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ABSTRACT. The goal of this work is to introduce a local and a global interpolator in Jacobi-
weighted spaces, with optimal order of approximation in the context of the p-version of
finite element methods. Then, an a posteriori error indicator of the residual type is pro-
posed for a model problem in two dimensions and, in the mathematical framework of the
Jacobi-weighted spaces, the equivalence between the estimator and the error is obtained on
appropriate weighted norm. Keywords: Jacobi-weighted Sobolev spaces, p finite element
methods, a posteriori error estimates. MSC:65N15,65N30

1. INTRODUCTION

In this paper we show several results concerning the two dimensional Jacobi-weighted spaces
and we introduce a local and a global interpolator with optimal order of approximation in the
context of the p-version of finite element methods (FEM). Then, we consider a two dimensional
model problem and we introduce an a posteriori error estimator of the residual type for the
p-version of FEM, and we prove that the estimator is equivalent to the error on appropriate
Jacobi-weighted norm up to higher order terms.

It is well known that the development of a posteriori error indicators and adaptive proce-
dures play nowadays a relevant role in the numerical solution of partial differential equations.
In contrast to the case of h refinement, it seems to be an open question whether uniform
reliability and efficiency can be achieved for an hp a posteriori estimator of the residual type
even in simple problems.

In the one dimensional case, analysis for a posteriori error indicators based on the residuals
for the p and hp of FEM is well known [31], 211, [I7]. More precisely, in [I7] the authors obtain
an error estimator of the residual type for the Poisson Problem and prove that the H' norm
of the error is equivalent to the error estimator up to higher order terms. Moreover, they
propose an adaptive algorithm and, since the error estimator is reliable and efficient, they
prove that the algorithm leads to a uniform monotone decrease of the energy error in every
step. It is important to point out that these kinds of results have not been established in
high dimensions, and the techniques used for one-dimensional analysis can not be applied to
higher dimensions.

In the two dimensional case, to the best of the authors’ knowledge, the error estimators
of the residual type present in the literature for the p and hp of FEM are equivalent to the
error with constants depending on p (see [4], 5l 6, B0] and the references therein). Moreover,
there is some numerical evidence that the p-gap can not be avoided [19]. In [30] the authors
obtain an error estimator of the residual type for the Poisson Problem in two dimensions
and, using optimal weighted inverse estimations, prove that the error is equivalent to the
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indicator and propose an hp strategy based on a predictor of the error in each element of
the mesh. Using these error indicators, a particular algorithm is proposed in [I6] and its
convergence is reached assuming a data saturation which, due to the constant p dependence,
becomes more restrictive for increasing polynomial degrees. In [2], B3] the authors proposed
an hp refinement strategy in which in every step and for every element they decided to do h
adaptivity or p adaptivity based on the local regularity of the solutions. On the other hand,
in [I5] 18] p-robust equilibrated residual error estimates are obtained for the Poisson problem
and Elasticity problem respectively. We want to point out that although these estimators do
not suffer from the p-gap frequently observed in the standard residual error estimators, some
local problems have to be solved in order to get it.

In recent decades, the Jacobi-weighted Sobolev spaces have received increasing attention
for the approximation theory of the p (and hp) version of the finite element methods. These
spaces seem to be the appropriate functional spaces for a priori error analysis and play a
crucial role in the analysis of the a posteriori error estimations (see [I, 7, [8, [0, 24], and
the references therein). Indeed, the a priori error analysis and optimal convergence for the
p-version of FEM in this context have been studied by several authors (see, for instance,
[8, @, 25]). More recently, increasing attention to this framework has developed because of
the need for optimal a posteriori error estimates [10, 22]. Motivated by the results obtained
by [17] in the one dimensional case and the a posteriori error analysis given by [22], in this
paper we analyze the a priori and a posteriori approximation theory for the p-version in the
mathematical framework of the Jacobi-weighted Sobolev spaces. In fact, we present several
results concerning the interpolation theory for functions in Jacobi-weighted Sobolev spaces. In
addition to that, for the two dimensional Poisson model problem, we develop an a posteriori
error estimator of the residual type for the p-version of FEM. This estimator is similar to
the standard estimators present in the bibliography (see, for example,[4] [5, [6l 16l 30] and the
references therein).

We analyze the equivalence of this estimator with the error in a Jacobi-weighted norm
and we prove quasi-optimal global reliability and local efficiency estimates, both up to higher
order terms. According to our results, the typical p-gap between reliability and efficiency is
essentially removed (up to p°, for arbitrary 6 > 0). As a consequence, our estimates are (see
[22, 24]) the best result that one can have for this kind of error estimator based on residual
in two dimensions, up to date.

The rest of the paper is organized as follows. In Section[2] we show several results concerning
the Jacobi-weighted spaces. In Section [3| we present the p-approximation theory and the
interpolations error. In Section [] we consider a two dimensional model problem and we
introduce the a posteriori error estimator and we prove its equivalence with the error in a
Jacobi-weighted norm.

2. JACOBI-WEIGHTED SOBOLEV SPACES

Let Q = (—1,1)? be the reference domain in R?. Fori = 1,2 let 3; > —1, a; > 0 be integer,
B = (B1,B2) and a = (a1, ). We define the weighted function Wp, in @ as follows

Wpa(z,y) = (1—2%)1Fo1(1 —y2)Pte,

If o = 0 we note Wg = Wp .
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For a function u € C*°(Q) and k > 0 integer, we define the following norm:
gy = Y- | 1w Ws.
|a|<k
The weighted Sobolev space H*(Q) is defined as the closure of the C°°(Q) functions with
this norm (see, for example, [§]), i.e.,
H(Q) = C=(Q) "7 @.

With |ugk,8(g) we denote the seminorms

gy = Y. [ 1w W,

laf=k

Let Q be an open polygonal domain in R?, 7 an admissible partition of 2 in parallelograms.
For any K € T, let F': Q — K be an affine transformation and u € C*°(K), then & = uo F' €
C*(Q). We define

lwll s iy = | w8 (1)

HUH%W(T) = Z HuH?—Ik,B(K)

KeT
We observe that the norm depends on the partition that we are considering. Then, the
Jacobi-weighted spaces for 7T, a partition of €2, are defined as

and

Hk’ﬂ(T) COO(Q)” ||Hk B(T)
H(])C”B(T) COO(Q)” Il 77, ﬂ(T)

From now on, we consider the case 5; = > —1 for i = 1, 2.

In what follows we present the Jacobi projection and we enunciate its properties (see [25]
and the references therein). In order to do that we need to introduce the Jacobi polynomials
in one dimension (for details see [23]).

