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Abstract

In this paper we introduce an hp finite element method to solve a two-
dimensional fluid-structure spectral problem. This problem arises from the
computation of the vibration modes of a bundle of parallel tubes immersed
in an incompressible fluid. We prove the convergence of the method and a
priori error estimates for the eigenfunctions and the eigenvalues. We define
an a posteriori error estimator of the residual type which can be computed
locally from the approximate eigenpair. We show its reliability and efficiency
by proving that the estimator is equivalent to the energy norm of the error
up to higher order terms, the equivalence constant of the efficiency estimate
being suboptimal in that it depends on the polynomial degree. We present
an hp adaptive algorithm and several numerical tests which show the per-
formance of the scheme, including some numerical evidence of exponential
convergence.
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1. Introduction

The goal of this paper is to introduce and analyze an hp finite element
scheme for solving a fluid-structure interaction problem: the two-dimensional
Laplace model for fluid-solid vibrations.

In recent decades, the numerical approximation of spectral problems aris-
ing in fluid mechanics have received increasing attention (see [1, 2, 3, 4, 5, 6]
and the references therein). In particular, the problem considered in this pa-
per, which corresponds to approximating the vibrations of a bundle of tubes
immersed in a fluid contained in a rigid cavity, has a considerable impor-
tance in nuclear engineering and has been studied for several authors (see,
for example, [4, 7, 8]).

It is well known that adaptive procedures based on a posteriori error
indicators play nowadays a relevant role in the numerical solution of partial
differential equations. In particular, there are several papers concerning the
development of a posteriori error estimates and efficient adaptive schemes for
the h finite element approximation of different eigenvalue problems (see, for
example, [9, 10, 11, 12, 13]). There are also some recent references regarding
the hp finite element approximation of eigenvalue problems (see, for instance,
[14, 15, 16]). However, the bibliography about hp adaptive schemes for this
kind of problems is scarce and mainly focused on electromagnetics (see, for
instance, [17, 18] and [19] for a survey on the application of the hp finite
element method to electromagnetism, including eigenvalue problems).

On the other hand, the a posteriori error analysis for the hp version of
the finite element method still presents several challenges even for source
problems (see, for instance, [20, 21, 22, 23] and the references therein). One
of the main difficulties in hp adaptivity arises from the fact that the accuracy
can be improved in two different ways, either by subdividing elements or by
increasing the polynomial degree. There are different hp adaptive strategies.
Some of them are based on the estimation of the local regularity of the solu-
tion (see, for example, [20, 21, 24, 25]). Others follow the strategy developed
by Demkowicz and co-workers (see [26, 27, 28, 29] and the references therein)
which uses the projection-based interpolation and a two-grid paradigm to de-
sign an self-adaptive hp finite element method. On the other hand, Melenk
and Wohlmuth propose in [22] an hp strategy based on a predictor of the
error in each element of the mesh.

In this paper we introduce and analyze an hp finite element approximation
of the spectral problem described above. We obtain a priori error estimates
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and develop an a posteriori error estimator of the residual type which can
be computed locally from the approximate eigenpair. We analyze the equiv-
alence of this estimator with the energy norm of the error. In particular, we
prove global reliability and local efficiency estimates, both up to higher order
terms, the latter with a constant which depends on the polynomial degree of
the element. To the best of the authors’ knowledge, simultaneous reliability
and efficiency estimates, both with constants independent of the polynomial
degree, have not been proved yet for any a posteriori error estimator for hp fi-
nite element methods. Nevertheless, the numerical experiments suggest that
the proposed error indicator points out correctly the elements with largest
error. Following the hp adaptive strategy given in [22], we propose an adap-
tive algorithm and apply it to different cavities and shapes of tubes. These
numerical tests allow us to show the good performance of the error indicator
and the adaptive algorithm, including an exponential rate of convergence in
terms of the number of degrees of freedom.

The rest of the paper is organized as follows. In Section 2 we introduce
the fluid-solid vibration problem. In Section 3 we present the hp finite el-
ement approximation and obtain a priori error estimates. In Section 4 we
introduce the a posteriori error estimator and prove its equivalence with the
energy norm of the error. In Section 5 we analyze some numerical aspects
concerning the solution of the discrete generalized eigenvalue problem and
introduce the adaptive refinement strategy. In Section 6 we report several
numerical examples which allow assessing the performance of the adaptive
scheme. Finally, we end the paper drawing some conclusions in Section 7.

2. The eigenvalue problem

We consider a coupled system composed of K elastically mounted parallel
tubes immersed in a fluid inside a rigid cylindrical cavity. Our problem is to
determine the vibration modes of the system.

Under reasonable assumptions (see [5]), the problem can be posed in a
two-dimensional framework, a planar transverse section of the cylindrical
cavity being its domain. Each tube is modeled as a harmonic oscillator with
rigidity k and mass m and the fluid is taken as perfectly incompressible with
density ρ.

Let Ω ⊂ R2 be the bounded domain occupied by the fluid, which we
assume polygonal. Let Γ0 be its outer boundary and Γi, i = 1, . . . , K, the
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interfaces between each tube and the fluid. Let n be the unit outer normal
to the boundary of Ω. (See Figure 1.)

Γ1 Γ2

Ω

ΓK

n

Γ0
n

Figure 1: Sketch of the two-dimensional domain

The corresponding eigenvalue problem is the following one, which is known
as the Laplace Model for fluid-solid vibrations [4, 5, 8]:

Find ω > 0 (the vibration frequency) and u 6= 0 (the fluid pressure) such
that 

∆u = 0 in Ω,

∂u

∂n
= 0 on Γ0,

∂u

∂n
=

ρω2

k −mω2

(∫
Γi

un

)
· n on Γi, i = 1, . . . , K.

