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Abstra
tIn this paper we analyze the e�e
t of mass-lumping in the linear triangular �nite elementapproximation of se
ond order ellipti
 eigenvalue problems. We prove that the eigenvalueobtained by using mass-lumping is always below the one obtained with exa
t integration.For singular eigenfun
tions, as those arising in non 
onvex polygons, we prove that theeigenvalue obtained with mass-lumping is above the exa
t eigenvalue when the mesh size issmall enough. So, we 
on
lude that the use of mass-lumping is 
onvenient in the singular
ase.When the eigenfun
tion is smooth several numeri
al experiments suggest that the eigen-value 
omputed with mass-lumping is below the exa
t one if the mesh is not too 
oarse.Key words: Finite elements, eigenvalue problems, mass-lumping.AMS subje
t 
lassi�
ation: 65N25,65N30.1 Introdu
tionThe obje
t of this paper is to analyze the e�e
t of mass-lumping in the pie
ewise linear �niteelement approximation of se
ond order ellipti
 eigenvalue problems in polygonal domains.Instead of integrating exa
tly the right-hand side of the weak form of the equation one 
anuse some numeri
al integration. In [2℄ it has been proved that, for smooth eigenfun
tions, theoptimal order of 
onvergen
e for eigenvalues and eigenfun
tions is preserved if the quadraturerule is exa
t for polynomials of degree one. In parti
ular, one 
an use the rule based on linearinterpolation at the verti
es of ea
h triangle whi
h leads to a diagonal matrix on the right-handside of the generalized dis
rete eigenvalue problem. This pro
edure is known as mass-lumping.�Departamento de Matem�ati
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ond author is a member of CONICET, Argentina.1



It is known that, for uniform partitions of a domain whi
h is a union of re
tangles, the �niteelement approximation using mass-lumping leads to the standard �ve point �nite di�eren
es
heme. For eigenvalue problems these kinds of methods have been widely analyzed (see forexample [3, 4, 8, 9℄).When the polygonal domain is not 
onvex, the eigenfun
tions are in general non-smooth, i.e.,they do not belong to H2 but only to H1+r, with r < 1 depending on the maximum reentrant
orner. It is known that, in this 
ase, the order of 
onvergen
e of �nite element approximationsis lower than that of the smooth 
ase. For the �ve point �nite di�eren
e s
heme Forsythe
onje
tured in [3℄, based on numeri
al eviden
e, that for the singular 
ase the approximateeigenvalue is larger than that of the 
ontinuous problem when the mesh-size is small enough.We will prove that in the singular 
ase, the eigenvalue 
omputed using mass-lumping islarger than the eigenvalue of the 
ontinuous problem for small enough mesh-size. In parti
ularthe 
onje
ture made by Forsythe is true.On the other hand, we will prove that the eigenvalue 
omputed with mass-lumping is al-ways below the one obtained with exa
t integration independently of the smoothness of theeigenfun
tion.So, we 
on
lude that in the singular 
ase it is 
onvenient to use mass-lumping, at least forsmall enough mesh-size. We present several numeri
al experiments whi
h show that this is trueeven for 
oarse meshes whi
h would be a reasonable starting point for an adaptive pro
edure.Although when exa
t integration is used the approximate eigenvalue is always above theexa
t one, this is not true when mass-lumping is used. For example, in the one dimensional
ase, when a uniform partition is used, the dis
rete eigenvalues 
an be 
omputed expli
itly andthey are below the eigenvalues of the 
ontinuous problem (see [1℄). In fa
t, an easy 
al
ulationshows that this is also true in two dimensions when a uniform partition is used in a squaredomain.For some parti
ular 
onvex polygonal domain and smooth enough eigenfun
tion, Forsytheproved in [3℄ that the dis
rete eigenvalue approximation obtained by �nite di�eren
es is belowthe eigenvalue of the 
ontinuous problem when the mesh-size is small enough. We will presentseveral numeri
al examples whi
h suggest that this is also true for eigenvalues obtained withmass-lumping in general meshes.In view of the fa
t that the eigenvalue obtained with exa
t integration is an upper bound ofthe exa
t one it would be very interesting to prove that the mass-lumping pro
edure gives lowerbounds.2 The Eigenvalue ProblemLet 
 � IR2 be a bounded polygonal domain. Consider the eigenvalue problem:Lu(x) = �u(x) x 2 
; (2.1)u(x) = 0 x 2 �
; (2.2)where Lu(x) = � 2Xi;j=1 ��xj (aij(x) ��xiu) + b(x)u;2