Let I = (—1,1), 8 > —1 and let p be a polynomial degree. For = € I, let Jpﬁ(a:) be the
Jacobi polynomial of degree p, i.e.,

(1 —22)7 P ar(1 — 22)5+P

B _
Tp(x) = 2pp! dxP

It is well known that the Jacobi polynomials Jg (z) are orthogonal with the Jacobi weight

Ws(z) = (1 —2%)%, 1. e,
B —
’B.I‘ B T ) = "Yp7 p=m
JRACEABLAS { A

B 202 (p+ B+ 1) |
P @2p+28+ I+ DI(p +26+1)
where I' denotes the well known function Gamma given by I'(z) = [;° t*~ e~ "dt.

with
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Let Jﬁk(x) = %Jg(x), then for 0 < k < p we have
r 2 k+1
_ okl +26+k+ )Jﬁj(m)
Flp+28+1) P
which are orthogonal with the Jacobi weight W (x);

B8 _ >k
/ T2 (@) JE (@) Wayg(z) = { ok P00 = 2)
J ’ 0, otherwise

Jﬁk(x)

with
s 2¥TD(p+28+k+1)I2(p+B+1)
Tk T (2p+ 28+ Dl(p+ 1 — k)T2(p+ 28 + 1)

We note that if £ = 0 we obtain '75,0 = 'yg.

Now, we will enunciate two important properties that provide us an estimation for the

constants 75 . and ’yg . For this purpose we need some previous lemmas.
The following lemma (which can be found, for example, in page 427 of [28]) gives a well
known estimation for the function I'.

Lemma 2.1. For real x and x — +oo the following applies
[(z) ~ 2* Y221
where ~ means the quotient of the left side by the right side tents to 1 as x — +oo.

Thus, we have the following useful results.

Corollary 2.1. a) Foranya € R, T(n+a)~ (n+a) o120+ 2r  forn —
+00
b) For any « € R, limy, o0 % =1,

c) Given ag > —1, for any a such that —1 < a < «p, there exist positive constants A
and B (depending on ag but independent of o) such that

I'(n+a)
A< I'(n)n®

Therefore, the following estimate holds.

<B VneN

Lemma 2.2. Let —1 < 8 < [y, kK > 0 be integer and p a polynomial degree. There exist
positive constants A = A(By) and B = B(By), independent of p and 3, such that

Ayip™ <Al < Bp*yf Wp >k
Proof. If k =0 we take A = B = 1. Suppose k > 1.
Ve PT84k + )2+ A+1) (2p+28+ )(p+ DI(p+26+1) 1

VEp2k  (2p+28+ DT(p+1 - kT2 (p+26+1) 228012 (p + B + 1) p?*
F'p+26+k+1)I'(p+1)
CT(p+1—-K)T(p+23+1)p
_ D(p+1-k)+(28+2k) TEp*™  p+1—k\28+2%
B F(p+1—k')(p+l—k)QfB“’“F(er?ﬂJrl)( p )
= (I)(II)(II).
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In () and (II) we apply Corollary [2.1{c), for (I11) we observe that

. pt+1—k
lim —— =1,
p—)OO p
and, since % > 0 for all p > k, we get
1—k
ClSLSC% Vp > k,
p
for positive constants ¢; and ¢o and the proof concludes. O

Lemma 2.3. For —1 < 8 < By and p > 1 a polynomial degree there exist positive constants
A= A(By) and B = B(fy), independent of p and j3, such that

Ap~t <) <Bp!

Proof.
75 _ 225+1I‘(p—|—,3 + 1)2
Po@p28+DP(p+ DI (p+284+1)
_ 2 T+ B+1)\2 pP I (p)
C (2p+28+1) ( T (p)pf+! ) T(p+28+1)
By Corollary c) there exist positive constants ¢; and ¢z, independent of p and 3, such that
r 1)\ 2 264+17
< ( (1?(;)551—1 )) I‘(Z;)—i—QB(i)l) <e,Vp>1,V-1< < by
and the result holds. O

For any > —1, k > 0 and u € H*?(Q), we have the Jacobi-Fourier expansion (see, for
instance, [25])

)= > el (@) (y) (3)
1,9=0
with ) ’
Cij= u(z)J? (2)J? Ws(x,y).
; 7%3/@ ()2 ()T )Wz, v)

Using the orthogonality of the Jacobi polynomials we have that

[l = 3 leisl284?  and /Q U Waa= S e

1,j=0 120,202

Then, for —1 < 8 < By, by Lemma [2.2] we deduce that

|u‘§{k76(Q) = Z Z |CZ,]| 77, 041,7] (o) = Z Z |C74,j|27;87]5 2alj2a2

la|=ki>a1,j>a2 la|=kiza1,j>o2

2.8 B
Vi Vian (4

where A ~ B means 1B < A < ¢ B with positive constants ¢; and ¢o independent of 5.
For p > 0 we define Q,((Q) the set of all polynomials of degree less than or equal to p in
each variable in ). The Jacobi projection of u in Q,(Q) is

y)= > cijJ (@) (). (5)

4,j=0
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Lemma 2.4. Let —1 < 8 < fy, then

D= O]~ gy o+ D7

with constants depending on By but independent of p and (3.
Proof. By equation (2.2) of [26] we know that

T(p+B+1)
DI =1 and FO) = 5o SSrE gy (6)
Then, we can write
! L+ D+ T(E+1)
and the result follows from Corollary c) O

The following theorem states some approximation properties of the Jacobi projection. We
want to recall that similar results can be found in [27, 20] for the case 8 = 0. However, these
techniques can not applied for the case of § close to —1/2, which will be our focus of interest.

Theorem 2.1. Let I = (—1,1), Q be the reference domain in R?, —1 < B < By, and

u € HY(Q). Let p > 1 be a polynomial degree, ng € 9,(Q) asin (@ Then there exists a
positive constant C = C(By), independent of u, B and p, such that

lu = T ull gro.sq) < Clp + 1) ulgrsg)- (7)
If, in addition, p < —1/2 then

_C
(B+1

C -
”(u - ng)(xa il)”HOﬁ(I) < m(p + 1) 1/2|u]H1,;3(Q),

(e = Ty LYl osery < gz gy @+ D7l

and if, in addition, u € C°(Q) and B < —1/2 then
C

(1 - 2803 +1)?

Proof. The proof of is given in [25] with a constant that could depend on . However,

following the steps of that proof, we observe that a positive constant C' can be chosen inde-

pendent of 3. -
Now, we prove ,i.e., the bound in the edges of Q. We assume that u € C°(Q) since the

general case can be followed by density arguments. We carry out the case || (u—Hfj w) (@, —=1)| g1y
the other cases can be obtained analogously.

- -n=( X+ X+ X e @

i>p+1,i>p+1l  i>pl,j<pt+l  i<p+l,i>ptl

= S 0@+ S P @)+ Y o (@)

12p+1 1>2p+1 i<p+1

|(u — ng)(Vﬂ < (p+ 1)B+1/2|U|H1,ﬁ(Q), vV V vertex of Q. 9)
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where

bz[-l] = Z Cw‘Jjﬁ(—l), t>p+1

Jj>p+1

0= N a1, izptl
Jj<p+1

b£3] = Z C@ijﬁ(—l), 1<p+1.
Jj=zp+1

It is well known that, if f : [p, +00] — R is a non-negative, decreasing and integrable function,
then

Z f(n / flz)da. (10)

i=p+1

Therefore, by Lemma Holder inequality, Lemma and we get,

B2 < (0 Jeigll I (-1)))?