(1)

Let λ := ρω2/ (k −mω2) and V := H1(Ω)/R endowed with the H1-
seminorm, which is a norm on V . The variational problem associated with
(1) reads as follows:

Find λ ∈ R and u ∈ V satisfying{
a(u, v) = λb(u, v) ∀v ∈ V ,
b(u, u) = 1,

(2)

where

a(u, v) :=

∫
Ω

∇u · ∇v and b(u, v) :=
K∑

i=1

(∫
Γi

un

)
·
(∫

Γi

vn

)
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are continuous symmetric bilinear forms on V , elliptic the former and non-
negative the latter (i.e., b(v, v) ≥ 0 ∀v ∈ V ).

The solution to (2) is given by a sequence of exactly 2K pairs (λj, uj),
with positive eigenvalues that we assume to be increasingly ordered: 0 <
λ1 ≤ · · · ≤ λ2K (see [5, Section II.2.1]). Associated to each one there is an
eigenfunction uj ∈ V , such that {u1, . . . , u2K} is a linearly independent set.

3. Finite element approximation and a priori error estimates

In this section we introduce an hp finite element method for the spectral
problem described in the previous section, prove its convergence and obtain
a priori error estimates for the eigenfunctions and the eigenvalues.

Let {Th} be a family of triangulations of Ω such that any two triangles in
Th share at most a vertex or an edge. Let hT stand for the diameter of the
triangle T ∈ Th. We assume that the family of triangulations {Th} satisfies
a minimum angle condition and, consequently, there exists a constant σ > 0
such that hT/rT ≤ σ, where rT is the diameter of the largest circle contained
in T .

We associate with each element T ∈ Th a (maximal) polynomial degree
pT ∈ N. We assume that the polynomial degrees of neighboring elements are
comparable, i.e., there exists a constant γ > 0 such that

γ−1pT ≤ pT ′ ≤ γpT ∀T, T ′ ∈ Th with T ∩ T ′ 6= ∅. (3)

We denote p := {pT}T∈Th
, the family of polynomial degrees.

Throughout the paper, we will denote by C a generic positive constant,
not necessarily the same at each occurrence, which may depend on the mesh
and the degree of the polynomials, only through the parameters σ and γ,
respectively.

We define the finite element space as follows:

V p
h := {v ∈ V : v|T ∈ PpT

∀T ∈ Th} ,

where Pk denotes the space of polynomials of degree at most k. Notice
that the definition of V p

h allows for different maximal polynomial degrees
on each edge of any triangle. Therefore, the space {v|T : v ∈ V p

h } does not
necessarily coincides with PpT

. However, there exists p′T ≤ pT such that

Pp′
T
⊂ {v|T : v ∈ V p

h } ⊂ PpT
(4)
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and pT/p
′
T ≤ γ because of assumption (3).

The discrete eigenvalue problem associated with (2) is the following:
Find λh ∈ R and uh ∈ V p

h satisfying{
a(uh, vh) = λhb(uh, vh) ∀vh ∈ V p

h ,
b(uh, uh) = 1.

(5)

This problem reduces to a generalized matrix eigenvalue problem. The
theory in [5, Section II.2.1] holds also in this case and allows proving that this
discrete problem attains 2K positive eigenvalues, which we assume increas-
ingly ordered: 0 < λh1 ≤ · · · ≤ λh2K . Associated with each one, there is an
eigenfunction uhj ∈ V p

h , such that {uh1, . . . , uh2K} is a linearly independent
set.

Our first goal is to prove that the solutions of the discrete eigenvalue
problem (5) converge to those of of the spectral problem (2). To do this, we
will apply the classical spectral approximation theory from [30]. With this
purpose, we introduce the bounded linear operators T, T p

h : V → V defined
by {

f ∈ V 7−→ Tf ∈ V ,
a(Tf, v) = b(f, v) ∀v ∈ V ,

(6){
f ∈ V 7−→ T p

h f ∈ V p
h ⊂ V ,

a(T p
h f, vh) = b(f, vh) ∀vh ∈ V p

h .
(7)

The non-zero eigenvalues of T and T p
h are the reciprocals of the eigenvalues

of (2) and (5), respectively.
On the other hand, from the standard a priori estimate for the Neumann

problem (see [31]), we know that the solution to problem (6) satisfies

Tf ∈ H1+r(Ω) (8)

for all r < π
θ
, where θ is the largest reentrant angle of Ω and

‖Tf‖H1+r(Ω)/R ≤ C |f |H1(Ω) . (9)

Consequently, the eigenfunctions of problem (2) also satisfy u ∈ H1+r(Ω) for
all r < π

θ
. Let us remark that for a polygonal domain Ω with at least one

interface Γi, necessarily θ > π and consequently 1
2
< π

θ
< 1.

The following lemma allows us to conclude the convergence of T p
h to T in

norm as maxT∈Th

hT

pT
goes to 0.
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Lemma 3.1. For r < π
θ
, there exists a positive constant C such that, for all

f ∈ V ,

|Tf − T p
h f |H1(Ω) ≤ C

(
max
T∈Th

hT

pT

)r

|f |H1(Ω) .

Proof. By using standard arguments in hp error estimates (see [32, Theo-
rem 2.1], [33, Theorem 4.1] and [34, Lemma 4.5, Theorem 4.6]), it can be
proved that there exists an operator Πp

h : H1+r(Ω) → V p
h satisfying

‖v − Πp
hv‖H1(T ) ≤ C

(
hT

p′T

)r

‖v‖H1+r(T )/R

for all T ∈ Th, with a constant C independent of p′T and hT , where p′T is
as defined in (4). Now, from the definition of a and the fact that V p

h ⊂ V ,
Cea’s Lemma implies that, for all f ∈ V ,

|Tf − T p
h f |H1(Ω) ≤ |Tf − Πp

h(Tf)|H1(Ω) .

