Mass-Lumping or not Mass-Lumping for eigenvalue

problems
Maria G. Armentano * Ricardo G. Duran *
Abstract

In this paper we analyze the effect of mass-lumping in the linear triangular finite element
approximation of second order elliptic eigenvalue problems. We prove that the eigenvalue
obtained by using mass-lumping is always below the one obtained with exact integration.

For singular eigenfunctions, as those arising in non convex polygons, we prove that the
eigenvalue obtained with mass-lumping is above the exact eigenvalue when the mesh size is
small enough. So, we conclude that the use of mass-lumping is convenient in the singular
case.

When the eigenfunction is smooth several numerical experiments suggest that the eigen-
value computed with mass-lumping is below the exact one if the mesh is not too coarse.
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1 Introduction

The object of this paper is to analyze the effect of mass-lumping in the piecewise linear finite
element approximation of second order elliptic eigenvalue problems in polygonal domains.

Instead of integrating exactly the right-hand side of the weak form of the equation one can
use some numerical integration. In [2] it has been proved that, for smooth eigenfunctions, the
optimal order of convergence for eigenvalues and eigenfunctions is preserved if the quadrature
rule is exact for polynomials of degree one. In particular, one can use the rule based on linear
interpolation at the vertices of each triangle which leads to a diagonal matrix on the right-hand
side of the generalized discrete eigenvalue problem. This procedure is known as mass-lumping.
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It is known that, for uniform partitions of a domain which is a union of rectangles, the finite
element approximation using mass-lumping leads to the standard five point finite difference
scheme. For eigenvalue problems these kinds of methods have been widely analyzed (see for
example [3, 4, 8, 9]).

When the polygonal domain is not convex, the eigenfunctions are in general non-smooth, i.e.,
they do not belong to H? but only to H'*", with » < 1 depending on the maximum reentrant
corner. It is known that, in this case, the order of convergence of finite element approximations
is lower than that of the smooth case. For the five point finite difference scheme Forsythe
conjectured in [3], based on numerical evidence, that for the singular case the approximate
eigenvalue is larger than that of the continuous problem when the mesh-size is small enough.

We will prove that in the singular case, the eigenvalue computed using mass-lumping is
larger than the eigenvalue of the continuous problem for small enough mesh-size. In particular
the conjecture made by Forsythe is true.

On the other hand, we will prove that the eigenvalue computed with mass-lumping is al-
ways below the one obtained with exact integration independently of the smoothness of the
eigenfunction.

So, we conclude that in the singular case it is convenient to use mass-lumping, at least for
small enough mesh-size. We present several numerical experiments which show that this is true
even for coarse meshes which would be a reasonable starting point for an adaptive procedure.

Although when exact integration is used the approximate eigenvalue is always above the
exact one, this is not true when mass-lumping is used. For example, in the one dimensional
case, when a uniform partition is used, the discrete eigenvalues can be computed explicitly and
they are below the eigenvalues of the continuous problem (see [1]). In fact, an easy calculation
shows that this is also true in two dimensions when a uniform partition is used in a square
domain.

For some particular convex polygonal domain and smooth enough eigenfunction, Forsythe
proved in [3] that the discrete eigenvalue approximation obtained by finite differences is below
the eigenvalue of the continuous problem when the mesh-size is small enough. We will present
several numerical examples which suggest that this is also true for eigenvalues obtained with
mass-lumping in general meshes.

In view of the fact that the eigenvalue obtained with exact integration is an upper bound of
the exact one it would be very interesting to prove that the mass-lumping procedure gives lower
bounds.