J>p+1
L 102
s (> el + VPN 57
Jjzp+1
sz (2 lePA) (Y G+0P )
Jjzp+1 Jjzp+1
Z | 2]‘2 B 2 Z j—1+25)
j>p+1 Jjzp+1
< *C (3 lesPy ([ o)
— 2 )
F(5+1) St P
S 28 Z ‘0%]2[32_
Jj>p+l

Then,

1 78 12,8 C a9 2828
I b 230800y = > b Py o _ml) S e

i>p+1 z>p+1 i>p+1,7>p+1

C
2,3 \Cz |2 Bi2.8 ~ 281,,12
> 797 < s P Tulinsg)-
ﬁ+1 i>0,5>1 L5 +1)
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Analogously,
B < (X JeagllT) (1))
]<p+1
.1\ 2
(Y el + VPGV M)
Jj<p+1
C
FETIEP Ty 2037 leaglG+ 1P 2 () 71%0)?
J<p+1
C _ ) _
<t @t DD sy (D G+ )P
(ﬁ+ ) Jj<p+1 Jj<p+1
C
<————+D72(Y JaiPE) (D] G+1)PHY
F(/B + 1) j<p+1 j<p+1
C
< (p 1) i i1*2]i%) (p + 1).
r'(B+1)2 j<zp—:i-1 J
Thus,
2 2
I3 0PI @ ey = D Y
i>p+1 i>p+1
C
< s DT Y el
2 J )
F(ﬁ + 1) i>p+1,7<p+1 ’
C
< p+1)7"! |cij ’7512’75
r(5+1)2( ) igd:zo Il
C
L — D)7 ul?
Similarly,
C
I > 81T @ o) < g gmap el
1<p+1 F(5+ )
As a consequence,
C _
l(w = ) || ooy < m(er D2l s )

and holds.
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Finally, we prove (9) for V' = (—1,—1), the same arguments can be used for the other
vertices of Q.

(-1 (-1, =D = > + >+ > e (-1)J) (=)

izp+lj2p+l izp+l,j<p+l  i<pt+lj2p+l

<>+ D>+ el =)l

izp+1l,j>p+1  izp+l,j<p+l i<p+l,j>p+1
C . .
Sl Xt X+ X el PG+
i>p+1,5>p+1l  i>pHl,j<p+l  i<p+l,i>pt1

c
= fg D,

At first we compute I1 and I11. Due to Holder inequality and Lemma [2.3] we obtain

IT < ( Z |Ci,j|2’}/f’}/fi2)l/2( Z (i +1)28(j + 1)25(7@)—1(7@)_11._2)1/2

12p+1,5<p+1 12p+1,5<p+1
ON\1/2 . . _—9\1/2
< C( Z |Ci,j\2’yfvfl2) / ( Z (Z+1)25+1(j+1)25+12 2) /
12p+1,5<p+1 i>p+1,j<p+1
N\ 1/2 . _9\1/2
<c( > PR ( S +1)PH) /
12p+1,7<p+1 i>p+1,j<p+1
o\ 1/2 . —_1\1/2
el G S O L ) e (R VI S O
12p+1,5<p+1 1>p+1

Now, from it follows that

oo
O\1/2 _ 1/2
m<e( Y el P+ 1)/ e 42 )
i>p+1,j<p+1 p

o\1/2 1/2
<c( Y e (e 0p®)Y
i>2p+1,j<p+1
oN1/2 1/2
<o X ey PR P < P Rl g).
i2p+1,j<p+1

For I11 we proceed analogously but changing the roles of ¢ and j, and we can conclude
that

11T < CpP 2 ul s -

In what follows we compute I.

1<( Y a0 Y. GH)PGH PN RN )

i>p+1,j>p+1 i>p+1,5>p+1
.\1/2 . . 1/2
<o Y e PO Y Gy
izp+1,j>p+1 i>p+1 jzp+1

< C( Z |ci7j]2fyffyfij)1/2(/ xwdx/ y25dy)1/2.
P

i>p+1,5>p+1 p
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Since 8 < —1/2 the integrals converge, and it follows that

C
Tsggg( 2 g

izp+1,52p+1

2y)]ig) 2 (p ) 2

C

. 2\ 1/2
< — 26p2/3+1( Z |ci’j’2%@%g3zz + Z ‘Ci,j 2%5%@]2) /
i2p+1,j2p+1 i2p+1,j2p+1
¢ 28+1
S P Umaer
Therefore,
C
—Pu)(-1,-1)| < B41/2
and the proof concludes. O

Let K be a parallelogram of R? and let F : Q — K be an affine transformation. For p > 0
we define

Qp(K) ={uluo Fg € Q,(Q)}.
Now, from and Theorem we have the following result.

Corollary 2.2. Let K be a parallelogram of R?, —1 < 8 < By, and w € HYP(K). Let p be a
polynomial degree, there exist HgKu € Q,(K) and a positive constant C' independent of p, 3,
and u such that

w105 seull o) < Cp+ 1) ul sy (11)
if, in addition, 5 < —1/2 then

c _
lu — Hf,Ku”HOvﬁ(»y) < m(l"f‘ 1) 1/2|U|H1ﬂ(K) V 7y edge of K, (12)

if, in addition, u € C°(K) and B < —1/2 then

|(u — ng)(V)] < (p+ 1)1/2+B|U’H1,B(K)7 vV V vertex of K. (13)

C
(—1—28)0 (3 + 1)?
3. p-INTERPOLATION OF SMOOTH FUNCTIONS

The goal of this section is to introduce interpolation operators which are suitable to obtain
a residual error estimation in the mathematical framework of Jacobi-weighted Sobolev spaces
of the p-version of Finite Element Methods.

Let © be an open polygonal domain in R?, 7" an admissible partition of 2 in parallelograms.
Let p be a polynomial degree, we denote

SP(T) ={uecC'Q) | ulx € Qp(K) VK €T},
SE(T) ={uecCJ(Q) | ulx € QpK) VK €T}

We choose a polynomial degree px for each K € T and we denote by p = (px) the vector
of polynomials degrees. We assume that the polynomial degrees of neighboring elements are
comparable, i.e., there exists a positive constant C' such that

pr < Cpxr K,K' €T with KN K’ # 0. (14)



INTERPOLATION IN JACOBI-WEIGHTED SPACES AND A POSTERIORI ERROR ESTIMATIONS 11

We introduce the following notation
SP(T) = {ueC%Q) | ulk € Qe (K) VK €T},
SP(T) ={u e CY(Q) | ulx € Qp(K) VK €T},

and
& ={all edges e in T},

E°=ENQ,
N = {all vertices V in T}.
For V € N we denote
wV:U{I_(]KETandR’ﬂV#(Z)},
Tv = T|wva
py = min{pg|V € K},
Ey = {all edges e of &€ such that V is an endpoint of e}.
For any K € T or e € £ we define

Wi = U{K'|K’ €T and K'NK # 0},
we:U{K’\KeTandf(ﬂe#(b},
pe = min{pg|e edge of K}.
Let K € T and let F : Q — K be an affine transformation, for a function v in K we
denote & = uo F. Let é = I x {—1}), for any e € € let F, : é — e be an affine transformation,
then for a function v in e we denote & = u o F,

In order to introduce the local and the global interpolation operator we need some previous
lemmas.