Hence, since pT/p
′
T ≤ γ, we obtain

|Tf − T p
h f |

2
H1(Ω) ≤ C

(
max
T∈Th

hT

pT

)2r

‖Tf‖2
H1+r(Ω)/R .

Thus, the result follows from (9).

As a consequence of the above lemma and the classical spectral approx-
imation theory (see [30]) the eigenvalues and eigenfunctions of problem (5)
converge to those of problem (2) as maxT∈Th

hT

pT
goes to 0. From now on,

we restrict our attention to a simple eigenvalue λj of problem (2) with cor-
responding eigenfunction uj. Then, the j-th eigenvalue of problem (5), λhj,
converges to λj and the corresponding eigenfunction uhj can be chosen so
that uhj converges to uj, too.

In what follows we will adapt the techniques introduced in [35, Section 6.4]
to obtain a priori error estimates for the approximate eigenvalues and eigen-
functions. Let us remark that we cannot use directly the results from this
reference because the bilinear form b is not an inner product in our case.

Since the number of eigenvalues is finite (2K), the convergence of the
discrete eigenvalues stated above immediately implies that there exist κ > 0
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such that if maxT∈Th

hT

pT
≤ κ, then λhi 6= λj for all i 6= j, 1 ≤ i ≤ 2K. In

such a case, we are allowed to define

ρhj := max
1≤i≤2K

i6=j

λj

|λhi − λj|
.

Let P p
h denote the V -elliptic projection onto V p

h defined for any w ∈ V
by

P p
hw ∈ V p

h : a(P p
hw − w, vh) = 0 ∀vh ∈ V p

h . (10)

The following lemma extends to our problem the results from [35, Lemma 6.4-
3].

Lemma 3.2. There exists κ > 0 such that, if maxT∈Th

hT

pT
≤ κ, then the

discrete eigenfunction uhj can be chosen so that

b(uj − uhj, uj − uhj)
1/2 ≤ 2 (1 + ρhj) b(uj − P p

h uj, uj − P p
h uj)

1/2. (11)

Proof. We do not include the whole proof, since it follows closely the argu-
ments used in [35] to prove Lemma 6.4-3. The main difference is that, in our
case, the set of discrete eigenfunctions {uh1, . . . , uh2K} is not a basis of V p

h .
However, this linearly independent set can be chosen such that b(uhi, uhj) =
δij, 1 ≤ i, j ≤ 2K, and it can be completed to a basis {uh1, . . . , uhN}
(N := dim V p

h ), with the added basis functions satisfying

b(uhj, vh) = 0 ∀vh ∈ V p
h , j = 2K + 1, . . . , N.

Therefore, b(uhi, uhj) = 0 if i 6= j, 1 ≤ i, j ≤ N . Using this basis, the proof
of Lemma 6.4-3 from [35] can be conveniently adapted to obtain (11).

Now we are in a position to prove the following a priori error estimates
assuming that λj is a simple eigenvalue.

Proposition 3.1. For all r < π
θ
, there exist positive constants C and κ, such

that, if maxT∈Th

hT

pT
< κ, then

|uj − uhj|H1(Ω) ≤ C

(
max
T∈Th

hT

pT

)r

, (12)

b(uj − uhj, uj − uhj)
1/2 ≤ C

(
max
T∈Th

hT

pT

)r

|uj − uhj|H1(Ω) , (13)

|λj − λhj| ≤ C |uj − uhj|2H1(Ω) . (14)
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Proof. The estimate (12) is a direct consequence of Lemma 3.1 and the clas-
sical spectral approximation theory (see [30]).

To prove (13), we use Lemma 3.2 and a duality argument to estimate the
right-hand side of (11). Let ϕ ∈ V be the solution to

a(ψ, ϕ) = b(ψ, uj − P p
h uj) ∀ψ ∈ V . (15)

Hence, ϕ satisfies
∆ϕ = 0 in Ω,

∂ϕ

∂n
= 0 on Γ0,

∂ϕ

∂n
= ci · n on Γi, i = 1, . . . , K,

with ci :=
∫

Γi
(uj − P p

h uj) n. The same arguments leading to (8)-(9) allow

us to conclude that ϕ ∈ H1+r(Ω) and

‖ϕ‖H1+r(Ω)/R ≤ C

(
K∑

i=1

|ci|2 |Γi|

)1/2

≤ Cb(uj − P p
h uj, uj − P p

h uj)
1/2, (16)

where, for the first inequality, we have used on each straight segment γ of Γi

that ‖ci · n‖2
H1/2(γ) = ‖ci · n‖2

L2(γ) ≤ |ci|2 |γ|, because ci ·n is constant on γ.

Taking ψ = uj − P p
h uj in (15) and using (10), we obtain

b(uj − P p
h uj, uj − P p

h uj) = a(uj − P p
h uj, ϕ)

= a(uj − P p
h uj, ϕ− Πp

hϕ)

≤ |uj − P p
h uj|H1(Ω) |ϕ− Πp

hϕ|H1(Ω) , (17)

where Πp
h is the same operator used in the proof of Lemma 3.1, which satisfies

|ϕ− Πp
hϕ|

2
H1(Ω) ≤ C

(
max
T∈Th

hT

pT

)2r

‖ϕ‖2
H1+r(Ω)/R . (18)

Then, (13) follows from (11), (17), (18) and (16), together with the inequality
|uj − P p

h (uj)|H1(Ω) ≤ |uj − uhj|H1(Ω), which holds because P p
h is the projector

onto V p
h .