with aij(x) = aji(x) and b(x) � 0 are given bounded, real fun
tions on 
. The operator L isassumed to be uniformly strongly ellipti
 in 
, i.e., there is a positive 
onstant 
 su
h that2Xi;j=1aij(x)�i�j � 
 2Xi=1 �2iLet H = H1(
) and V = H10 (
) � H. We denote by ( ; ) and k � k0 the usual inner produ
tand norm in L2(
) respe
tively and by k � k1 the norm in H1(
). The weak formulation ofproblem (2.1) is given by:Find � 2 IR and u 2 H10 (
), u 6= 0 satisfyinga(u; v) = �(u; v) 8v 2 H10 (
) (2.3)kuk0 = 1where a(�; �) is a symmetri
 bilinear form that is 
ontinuous on H and 
oer
ive on V , i.e.,There exist 
onstants M and � > 0 su
h thatja(u; v)j �Mkuk1kvk1 8u; v 2 Ha(v; v) � �kvk21 8v 2 VIt is well known that the solution of problem (2.3) is given by a sequen
e of pairs (�j ; uj),with positive eigenvalues �j diverging to +1. We assume the eigenvalues to be in
reasinglyordered: 0 < �1 � � � � � �j � � � �. The asso
iated eigenfun
tions satisfy uj 2 H1+r(
), wherer = 1 if 
 is 
onvex and r < �! (with ! being the largest inner angle of 
) otherwise.In order to approximate the eigenvalue � and its asso
iated eigenfun
tion u we 
onsider fThga triangulation of 
 su
h that any two triangles in Th share at most a vertex or an edge. Let hstand for the mesh-size; namely h = maxT2Th hT , with hT being the diameter of the triangle T .We suppose that the family of triangulations Th satis�es the usual shape regularity 
ondition,i.e., there exists a 
onstant � > 0 su
h that hT�T � �, where �T is the diameter of the largest ball
ontained in T .We 
onsider the usual �nite element spa
e:Vh = fvh 2 H10 (
) : vhjT 2 P1 8T 2 Thg(P1 denotes the spa
e of linear polynomials).Then, the standard �nite element approximation problem is the following:Find �h 2 IR and uh 2 Vh, uh 6= 0 su
h thata(uh; vh) = �h(uh; vh) 8vh 2 Vh (2.4)kuhk0 = 1Another possible dis
retization is obtained by using quadrature rule on the right-hand sideof (2.4). A usual approa
h, known as \mass-lumping", leads to the following approximationproblem: 3



Find �mlh 2 IR and umlh 2 Vh, umlh 6= 0 su
h thata(umlh ; vh) = �mlh Z
 Ih(umlh vh) 8 vh 2 Vh; (2.5)kumlh k0 = 1where Ih denotes the pie
ewise linear interpolation on the verti
es of the triangulation Th.Remark 2.1 For simpli
ity, we assume that the left-hand sides of (2.4) and (2.5) 
an be exa
tlyintegrated. However, it is not diÆ
ult to see that all our results hold in more general 
ases ifnumeri
al quadratures of appropriate degrees of pre
ision a