Lemma 3.1. Let [ = (=1,1), =1 < 8 < By and p be a polynomial degree, there exists
g € Pp(I) such that g(1) =0, g(—1) =1 and

gl 0.6y < CT(B+ 1) (p+ 1)~ 0+,
where the constant C' = C(fy) is independent of p and j.

Proof. Let fg = -1, fg =1 and let fjﬁ, j=1,...,p— 1, be the Gauss-Lobatto-Jacobi points,
i.e., the zeros of the polynomial (Jg)’ (see Theorem 19.8 of [I4]). Let g be the Lagrange

interpolation polynomial of degree < p such that g(fg) =1 and g(fjﬁ) =0forj=1,...,p
By formulas (2.14) of [I3] and (19.31) of [14] we get

gl 0.5y < o
where

—1)!
Py =220 (B+ 1)I(B + 2)F(p(i251)jr2)'

Finally, since I'(p) = (p—1)!, by Corollary c¢) we can conclude that there exists a constant
C = C(fp), independent of p and S, such that

ol < or(B+1)2p 20+
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and the proof concludes. Il

Corollary 3.1. Let K be a parallelogram and Vi, Vs, V3 and Vy its vertices. Let —1 < 8 < By
and p be a polynomial degree. There exist a function x; and a positive constant C = C(fy)
independent of p and B such that

i) Exa(V;) = 615 (takes the value 1 in V) and 0 in the others vertices),
il) €k € Qp(K) ,
i) 1€kl oy < CT(B + D2(p+1)"%28 and
iv) [[€xillgosey < CT(B+1)(p+ 1)~ Ve edge of K.

Proof. Let @ = (—1,1)? be the reference rectangle, p a polynomial degree and g as in the
Lemma then the function G(z,y) = g(z)g(y) is in Q,(Q) and satisfies

G(—1,—1) =1 and takes the value 0 in the others vertices of @,
1Gllgos(g) < CT(B + 1)%(p + 1)721+9),
HGHHW(E) <CT(B+1)(p+1)"1F) Ve edge of Q.
Let Fky, : @ — K be an affine transformation such that Fg y,(—1,—1) =V}, then {x; =
Go F};IV, satisfies i)-iv) and the proof concludes. O

Corollary 3.2. Let K be a parallelogram and e an edge of K. Let —1 < 8 < By and p be a
polynomial degree and w € Pp(e) such that w|gpe = 0 (i.e. w(V) =0 for all V vertex of e).
There exist 1 an extension of w to K and a positive constant C = C(fy), independent of p
and B, such that

i) 1 € QyK)
) 1/)‘6 = w,
iii) Ylar\e =0 and
iv) [l .55y < CT(B + 1)@+ 1)~ w] o6 ) -
Proof. Given Q (—1,1)2, the reference rectangle and é = (—1,1) x {1} an edge of Q, we

consider Fg . : @ — K an affine transformation such that F Ke( ¢) = e. Hence, we define
W € Pp(é) as w = w o F . and

0(#,9) = w(#, ~1)g(9)
where g is the polynomial of degree p introduced in Lemma Then ¢ € Q,(Q) and satisfies
ple = b,
Plagie =0,

1]l 0.5y < CT(B+ 1) (p+ 1)~ D |ab]| o5
Hence, the proof concludes by deﬁmng

=)o Fy!

For each V € N, in the following theorem we introduce a local operator I‘B/ : HS’B Q)N
C%wy) — SP(Ty) and we present some local error estimates.
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Theorem 3.1. Let —1 < 8 < —1/2 and p a polynomial degree. For each V. € N and
u € Hé”g(Q) NCOwy) there exist an operator I‘ﬂ/ : H&”B(Q) NC%wy) — SP(Tv) and a positive
constant C independent of p, 8 and u such that

lu = I ul o010y < (0 + 1)l sz, VK €T,

—1-28
B ¢ -1/2 o
lw = Tyul| gos ey < _17_26(29 + 1) Pl Ve €&y
If y € (E\ &°) is such that v C dwy then I‘ﬁ/u\7 =uly, =0.

Proof. For each K € Ty, we consider Hfi xu as in Corollary Now, we will define ¢ such
that ¢x (V) = u(V) for all V' vertex of K. Indeed, given Vi, Vo, V3 and Vj the vertexes of K,
we define the polynomial ¢ of degree p as following:

4
dc =T u+ > (u =TI u) (Vi)éxcy
=1
with {x; the function defined in Corollary
Therefore, using (L1, and Corollary (3.1 iii) we find that
= @xcllrons ey < llu =TI, gl oy + Z\ w =10 ew) (VD) €l 0.5 )

< Clp+ 1) ulgrs) +C (p+ 1)~ fu| s i)

#
(—1-26)

C
«c_C —(3/248)

similarly, for any e edge of K, from , and Corollary iv), we have that

c _

Let e € £° be such that e C Ty N (wy)° and let K7 and Ky be the elements of Ty that
share the edge e, we consider

w= (9K, — Prx)le € Ppyle).
Observe that

[l goseey < llw— @Ky | mos(ey + v — Gxcy | o5 (e

¢ —1/2
< .
=i P o o)

Hence, let ¢ € Q) (K1) be an extension of w to K as in Corollary then
'¢|e = w,
Ylor\e = 0,
1006 56,y < CT(B + 1)+ 1)~ [l go.s o)-
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We define §5K1 = ¢x, — ¥ and we note that this function satisfies:

$K1’e = ¢K2‘e7
b1 lor\e = Pralok\es

and therefore we have the following error estimates

Ju— &K1HHO«5(K1) < lu— oK, llgo.s k) + 11 o8 (1)

(0 + 1)~ | sy + CT(B + 1) (p + 1)~ D[] oss e

_ C
T (1=28)I(B+1)

< 1)~ (3/2+8)
S i@ty oy

)
_ C _
+CT(B+1)(p+1)"HA) STy (p+ D)7 2l 160, + [ular15(1c,)

(p+ 1)7(3/2+B)(|U’Hlaﬁ(1(1) + |ul 1.8 (13))

<
= 1-23
and .
lu— b | gosey < llu— @Kl Ho.8(e) + 1Pl o)
= llu— ¢ [ gos(e) + llwll gos )
< C
T (-1-28)(B+1

c ~1/2
TGyt Y (i) +lulise)

)(P+ 1)_1/2‘U|H1ﬁ(K1)

< + 1) Y2(Jul g, + |ul g1, )
S Ciomrprn P Y () +lulase)
Then, we can modify ¢k, to ¢~5K1 and repeat this process in each e € £° such that

e C Ty N(wy)°.