Finally (14) follows from (12), (13) and the well known identity (see, for
instance, Lemma 9.1 from [30])

λhj − λj = a(uhj − uj, uhj − uj)− λjb(uhj − uj, uhj − uj).

Thus we conclude the proof.
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4. A posteriori error estimator

In this section we introduce an a posteriori estimator for the error in the
energy norm of the approximate eigenfunction and prove its reliability and
efficiency. From now on we drop the subindex j in λj, λhj, uj and uhj.

We introduce some notation that we will use in the definition and analysis
of the error estimator. For any T ∈ Th let ET denote the set of edges of T and
E :=

⋃
T∈Th

ET . We decompose E in disjoint sets EΓi
:= {` ∈ E : ` ⊂ Γi},

0 ≤ i ≤ K, and EΩ := E \
⋃K

i=0 EΓi
.

For each ` ∈ EΩ we choose a unit normal vector n` and denote the two
triangles sharing this edge Tin and Tout, with n` pointing outwards Tin. For
vh ∈ Vh we set [[

∂vh

∂n

]]
`

:= ∇
(
vh|Tout

)
· n` −∇

(
vh|Tin

)
· n`,

which corresponds to the jump of the normal derivative of vh across the edge
`. Notice that this value is independent of the chosen direction of the normal
vector n`.

From (2) and (5), we know that for any vh ∈ V p
h the error e := u − uh

satisfies ∫
Ω

∇e · ∇vh =
K∑

i=1

(
λ

∫
Γi

un− λh

∫
Γi

uhn

)
·
(∫

Γi

vhn

)
. (19)

On the other hand, for any v ∈ V , using (2) and integrating by parts we
obtain ∫

Ω

∇e · ∇v =
K∑

i=1

λ

(∫
Γi

un

)
·
(∫

Γi

vn

)
+
∑
T∈Th

∫
T

∆uhv +
∑
T∈Th

∫
∂T

∂uh

∂n
v.

Hence, defining for each edge ` ∈ E

J` :=



1

2

[[
∂uh

∂n

]]
`

, ` ∈ EΩ,

∂uh

∂n
, ` ∈ EΓ0 ,

∂uh

∂n
−
(∫

Γi

λhuhn

)
· n, ` ∈ EΓi

, i = 1, . . . , K,
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straightforward computations allow us to write, for all v ∈ V ,∫
Ω

∇e · ∇v =
∑
T∈Th

(∫
T

∆uhv +
∑
`∈ET

∫
`

J`v

)

+
K∑

i=1

(
λ

∫
Γi

un− λh

∫
Γi

uhn

)
·
(∫

Γi

vn

)
. (20)

For each element T ∈ Th, we define the local error indicator ηT by

η2
T :=

h2
T

p2
T

‖∆uh‖2
L2(T ) +

∑
`∈ET

|`|
p`

‖J`‖2
L2(`) , (21)

with p` := max {pT : ` ∈ ET}, and the global error estimator ηΩ by

η2
Ω :=

∑
T∈Th

η2
T .

To compare the error and the estimator we will use an hp Clément inter-
polation operator Ip

h : V → V p
h defined in [22]. In this reference it is shown

that this operator satisfies the following error estimates:

‖u− Ip
hu‖L2(T ) ≤ C

hV

pV

|u|H1(ω4
V ) ∀T ∈ Th : T ⊂ ω1

V , (22)

‖u− Ip
hu‖L2(`) ≤ C

(
hV

pV

) 1
2

|u|H1(ω4
V ) ∀` ∈ EV , (23)

where, for each vertex V of the triangulation Th,

ω0
V := {V } ,

ωj
V :=

⋃{
T ∈ Th : T ∩ ωj−1

V 6= ∅
}
, j ≥ 1,

hV := max {hT : V is a vertex of T} ,
pV := max {pT + 1 : V is a vertex of T} ,
EV := {` ∈ E : V is an endpoint of `} .

We observe in the estimates above that the subdomain ω4
V is larger than the

one appearing in the error estimates for the classical h Clément interpolant.
However this will only affect the size of the constants in the estimates.

The following theorem provides an upper bound for the error, which
proves the reliability of the error estimator up to higher order terms.
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Theorem 4.1. There exists a positive constant C such that

|e|H1(Ω) ≤ C

[
ηΩ +

(
max
T∈Th

hT

pT

)2r

|e|H1(Ω)

]
.

Proof. By using the error equations (19) with vh = Ip
h e and (20) with v =

e− Ip
h e, we obtain

|e|2H1(Ω) =

∫
Ω

∇e · ∇ (e− Ip
h e) +

∫
Ω

∇e · ∇ (Ip
h e)

=
∑
T∈Th

[∫
T

∆uh (e− Ip
h e) +

∑
`∈ET

∫
`

J` (e− Ip
h e)

]

+
K∑

i=1

(
λ

∫
Γi

un− λh

∫
Γi

uhn

)
·
(∫

Γi

en

)
.