ording to the results of [2℄ are used.The two problems above redu
e to generalized eigenvalue problems involving positive de�nitesymmetri
 matri
es. They attain a �nite number of eigenpairs (�j;h; uj;h) and (�mlj;h; uj;h), 1 �j � Nh = dimVh, respe
tively, with positive eigenvalues whi
h we assume in
reasingly ordered:�1;h � � � � � �Nh;h and �ml1;h � � � � � �mlNh;h.Our �rst goal is to show that the eigenvalue obtained by mass-lumping is always below the oneobtained by the standard �nite element approximation, i.e., �mlh;j � �h;j, 1 � j � Nh = dimVh.We introdu
e the following notation: Let EI be the set of all interior edges of the mesh(i.e., edges of triangles not lying on �
). For ea
h interior edge ` 2 EI we denote by p1(`) andp2(`) the endpoints of the edge ` and T1;` and T2;` the two triangles sharing this edge and set
l = T1;` [ T2;`. Then we haveLemma 2.1 For any vh 2 Vh,Z
 �Ih(v2h)� v2h� = 112 X̀2EI ((vh(p1(`))� vh(p2(`)))2 j
`jin parti
ular Z
 Ih(v2h) � Z
 v2hProof. Sin
e vh is a pie
ewise linear fun
tion and vh j�
= 0 we observe thatZ
 v2h = X̀2EI v2h(m`) j
`j3where m` denote the midpoint of the edge `. From vh(m`) = vh(p1(`))+vh(p2(`))2 we have thatX̀2EI v2h(m`) j
`j3 = X̀2EI �vh(p1(`)) + vh(p2(`))2 �2 j
`j3 (2.6)= X̀2EI  vh(p1(`))2 + vh(p2(`))22 ! j
`j3 � X̀2EI �vh(p1(`))� vh(p2(`))2 �2 j
`j34



It is easy to see that Z
 Ih(v2h) = X̀2EI  vh(p1(`))2 + vh(p2(`))22 ! j
`j3and therefore the Lemma holds.As a 
onsequen
e of the previous Lemma we have thatCorollary 2.1 For any vh 2 Vh there exists a 
onstant C su
h that0 � Z
 �Ih(v2h)� v2h� � Ch2krvhk20Proof. Using Lemma 2.1 and the fa
t that �vh�` = vh(p2(`))�vh(p1(`))j`j we have thatZ
 �Ih(v2h)� v2h� = 112 X̀2EI ((vh(p1(`))� vh(p2(`)))2 j
`j= 112 X̀2EI ��vh�` �2 j`j2j
`jThe proof 
on
ludes by observing that for any triangle T 2 Th, ��vh�` �2 � jrvhj2.Theorem 2.1 Let �h;j and �mlh;j, 1 � j � Nh be the eigenvalues of problems (2.4) and (2.5)respe
tively. Then �mlh;j � �h;j 1 � j � Nh (2.7)Proof. It is known that the eigenvalues 
an be 
hara
terized using the minimum-maximumprin
iple (see for example [1℄), i.e, for any j, 1 � j � Nh we have that�h;j = minVh;j maxvh2Vh;j a(vh; vh)R
 v2h (2.8)and �mlh;j = minVh;j maxvh2Vh;j a(vh; vh)R
 Ih(v2h) (2.9)where Vh;j denote any subspa
e of Vh of dimension j.In view of Lemma 2.1 we have thata(vh; vh)R
 Ih(v2h) � a(vh; vh)R
 v2h 8vh 2 Vh;j (2.10)So, for any Vh;j maxvh2Vh;j a(vh; vh)R
 Ih(v2h) � maxvh2Vh;j a(vh; vh)R
 v2hand 
onsequently �mlh;j � �h;j 1 � j � Nh:5