If v € (£\ £°) is such that v C Owy, we consider K € Ty such that v € 0K. Let w = ¢k,
we observe that w = u = 0 in 07. Now, let 1 be as in Corollary an extension of w to K

and dx = dx — 1, then
CZN)K|7 =0,
bxlor\y = PKlor\ys

and
lu = ¢xcllro.e iy < Nl = bl o ey + 191 r0,p(x0)

0 1) Dl ey + CT(E+ 1)+ 1) ol s,

_ C
T (1=29)r (B +1
C

IN

(p+ 1) D) s )

(—1-2B)T(5 + 1)
+CT(B+ D)+ 1)) ([lu— bl gos) + lullosiy).
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since [|ul| go.5(,) = 0 because ul, = 0 we have that

lu = Gk |l pro.s (e < 1 (p+ 1) ] s gy

C

AT B+ 1)

+CT(B+ 1)+ 1)~ u - b o)
C

S ST Y

C
+ —(1+8) -1/2
(—1—28) (p+1) (p+1) |U\H1ﬁ(K)

(p+ 1)7(3/2+6)|U|H175(K)

—(3/2+8
< ﬂ(?ﬂ“ 1)~ B2 g1 gy

We can modify ¢ to ¢ and repeat the process for all v such that v € (£\&£°) and v C dwy .
Thus, the operator I‘ﬁ/u\ K = ¢ satisfies all the requirements. O

Now, we are in conditions to introduce a global operator Iu € S5 (7) which satisfies the
following error estimates,

Theorem 3.2. Let —1 < < —1/2 and u € Hé’B(Q) N CO%R), then there exist Tu € S§(T)
and a positive constant C' such that

C (3248

)
—17—2/6])1( |u’H1’ﬁ(T‘wK) VKEe T, (16)

[ — Tul| gos 5y <

C _
s = Tl oy < v Pl o,y Vees. (17)

= _1-28
The constant C' is independent of u, 8 and p.

Proof. A fundamental property of the space S§(T) (see, for example, [29]) is that we can
identify “nodal shape functions” that form a partition of unity, i.e., for each vertex V € N,
we can find a function ¢y € S*(T) such that

Pvlow, =0, D wv=1 and supev(z)| < 1.
VeN e

We consider I‘ﬁ/u € SPv~Y(Ty) as in Theorem with p = py — 1 and we define

Tu = Z chI"B/u.
VeN

It is clear that Tu € CJ(f) and

Tulx = Y pvIjulk,
Vek
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since py < pg, for all K such that V € K, then Iu|x € Q,, (K) and

llu— IUHHM(K) = | Z pYvu — Z @Vl\é'u"HOvﬁ(K)

VeN VeN
=1 > evlu—Iu)lgosuy < > llu— Il gosx
VeN VeK
c —(3/2+6)
< —F _1_26 Z Py |u’H15 (Tv)>
VeK

since polynomial degrees of neighboring elements are comparable then py, —(3/2+8) <Cp (3/ 2+8 )

therefore

C —(3/2
HU—IUHHO,,B(K) S T—QﬂpK( / +ﬁ)|U‘H1’B(T|wK)’

and the first estimate holds. Now, let e € £ we have that

lu—Tullgose = 1| S ovu— 3 ovIiullgose < 3l — Il gos
VeN VeN Vee

-1/2
2BZ ‘U|H1ﬁTV)’

Vee

since polynomial degrees of neighboring elements are comparable then p‘_/l/ 2 < Cpe 1/ 2, there-
fore

C _
”’LL — IUHHO,[E(e) < WPG 1/2|U’H1,B(T\we)7

and we conclude the proof. O

In what follows we denote by Cz a generic constant which depends on 3 but is independent
of p.

We finish this Section recalling the following trace results which can be seen as a consequence
of Theorem 2,11

Corollary 3.3. Let K be a parallelogram in R?, v an edge of K and —1 < 3 < 0. There
exist a unique lineal and continuous function T : HYP(K) — H%P(y) such that

1T (W go.8(y) < Csllullgrs k.
For u € HY#(K) and v an edge of K we denote 1wl gr0.8(4) = 1T (W] 0.6

Lemma 3.2. Let I = (—1,1) and o, 5 > —1. Then, there exist Cy g and Ca o such that for
all polynomials P € Pp(I)

/P (1 —2%Pde < Cyap /P(x)2(1 — 22)P e,
I

/ "(2)2(1 — 2%)* T de < Oy ap /P($)2(1 — 2?)%dz.
1

I

If, in addition, —1 < a < ag and —1/2 < f < —1/4 we can choose C1 and Cy = Cy(ayp)
independent of 5 and «.
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Proof. The first inequality can be found in, e.g. [14] 12]. The proof of the second inequality is
analogous to the proof of Theorem 3.95 of [31]. Following the steps in those demonstrations
we can see the dependence of 8 and « in the constants. O

Lemma 3.3. Let [ = (—1,1), -1 < 8 < 1 and P € Py(I), there exists 0(Z,7y) which is
defined on @) with the following properties:
i) 9(2,—1) = P(2)(1 — %)%, d|pg\w = 0 where £ =T x {—1};
i) (|8l o5 (q) < Co(p + 1) M IP | go.s sy
iii) [|9]| 1.5y < Calp + 1)BHP”H075(1)'
If, in addition, 1/2 < f < 3/4 we can choose C independent of 3.

Proof. By Lemma we know that there exists g € P,(I) such that g(1) =0, g(—1) =1
and ||g|[ o~y < Cp(p + 1)=(=8) . We define 4(z,7) = P(2)(1 — 22)?¢(5), this extension
obviously satisfies condition i). To prove condition ii) we observe that
[ o=t = [ Papa- Vs [ o@ra - )
Q I I
1P 00 912051y < Cslp+ 12D PR,
Hence,
191 0.5y < Ca(p+ 1)~ || P|| gro.s ).

To prove condition iii) we calculate ||%||H0,75(Q) and ”%”HO*B(Q)

a@(A ) (8P

€T =
0z Y =\ oz

(#)(1 - %) + P(2)8(1 — )77 (<22) ) g(9),

Ol @) - P )P g(9)

9%
| Gy a-aa-g) P <cf |
Q 0% Q
+ [ PR 000
by inverse estimates of Lemma [3.2| we have that

/I(ap (#))°(1 — 227+ < Calp + 1)2/113(:3)2(1 — #»)Pdz

i
/P(ﬁc)Q(l — %)% < Cy(p + 1)2/P(@)2(1 — #%)Pdz.
I I

Therefore
0, .\2 o1 O
/Q((?j:(x’y)) (1-2*)'"P1—-g%)" SC,B(p"‘1)2HP”%{0,5(1)HQH?{&—B([)

<Csp+1)* 0+ 1) 2P| G0,
= Cs(p+ V1P 2001

On the other hand,
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then
/Q (g;:} (@7:&))2(1 - Qz)lfﬁ(l — ;@2)*/5 = /IP(:E)Q(l — @2),36@/1 (gz (Q)) (1— @2)1—56@7

by inverse estimates of Lemma

dg ON1—f .
S22 =)'y < Colp+ 1) [ 9021 — ) Pas,
thus 5
UV, . 2 AON1— AN —
(ay(:v,y)) (1 =971 =377 < Cslp + V2| Pl o 1y 9l 051y
< Cg(p—i— 1)25”PH?{0,£3(])
from which we conclude the proof. Il

4. A POSTERIORI ERROR ESTIMATION

In this section we introduce an a posteriori error indicator of the residual type for the
classical Poisson model problem and, by using the p-interpolation error estimates obtained
in the previous sections, we show the equivalence between the indicator and the error in an
appropriate Jacobi-weighted norm up to higher order terms.