Next, we estimate separately the two terms on the right hand side above.
For each T ∈ Th, let VT be one of the vertices of T and for each edge

` ∈ E let V` be one of the endpoints of `. Then, by using the Cauchy-Schwartz
inequality, (22), (23), the definition of ηΩ and the fact that the triangulation
satisfies the minimum angle condition and (3), we obtain

∑
T∈Th

[∫
T

∆uh (e− Ip
h e) +

∑
`∈ET

∫
`

J` (e− Ip
h e)

]

≤ C
∑
T∈Th

[
hVT

pVT

‖∆uh‖L2(T ) |e|H1(ω4
VT

)

+
∑
`∈ET

(
hV`

pV`

) 1
2

‖J`‖L2(`) |e|H1(ω4
V`

)

]
≤ CηΩ |e|H1(Ω) .
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On the other hand, since b(u, u) = 1 and b(uh, uh) = 1, we have

K∑
i=1

(
λ

∫
Γi

un− λh

∫
Γi

uhn

)
·
(∫

Γi

en

)
= λb(u, u)− (λ+ λh) b(u, uh) + λhb(uh, uh)

= (λ+ λh)− (λ+ λh) b(u, uh)

=
λ+ λh

2
b(u− uh, u− uh)

≤ C

(
max
T∈Th

hT

pT

)2r

|e|2H1(Ω) ,

where we have used (13) for the last inequality. Thus we conclude the proof.

In order to guarantee that the error indicator is efficient to guide an
adaptive refinement scheme, our next goal is to prove that ηT is bounded by
the H1 norm of the error on a neighborhood of T , up to higher order terms.

For T ∈ Th, let bT be the standard cubic bubble given by

bT :=

{
λT

1 λ
T
2 λ

T
3 , in T,

0, in Ω \ T,

where λT
1 , λT

2 and λT
3 denote the barycentric coordinates of T .

For ` ∈ EΩ, we denote by T1 and T2 the two triangles sharing ` and we
enumerate the vertices of T1 and T2 so that the vertices of ` are numbered
first. Then we consider the piecewise quadratic edge bubble function b`
defined by

b` :=

{
λTi

1 λ
Ti
2 , in Ti, i = 1, 2,

0, in Ω \ T1 ∪ T2.

The following lemma provides an upper estimate for the first term in the
definition of ηT (cf. (21)).

Lemma 4.1. There exists a positive constant C such that

hT

pT

‖∆uh‖L2(T ) ≤ CpT |e|H1(T ) . (24)

13



Proof. Using (20) with v = ∆uhbT ∈ H1
0 (T ) ⊂ V , we obtain∫

T

(∆uh)
2 bT =

∫
T

∇e · ∇ (∆uhbT )

≤ C
pT

hT

|e|H1(T )

[∫
T

(∆uh)
2 bT

]1/2

,

where we have applied to ∆uhbT ∈ PpT +1, an inverse inequality proved in
[22] (see equation (24) from this reference). Hence, using equation (22) from
[22], we obtain

‖∆uh‖L2(T ) ≤ CpT

[∫
T

(∆uh)
2 bT

]1/2

≤ C
p2

T

hT

|e|H1(T ) ,

from which we conclude the proof.

Next, we prove an upper estimate for the second term in the definition of
ηT (cf. (21)).

Lemma 4.2. For all δ > 0, there exists a positive constant Cδ such that, if
` ∈ EΩ ∪ EΓ0, then

|`|1/2

p
1/2
`

‖J`‖L2(`) ≤ Cδp
1+δ
` |e|H1(ω`)

(25)

and, if ` ∈ EΓi
, 1 ≤ i ≤ K, then

|`|1/2

p
1/2
`

‖J`‖L2(`) ≤ Cδ

[
p1+δ

` |e|H1(ω`)
+ pδ

` |`|
∣∣∣∣∫

Γi

(λu− λhuh) n

∣∣∣∣] , (26)

where ω` :=
⋃
{T ∈ Th : ` ∈ ET}.

Proof. We follow the arguments proposed in [22]. According to Lemma 2.4
from this reference, for all β > 0 there exists Cβ > 0, only depending on β,
such that

‖J`‖L2(`) ≤ Cβp
β
`

(∫
`

bβ` J
2
`

)1/2

, (27)

Moreover, using Lemma 2.6 from the same reference [22] and standard scaling
arguments, we have that for all β > 1

2
, there exists another constant Cβ > 0,

14



again depending only on β, such that for all ε > 0, there exists vε ∈ H1
0 (ω`)

satisfying

vε|` = bβ` J`, (28)

‖vε‖2
L2(ω`)

≤ Cβε |`|
∫

`

bβ` J
2
` , (29)

|vε|2H1(ω`)
≤ Cβ

[
εp

2(2−β)
` + ε−1

] 1

|`|

∫
`

bβ` J
2
` . (30)

For ` ∈ EΩ ∪ EΓ0 , we use (20) with v = vε to write∫
ω`

∇e · ∇vε =

∫
ω`

∆uhvε +

∫
`

J`vε.

Hence, using (28), (30), (29) and (24), we obtain∫
`

bβ` J
2
` =

∫
`

J`vε

≤ |e|H1(ω`)
|vε|H1(ω`)

+ ‖∆uh‖L2(ω`)
‖vε‖L2(ω`)

≤ Cβ

|`|1/2

[
εp

2(2−β)
` + ε−1 + εp4

`

]1/2

|e|H1(ω`)

(∫
`

bβ` J
2
`

)1/2

.

Choosing ε = p−2
` in this estimate, we have(∫

`

bβ` J
2
`

)1/2

≤ Cβ
p`

|`|1/2
|e|H1(ω`)

,

from which, taking β = 1
2

+ δ and using (27), we obtain (25).
Next, for ` ∈ EΓi

, i = 1, . . . , K, we use (20) with v = vε to write∫
ω`

∇e · ∇vε =

∫
ω`

∆uhvε +

∫
`

J`vε

+

(∫
Γi

λun−
∫

Γi

λhuhn

)
·
(∫

`

vεn`

)
.