The next lemma gives an expression for the di�eren
e between �j and the mass-lumpingapproximation. Although, the result is a parti
ular 
ase of Lemma 5.1 of [2℄ we in
lude it forthe sake of 
ompleteness.Lemma 2.2 Let (�mlh;j; umlj ) and (�j ; uj) be the solutions of problems (2.3) and (2.5) respe
tively.Then we have that�mlh;j � �j = a(umlh;j � uj ; umlh;j � uj)� �jkumlh;j � ujk20 � �mlh;j Z
 �Ih((umlh;j)2)� (umlh;j)2� (2.11)Proof.�mlh;j + �j = �mlh;jkumlh;jk20 + �jkujk20= �mlh;j Z
 Ih((umlh;j)2) + �jkujk20 + �mlh;j �kumlh;jk20 � Z
 Ih((umlh;j)2)�= a(umlh;j; umlh;j) + a(uj ; uj) + �mlh;j �kumlh;jk20 � Z
 Ih((umlh;j)2)�= a(umlh;j � uj ; umlh;j � uj) + 2a(umlh;j ; uj) + �mlh;j Z
 �(umlh;j)2 � Ih((umlh;j)2)�= a(umlh;j � uj ; umlh;j � uj) + 2�j � �jkumlh;j � ujk20 + �mlh;j Z
 �(umlh;j)2 � Ih((umlh;j)2)�So, (2.11) holds.It is known that, when 
 is not 
onvex, the eigenfun
tions of problem (2.3) are singular inmany 
ases, i.e., they belong only to the spa
e H1+r(
), with r < �! (with ! being the largestinner angle of 
).Error estimates for eigenvalue problems 
onsidering numeri
al integration have been obtainedin [2℄. Although they do not state expli
itly the results for non-smooth eigenfun
tions it 
an beseen using their arguments that kumlh;j � ujk0 � Ch2r (2.12)kr(umlh;j � uj)k0 � Chrwith an appropriate 
hoi
e of sign for the normalize dis
rete eigenfun
tion.Now, our goal is to show that in the singular 
ase the eigenvalue given by \mass- lumping"approximation (2.5) is better than the eigenvalue approximation given by the standard �niteelement (2.4) for h small enough.Corollary 2.2 Let �mlh;j and �j be the eigenvalues of problems (2.3) and (2.5) respe
tively. Ifthere exists a 
onstant 
 su
h that kr(umlh;j � uj)k0 � 
hr, with r < 1 then for h small enough�j � �mlh;j (2.13)6



