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ABSTRACT. The goal of this paper is to provide almost robust approx-
imations of singularly perturbed reaction-diffusion equations in two di-
mensions by using finite elements on graded meshes. When the mesh
grading parameter is appropriately chosen, we obtain quasioptimal error
estimations in a balanced norm for piecewise bilinear elements, by us-
ing a weighted variational formulation of the problem introduced by N.
Madden and M. Stynes, Calcolo 58(2) 2021. We also prove a superclose-
ness result, namely, that the difference between the finite element solu-
tion and the Lagrange interpolation of the exact solution, in the weighted
balanced norm, is of higher order than the error itself. We finish the work
with numerical examples which show the good performance of our ap-
proach.

1. INTRODUCTION

The reaction-diffusion equations arise in many applications, indeed, these
equations appear naturally in systems consisting of many interacting com-
ponents and are used to describe pattern-formation phenomena of biologi-
cal, chemical and physical systems (see, for example, [8, 18, 19]).

It is well known that, when the singular perturbation parameter is very
small, the solution of the problem presents boundary layers which down-
grade the approximability of the solution when uniform or quasi-uniform
meshes are used. The approximation by finite element methods of these
singularly perturbed problems have been extensively studied (see, for in-
stance, [21, 13, 10, 14] and its references) where uniform error estimates
where analyzed for different norms, including the energy and L∞ ones.

It turns out that the natural energy norm associated to the problem is
not balanced, i.e, when the singular perturbation parameter tends to zero,
the energy norm of the layer contribution vanishes while the energy norm
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of the smooth part of the solution does not. Balanced norms were intro-
duced to reflect the behavior of layers more accurately in the finite element
method for singularly perturbed reaction–diffusion problems. This is ex-
tensively discussed in [12] where a new bilinear form and a finite element
method were designed to facilitates the analysis for a new balanced norm.
Subsequently new analysis were performed in several articles, in particular
[1, 2, 7, 17].

Therefore, the problem requires especially designed schemes for its ef-
fective numerical solution. In a recent work, N. Madden and M. Stynes
[16] introduced a weighted balanced norm (whose H1 component is scaled
to the correct size) and obtained an robust almost first-order error bound for
piecewise bilinears on the unit square by using Shishkin meshes.

In this paper we consider the bilinear formulation and the weighted bal-
anced norm introduced in [16], and obtain a robust approximation of sin-
gularly perturbed reaction-diffusion equation, with homogeneous Dirichlet
boundary conditions, in two dimensions by using piecewise bilinear ele-
ments on graded meshes. We present quasi-optimal error estimates when
appropriate graded meshes are used, in addition we also obtain a super-
closeness result for the balanced norm, i.e., we prove that, under suitable
hypothesis, the difference between the approximate solution and the La-
grange interpolation of the exact solution is of higher order than the error
itself. In particular, to obtain the supercloseness result we need to prove
some properties over the weight function which characterize the discrete
formulation and also we need to prove some estimations over the deriva-
tives of the solution.

In [6] graded meshes were also used, with bilinear finite elements, to
obtain robust and almost optimal error estimates in the energy norm for a
reaction diffusion problem similar to the one we consider here. In that work
the grading parameter (and therefore the meshes) could be taken indepen-
dently of the singular perturbation parameter of the equation. Adjusting
the grading parameter, but still being independent of the singular perturba-
tion, supercloseness results in the energy norm were obtained in [5]. In the
present paper, to obtain almost uniform results in the balanced norm, we
use meshes of the same type to those introduced in [6] but with a grading
depending on the singular perturbation parameter (see Section 3).

Although the numerical results obtained with Shishkin meshes and graded
meshes are similar, graded meshes satisfy some desirable properties. In fact,
when one is approximating a singularly perturbed problem with an a priori
adapted mesh, it is natural to expect that a mesh designed for some value
of the perturbation parameter works well also for larger values of it (we
include a numerical test of this performance). This is the case for graded
meshes as it is mentioned in [4, 5]. This fact could be an important property
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in problems where the diffusion parameter is not constant or, also, to treat
systems of equations in which different equations have singular perturba-
tions of different orders.

The paper is organized as follows. In Section 2 we present the reac-
tion diffusion problem, the weighted formulation and the weighted balanced
norm under consideration. In Section 3 we introduce the graded meshes and
we present some interpolation properties in standard Sobolev norms and in
Section 4 we obtain interpolation error estimates on the weighted balanced
norm. Section 5 is devoted to the supercloseness results. In Section 6 we
present some numerical examples which show the good performance of our
method. We finish the paper with an Appendix which includes a technical
Lemma used along the paper.

Throughout the paper, the letter C will denote a generic positive constant,
not necessarily the same at each occurrence, which is independent of the
singular perturbation parameter ε and the mesh size.

2. PROBLEM STATEMENT

Let Ω be a bounded domain on R2 and ∂Ω its boundary. We consider the
following reaction-diffusion problem

(2.1)
−ε

2
∆u+b(x,y)u = f (x,y) (x,y) ∈ Ω

u = 0 on ∂Ω

where 0 < ε < 1 and b ∈ L∞(Ω), with 0 < b2
0 < b(x,y) < b2

1 for almost all
(x,y) ∈ Ω.