Proceeding as in the previous case, we obtain now(∫
`

bβ` J
2
`

)1/2

≤ Cβ
p`

|`|1/2
|e|H1(ω`)

+ |`|1/2

∣∣∣∣∫
Γi

(λu− λhuh) n

∣∣∣∣ ,
from which (26) follows. Thus we conclude the proof.
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Now we may conclude the efficiency of the error indicator.

Theorem 4.2. For all δ > 0, there exists a positive constant Cδ such that
for all T ∈ Th, if T has only inner edges (i.e., edges ` ∈ EΩ), then

ηT ≤ Cδp
1+δ
T |e|H1(ωT )

and, if T has an edge lying on Γi, i = 1, . . . , K, then

ηT ≤ Cδp
1+δ
T

[
|e|H1(ωT ) +

hT

pT

∣∣∣∣∫
Γi

(λu− λhuh) n

∣∣∣∣] ,
where ωT :=

⋃
{T ′ : T and T ′ share an edge}.

Proof. It is an immediate consequence of Lemmas 4.1 and 4.2 and the as-
sumption (3).

Notice that the efficiency estimate above is suboptimal in that the equiv-
alence constant depends on the polynomial degree. In contrast to the case
of h refinement, it seems to be an open question whether uniform reliability
and efficiency can be achieved for an hp a posteriori estimator. In fact, to
the best of the authors’ knowledge, proofs of upper and lower bounds both
independent of the polynomial degree have not been reported yet for any hp
finite element method. Nevertheless, according to the experiments reported
in Section 6, this seems to be just a theoretical issue. Indeed, the degrees
achieved in the experiments are not that large, so that the factor p1+δ

T can
be considered bounded for practical purposes.

Remark 4.1. From Lemmas 4.1 and 4.2, we also obtain for all δ > 0 the
following global lower error estimate:

ηΩ ≤ Cδ (max p)1+δ
(
|e|2H1(Ω) + h.o.t.

)1/2

,

where

h.o.t. :=
K∑

i=1

∑
`∈EΓi

|`|2

p2
`

∣∣∣∣∫
Γi

(λu− λhuh) n

∣∣∣∣2


≤ 2

min p

(
max
T∈Th

hT

pT

) K∑
i=1

|Γi|

[
|λ|2

∣∣∣∣∫
Γi

(u− uh) n

∣∣∣∣2 + |λ− λh|2
∣∣∣∣∫

Γi

uhn

∣∣∣∣2
]
.
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Thus, from (13), (14) and the fact that b(uh, uh) = 1, we have

h.o.t. ≤ 2

min p

(
max
T∈Th

hT

pT

) K∑
i=1

|Γi|

[
|λ|2

(
max
T∈Th

hT

pT

)2r

|e|2H1(Ω) + |e|4H1(Ω)

]
,

which is clearly a higher order term as compared with |e|2H1(Ω).

5. Numerical aspects

In this section we analyze numerical aspects concerning the solution of
the discrete problem (5) and introduce an adaptive refinement strategy based
on the indicators ηT .

5.1. Solution of the generalized eigenvalue problem

The finite element space used for the discretization is V p
h = W p

h /R with

W p
h :=

{
v ∈ H1(Ω) : v|T ∈ PpT

∀T ∈ Th

}
.

We denote by N the set of nodes of W p
h and decompose this set as follows:

N = N1 ∪N2, with N1 being the subset of nodes lying on
⋃K

i=1 Γi and N2

the subset of the remaining ones (i.e., those lying either in Ω or on Γ0). We
denote by Ni the number of nodes on Ni, i = 1, 2.

Let

u1 :=
(
u(Pi)

)
Pi∈N1

∈ RN1 and u2 :=
(
u(Pi)

)
Pi∈N2

∈ RN2 .

To obtain a matrix form of the discrete problem (5), we write(
A11 A12

A21 A22

)(
u1

u2

)
= λh

(
B11 0
0 0

)(
u1

u2

)
, (31)

with

Ars :=
(
a(βi, βj)

)
Pi∈Nr,Pj∈Ns

, r, s = 1, 2,

B11 :=
(
b(βi, βj)

)
Pi,Pj∈N1

,

with {βi}Pi∈N being the nodal basis of W p
h (i.e., βi(Pj) = δij).

The matrices on the left and right hand sides of (31) are symmetric and
positive semi-definite. However, this eigenvalue problem is degenerate be-
cause the kernels of both matrices contain the vector (1, . . . , 1)t ∈ RN1+N2 .
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In fact, problems (5) and (31) are not equivalent, since the former is posed
on the quotient space V p

h = W p
h /R and the latter on W p

h . To obtain a matrix
form of (5), it is enough to set to zero one arbitrary component, for instance
of u2. This is easily done by deleting in both matrices from (31) the row
and the column corresponding to the nodal component set to zero. Then,
the resulting generalized eigenvalue problem is well posed because the matrix
on the left hand side is symmetric and positive definite. For simplicity we
keep the same notation for the problem (31) with the corresponding row and
column deleted.

Now, with the aim of reducing the computational cost, we proceed as
follows. First, since the submatrix A22 is invertible (indeed, symmetric and
positive definite), by eliminating u2 from (31) we arrive at(

A11 −A12A
−1
22 A21

)
u1 = λhB11u1. (32)

Notice that although the matrix on the left hand side of (32) is not sparse,
its size is N1 and, hence, significantly smaller than the size N1 + N2 − 1 of
problem (31). Moreover, in actual computations, the matrix A−1

22 is not ex-
plicitly computed. In fact, the columns of A−1

22 A12 are obtained by solving N1

linear systems with the same matrix A22 ∈ R(N2−1)×(N2−1), which is sparse,
symmetric and positive definite.