Proof. From Lemma (2.2) we know that�mlh;j � �j = a(umlh;j � uj ; umlh;j � uj)� �jkumlh;j � ujk20 � �mlh;j Z
 �Ih((umlh;j)2)� (umlh;j)2�Sin
e a is 
oer
ive, we have that�mlh;j � �j � �kumlh;j � ujk21 � �jkumlh;j � ujk20 � �mlh;j Z
 �Ih((umlh;j)2)� (umlh;j)2� (2.14)From our hypothesis, the �rst term on the right-hand side of (2.14) is greater than a 
onstanttimes h2r and, in view of (2.12) and Corollary 2.1, the se
ond and third terms are of higherorder (h4r and h2 respe
tively). Therefore, if h is small enough, the sign of �mlh;j � �j is given bythe �rst term on (2.14) so, we 
on
lude the proof.3 Numeri
al ExamplesThe obje
t of this se
tion is to 
ompare the eigenvalue approximation obtained with and withoutmass-lumping in several examples.We 
onsider the following problem�4u = �u in 
 (3.1)u = 0 on �
with di�erent domains 
.First we 
onsider the 
ase of an L-domain. For this domain, it is known that the �rsteigenfun
tion is singular.In Figure 1 we show the �rst mesh that we use. The subsequent meshes are obtained byuniform re�nement (ea
h triangle is divided into four 
ongruent triangles).
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Figure 1: Initial mesh for the L-domainIn the next table we present the numeri
al approximation of the 
orresponding eigenvalue.
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number of nodes �h;1 �mlh;121 13.199179221542 9.07179676972465 10.573955451157 9.641425460959225 9.916549032001 9.693162213551833 9.728372729312 9.6735064760373201 9.66981732232 9.65620182015Table 1The exa
t value has to be less than the last value of �h;1 so, we observe that the valuesobtained with mass-lumping are mu
h better than those obtained with exa
t integration evenfor very 
oarse meshes.In our next two examples we take 
 as non-
onvex polygons whi
h are approximationsof di�erent levels to the fra
tal Ko
h domain. Also in these 
ases it is known that the �rsteigenfun
tions are singular [5, 6℄. In Figure 2 and Figure 3 we show the �rst meshes for the twoexamples. As before the subsequent meshes are obtained by uniform re�nement.
−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 2: Initial mesh for level 1 approximation of the Ko
h domain
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Figure 3: Initial mesh for level 2 approximation of the Ko
h domain
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In Tables 2 and 3 we present the numeri
al approximation of the �rst eigenvalues for thedomains of Figures 2 and 3 respe
tively.number of nodes �h;1 �mlh;137 46.993282224519 40.401005031470121 42.121650466929 40.635844194708433 40.796435658176 40.438418441151Table 2number of nodes �h;1 �mlh;1329 40.94016461357 40.341178040881217 40.17948566684 40.03394074483Table 3Again, we observe that it is 
onvenient to use mass-lumping.We end the paper by giving some numeri
al examples for the 
ase of smooth eigenfun
tions.In this 
ase, the eigenvalue 
omputed with mass-lumping may be below or above the exa
t one.In fa
t, for a uniform mesh in a square domain the eigenvalues of the dis
rete problem 
an beobtained expli
itly and they are below the exa
t ones. On the other hand, if one take a mesh ofthe square with only one interior node 
lose to a 
orner (see Figure 4) the eigenvalue obtainedwith mass-lumping is larger than the exa
t one.However, the experiments that we show below, as well as other with several di�erent meshes,suggest that in the smooth 
ase the approximate eigenvalue is below the exa
t one if the meshis not too 
oarse.In all our examples the exa
t eigenvalues are known expli
itly.In Figure 4 and 5 we present the �rst and last meshes for the �rst example in the squaredomain. In Figure 6 we present the �rst mesh for the se
ond example in the square domain. Inthis example the subsequent meshes are obtained by uniform re�nement.

9



−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4
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Figure 5
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Figure 6
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The next tables show the approximation using mass-lumping for the two families of meshesin a square domain. We re
all that the exa
t value is �1 = �2=2 = 4:93480220054468::::number of nodes �mlh;1(initial mesh in Figure 4 )5 15.7894736842118 3.12392260706714 3.09116819099126 3.90315229655455 4.646900604880116 4.742942128240259 4.888070813057Table 4number of nodes �mlh;1(initial mesh in Figure 6)37 4.442736170666121 4.810061215139433 4.903574330061Table 5In the following two examples the domain is an equilateral triangle. In Figures 7 and 8we present the �rst meshes, the subsequent meshes are obtained by uniform re�nement. InTables 6 and 7 we show the dis
rete eigenvalues obtained for this two 
ases. The exa
t value is�1 = 16�23 = 52:63789014:::: (see [7℄)
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Figure 8number of nodes �mlh;1(initial mesh in Figure 7)15 42.66666666666745 49.987109344163153 51.964905805628561 52.468994312245Table 6number of nodes �mlh;1(initial mesh in Figure 8 )28 46.83965938378191 51.318366941074325 52.331156996197Table 7Finally we take as 
 a 
ir
le of radius 1. Figure 9 and 10 show two di�erent initial meshesthat we have used. The 
orresponding results are given in Tables 8 and 9. For this 
ase theexa
t value is �1 = 5:78318596294679:::.
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Figure 10
number of nodes �mlh;1(initial mesh in Figure 9)25 4.8696186126281 5.52128687409289 5.715403301391089 5.76609636891Table 8
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number of nodes �mlh;1(initial mesh in Figure 10)41 5.469108031446145 5.698898965742545 5.761760229781Table 9A
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