In a recent paper, Madden and Stynes [16] propose a new variational
formulation of this problem as follows. Let

β (x,y) = 1+
1
ε

e−
γd(x,y)

ε

be a weighting function, with γ a fixed positive parameter and d(x,y) the
distance to the boundary ∂Ω. It is appropriate to mention that, also this
weight function is basically the same used in Adler et al. [2], but there
the authors rewrite the reaction-diffusion problem as a system of equations.
The property (see [16])

|∇β (x,y)| ≤ C
ε

β (x,y)

almost everywhere in (x,y) ∈ Ω will be used along the manuscript.
We consider the weighted norm

|||v|||β =
(

ε
2∥∇v∥2

β
+∥v∥2

β

) 1
2
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where ∥v∥β = (βv,v)
1
2 . We use the notation ||| · |||β ,D,∥ · ∥β ,D to denote the

β -weighted norms on the subdomain D. The domain subscript is dropped
for the case D = Ω.

Defining the weighted bilinear form Bβ : H1
0 (Ω)2 → R by

Bβ (v,w) = ε
2
∫

Ω

∇v ·∇(βw)dxdy+
∫

Ω

b(x)v(βw)dxdy.

Then, the variational formulation of problem (2.1) is given by: find u ∈
H1

0 (Ω) such that

Bβ (u,v) =
∫

Ω

f (x)(βv)dxdy ∀v ∈ H1
0 (Ω).

Remark 2.1. The β -norm |||·|||β is balanced, indeed, its components ε2∥∇u∥β

and ∥u∥2
β

are both O(1) for a typical solution u of (2.1) ( see [16] for more
details).

If Vh ⊆ H1
0 (Ω) is a finite element space, we define the finite element

formulation: find uh ∈Vh such that

(2.2) Bβ (uh,v) =
∫

Ω

f (x)(βv)dxdy ∀v ∈Vh.

Following [16] we assume 0 < γ ≤ b0. In this case, the bilinear form
Bβ (·, ·) is coercive and continuous, and by using Lax-Milgram Theorem
and Céa Lemma, the following approximation error estimate holds (see [16,
Section 3]):

(2.3) |||u−uh|||β ≤C inf
wh∈Vh

|||u−wh|||β .

It follows that in order to estimate the error in the balanced norm ||| · |||β is
enough to compare u with some interpolant Πu of u.

3. GRADED MESHES AND PRELIMINARY RESULTS

Let Ω = (0,1)2. Let us introduce a family of meshes in the following
way. We consider two parameters, h > 0 which is related with the mesh
size (see Remark 3.1), and the grading parameter α given by

α := 1− 1
2log 1

ε

.
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Let x0,x1, . . . ,xmid the grid points on the interval [0, 1
2 ] given by

(3.4)



x0 = 0,

x1 = hs, with s :=
1

1−α

xi+1 = xi +hxα
i , i = 2, . . . ,mid −1,

xmid =
1
2
.

This partition is extended to a grid {x0,x1, . . . ,xmid, . . . ,xM} with M = 2mid
of [0,1] by setting xi = 1− xM−i for i = mid + 1, . . . ,M. We consider a
2-dimensional mesh Th = {R} of tensor product type of Ω = (0,1)2, com-
posed by rectangles R = Ri j defined by

Ri j = (xi−1,xi)× (x j−1,x j).

Set hk = xk − xk−1. Then the lengths of the sides of Ri j are hi and h j. We
will use repeatedly along this paper the following property for the meshes
Th: For Ri j ∈ Th with 1 < i < M we have

hi ≤ hmin{x,1− x}α ∀(x,y) ∈ Ri j.

Similarly, for Ri j ∈ Th with 1 < j < M we have

h j ≤ hmin{y,1− y}α ∀(x,y) ∈ Ri j.

Remark 3.1. The number M + 1 of grid points along the x and y axis is
related with the parameter h which define the mesh Th by

h ≤C
1
M

log
1
ε

logM.

(see [6, proof of Corollary 4.5]). Hence, we see that h is bounded al-
most uniformly with respect to ε and similarly to the case of quasi-uniform
meshes except for the logarithmic factor logM. In what follows, for sim-
plicity, we write the error estimates in terms of h, but they can be traduced
in terms of the number of degrees of freedom using this relationship.

Given a generic rectangle R with edges of lengths hx and hy, let Q1 :
H2(R)→ H1(R) be the classical interpolation operator on R. We know the
error estimates (see [3, Th. 2.7])

(3.5) ∥v−Q1v∥0,R ≤C{h2
x∥∂

2
x v∥0,R +h2

y∥∂
2
y v∥0,R}

and

(3.6)
∥∂x(v−Q1v)∥0,R ≤C{hx∥∂

2
x v∥0,R +hy∥∂x∂yv∥0,R},

∥∂y(v−Q1v)∥0,R ≤C{hx∥∂x∂yv∥0,R +hy∥∂
2
y v∥0,R}.

We also have the following results that will be useful later on.
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Lemma 3.1. Let R = (a,b)× (c,d) be a rectangle with sides of lengths
hx = b−a and hy = d − c. Then we have

∥∇(Q1 f )∥∞,R ≤ 2
√

2∥∇ f∥∞,R

for all f ∈ C 1(R).

Proof. Let A = (a,c), B = (b,c), C = (b,d) and D = (a,d), and the La-
grange bilinear bases functions

λA(x,y) =
(x−b)(y−d)

hxhy
, λB(x,y) =−(x−a)(y−d)

hxhy
,

λC(x,y) =
(x−a)(y− c)

hxhy
, λD(x,y) =−(x−b)(y− c)

hxhy
.

Then
Q1 f = f (A)λA + f (B)λB + f (C)λC + f (D)λD

and

∂x (Q1 f )(x,y) =
f (A)− f (B)

hx

y−d
hy

+
f (C)− f (D)

hx

y− y1

hy
.

Then, by the Mean Value Theorem we have that there exist xm1,xm2 ∈ (a,b)
such that

∂x (Q1 f )(x,y) = ∂x f (xm1,c)
y−d

hy
+∂x f (xm2,d)

y− c
hy

.