As a second step, we compute a complete diagonalization of the matrix
B11. As far as the mesh have no triangles with vertices lying on two different
Γi, this matrix is block diagonal with K full diagonal blocks, the size of
each one being the number of nodes lying on each Γi. Thus, any standard
eigensolver for symmetric matrices (QR, for instance) can be conveniently
used for each diagonal block. Since the rank of B11 is 2K, as a result of the
diagonalization we obtain a diagonal matrix of the form

D :=

(
D11 0
0 0

)
∈ RN1×N1 ,

where D11 := diag {µ1, . . . , µ2K}, with µj 6= 0, j = 1, . . . , 2K, and an or-
thogonal matrix Q ∈ RN1×N1 such that QtB11Q = D.

Let v := Qtu1 and S := Qt
(
A11 −A12A

−1
22 A21

)
Q. Then, problem (32)

is equivalent to the following one:(
S11 S12

S21 S22

)(
v1

v2

)
= λh

(
D11 0
0 0

)(
v1

v2

)
.
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Since S22 is invertible, the last step consists in eliminating v2 from these
equations to arrive at(

S11 − S12S
−1
22 S21

)
v1 = λhD11v1,

which is a generalized eigenvalue problem of size 2K, with both matrices
symmetric and D11 diagonal and positive definite. Thus, this is a well posed
(and small) problem that can be efficiently solved by any standard eigen-
solver. Finally, the eigenvectors of (31) are easily recovered by successively
solving

S22v2 = −S21v1, u1 = Qv and A22u2 = −A21u1.

5.2. Adaptive refinement strategy

For an h finite element adaptive scheme, there are several strategies to
determine which elements should be refined. A usual one is the following:
all the triangles T with ηT ≥ θηM are marked to be refined, where

η2
M :=

1

#Th

∑
T∈Th

η2
T

and θ ∈ (0, 1) is a parameter which can be arbitrarily chosen.
Our hp adaptive algorithm uses this maximum strategy to mark the tri-

angles to be refined, with the additional consideration that at each step, for
each marked triangle, it has to be decided whether to perform a p refinement
or an h refinement. In the case of p refinement, the degree pT of the marked
element is increased by one and the triangle is kept fixed. On the other hand,
in the case of h refinement, the marked element T is subdivided into four
triangles, T =

⋃4
j=1 T

′
j , and the degree is kept fixed in the new elements,

i.e., pT ′
j

= pT . Moreover, the conformity of the mesh is preserved by means
of a longest edge subdivision strategy on the unrefined neighboring triangles
(see [36]). Because of this, it happens that some elements not marked for
h refinement, are subdivided anyway into two or three triangles. Thus, in
general, we will have that T =

⋃k
j=1 T

′
j with k = 2, 3 or 4.

In order to decide whether to apply a p or an h refinement to a particular
triangle, we follow the approach proposed in [22], which is based on the
comparison of the current local estimated error with a prediction of this
error obtained from the preceding step. If at the preceding step there was
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an h refinement leading to T =
⋃k

j=1 T
′
j , k = 2, 3, 4, then the prediction

indicator is defined as follows:

(
ηpred

T ′
j

)2

:= γh

(∣∣T ′
j

∣∣
|T |

)pT +1

η2
T ,

where γh is a control parameter to be determined. On the other hand, if
at the preceding step there was a p refinement on the element T , then the
prediction indicator is defined by(

ηpred
T

)2

:= γpη
2
T ,

where γp ∈ (0, 1) is a reduction factor which is chosen arbitrarily. Finally,
for elements neither p nor h refined at the preceding step,(

ηpred
T

)2

:= γn

(
ηpred

T

)2

,

where γn is a reduction or amplification factor also arbitrarily chosen. In
all cases, we proceed to an h refinement of T when the error indicator ηT is
larger than the prediction indicator ηpred

T and to a p refinement otherwise.
Altogether, we arrive at the algorithm shown in Table 1.
We set ηpred

T := 0 for all elements T on the initial triangulation, so that the
first step is a purely h refinement on all elements. Notice that this ensures
that no triangle will have vertices lying on two different Γi on subsequent
meshes (recall that this is useful for the procedure proposed to solve the
generalized eigenvalue problem).

6. Numerical examples

We present in this section some numerical results which allow us to assess
the performance of the proposed hp adaptive refinement strategy.

In all the numerical examples the control parameters appearing in the
algorithm, have been chosen as follows: θ = 0.75, γh = 16, γp = 0.3 and
γn = 2.

The color palette, used in the figures, indicates the polynomial degree of
each element.
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Table 1: Refinement algorithm

If η2
T ≥ θη2

M then

if η2
T ≥

(
ηpred

T

)2

then

subdivide T into 4 triangles T ′
j , 1 ≤ j ≤ 4

longest edge strategy to maintain mesh conformity
pT ′

j
:= pT(

ηpred
T ′

j

)2

:= γh

(
|T ′

j|
|T |

)pT +1

η2
T

else
pT := pT + 1(
ηpred

T

)2

:= γpη
2
T

end
else (

ηpred
T

)2

:= γn

(
ηpred

T

)2

end

6.1. Two concentric cylindrical tubes

In this first test we have taken two concentric cylindrical tubes with inner
radio Ri and outer radius Ro (see Figure 2). The analytical solution written
in polar coordinates (r, φ) is as follows:

λ1 = λ2 =
1

π

R2
o −R2

i

R2
i (R2

o +R2
i )
,

u1 =

(
r +

R2
o

r

)
cosφ, u2 =

(
r +

R2
o

r

)
sinφ.

We have taken Ri = 1 and Ro = 3, so that the exact eigenvalue is λ ≈
0.2546479.

Notice that in this test we have a double eigenvalue, so that in principle it
does not lie in the theoretical framework considered in the previous sections
where we have assumed the eigenvalues to be simple. However, according to
our experiments, the results hold true for multiple eigenvalues, too.

The mesh shown in Figure 2 has been used to initiate the adaptive process
with quadratic finite elements in all triangles.
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Figure 2: Concentric cylindrical tubes. Domain and initial mesh.

Figure 3 shows the meshes obtained with the adaptive hp algorithm cor-
responding to steps 7 and 12 of the refinement process. The eigenvalue
obtained at this last step with 101,781 degrees of freedom is λh = 0.2546478.

Since in this test we know the analytical solution, we have used it to
compute the so called effectivity indices :

eff :=
|e|H1(Ω)

ηΩ

.

We report in Table 2 these indices at all the steps. The table also includes
the total number of degrees of freedom N for each step. It can be seen
from this table that the effectivity indices remain bounded above and below
throughout the refinement process.

For the theoretical results, we have assumed that the domain occupied by
the fluid is polygonal. However, in this example with analytical solution the
presence of curved boundaries causes a domain approximation error which
we have not taken into account in the analysis. In this case, we have mod-
ified the adaptive algorithm as follows: when a new vertex appears on the
straight edges approximating a curved boundary, it was moved radially to
the boundary. Note that the resulting family of meshes is not nested and,
consequently, the error might increase.

22



2

8

7

5

3

6

4

Figure 3: Concentric cylindrical tubes. Refined meshes: steps 7 (left) and 12 (right).

6.2. Rhomboidal tube within a rectangular cavity

In this test we consider a rhomboidal tube with side length 2
√

2 centered
in a quadrilateral cavity of side length 8, as shown in Figure 4.

In this example the fluid domain has reentrant angles at the vertices of
the tube. Because of this, the vibration modes involve eigenfunctions which
are singular at these four points.

The initial mesh, again with quadratic elements, is shown in Figure 4.
Figure 5 shows the mesh at step 22. Figure 6 shows a sequence of zooms of
this mesh around one of the reentrant angles.

It has been shown in [37, 38, 39] that a proper combination of h and p
refinement allows to obtaining an exponential rate of convergence in terms
of a fractional power of the number N of degrees of freedom in the finite
element approximation. Figure 7 shows a plot of log ηΩ versus

√
N , which

shows that the estimated error ηΩ behaves asymptotically in this test as
follows: ηΩ ≈ C exp(−α

√
N).

No analytical solution is available in this case to verify if the actual er-
ror also attains such an exponential rate of convergence. To provide some
numerical evidence of such a behavior, we have estimated the error of the
computed eigenvalues by using as ‘exact’ a more accurate approximation ob-
tained by an extrapolation procedure. To do this, we have used the fact that
the computed eigenvalues are expected to converge with a double order and
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Table 2: Concentric cylindrical tubes. Effectivity indices

Step N eff
0 56 0.1115
1 133 0.1350
2 247 0.1403
3 452 0.1219
4 831 0.1419
5 1487 0.1938
6 2945 0.2155
7 5416 0.2621
8 10444 0.2261
9 17815 0.2320
10 32278 0.2259
11 56307 0.2430
12 101781 0.2210

we have determined the parameters λ, κ and α in the model

λh = λ+ κe−2α
√

N ,

by means of a weighted least-squares fitting. The weights have been chosen
so that the most precise computed values λh play the more significant role
in the fitting. Thus, we have obtained a value λ = 0.07896, which we have
used to plot log |λh−λ| versus N1/2. This plot is shown in Figure 8, where a
linear dependence can be clearly seen for sufficiently large values of N . This
is coherent with the expected exponential decay of the error with respect to
the number of degrees of freedom.

It should be noted that a convergence rate exp(−α
√
N) is obtained in

this numerical test, rather than exp(−α 3
√
N), which is typical for the hp ver-

sion of the finite element method for source elliptic problems with piecewise
analytic data in the presence of corner singularities (see [40]). Although only
a few convergence results are known for eigenvalue problems (see [41], for
instance), in principle a convergence rate exp(−α 3

√
N) should be expected

in this problem too. However, our numerical experiments show an improved
convergence rate. To understand the reason for this behavior is a subject of
future research.
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Figure 4: Rhomboidal tube. Domain and initial mesh.

6.3. A bundle of quadrilateral tubes

In this last example we have computed the main vibration mode (i.e., the
mode with smallest eigenvalue) of a system closer to the actual applications:
five square tubes immersed in a fluid occupying a rectangular cavity as shown
in Figure 9.

Figure 10 shows the mesh obtained after 8 steps of the hp adaptive
scheme. Figure 11 shows the fluid velocity field computed from the pres-
sure obtained at the last step. The arrows at the center of each tube show
the directions of the tubes motion.

7. Conclusions

An hp finite element method has been proposed to compute the free
vibrations of a bundle of tubes immersed in an incompressible fluid contained
in a rigid cavity. Convergence and a priori error estimates have been obtained
for the hp finite element approximation of this spectral problem.

An a posteriori error indicator has been proposed and its reliability and
efficiency have been rigorously proved. We have introduced an adaptive
algorithm based on this indicator, which allows refining some of the elements
and increasing the polynomial degree in others at each step.

The reported numerical experiments for different cavities and different
shapes of tubes show the good performance of the error indicator and the
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Figure 5: Rhomboidal tube. Refined mesh: step 22.
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Figure 6: Rhomboidal tube. Refined mesh: step 22. Successive zooms

adaptive scheme. Numerical evidence of the theoretically expected exponen-
tial convergence is also reported.
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