4.1. Problem Statement. Let @ C R? be an open polygonal domain, I' = 9Q and f €
L?(€2). We consider the classical Poisson problem: Find a function u such that:

—Au=f inQ
{ u=0 onI (18)
The Variational Problem associated to is: Find u € H}(2) such that:
a(u, v) =L(v) YoveHQ) (19)

where a(u,v) = [, Vu- Vv and L(v) = [, fo.
Let T be an admissible partmon of Q) in parallelogram elements, and S§(7) as in , the
Discrete Variational Problem is defined as follows: Find u € S§(7T) such that:

a(u,v) = L(v) Vv e SHT). (20)

Following the ideas introduced in [22], let Q = (—1,1)? be the reference domain, g > —1,
a = (a1, az) with o; > 0 integer, we define the weight function W3, in @Q as follows:

Wﬁ,a($1,l’2) =(1- x%)ﬁ—al(l - $%)/3—062‘

Note that W/@ga =Ws_a
Then, the weighted Sobolev space H*#(Q) is defined as the closure of the C*(Q) function

with the norm
sy = S / 02 W 0.
|a|<k

by |ul? we denote the semi-norm

HEA(Q)
UESS / 07UV 0

laf=k
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Let K be a parallelogram and let F' : Q — K be an affine transformation. Given u € C>(K)
we can define & = uo F' € C*(Q) and (see, for example [22])

HuHHk B(K) = ||UHH1€5 Q)

Then, for 7 an admissible partition of € in parallelogram elements and u € C*(Q), we

define
HuHHk B(T) — Z HuH%[k,ﬂ(K)
KeT

Hence, the Jacobi-weighted spaces H*#(T) and FI(I)C P(T) for T a partition of Q are defined
as follows:

fNIk’B(T) C'OO(Q)” ||Hk B(T)
I;T(I)Q,IB(T) COO(Q)” | 7, ﬁ(T)
Lemma 4.1. Let 0 < 8 < 1 and u € H'**(Q), with s > 52, then u € H“(T).

Proof. Since the functions C*°(Q) are dense in H1*5(£2), the result can be obtained from the
inequality (1.8) of [1I] on @, i.e.,

2fa A
/QQW—C|’f"HAQ> Vfe HMQ) 0<A<1/2 (21)

where p((2,7),0Q) denotes the distance from (&, 7) to the boundary of Q.
Indeed, there exist o, € C°°(Q) such that ¢, — u as n — co in H*5(Q).

o —

Let K € T and Fk : Q — K be an affine transformation, we note ¢, — u = (¢, — u) o Fg.
Since 5 > 0

[Emura-Pa-’ < [ (Gru? — 0asn o
Q Q

then
llon — UHHO,B(K) —0asn— oo.

Since 0 < 8 < 1 and (1 — %) > p((2,9),0Q) we get
_ . 05 (¢ — )
0s(fn—w) - - < [ (O:(
f, sta = -t - < | e
with A = % Now, since 0 < A < 1/2 by it follows that
(900 —w)* _
8 n - < n
/Q s < 10:(En =Wl g < 16n — ey
then, if A < s we have
\QDn u’HH'/\(Q) — 0 as n — oo,

and therefore

—

(03(pn —w))*(1 = 2271 (1= 9%)° — 0 as n — oo

We can proceed analogously for the other derivative and conclude that ¢, — u as n — o0
in H'A(K). Thus, the result follows since we can do this for any K € T. O
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Let u be the solution of and let uy be the solution of (20). As in [22], we introduce
the norm for the error e = u — uy denoted by |||e||| and |||e|||x by

llelllx = sup a(e, v)| < [lell grs )
ol gr1,~8 5y =1
and
llelll = suwp (e, o)) < llell o
H'UHHLfB(T)Zl
0

Remark 4.1. Let 0 < 5 < 1 and u be the solution of @), ifu € H™S(Q) with s > 52 then
e € HYP(T) and, |||e|||x and |||e]|| are well defined.
By and we can infer that
a(e,on) =0 Yon € SH(T). (22)

For each [ € £° we choose a normal vector n; and denote by K, and K, the elements that
share the edge [. We define

0
H;ﬁvﬂf = V(uN|Kou) - e — V(un|k,,) - e,

which corresponds to the jump of the normal derivative of uy across the edge /.
In what follows we assume that 1/2 < 8 < 1 and wu, the solution of , is such that

u € H'#5(Q) N HY(Q) with s > 152, Then, for v € Hy B(T> such that HUHHl’_ﬁ(T) =1 we
~ 0
have that e € H4(T) and

ale,v)= 3 (/ (f + Bu)o+ /emﬁfﬂev). (23)

KeT UK (CORNE®
For € > 0 and v. € C5°(€2) such that ||v — 'UEHHI -8y <6 by Theorem v = vell o5 Z) <
Cge for all £ € £. Since —1 < —f < —1/2, if we take Iv. be as in Theorem. by using
and (23)) we get

a(e, v) = a(e,v — Tve) + a(e, Tv)

- (/K(f—l-AuN)(v—Ive 3 /[[a“Nﬂ IUE)>

KeT ecazmgo
Z / [+ Aun)((v = ve) + (ve — Tve))
KeT
0
+f 3 /[[ uNﬂ —ve) + (v = Tv0))
ecango
< Z (Hf + AUNHHW(K) (HU - Ue”Hoa—ﬂ(K) + ||lve — IUsHH&—ﬂ(K))
KeT

(||v — ’UEHHO,fﬁ(g) + HUe - IUE”HOv*ﬁ(Z)))‘

> 5]
mazmso H2(0)
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Hence, by , , we obtain

C
ale,v) < Z (1 + Aunllose) (¢ + ==z Pledlan-scri.,)

K
= 1+283
auN]] C —1/2
(Coe+ ———==p, "“lvellmr-s(71,,,))
écango H [[ ‘ HO-A(£) —-1+4+25 ‘ )
C 3/2—
< 3 (15 + Aunllmos (e + “1+ 28" PO e = velln s + el -ser,o)
KeT
1 oun C 71/2
4o Z [[]] (Cge + —————p, "“(|lv— Vellgr-s¢71,,) + IVl 18071, )))
2 (COKNE® H on |, ‘ HOA(0) —1+26 ‘ ‘ )
C  _3/2-8) ¢ —@3/2-8)
< zé;r (Hf + Aun || gos iy (€ + TropPK ‘T TPk L)
8uN]] ~1/2 C —1 2
zcango H [[ ‘ HOB(0) -1+ 25 ‘ )