Since, for (x,y) ∈ R it holds |y− c|, |y−d| ≤ hy then it results

|∂x (Q1 f )(x,y)| ≤ |∂x f (xm1,c)|+ |∂x f (xm2 ,d)| ≤ 2∥∇ f∥∞,R.

A similar estimate hold for
∣∣∂y (Q1 f )(x,y)

∣∣ and then the proof concludes.
□ □

Lemma 3.2. Let R = (a,b)× (c,d) be a rectangle with sides of lengths
hx = b−a and hy = d − c. If 0 < α ≤ 1 then, for any v ∈ H2(R), we have

∥∂x(v−Q1v)∥0,R ≤C{h1−α
x ∥(x−a)α

∂
2
x v∥0,R +hy∥∂x∂yv∥0,R},(3.7)

∥∂y(v−Q1v)∥0,R ≤C{hx∥∂x∂yv∥0,R +h1−α
y ∥(y− c)α

∂
2
y v∥0,R}(3.8)

Proof. Let R̂ = (0,1)2 and Q̂1 : H2(R̂)→ H1(R̂) be the bilinear interpola-
tion operator. For a function v ∈ H2(R̂) define

Πv(x,y) = v(0,y)(1− x)+ xv(1,y), (x,y) ∈ R̂.
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Note that Πv(·,y) is the linear interpolation of v(·,y) for each y ∈ [0,1].
Then we know that for smooth functions v we have (see [15, Corollary
1.2.3])

∥∂x[v(·,y)−Πv(·,y)]∥0,(0,1) ≤C∥xα
∂

2
x v(·,y)∥0,(0,1) ∀y ∈ (0,1)

and therefore

∥∂x(v−Πv)∥2
0,R̂ =

∫ 1

0
∥∂x[v(·,y)−Πv(·,y)]∥2

0,(0,1) dy

≤C
∫ 1

0
∥xα

∂
2
x v(·,y)∥2

0,(0,1) dy =C∥xα
∂

2
x v∥2

0,R̂.

Now,
v− Q̂1v = (v−Πv)+(Πv− Q̂1v)

= (v−Πv)+ [Πv− Q̂1(Πv)]

since Q̂1v = Q̂1(Πv). Then

(3.9)
∥∂x(v− Q̂1v)∥0,R̂ ≤C∥xα

∂
2
x v∥0,R̂ +∥∂x[Πv− Q̂1(Πv)]∥0,R̂

≤C{∥xα
∂

2
x v∥0,R̂ +∥∂

2
x Πv∥0,R̂ +∥∂x∂yΠv∥0,R̂}

where we used the estimate (3.6) for Q̂1. But

∂
2
x Πv = 0

and, since
∂xΠv(x,y) = v(1,y)− v(0,y)

it follows, for smooth functions v, that

∂y∂xΠv(x,y) = ∂y(v(1,y)− v(0,y)) =
∫ 1

0
∂y∂xv(t,y)dt.

Then

∥∂x∂yΠv∥2
0,R̂ =

∫ 1

0

∫ 1

0

∣∣∣∣∫ 1

0
∂x∂yv(t,y)dt

∣∣∣∣2 dydx

≤
∫ 1

0

∫ 1

0

∫ 1

0

∣∣∂x∂yv(t,y)
∣∣2 dt dydx

= ∥∂x∂yv∥2
0,R̂.

From (3.9) we obtain

∥∂x(v− Q̂1v)∥0,R̂ ≤C{∥xα
∂

2
x v∥0,R̂ +∥∂x∂yv∥0,R̂}.

By a density argument, the previous inequality holds for all v ∈ H2(R̂).
Then, the inequality (3.7) is obtained by a simple rescaling argument. In-
equality (3.8) follows analogously, and then the proof concludes. □ □
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We will denote the global continuous piecewise bilinear interpolation op-
erator H2(Ω)→ H1(Ω) also by Q1.

4. ESTIMATES ON GRADED MESHES

In this Section we obtain interpolation error estimates in the β -norm with
graded meshes. We will assume the compatibility conditions (see [10] and
the references therein)

f (0,0) = f (1,0) = f (1,1) = f (0,1) = 0

which ensure that the solution u belong to C 4(Ω)∩C 2(Ω). Such compati-
bility conditions are necessary for the following pointwise estimates, which
for k ≤ 2 are proved in [10, Lemmata 3.1, 3.3 and 3.5] and for k = 3,4 were
stated in [11, Lemma 4.1].

Lemma 4.1. We have that, for (x,y) ∈ Ω and 0 ≤ k ≤ 4,∣∣∣∂ k
x u(x,y)

∣∣∣≤C{1+
1
εk e−b0

x
ε +

1
εk e−b0

1−x
ε },∣∣∣∂ k

y u(x,y)
∣∣∣≤C{1+

1
εk e−b0

y
ε +

1
εk e−b0

1−y
ε }.

Note that, with k = 0 we obtain that the solution u is uniformly bounded
on the domain Ω.

In our analysis we make the following reasonable Assumption.

Assumption 1. Assume that h < e−
3
2 and ε < h, as otherwise the subse-

quent analysis can be carried out using standard techniques.

First, we consider the L2-part of the β -norm of the interpolation error.

Proposition 4.1. Let u be the solution of (2.1) and Q1u be the piecewise
bilinear interpolation of u on the mesh Th. Then, under Assumption 1, we
have that there exists a constant C such that

∥u−Q1u∥β ≤Ch2
(

log
1
ε

) 1
2

.

Proof. Let us define
R1 = {[(0,x1)∪ (1− x1,1)]× (0,1)}∪{(0,1)× [(0,x1)∪ (1− x1,1)]} ,

R2 =

{[
(x1,γ0ε log

1
ε
)∪ (1− γ0ε log

1
ε
,1− x1)

]
× (x1,1− x1)

}
⋃{

(x1,1− x1)×
[
(x1,γ0ε log

1
ε
)∪ (1− γ0ε log

1
ε
,1− x1)

]}
,

R3 = (γ0ε log
1
ε
,1− γ0ε log

1
ε
)2,
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FIGURE 1. Decomposition of Ω for the proof of Proposi-
tion 4.1

where γ0 is taken greater than or equal to max
{

2
b0
, 1

γ

}
and such that γ0ε log 1

ε

and 1− γ0ε log 1
ε

are grid points. Then, Ω = R1 ∪R2 ∪R3 (see Figure 1).

Let S1 = (0,x1)× (0,1). Note that, since 1−α = 1
−2logε

and ε = h
logε

logh ,
we have

(4.10)
x1

ε
=

h
ε

−2logε

= h
logε

logh [2(− logh)−1].

then, by Assumption 1, since h < e−
3
2 and ε < h , it follows

logε

logh
[2(− logh)−1]> 2(− logh)−1 > 2

and therefore

(4.11)
x1

ε
≤ h2.

Then, since u is uniformly bounded, we get

∥u−Q1u∥2
β ,S1

=
∫ x1

0

∫ 1

0
β (u−Q1u)2 dydx

≤Cx1ε
−1 ≤ h2.

Then clearly, by symmetry arguments, we obtain

(4.12) ∥u−Q1u∥2
β ,R1

≤Ch2.
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Let now S2 = (x1,γ0ε log 1
ε
)× (x1,1− x1). Using anisotropic interpola-

tion error estimate [3, Th. 2.7] and taking into account that β ≤ Cε−1, we
have

∥u−Q1u∥2
β ,S2

≤Cε
−1∥u−Q1u∥2

0,S2

≤Cε
−1

∑
Ri j⊂S2

(
h4

i ∥∂
2
x u∥2

0,Ri j
+h4

j∥∂
2
y u∥2

0,Ri j

)
.

For Ri j ⊂ S2 we have hi ≤Chxα , h j ≤Chmin(y,1− y)α for all (x,y) ∈ Ri j.
Using also that hi,h j ≤ h and the a priori estimates of Lemma 4.1 we obtain

(4.13) ∥u−Q1u∥2
β ,S2

≤Ch4
ε
−1×∫

S2

(
1+ x4α

ε
−4e−2b0

x
ε + y4α

ε
−4e−2b0

y
ε +(1− y)4

ε
−4e−2b0

1−y
ε

)
dxdy.

Now, taking into account that |S2| ≤ γ0ε log 1
ε

we get

Ch4
ε
−1
∫

S2

dxdy ≤Ch4 log
1
ε
.

On the other hand, we have

Ch4
ε
−1
∫

S2

(
x4α

ε
−4e−2b0

x
ε + y4α

ε
−4e−2b0

y
ε

)
dxdy =

Ch4(1−2x1)ε
4(α−1)

∫
γ0ε log 1

ε

x1

(xε
−1)4αe−2b0x/ε dx

ε

+Ch4(γ0ε log
1
ε
− x1)ε

4(α−1)
∫ 1−x1

x1

(yε
−1)4αe−2b0y/ε dy

ε

≤Ch4.

where we used that ε log 1
ε
≤ C, ε4(α−1) = e2 and that for δ ∈ [0,4] the

integrals
∫

∞

0 xδ e−2b0x dx are uniformly bounded. Similarly, we have

Ch4
ε
−1
∫

S2

(1− y)4
ε
−4e−2b0

1−y
ε dxdy ≤Ch4.

Then from (4.13) we get

∥u−Q1u∥β ,S2 ≤Ch2
(

log
1
ε

) 1
2

.

Now, with similar arguments we obtain

(4.14) ∥u−Q1u∥β ,R2 ≤Ch2
(

log
1
ε

) 1
2

.
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Finally, since γ0 ≥ 2
b0

, it follows from Lemma 4.1 that

|∂ 2
x u|+ |∂ 2

y u| ≤C on R3.

Similarly, β ≤ C on R3 since γ0 > 1
γ
. Then, using again the anisotropic

interpolation error estimates for the operator Q1 and that hi,h j ≤ h for all
i, j, we easily obtain

(4.15) ∥u−Q1u∥β ,R3 ≤Ch2.

Since Ω = R1 ∪R2 ∪R3, from (4.12), (4.14) and (4.15) we get the desired
result. □ □

Also, we can prove the following result involving the H1-seminorm.

Proposition 4.2. Let u be the solution of (2.1) and Q1u be the piecewise
bilinear interpolation of u on the mesh Th. Then, under Assumption 1, we
have

∥∇(u−Q1u)∥0 ≤Cε
− 1

2 h.

Proof. Let us estimate ∥∇(u−Q1u)∥0,Ωs where Ωs =
[
0, 1

2

]
×
[
0, 1

2

]
. Then

estimate on the rest of the domain follows by symmetry. Let us introduce
the notation

Ωi = ∪mid
j=1Ri j, Ω

j = ∪mid
i=1Ri j.

Using inequalities (3.6) and (3.7) on each element Ri j we have

∥∂x(u−Q1u)∥2
0,Ωs

≤ h2−2α

1 ∥xα
∂

2
x u∥2

0,Ω1
+

mid

∑
i=2

h2
i ∥∂

2
x u∥2

0,Ωi
+

mid

∑
j=1

h2
j∥∂x∂yu∥2

0,Ω j

≤ h2−2α

1 ∥xα
∂

2
x u∥2

0,Ω1
+

mid

∑
i=2

h2∥xα
∂

2
x u∥2

0,Ωi
+

mid

∑
j=1

h2
j∥∂x∂yu∥2

0,Ω j

where, for the second line, we used that

hi ≤ hxα ∀(x,y) ∈ Ri j,2 ≤ i.

Since h1 = hs with s = 1
1−α

, we have that h2−2α

1 = h2. On the other hand
we have

h j ≤ hyα ∀(x,y) ∈ Ri j, 2 ≤ j.
Then we have
(4.16)
∥∂x(u−Q1u)∥2

0,Ωs
≤ h2∥xα

∂
2
x u∥2

0,Ωs
+h2∥yα

∂x∂yu∥2
0,Ωs\Ω1 +h2

1∥∂x∂yu∥2
0,Ω1.

We need to bound each term in the last inequality. By integration by parts
twice, Lemma 4.1 and using that

∂yu = 0 on x = 0 and x = 1, ∂
2
x u = 0 on y = 0
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we have

∥∂x∂yu∥2
0,Ω1 ≤ ∥∂x∂yu∥2

0,[0,1]×[0,x1]

=
∫ x1

0
∂x∂yu∂yu|10 dy−

∫ 1

0

∫ x1

0
∂yu∂y∂

2
x udydx

=
∫ 1

0

∫ x1

0
∂

2
y u∂

2
x udydx−

∫ 1

0
∂yu∂

2
x u|x1

0 dx

≤ x1

ε2

∫ 1

0

(
1+

1
ε2 e−b0

x
ε

)
dx+

1
ε

∫ 1

0

(
1+

1
ε2 e−b0

x
ε

)
dx

≤Cε
−3.

By Assumption 1 we have, in particular, that ε,h < e−1, thus

h2
1 = h2s = h4log 1

ε = h2log 1
ε h2log 1

ε ≤ h2
ε

2log 1
h = h2

ε
2,

therefore

(4.17) h2
1∥∂x∂yu∥2

0,Ω1 ≤Ch2
ε
−1.

On the other hand, using again the estimates of Lemma 4.1 we have

∥xα
∂

2
x u∥2

0,Ωs
≤C

∫ 1
2

0
x2α

(
1+

1
ε4 e−2b0

x
ε

)
dx

≤C+Cε
2α−3

∫ 1
2

0

( x
ε

)2α

e−2b0
x
ε

dx
ε

≤Cε
−1,

and so

(4.18) h2∥xα
∂

2
x u∥2

0,Ω ≤Ch2
ε
−1.
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Finally, with the same arguments, see [6, ineq. (4.31)] for a similar compu-
tation, we have

∥yα
∂x∂yu∥2

0,Ωs\Ω1 ≤ ∥yα
∂x∂yu∥2

0,[0,1]×[0, 1
2 ]

=−
(

1
2

)2α ∫ 1

0
∂yu
(

x,
1
2

)
∂

2
x u
(

x,
1
2

)
dx

+
∫ 1

0

∫ 1
2

0
2αy2α−1

∂yu∂
2
x udydx

+
∫ 1

0

∫ 1
2

0
y2α

∂
2
y u∂

2
x udydx

≤C
∫ 1

0

(
1+

1
ε2 e−b0

x
ε

)
dx

+C
∫ 1

0
y2α−1

(
1+

1
ε

e−b0
y
ε

)
dy
∫ 1

0

(
1+

1
ε2 e−b0

x
ε

)
dx

+C
∫ 1

0
y2α

(
1+

1
ε2 e−b0

y
ε

)
dy
∫ 1

0

(
1+

1
ε2 e−b0

x
ε

)
dx

≤Cε
−1,

that is

(4.19) h2∥yα
∂x∂yu∥2

0,Ωs\Ω1 ≤Ch2
ε
−1.

Now inserting (4.17)–(4.19) in (4.16) we obtain

∥∂x(u−Q1u)∥0,Ωs ≤Chε
− 1

2 ,

and by symmetry it follows

∥∂x(u−Q1u)∥0,Ω ≤Chε
− 1

2 .

Clearly, the estimate

∥∂y(u−Q1u)∥0,Ω ≤Chε
− 1

2

can be proved in a similar way concluding the proof. □ □

We remark that, from the definition of the β -norm ∥ · ∥β and Proposition
4.2, since β ≤C 1

ε
, we get

(4.20) ε∥∇(u−Q1u)∥β ,Ω ≤Cε
1
2∥∇(u−Q1u)∥0,Ω ≤Ch,

which together with Proposition 4.1 allows us to obtain the main result of
this Section.
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Theorem 4.1. Let u be the solution of (2.1) and Q1u be the piecewise
bilinear interpolation of u on the mesh Th. Then, under Assumption 1, we
have

|||u−Q1u|||β ≤Ch

(
1+h

(
log

1
ε

) 1
2
)
.

Clearly as a consequence of Céa Lemma, equation (2.3) and this Theorem
we have the corresponding error estimate for the finite element approxima-
tion uh.

5. SUPERCLOSENESS

In this section we prove that the β−norm of the difference between the
interpolation of the exact solution u and the finite element approximation
uh is of higher order than the β -norm of the error u−uh.

Let us denote by βmin and βmax the piecewise constant functions such that
on each element R ∈ Th hold

βmin|R = min
(x,y)∈R

β (x,y), βmax|R = max
(x,y)∈R

β (x,y).

Clearly βmin and βmax depend on the mesh Th but this dependence is omitted
for the sake of simplicity of the notation. The following Lemma presents
an estimation of the relation of βmin and βmax inside the elements which is
fundamental for our estimations.

Lemma 5.1. There exists a positive constant η , independent of h and ε ,
such that on graded meshes Th, assuming h < e−1, we get

βmax

βmin
≤Cε

−ηh on Ω.

Proof. Due to the symmetry of the problem it is enough to estimate βmax/βmin
for elements contained in Ωs =

[
0, 1

2

]
×
[
0, 1

2

]
. On elements R1 j or Ri1 we

have
βmin = 1+

1
ε

e−
γ

ε
dmax = 1+

1
ε

e−
γ

ε
hs
,

βmax = 1+
1
ε

e−
γ

ε
dmin = 1+

1
ε
,

where naturally dmax and dmin represent the maximum and the minimum of
the distance to the boundary. But

hs = h2log 1
ε = ε

2log 1
h

and so, since h < 1
e ,

−γ

ε
hs =−γε

2log 1
h−1 >−γε
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and therefore
βmin > 1+

1
ε

e−γε .

Then we can conclude that

βmax

βmin
<

1+ 1
ε

1+ 1
ε
e−γε

<C.

Now, we consider a rectangle Ri j with

i > 1 and x j ≤ γ0ε log
1
ε

or
j > 1 and xi ≤ γ0ε log

1
ε
.

It can be checked that it is enough to consider a case as in the Figure 2, and
we will use the notation of that Figure. We have

dmin = y1, dmax = y2,

and then βmin = 1+ 1
ε
e−γ

y2
ε and βmax = 1+ 1

ε
e−γ

y1
ε . Then

βmax

βmin
=

1+ 1
ε
e−γ

dmin
ε

1+ 1
ε
e−γ

dmax
ε

= 1+
1
ε
e−γ

dmax
ε

1+ 1
ε
e−γ

dmax
ε

(
e−

γ

ε
(dmin−dmax)−1

)
= 1+

1
ε
e−γ

y2
ε

1+ 1
ε
e−γ

y2
ε

(
e−

γ

ε
(y1−y2)−1

)
≤ 1+ e

γ

ε
(y2−y1)−1

= e
γ

ε
hyα

1 .

But, since ε
1

logε = e, we obtain

hyα
1 ≤ h

(
γ0ε log

1
ε

)1− 1
2log 1

ε = hγ0ε log
1
ε

(
γ0ε log

1
ε

) 1
2logε

= hεe
1
2 γ

1+ 1
2logε

0 log
1
ε

(
log

1
ε

) 1
2logε

≤Chε log
1
ε

where we used that γ
1+ 1

2logε

0 ≤C and
(
log 1

ε

) 1
2log 1

ε ≤C. Then we have

e
γ

ε
hyα

1 ≤ eChγ log 1
ε = ε

−γCh.

Finally, it is clear that on rectangles Ri j with xi or x j greater than γ0ε log 1
ε

we have
βmax

βmin
∼ 1

and this concludes the proof. □
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FIGURE 2. Notation on Ωs for the proof of Lemma 5.1

□

For the meshes Th we also introduce the piecewise constant function
hmin which on each rectangle R ∈ Th take the minimum of the lengths of
the sides of R. Taking into account that the graph of the distance function d
is a square pyramid with its apex on the point

(1
2 ,

1
2

)
, it can be checked that,

given an element R ∈ Th and (x,y) ∈ R there exists (xint ,yint) ∈ R such that

(5.21) |β (x,y)−βmin| ≤Chmin|∇β (xint ,yint)|.

From the coerciveness and the Galerkin orthogonality of the bilinear form
Bβ (·, ·) we get

(5.22)
C|||uh −Q1u|||2

β
≤ Bβ (uh −Q1u,uh −Q1u)

= Bβ (u−Q1u,uh −Q1u)
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Now, for any w ∈Vh we have
(5.23)

Bβ (u−Q1u,w) =
∫

Ω

ε
2
∇(u−Q1u) ·∇(βw)dx+

∫
Ω

b(x)(u−Q1u)(βw)dx

=
∫

Ω

ε
2
∇(u−Q1u)β ·∇(w)dx+

∫
Ω

ε
2
∇(u−Q1u) ·∇(β )wdx+∫

Ω

b(x)(u−Q1u)(βw)dx

=
∫

Ω

ε
2
∇(u−Q1u)(β −βmin) ·∇w+

∫
Ω

ε
2
βmin∇(u−Q1u) ·∇w+∫

Ω

ε
2
∇(u−Q1u) ·∇(β )w+

∫
Ω

b(x)(u−Q1u)βw

=: I + II + III + IV

In the next subsections, we will prove the following estimates for I, II, III
and IV assuming that ε ≤ ch3, for some fixed constant c ≥ 1,

|I|, |III| ≤Ch2
ε
−ηh log

1
ε
|||w|||β and |II|, |IV | ≤Ch2|||w|||β .

Therefore, ∣∣Bβ (u−Q1u,uh −Q1u)
∣∣≤Ch2

ε
−ηh log

1
ε
|||w|||β ,

which together with (5.22) will allow us to conclude the following super-
closeness result.

Theorem 5.1. There exist positive constants C and η , independent of ε and
h, such that on graded meshes Th, assuming that h < e−

3
2 and ε < ch3, we

get
|||uh −Q1u|||β ≤Cε

−ηh log(1/ε)
1
2 h2.

5.1. Estimation of term I. Let us estimate

I =
∫

Ω

ε
2
∇(u−Q1u)(β −βmin) ·∇w.

Using property (5.21) and Lemma 5.1 we have

|β (x,y)−βmin| ≤Chmin |∇β (xint ,yint)| ≤Chminε
−1|β (xint ,yint)|

≤Chminε
−1

ε
−ηh|β (x,y)|.

Let

S0 =

{
(x,y) ∈ Ω : min(x,y,1− x,1− y)≤ γ0ε log

1
ε

}
.

For elements R ⊂ S0 we have hmin,R ≤ γ0 hε log 1
ε
, and therefore

|β (x,y)−βmin| ≤Chε
−ηh

β (x,y) log
1
ε
.
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Then ∣∣∣∣∫S0

ε
2
∇(u−Q1u)(β −βmin) ·∇w

∣∣∣∣
≤Chε

−ηh log
1
ε

[
ε∥β

1
2 ∇(u−Q1u)∥0,S0

][
ε∥β

1
2 ∇w∥0,S0

]
≤Ch2

ε
−ηh log

(
1
ε

)
|||w|||β ,S0

where in the last inequality we used estimate (4.20).
Now, let S1 = Ω\S0. Since γ0 ≥ 2

b0
we have

β (x,y), |∇β (x,y)| ≤C ∀(x,y) ∈ S1

and therefore it is easy to check that

|β (x,y)−βmin| ≤Ch (x,y) ∈ R, R ⊂ S1.

Also, since β ≥ 1 we have, on ∥ · ∥β ,S1 ∼ ∥ ·∥0,S1 . Then, using again (4.20)
we get∣∣∣∣∫S1

ε
2
∇(u−Q1u)(β −βmin) ·∇w

∣∣∣∣≤Chε∥∇(u−Q1u)∥0,S1ε∥∇w∥0,S1

≤Chε∥∇(u−Q1u)∥β ,S1ε∥∇w∥β ,S1

≤Ch2|||w|||β ,S1.

Then finally we obtain

(5.24) |I| ≤Ch2
ε
−ηh log

(
1
ε

)
|||w|||β .

5.2. Estimate of II. Now we consider

II =
∫

Ω

βminε
2
∇(u−Q1u) ·∇w.

Since βmin is piecewise constant we can use an argument due to Zlamal
[23], as in [5, Lema 4.5], to obtain that for each element Ri j we have∣∣∣∣ε2

∫
Ri j

βmin∂x(u−Q1u)∂xw
∣∣∣∣

≤Cεβ
1
2

min
{

h2
i ∥∂xxxu∥0,Ri j +hih j∥∂xxyu∥0,Ri j +h2

j∥∂xyyu∥0,Ri j

}
× εβ

1
2

min∥∂xw∥0,Ri j

≤Cεβ
1
2

min
{

h2
i ∥∂xxxu∥0,Ri j +hih j∥∂xxyu∥0,Ri j +h2

j∥∂xyyu∥0,Ri j

}
×|||w|||β ,Ri j
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In Lemma 6.2, in the Appendix, we prove that

ε

[
∑
i, j

βmin
(
h2

i ∥∂
3
x u∥0,Ri j +hih j∥∂

2
x ∂yu∥0,Ri j +h2

j∥∂x∂
2
y u∥0,Ri j

)2
] 1

2

≤C
(

log
1
ε

) 1
2

h2

from which we can conclude that

(5.25) II ≤C
(

log
1
ε

) 1
2

h2|||w|||β .

5.3. Estimate of III. Now we deal with the estimate for III. Let Ωs =[
0, 1

2

]
×
[
0, 1

2

]
. Then it is clear that due to symmetry arguments it is enough

to estimate IIIs which is defined as III but with the integral over Ωs. We
have

IIIs =
∫

Ωs

ε
2
∇(u−Q1u) · (∇β )w

=
∫

D1

ε
2
∇(u−Q1u) · (∇β )w+

∫
D2

ε
2
∇(u−Q1u) · (∇β )w

= III1 + III2

with

D1 =
⋃

{R : ∇d is discontinuous on R} , D2 = Ω\D1.

Let SA =
[
0,γ0ε log 1

ε

]2
and SB =

[
γ0ε log 1

ε
, 1

2

]2
. Then

D1 = (D1 ∩SA)∪ (D1 ∩SB)

and we can put

III1,A :=
∫

D1∩SA

ε
2
∇(u−Q1u) · (∇β )w,

III1,B :=
∫

D1∩SB

ε
2
∇(u−Q1u) · (∇β )w.

We will use that

|∇(u−Q1u)| ≤C∥∇u∥∞ ≤Cε
−1
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which follows from Lemma 3.1 and from the a priori estimates of Lemma
4.1. Then using that |∇β | ≤Cβ/ε we have

|III1,A|=
∣∣∣∣∫D1∩SA

ε
2
∇(u−Q1u) · (∇β )w

∣∣∣∣≤C
∫

D1∩SA

β |w|

≤C
(∫

D1∩SA

β

) 1
2

∥β
1
2 w∥0,D1∩SA ≤C

(∫
D1∩SA

β

) 1
2

|||w|||β .

Since rectangles in D1 ∩SA have sides of lengths O
(

h
(
ε log 1

ε

)α
)

it is not
difficult to see that∫

D1∩SA

β ≤Ch
(

ε log
1
ε

)α ∫ γ0ε log 1
ε

0

1
ε

e−γx/ε dx+ |D1 ∩SA|

≤Ch
(

ε log
1
ε

)α

≤Chε log
1
ε

where for the last inequality we recall that α = 1− 1
2log 1

ε

. It follows that

|III1,A| ≤Ch
1
2 ε

1
2

(
log

1
ε

) 1
2

|||w|||β ≤Ch2
(

log
1
ε

) 1
2

|||w|||β ,

since ε ≤ ch3.
On the other hand on SB we have |∇β |, |∇u|, |∇Q1u| bounded indepen-

dently of ε . We also have |D1 ∩SB| ≤Ch. Then

|III1,B|=
∣∣∣∣∫D1∩SB

ε
2
∇(u−Q1u) · (∇β )w

∣∣∣∣
≤Cε

2|D1 ∩SB|
1
2∥w∥0,D1∩SB

≤Cε
2h

1
2 |||w|||β ≤Ch2|||w|||β ,

by using that ε < h.
Thus, we obtain

(5.26) III1 ≤Ch2
(

log
1
ε

) 1
2

|||w|||β .

Now we consider

III2 =
∫

D2

ε
2
∇(u−Q1u) · (∇β )w.
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On each element R let (∇β )min,R be the componentwise minimum of ∇β on
R. We write

III2 =
∫

D2

ε
2
∇(u−Q1u) · (∇β − (∇β )min)w+∫

D2

ε
2
∇(u−Q1u) · (∇β )min w

= III21 + III22.

Let D1
2A = D2∩{(x,y) : x ≤ y ≤ 1−x,x ≤ γ0ε log 1

ε
}. Notice that d(x,y) = x

on D1
2A. It follows that

∇β (x,y) =
(
− γ

ε2 e−γ
x
ε ,0
)

on D1
2A.

By the Mean Value Theorem, since ∇β depends only on x, and that for
rectangular elements on D1

2A the horizontal sides have the minimum length,
we have

∇β (x,y)− (∇β )min,R =
(

γ

ε3 e−γ
xint

ε (x− xmin,R),0
)

with xint ∈ R and xmin,R being the minimum value of x on R. Now, since
1
ε
e−γ

xint
ε ≤ β (xint)≤ βmax taking into account Lemma 5.1 we have

|∇β (x,y)− (∇β )min,R| ≤Cε
−ηh

ε
−2

βmin,Rhmin,R.

But hmin,R ≤ Ch(ε log 1
ε
)α ≤ Chε log 1

ε
(on elements touching x = 0 we

also have hmin ≤Chε). So

|∇β (x,y)− (∇β )min,R| ≤Cε
−ηh

ε
−1

βmin,Rh log
1
ε
.

Then∣∣∣∣∫D1
2A

ε
2
∇(u−Q1u) · (∇β − (∇β )min)w

∣∣∣∣
≤Cε

−ηhh log
(

1
ε

)∫
D1

2A

[
εβ

1
2 |∇(u−Q1u)|

][
β

1
2 |w|

]
≤Cε

−ηhh2 log
1
ε
|||w|||β

where we have used (4.20).
On D2

2A = D2∩{(x,y) : x ≤ y ≤ 1−x,x > γ0ε log 1
ε
} we also have that β ,

|Dδ (β )|, 0 ≤ |δ | ≤ 2, are uniformly bounded respect of ε and we also have
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FIGURE 3. Notation

β ≥ 1, so a simple computation leaves∣∣∣∣∫D2
2A

ε
2
∇(u−Q1u) · (∇β − (∇β )min)w

∣∣∣∣
≤Chε∥εβ

1
2 ∇(u−Q1u)∥0,Ω∥β

1
2 w∥0,Ω

≤Ch2
ε|||w|||β .

Clearly, similar arguments can be used on D2 \ (D1
2A ∪D2

2A) to obtain

(5.27) |III21| ≤Cε
−ηhh2 log

(
1
ε

)
|||w|||β .

Now we have to estimate III22. Let call (∇β )min,Ri j = qi j = (q1
i j,q

2
i j).

Then we will estimate

∑
Ri j⊂D2

∫
Ri j

ε
2q1

i j∂x(u−Q1u)w.

We will follow a technique used in [22, 4]. Take into account Figure 3 for
the notation of the sides of an element and its lengths. Let

Ki j(u,w) =
∫

Ri j

∂x(u−Q1u)w− h2
i

12

(∫
ℓ

i j
2

(∂xxu)wdy−
∫
ℓ

i j
4

(∂xxu)wdy
)
.

Then we can write

∑
Ri j⊂D2

∫
Ri j

ε
2q1

i j∂x(u−Q1u)w =

∑
Ri j⊂D2

ε
2q1

i jKi j(u,w)+ ∑
Ri j⊂D2

ε
2q1

i j
h2

i
12

(∫
ℓ

i j
2

(∂xxu)wdy−
∫
ℓ

i j
4

(∂xxu)wdy
)
.

From [4, eq. (3.14)] we know that

|Ki j(u,w)| ≤C
(
h2

i ∥∂
3
x u∥0,Ri j +hih j∥∂

2
x ∂yu∥0,Ri j +h2

j∥∂x∂
2
y ∥0,Ri j

)
∥w∥0,Ri j
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then, since

|qi j| ≤ |∇β | ≤C
β

ε
≤Cε

−ηh βmin

ε

using Lemma 6.2 it follows that

(5.28) ∑
Ri j⊂D2

ε
2q1

i jKi j(u,w)≤Cε
−ηh×

∑
i j

εβ
1
2

min
(
h2

i ∥∂
3
x u∥0,Ri j +hih j∥∂

2
x ∂yu∥0,Ri j +h2

j∥∂x∂
2
y ∥0,Ri j

)
∥β

1
2 w∥0,Ri j

≤Cε
−ηhh2 log

(
1
ε

) 1
2

∥β
1
2 w∥0,Ω.

It remains to deal with

Ξ := ∑
Ri j⊂D2

ε
2q1

i j
h2

i
12

(∫
ℓ

i j
2

(∂xxu)wdy−
∫
ℓ

i j
4

(∂xxu)wdy
)

which can be written as

Ξ =− ∑
Ri j⊂D2

ε
2q1

i j
h2

i
12

∫
Ri j

∂x
[
(∂ 2

x u)w
]

=− ