions,
as those arising in non convex polygons, we prove that the eigenvalues obtained with this method
give lower bounds of the exact eigenvalues when the mesh size is small enough.
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1. Introduction. For second order elliptic problems it is known that the eigen-
values computed using the standard conforming finite element method are always
above the exact ones. Indeed this can be proved using the minimum-maximum char-
acterization of the eigenvalues (see for example [4]). Therefore, it is an interesting
problem to find methods which give lower bounds of the eigenvalues. However, as far
as we know, only few results in this direction have been obtained and mainly for finite
difference methods. Forsythe proved that the eigenvalue approximation obtained by
standard five points finite differences is below the eigenvalue of the continuous prob-
lem, when the mesh-size is small enough, for some particular domains and smooth
enough eigenfunctions [8], [9] . Since that finite difference method coincides with the
standard piecewise linear finite elements with mass lumping on uniform meshes, one
could expect that similar results hold for more general meshes. Although this has
not been proved, several numerical experiments suggest that it is true (see [2]). On
the other hand, Weinberger proved that lower bounds can be obtained applying finite
differences on a domain slightly larger than the original one [13], [14], however, the
approximations obtained in this way are of lower order than those given by Forsythe.

In view of these results, a natural question is whether it is possible to find a
method which gives lower bounds, at least asymptotically, for eigenvalues correspond-
ing to nonsmooth eigenfunctions. It seems reasonable to look among nonconforming
methods. Indeed, if the finite element space is not contained in the Hilbert space
where the continuous variational problem is formulated, one can not know in advance
whether the computed eigenvalues are below or above the exact ones.

In this note we analyze the approximations obtained using the nonconforming
piecewise linear finite element of Crouzeix-Raviart for the Laplace equation. We
prove that, when the exact eigenfunction is singular, the eigenvalues computed with
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this method using quasi-uniform meshes are smaller than the exact ones for small
enough mesh-size.

We end the paper with some numerical examples which suggest that the sequence
of eigenvalue approximations obtained by uniform refinement of an initial mesh is
monotone increasing. In particular the numerical experiments show that, although
our results are of an asymptotic character, the Crouzeix-Raviart method gives lower
bounds for eigenvalues corresponding to singular eigenfunctions even when coarse
meshes, which would be a reasonable starting point for an adaptive procedure.

2. The Eigenvalue Problem. Let Ω ⊂ IR
2 be a polygonal domain, we consider

the following eigenvalue problem:

−∆u = λu in Ω (2.1)

u = 0 on ∂Ω

We denote by ( , ) the usual inner product in L2(Ω). We will also use the standard
notation for Lp based Sobolev spaces, namely, Wm,p(Ω) is the space of functions in
Lp(Ω) such that all its derivatives up to the order m are in Lp(Ω) and for p = 2 we
write Hm(Ω) = Wm,2(Ω).

The variational problem associated with (2.1) is given by: Find λ and u ∈ H1
0 (Ω),

u 6= 0 satisfying

a(u, v) = λ(u, v) ∀v ∈ H1
0 (Ω) (2.2)

‖u‖L2(Ω) = 1

where a(u, v) =
∫

Ω
∇u∇v, which is continuous on H1(Ω) and coercive on H1

0 (Ω).

It is well known that the solution of this problem is given by a sequence of pairs
(λj , uj), with positive eigenvalues λj diverging to +∞. We assume the eigenvalues
to be increasingly ordered: 0 < λ1 ≤ · · · ≤ λj ≤ · · · . The associated eigenfunctions

uj belongs to the Besov space B
1+r,∞
2 (Ω), and in particular to the Sobolev space

H1+r−ε(Ω) for ε > 0 (see for example [4] for the definition of these spaces), where
r = 1 if Ω is convex and r = π

ω
(with ω being the largest inner angle of Ω) otherwise

[3].

The approximations of the eigenvalue λ and its associated eigenfunction u are
obatined as follows:

Let {Th} be a triangulation of Ω such that any two triangles in Th share at most a
vertex or an edge and let h the mesh-size; namely h = maxT∈Th

hT , with hT being the
diameter of the triangle T . We suppose that the family of triangulations Th satisfies
the usual shape regularity condition, i.e, there exists a constant σ > 0 such that
hT

ρT
≤ σ, where ρT is the diameter of the largest ball contained in T .

Let Vh be the nonconforming piecewise linear finite element space of Crouzeix-
Raviart given by:

Vh = {v : v|T ∈ P1 is continuous in the midpoints of the edges of T ∀T ∈ Th

and v = 0 at the midpoints on ∂Ω}

where P1 denotes the space of polynomials of degree less than or equal to 1.
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Since Vh * H1
0 (Ω) we define the following bilinear form on Vh + H1

0 (Ω)

ah(u, v) =
∑

T∈Th

∫

T

∇uh∇vh

So, the nonconforming approximation problem is given by: Find λh and uh ∈ Vh,
uh 6= 0 such that

ah(uh, vh) = λh(uh, vh) ∀vh ∈ Vh (2.3)

‖uh‖L2(Ω) = 1

It is well known that the form ah(·, ·) is positive-definite on Vh (see for exam-
ple [5]). Therefore, the approximation problem reduces to a generalized eigenvalue
problem involving positive definite symmetric matrices. It attains a finite number
of eigenpairs (λj,h, uj,h)1≤j≤Nh

, Nh = dim Vh, with positive eigenvalues which we
assume increasingly ordered: λ1,h ≤ · · · ≤ λNh,h.

In order to obtain an expression for the difference between λj and its nonconform-
ing approximation λh,j , we will use the “edge average” interpolant Ih : H1

0 (Ω) → Vh

define as follows:

For any u ∈ H1
0 (Ω) , Ih(u) ∈ Vh is given by

∫

ℓ

Ih(u) =

∫

ℓ

u ∀ℓ (2.4)

where ℓ denote any edge of any triangle T ∈ Th.

In the next lemma we give some error estimates for this interpolation which will
be used in our subsequent analysis.

Lemma 2.1. There exists a constant C independent of h and u such that,

‖u − Ih(u)‖L2(Ω) ≤ Chm‖u‖Hm(Ω) for m = 1, 2, (2.5)

‖u − Ih(u)‖L2(Ω) ≤ Ch1+r‖u‖
B

1+r,∞
2

(Ω) for 0 < r < 1, (2.6)

‖u − Ih(u)‖L1(Ω) ≤ Ch2‖u‖W 2,1(Ω), (2.7)

and,

‖Ih(u)‖L∞(Ω) ≤ C‖u‖L∞(Ω) (2.8)

Proof. From the definition of Ih we have that for any constant vector k ∈ IR
2
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∫

T

∇(u − Ih(u)) · k =

∫

∂T

(u − Ih(u))k · n = 0. (2.9)

In particular, for j = 1, 2, ∂Ih(u)
∂xj

is the average of ∂u
∂xj

on each T ∈ Th, and therefore,

it follows from the well known Poincaré inequality that

‖∇u −∇Ih(u)‖L2(T ) ≤ Chm−1‖u‖Hm(T ), m = 1, 2. (2.10)

Since u−Ih(u) has vanishing mean value on the sides ℓ of T , it follows from a Poincaré
type inequality for this class of functions (see for example [1]) that

‖u − Ih(u)‖L2(T ) ≤ Ch‖∇u −∇Ih(u)‖L2(T ).

Combining this estimate with (2.10), and summing up the squares of the norms over
all the triangles we obtain (2.5). Now, (2.6) follows by interpolation of Banach spaces
in view of the definition of the Besov spaces (see [4]).

The estimate (2.7) can be proved exactly with the same arguments used above
applied now to L1.

Finally, in order to prove (2.8), we recall that the basis function of the Crouzeix-
Raviart elements associated with the midpoint of a side ℓ can be written as λ1+λ2−λ3,
where λ1 and λ2 are the barycentric coordinates corresponding to the vertices of ℓ and
λ3 is that corresponding to the opposite vertex. Therefore, the absolute value of any
basis function is bounded by 2. Then, (2.8) follows immediately from the fact that
the absolute value of the degrees of freedom defining Ih(u) (see (2.4)) are bounded by
‖u‖L∞(Ω).

In what follows we will use the notation ‖.‖h for the norm associated with ah,
namely,

‖v‖h =
√

ah(v, v).

The next lemma gives a relation between the errors in the eigenvalue and eigen-
function approximations. We will use the following relation which follows from prop-
erty (2.9):

ah(Ih(u), v) = ah(u, v) ∀v ∈ Vh. (2.11)

Lemma 2.2. Let (λj , uj) and (λh,j , uh,j) be the solutions of problems (2.2) and
(2.3) respectively , we have

λj − λh,j = ‖uj − uh,j‖
2
h − λh,j‖Ih(uj) − uh,j‖

2
L2(Ω)

+ λh,j

(

‖Ih(uj)‖
2
L2(Ω) − ‖uj‖

2
L2(Ω)

)

(2.12)
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Proof. Using (2.11) and that ‖uh,j‖L2(Ω) = ‖uj‖L2(Ω) = 1 we have

λj + λh,j = ah(uj − uh,j , uj − uh,j) + 2ah(uj , uh,j)

= ah(uj − uh,j , uj − uh,j) + 2ah(Ih(uj), uh,j)

= ‖uj − uh,j‖
2
h + 2λh,j(Ih(uj), uh,j)

= ‖uj − uh,j‖
2
h − λh,j‖Ih(uj) − uh,j‖

2
L2(Ω) + λh,j‖uh,j‖

2
L2(Ω) + λh,j‖Ih(uj)‖

2
L2(Ω)

therefore,

λj+λh,j = ‖uj−uh,j‖
2
h−λh,j‖Ih(uj)−uh,j‖

2
L2(Ω)+2λh,j+λh,j(‖Ih(uj)‖

2
L2(Ω)−‖uj‖

2
L2(Ω))

and (2.12) follows.

As mentioned above, when Ω is not convex, the eigenfunctions of problem (2.2)
are usually singular.

We will prove that in the singular case the approximation given by the noncon-
forming method (2.3) is below the corresponding exact eigenvalue given by (2.2) i.e,
λh,j ≤ λj , 1 ≤ j ≤ Nh, for h small enough.

We will make use of error estimates for the approximation of spectral problems
by the nonconforming elements of Crouzeix-Raviart. These estimates follow from the
general theory and have been obtained in [7]. In particular, it is known that there
exists a constant C, which depends on uj and λj but is independent of h, such that,

‖uh,j − uj‖h ≤ Chr

(2.13)

‖uh,j − uj‖L2(Ω) ≤ Ch2r

with r = π
ω

where ω is the maximum angle of Ω.

In [3] the possible singularities in the solution of the Dirichlet problem on polyg-
onal domains are characterized exactly in terms of the angles of the domain. Assume
that ω > π and, for simplicity, that the other angles are strictly smaller than ω (see
[3] for the more general case). It follows from the results of [3] that the solution of
problem (2.2) can be written, in polar coordinates (ρ, θ) centered at the point corre-
sponding to the angle ω, as uj = kρ

π
ω φ(θ) + v where k is a constant, φ is a smooth

function, and v is a function smoother than the first term. Moreover, it is also proved
in [3] that ρ

π
ω φ(θ) ∈ B

1+r,∞
2 (Ω) \ B

1+s,∞
2 (Ω) for any s > r.

From this regularity result it follows that uj can be approximated in the ‖ . ‖h

norm by functions in Vh with order hr and in particular the error estimates (2.13)
can be obtained.

On the other hand, in [15] and [3] inverse type results were proved which say that,
whenever a function is approximated in the H1 norm with order hs by finite element
functions on a suitable family of meshes, then the function is in B

1+s,∞
2 (Ω). The

arguments of [15] can be extended to the nonconforming case considered here to show
that if a function u is approximated with order hs by functions in Vh for an appropriate
family of meshes then the function is in B

1+s,∞
2 (Ω). Therefore, whenever the constant
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k is different from 0 (i.e., the solution uj is singular), which is usually (although not
always) the case in practice, it is natural to assume that ‖uh,j − uj‖h ≥ chr and this
is the assumption that we make in the following theorem which gives the main result
of this paper.

Theorem 2.3. Let λj and λh,j the eigenvalues of problems (2.2) and (2.3)

respectively. If uj ∈ B
1+r,∞
2 (Ω) and there exists a constant c such that ‖uh,j −uj‖h ≥

chr with r < 1 then, for h small enough, we have that

λh,j ≤ λj . (2.14)

Proof. From Lemma (2.2) we know that

λj − λh,j = ‖uh,j − uj‖
2
h − λh,j‖Ih(uj) − uh,j‖

2
L2(Ω)

+ λh,j

(

‖Ih(uj)‖
2
L2(Ω) − ‖uj‖

2
L2(Ω)

)

(2.15)

Since uj ∈ B
1+r,∞
2 (Ω) we know from (2.6) that

‖Ih(uj) − uj‖L2(Ω) ≤ Ch1+r

and therefore, by (2.13), we conclude that

‖Ih(uj) − uh,j‖L2(Ω) ≤ Ch2r.

Consider now the third term of (2.15). Using (2.8) we have

∣

∣

∣
‖Ih(uj)‖

2
L2(Ω) − ‖uj‖

2
L2(Ω)

∣

∣

∣
≤

∫

Ω

|Ih(uj)−uj ||Ih(uj)+uj | ≤ C‖uj‖L∞(Ω)‖Ih(uj)−uj‖L1(Ω)

Now, from known a priori estimates for elliptic problems on polygonal domains
(see for example [11]) it follows that ‖uj‖2,p ≤ Cλj‖uj‖0,p for some p > 1. In
particular we have that, for any polygonal domain, uj ∈ W 2,1(Ω). Then, using now
(2.7) , we obtain that

∣

∣

∣
‖Ih(uj)‖

2
L2(Ω) − ‖uj‖

2
L2(Ω)

∣

∣

∣
≤ Ch2

with C depending on uj but independent of h.

From our hypothesis, the first term on the right hand side of (2.15) is greater
than a constant times h2r. So, the second and third terms are of higher order (h4r

and h2 respectively). Therefore if h is small enough, the sign of λj − λh,j is given by
the first term on (2.15) so, we conclude the proof.
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3. Numerical Examples. In this section we present the numerical approxi-
mations of the first eigenvalue of problem (2.2) for different domains Ω. In all the
examples the corresponding eigenfunction is known to be singular and the hypotheses
of Theorem 2.3 are satisfied.

In all the cases we refine the initial mesh in a uniform way (each triangle is divided
in four similar triangles). We recall that our goal is to obtain lower bounds of the
eigenvalues and this is why we use uniform refinement. In practical applications one
should combined this method with an adaptive procedure. A lower bound (combined
with upper bounds obtained with conforming methods) could be used to have an esti-
mate of the error in order to decide at which refinement level the adaptive procedure
should be started.

The results suggest that the sequence of eigenvalue approximations obtained in
this way is monotone increasing.

First we consider the case of an L-domain. For this domain, it is known that the
first eigenfunction is singular. In Figure 3.1 we show the initial mesh.
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Fig. 3.1. Initial mesh for the L-domain

In the next table we present the numerical approximation of the first eigenvalue.

number of nodes λh,1

44 9.02916234407
160 9.20540571806
608 9.46626945159
2368 9.57515200626

Table 1

In our next two examples we take Ω as non-convex polygons which are approxi-
mations of different levels to the fractal Koch domain. Also in these cases it is known
that the first eigenfunctions are singular [10] , [12]. In Figure 3.2 and Figure 3.3 we
show the first meshes for the two examples.
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Fig. 3.2. Initial mesh for level 1 approximation of the Koch domain
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Fig. 3.3. Initial mesh for level 2 approximation of the Koch domain

In tables 2 and 3 we present the numerical approximation of the first eigenvalues
for the domains of Figures 3.2 and 3.3 respectively.

number of nodes λh,1

84 37.00124133068
312 38.84043356529
1200 39.74253482521

Table 2
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