Since this holds for all € > 0 we conclude that

C 0
a(e,v) < WZ (17+ Al o5 ey ™ ﬁHvHHw(mK)*% 2 H Halﬂe‘

—1/2
1ol

p
(COKNE® HYP(0)
Therefore,
¢ *(3/2%) 1 oun —1/2
el < > (If + Aunllgosx +5 0, - P 7).
—1+28 KGT( 2 e H on ||, ‘ HOB(0) )
Let fp, = Hg}ﬁ i [ as in Corollary then
C 3/2— —(3/2—
llelll < > (1o + Bunllosepi™ ™ + 15 = focllosopi ™™
—1+28
KeT
oun —1/2
H [[ ﬂ ‘Ho,ﬁ(z)pl : )’
2 (cornes

Let 0 < § < 1/2, we take § = 1/2 4 4. Then

C —1 5
llelll < = Z (i + Aunlagosp ™ + 15 = Fancllmosaopi ™
KeT
> 52 )
Z OKNE® H ﬁ(g)
C is independent of §.
For each element K € T the local error indicator is defined as:
Nk = Nhy + Moy (24)

where

>, (25)

LCOKNE®

AN

2 2 —2 2
N5 = I for + AUNHHo,ﬁ(K)pK and g, =
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with
ou
2 2 -1 N
i = VRl Re= |52 (26)
Therefore, the global estimator is given by
7= nk (27)

KeT

Thus, we have the following theorem which proves the reliability of the error estimator up
to higher order terms.

Theorem 4.1. Let f=1/2+ 6§ with 0 < 6 < %, u be the solution of @), un the solution of
(@/ and e = u —uy. Let n be as in . Assume that uw € HIT$(Q) N HY(Q) with s > %
Then, there exists a positive constant C' such that

/
elll < Sobae{n+ (2 020~ Foliose)

KeT

where Pmay = max{px|K € T}. The constant C' is independent of p and 0.

In order to guarantee that the error indicator is efficient to guide an adaptive refinement
scheme, our next goal is to prove that nx is bounded by the weighted norm of the error up
to higher order terms.

The following lemma provides an upper estimate for the first term in the definition of .

Theorem 4.2. Let 8 =1/2+6 with 0 < § < 1, u be the solution of , un the solution
of (@ and e = u—uy. Let ng, be as in . Assume that u € H3(Q) N HY(Q) with
s> 1;ﬂ. Then there exists a constant C(K) such that

1
i < C(K)(|llelllx + I;prx — fllmosxy)-
The constant C(K) is not dependent on px and §.

Proof.

||fpz< + AUNH%{(LB(K) = ||fp1< + AUNH?{(LB(Q)

= | U B0 =270 37

= / (pr/—i—XuN)v}(
Q

where vk = (pr/—i-\AuN)(l — 22)8(1 — §%)P, then we define
UK:'UAKOFlgl in K and wvg=0inQ\ K.

Therefore

i + Aoy = CU) [ (i + Auwyon

:C’(K)(/Kfv;(—i—/KAUNUK—i-/K(pr—f)UK)-
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Now, since vgx € HE(Q) and u solution of (19) then [, fox = [} Vu - Vog and

| fore + Al ) = /vu Vg — /qu VUK+/(prf)vK>

(/ Ve - VvK+/(pr—f)vK)
(1) (atec o)+ [ (e = Pow)
(
K)(

VK
IR ™S Sy g
|| I{HH1 ( HUKHHl —5(K)) K( PK ) )
ol gr—s oy el + 1 fpre = Fllos iy lvre |l go—5(x)) -
Observe that
o -y = i o-sg) = [ i =321 - )72
e (28)
- /Q Ui + Bus)2(1 = 22°(1 = )7 = [ fye + D20 g

On the other hand,
- v} o1— o 0V} N oN1—
[or¢ 71,5 () = [oikc 31,5 (Q) = /Q (55) =)= "+ /Q (g ) (=28 P,

0T
We note that
Ok (O(fore + Dun) . ag _ o s
= ( = (1= )+ (f + Bun)B(1 - ) (-20)) (1%, (29)
and therefore

Ok \2 - LN — a(pr/‘i‘_KUN) 2 . N
/Q(a@) (-3¢ ﬁsc*(/@((%) =% =)

' /Q<pr/+\AuN>2<1 — &) 1= 7))
- C(I + D).
Now, by the estimates given in Lemma [3.2] it follows that

1< 0 /Q (e + Bun)2(1 = 821 = 52 = Ol e + Dun o

and
= Cp%{/ (Fpie + Bun)?(1 = &) (1 = ) = Ci | fore + Bun 3010
Therefore, QA
/ (8;9?)2(1 - ;&2)1—13(1 — g2)—6 < Cp%(prK + AUNH?{O,B(K)-
Analogously

OV |2 2\ 1— $2)—
/ ( 65) (1= (1 =877 < Opk | fyw + DunlFro.s sy
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Then,
vkl -8y < Ol foie + Aun || gosry- (30)

Hence, we can conclude that

[ fore + Aunllgos iy < CK) (pxclllellle + 1 foxe = Fllos(x))s

and the result follows at once. O

Next, we prove an upper estimate for 7.

Theorem 4.3. Let f=1/2+ 6§ with 0 < 6 < %, u be the solution of @), un the solution of
(@) and e =u—uy. Let £ € £°, Ky and Ko € T such that { = K1 N Ko and ny as in @
Assume that uw € H'5(Q) N HY(Q) with s > % Then, there exists a constant C({) such
that

) d )
e < C(@(HMHKW + oy, = Fllos ey + lllell kopt
1
ey = Sl aeaypicst® + llelll, pf )
The constant C({) is independent of p and §.

Proof. Let wp = K1 U K9 and © be as in Lemma with P(z) = RAg(:i‘, —1), p = ps. Let
Fg, : Q — Kj and Fk, : Q — K> be affine transformations such that Fi, (I x {—1}) = ¢. We
define vy such that v|x, = v o F_il, then

i) (vele) (&, —1) = Re(2)(1 — & ) s Uelawe = 05
ii) [vellgro.-5(71,,) < Clpe+ 1) B)HRZHHOB(@
iii) [[vell s 7,y < Coe+ 17N Rell gos )

I/\ I/\

Therefore

| Rel 2050 /Rmﬂu 2ﬂm:ﬂm@:aaémw

Aunvy — Vuy - Vw)

we we

= C(E)( - Auyvy — Vuy - Vuy — Aunvy — Vuy - va)
Ki Kq Ko K>

:C(£)<—/K Fore, +AuN)W_/K
_ /KQ(pr2 + Aun)vg — Vupy - V1}e—i-/K2(pr2 — e —1—/(% fw>'

Vuy - va + /K (prl — f)’Ug

K>
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It is easy to see that vy, € H{(wy), then since u is a solution of we have that fw fo =
fw Vu - Vv, and

IRl = CO(= [ (o, +Buxtoe= [ V- Voet [ (G, = 10

_/KQ(fzoK2 + Aun)vp — VuN.Vve-i-/ (for, —f)vg+/ V?ka)

K> K3 wy

(31)
= C(£)< - /Kl(prl + Aupy)vy +/Kl(pr1 — flue — /f<2(pr2 + Aun)vg

—I—/Kz(pr2 — fue + Ve‘va),

Wy

consequently

HRéHzo,ﬁ(@ < C(£)<pr1<l + AUNHHOvB(Kl)HWHHO»*»B(Kl) + prKl - f”HOvB(Kl)HWHHOa*ﬁ(Kl)

+ 1 fpr, + Aun |l gos gy lvell o8 (x2) + [ fpre, = Fll0.850) Vel o8 (xcy)

v

+ lvell -5,y ale,
(Tlw,) ”W”HL—B(TW)

From ii) and iii) we get

|Rell 00 < CO (o, + D0 ey (pe + 1724 4 e, = Fllzos ey (e + 1) 724
+ 1 fpr, + Aun|l ok, (Pe + 1)L | fpic, — Tl 0.8 () (P2 + 1)~/
+ (e + 1)V el )

then

—1/2|

Pe IRl o5y < C(@(IIJ%K1 + Aun | go.seypr A W for, = Fllosuepe

—146 —1446 o
+ I forey + Aunll o aeyypg 0+ sy = Fllaosaeype ™ + Hlel\!ﬂwpz)-

Since the polynomial degrees of neighboring elements are comparable, from Theorem we
can deduce that

—~1/2 —
pe PRl < OO (Hlelllapf + o, = Fllaros ey ™ + lelllicpf

—1+46 0
iy = Flarosaypis ™ + il 28).

and we conclude the proof. O

Corollary 4.1. Under the same assumptions of Theorem[{.4 and[{.3, we have concluded that

1
P < Dhae S COVellB + o — o)
KeT Pk

We observe that this estimation involves the local norms of the error while the reliability,
obtained in Theorem is in terms of the global norm. However, the following theorem



INTERPOLATION IN JACOBI-WEIGHTED SPACES AND A POSTERIORI ERROR ESTIMATIONS 26

shows that, the efficiency of the error indicator could be also obtained in terms of the global
norm which allows us to conclude simultaneously the reliability and efficiency.

Theorem 4.4. Let f=1/2+ 0 with 0 < < 1/4, u the solution of (@, uyn the solution of
@), e=u—uy andn as in . Assume that u € HT$(Q) N H () with s > % Then
there exists a constant C independent of p and § such that

1< Cohaa{ lelll + (X P2l = o)
KeT

Proof. Let K € T, and vk be as in the proof of Theorem in this proof we show that
s+ A sy = CValervie) +CK) [ (fye = P
then,
e = ale (i + )2 C) o) + (e + 1D CK) [ (fye = P
let v7 =3 ger(px +1)72C(K)vg, from and we find that

S, =ale, o)+ S (o + 1) 2C(K) / T

KeT KeT K
v _
= [[vrllg1.-s¢male, —T) + Z (px +1) QC(K)/ (fox — Pvr
HUTHHl»—ﬁ(T) KeT K
<|llelll > (px + 1) CE) x| -5 (s
KeT
+ 3 (px + D) 2CE) | fpre = Fllzos (ol oo xc)
KeT
< C(|H€|H Z (px + 1)_1”pr + AUNHHOJ?(K)
KeT
+ Z (P& + 1) 72| fore — Flleos ol fore + Aunllgos (i)
KeT
_ 1/2 _ 1/2
< C(Ilelll + (D x + D72 = o) ") (D 0 + 102 + AunlBposie)) ).
KeT KeT
hence,
1/2 _ 1/2
(3 ) < O(llelll + (X e+ 1720w + Do) ) (32)
KeT KeT

Let £ € £°, and vy be as in the proof of Theorem from we have that
IRelBynn) = ale: Ceor) + OO (= [ (o, + Buwtont [ (o, = e
1 1

[ ot et [ (G, = 100)
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Then,
2 —1 > e CO)py e
mg =1 p_ COpy vl gr—s(myale, -
ZEZS ZGZS ‘ 7 < I ZZGE C(E)pg 17}6“1{1,—/3(7-))

+ Z c < / (for, + Auy)vepy /}(1(pr1 = Puep,

e

—/ (for, + Aun)vepy ! +/ (fory — f)vePf)
Ky Ky
< Nlelll Y2 COp el m-serioy + D2 OO (o, + B llos
le& le&
+ 1 fpr, = Fllaoswr)y + 1 fpw, + Aun|lgosxy) + | for, — f”HOvﬁ(K2)> [vell 0,571, P

From the estimates for vy, given in ii) and iii) in the proof of Theorem 4.3} it follows that

—-1/2
ZW < Cllell| ZP / Pz”ReHHOﬂ(e) + Z (pr}(l + AUNHHOﬁ(Kl)
Le€ Le€ 3

“1/2
+ 1 for, = fllaosk,) + 1w, + Aun|lgosxy) + | for, — f“HOﬁ(Kg)) [ Rell 0.5 ¢)Py { Dy 1o

1/2 2(—1+06
< Cpfnam\HeH!(ng) / + Cng( " )(prxl + AUNH%[Oﬁ(Kl) + prKl - f”%{O,B(KI)
le€ le€

1/2 1/2
[ foy + A0 + sy = 05 epy) 2 (S )2,
Le€

Since the polynomial degrees of neighboring elements are comparable we have that

/
(Som)'? < o{phallelll+ (3 pnic + 07 s fH?fﬂﬂ(K))l 2}'

et KeT
Then,
(3" < Cobuaa{ el + (D2 )2+ (D 2R = Fposae)) '
le€ KeT KeT
and by

()" < Cota{ el + (X P~ Flpns) -

e KeT

Hence, we are in conditions to compute 7.

2
= Mp + M) SC(Y e + > 1) < Cmax{p,,, 1 }{Hlelll + (> 0o — fH?qo,a(K))l/Z} :

KeT KeT e KeT
as claimed. O

Remark 4.2. Our results can be extended to the hp version of the finite elements methods
as follows:
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Let T be an admissible partition of Q0 in parallelograms satisfying . Let hi = diamK
and h :== max{hg|K € T}, we assume that there exists a constant vy such that:

hx <~vhgr VK,K' €T con KNK' # 0. (33)
Then, for each element K € T, we can define the local error indicator as:
where
2 hi 2 2 1 2
M6 = =5 fox + A7VLN”1L10,B(K) and g, = 4 Z U
Pk LCOKNE®
with

h ou
2 i 2 N
=—||R , Ry=|——1| ,
e Do | EHHO,B(Z) 0 [[ an ]L
and the global estimator is given by
7= nk
KeT

Therefore, assuming that v € H$(Q) N HY(Q) with s > %, there exists a constant C
independent of p, T and § such that

C h} 1/2
lelll < a0 0 = fonclizn) )

KeT 'K

IN

h 1

s /2

n < Cohuaa{Illell+ (30 Kl fow = )}
Ker PK

Although these estimates are also quasi-optimal, for the hp version of FEM, we want to recall

that the involved weighted norms depend on the mesh T .

We end the paper by emphasizing that, as far as we know, the quasi-optimal estimates
reached in Theorems [4£.1] and [£.4] are the best results that can be obtained for error estimators
of the residual type for the two dimensional case.
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