2 The Eigenvalue Problem

Let Q C R? be a bounded polygonal domain. Consider the eigenvalue problem:
Lu(z) = Mu(x) z € Q, (2.1)
u(r) = 0 x € 08,

where

Lu(z) = — Z 37(61”(20)%“) + b(z)u,



with a;j(z) = aji(z) and b(z) > 0 are given bounded, real functions on Q. The operator L is
assumed to be uniformly strongly elliptic in €2, i.e., there is a positive constant v such that
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Let H= H'(Q) and V = H}(Q) C H. We denote by (, ) and || - [|op the usual inner product
and norm in L2(Q) respectively and by || - ||; the norm in H'(Q). The weak formulation of
problem (2.1) is given by:

Find A € R and u € H (), u # 0 satisfying

a(u,v) = Mu,v) Yo € H(Q) (2.3)
Julo = 1

where a(-,-) is a symmetric bilinear form that is continuous on H and coercive on V, i.e.,
There exist constants M and « > 0 such that

la(u,v)| < M|[ull|lv]l  VYu,v € H
a(v,v) > oz||v||% YoeV

It is well known that the solution of problem (2.3) is given by a sequence of pairs (\;,u;),
with positive eigenvalues A; diverging to +o0o. We assume the eigenvalues to be increasingly
ordered: 0 < Ay < --- < \; <---. The associated eigenfunctions satisfy u; € HH’"(Q), where
r = 1if Q is convex and r < T (with w being the largest inner angle of Q) otherwise.

In order to approximate the eigenvalue A and its associated eigenfunction u we consider {73}
a triangulation of © such that any two triangles in 7} share at most a vertex or an edge. Let h
stand for the mesh-size; namely h = maxpc7, hr, with At being the diameter of the triangle 7T'.
We suppose that the family of triangulations 7, satisfies the usual shape regularity condition,
i.e., there exists a constant ¢ > 0 such that Z—; < o0, where pr is the diameter of the largest ball
contained in 7.

We consider the usual finite element space:
V= {Uh € H&(Q) : 'Uh|T ePy VT e 771}

(P; denotes the space of linear polynomials).
Then, the standard finite element approximation problem is the following:
Find Ay, € R and up, € V, up # 0 such that

a(up,vp) = Mp(up,vp) Yop €V (2.4)

[[unllo 1

Another possible discretization is obtained by using quadrature rule on the right-hand side
of (2.4). A wusual approach, known as “mass-lumping”, leads to the following approximation
problem:



Find )\ml € R and uj" Le v, up’ L' £ 0 such that

a(u o) = AP / L(wlon) Vop € Vi, (2.5)

ml
||Uh llo

where I}, denotes the piecewise linear interpolation on the vertices of the triangulation 7p.

Remark 2.1 For simplicity, we assume that the left-hand sides of (2.4) and (2.5) can be exactly
integrated. However, it is not difficult to see that all our results hold in more general cases if
numerical quadratures of appropriate degrees of precision according to the results of [2] are used.

The two problems above reduce to generalized eigenvalue problems involving positive definite
symmetric matrices. They attain a finite number of eigenpairs (A5, u; ) and (A] o), 1 <
j < Nh =dim V}, respectively, with positive eigenvalues which we assume increasingly ordered:
AMp << Ay, and /\ml < < /\%}l“h.

Our first goal is to show that the eigenvalue obtained by mass-lumping is always below the one
obtained by the standard finite element approximation, i.e., Ahm,é < Anj, 1 <j < Ny =dimV,.

We introduce the following notation: Let & be the set of all interior edges of the mesh
(i.e., edges of triangles not lying on 0€2). For each interior edge ¢ € & we denote by p;(¢) and
p2(¢) the endpoints of the edge £ and T; 4 and Ty ¢ the two triangles sharing this edge and set
=T, ,UT5, Then we have

Lemma 2.1 For any vy, € V},

[ (1002) = 12) = 55 3 (@l (0) — o2 (6))* 12
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Proof. Since vy, is a piecewise linear function and vy, [go= 0 we observe that

[ o= 3 st 2

ey

i particular

where my denote the midpoint of the edge £. From vy (my) = U”(pl(e));vh(m(e)) we have that

Zﬁmﬁ¥:=Z(MMM+Mmmef (2.6)
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It is easy to see that

IRY (vh(pl(g))””h(mw)f) 2
h Uh 5 3
Le&r

and therefore the Lemma holds.O

As a consequence of the previous Lemma we have that

Corollary 2.1 For any vy € Vy, there exists a constant C such that

0< [ (Tn(v}) = o) < CR2|Tun;
Q

Proof. Using Lemma 2.1 and the fact that avh = h(m(é))‘z‘vh(pl(m we have that

[ (R =02) = 55 ¥ (onn(0) - o024
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The proof concludes by observing that for any triangle T' € Tp,, (W) < |Vup)?. o

Theorem 2.1 Let A\, and )\hmjé, 1 < j < Ny, be the eigenvalues of problems (2.4) and (2.5)
respectively. Then
ML <N 1<j<N, (2.7)

Proof. It is known that the eigenvalues can be characterized using the minimum-maximum
principle (see for example [1]), i.e, for any j, 1 < j < N, we have that

Ap,j = min max a(vhi’gh) (2.8)
’ Vh,j "vhE€Vh,; fQ vy,

and

)\ml = min max M 2.9
Vh,j vh€Vh; fQIh( ) ( )

where V}, ; denote any subspace of V}, of dimension j.

In view of Lemma 2.1 we have that

a(vp,vn) _ a(va; va)

JaTn(w) = foui

Yoy, € Vh,j (2.10)

So, for any V}, ;
Up, U a(vp, v
max ( hs f;) < max ( hs Qh)
UhEVh] fQ Ih( ) UhEVh,j fQ 'Uh
and consequently
b <Ay 1<j<NyD



The next lemma gives an expression for the difference between \; and the mass-lumping
approximation. Although, the result is a particular case of Lemma 5.1 of [2] we include it for
the sake of completeness.

Lemma 2.2 Let ()\h], ;’”) and (\j,u;) be the solutions of problems (2.3) and (2.5) respectively.
Then we have that

k= g = a(ufh — g, uh — ) = A lufh — g [§ = A7 / (Tn(@i)?) = ity?) - (211)

Proof.

!
Mg X = m'|uh,]||[]+>‘||u]||[]

= % [ IR + Xl + 5 (i = [ T

_ ml )\ml ml2 T ml\2

= (Uh]auhg)+a(uya“1) hi | lup'illo o r((uhi)?)

= a(up — ujuh = uy) + 2a(up, ug) + A /Q ((urty? = Tu((ugh)®)

= a(uflh = uyuph = ug) + 22 — Ajluph — w3 + AT /Q ((i)? = Iu((uh)®)

So, (2.11) holds. O

It is known that, when  is not convex, the eigenfunctions of problem (2.3) are singular in
many cases, i.e., they belong only to the space H'*7(Q), with r < 7 (with w being the largest
inner angle of ).

Error estimates for eigenvalue problems considering numerical integration have been obtained
in [2]. Although they do not state explicitly the results for non-smooth eigenfunctions it can be
seen using their arguments that

iy —uillo < Ch* (2.12)
IV iy —uj)llo < ChH'

with an appropriate choice of sign for the normalize discrete eigenfunction.

Now, our goal is to show that in the singular case the eigenvalue given by “mass- lumping”
approximation (2.5) is better than the eigenvalue approximation given by the standard finite
element (2.4) for h small enough.

Corollary 2.2 Let )\ml and X\ be the eigenvalues of problems (2.3) and (2.5) respectively. If
there exists a constant ¢ such that ||V(uh] —uj)llo > ch”, with r < 1 then for h small enough

Aj < A (2.13)



Proof. From Lemma (2.2) we know that

l l l l l l l
N =Xy = alufth = g il =) = Al =l = X [ (T = i?)

Since a is coercive, we have that
N =Xy = iy =l = Xl — sl = N [ (IR - @) @a4)

From our hypothesis, the first term on the right-hand side of (2.14) is greater than a constant
times h?" and, in view of (2.12) and Corollary 2.1, the second and third terms are of higher
order (h*" and h? respectively). Therefore, if 4 is small enough, the sign of Ahm,é — \; is given by
the first term on (2.14) so, we conclude the proof. O

3 Numerical Examples

The object of this section is to compare the eigenvalue approximation obtained with and without
mass-lumping in several examples.

We consider the following problem

—Au = du in Q (3.1)
u = 0 on 0f)

with different domains €.

First we consider the case of an L-domain. For this domain, it is known that the first
eigenfunction is singular.

In Figure 1 we show the first mesh that we use. The subsequent meshes are obtained by
uniform refinement (each triangle is divided into four congruent triangles).
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Figure 1: Initial mesh for the L-domain

In the next table we present the numerical approximation of the corresponding eigenvalue.



number of nodes Ah1 )\hmll
21 13.199179221542 | 9.071796769724
65 10.573955451157 | 9.641425460959
225 9.916549032001 | 9.693162213551
833 9.728372729312 | 9.673506476037
3201 9.66981732232 9.65620182015

Table 1

The exact value has to be less than the last value of A, ; so, we observe that the values
obtained with mass-lumping are much better than those obtained with exact integration even
for very coarse meshes.

In our next two examples we take 2 as non-convex polygons which are approximations
of different levels to the fractal Koch domain. Also in these cases it is known that the first
eigenfunctions are singular [5, 6]. In Figure 2 and Figure 3 we show the first meshes for the two
examples. As before the subsequent meshes are obtained by uniform refinement.
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Figure 3: Initial mesh for level 2 approximation of the Koch domain



In Tables 2 and 3 we present the numerical approximation of the first eigenvalues for the
domains of Figures 2 and 3 respectively.

number of nodes

A1

ml
Ahi

37 46.993282224519 | 40.401005031470
121 42.121650466929 | 40.635844194708
433 40.796435658176 | 40.438418441151
Table 2
number of nodes Ah1 A,Tll

329

40.94016461357

40.34117804088

1217

40.17948566684

40.03394074483

Table 3

Again, we observe that it is convenient to use mass-lumping.

We end the paper by giving some numerical examples for the case of smooth eigenfunctions.
In this case, the eigenvalue computed with mass-lumping may be below or above the exact one.
In fact, for a uniform mesh in a square domain the eigenvalues of the discrete problem can be
obtained explicitly and they are below the exact ones. On the other hand, if one take a mesh of
the square with only one interior node close to a corner (see Figure 4) the eigenvalue obtained
with mass-lumping is larger than the exact one.

However, the experiments that we show below, as well as other with several different meshes,
suggest that in the smooth case the approximate eigenvalue is below the exact one if the mesh
is not too coarse.

In all our examples the exact eigenvalues are known explicitly.

In Figure 4 and 5 we present the first and last meshes for the first example in the square
domain. In Figure 6 we present the first mesh for the second example in the square domain. In
this example the subsequent meshes are obtained by uniform refinement.



Figure 5

Figure 6
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The next tables show the approximation using mass-lumping for the two families of meshes
in a square domain. We recall that the exact value is A\; = 72/2 = 4.93480220054468....

number of nodes )\Zfll(initial mesh in Figure 4 )

5 15.789473684211

8 3.123922607067

14 3.091168190991

26 3.903152296554

95 4.646900604880
116 4.742942128240
259 4.888070813057

Table 4

number of nodes )\Zfll(initial mesh in Figure 6)
37 4.442736170666
121 4.810061215139
433 4.903574330061

Table 5

In the following two examples the domain is an equilateral triangle. In Figures 7 and 8
we present the first meshes, the subsequent meshes are obtained by uniform refinement. In
Tables 6 and 7 we show the discrete eigenvalues obtained for this two cases. The exact value is

A1 = 1872 — 52.63789014.... (see [7])
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Figure 7
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number of nodes AZfll(initial mesh in Figure 7)
15 42.666666666667
45 49.987109344163
153 51.964905805628
061 52.468994312245
Table 6

number of nodes )\Zfll(initial mesh in Figure 8 )
28 46.839659383781
91 51.318366941074
325 52.331156996197
Table 7

Finally we take as Q a circle of radius 1. Figure 9 and 10 show two different initial meshes
that we have used. The corresponding results are given in Tables 8 and 9. For this case the
exact value is A1 = 5.78318596294679....
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Figure 9

Figure 10

number of nodes

Al (initial mesh in Figure 9)

25 4.86961861262
81 5.52128687409
289 5.71540330139
1089 5.76609636891

Table 8
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number of nodes )\hm’ll(initial mesh in Figure 10)
41 5.469108031446
145 5.698898965742
545 5.761760229781
Table 9
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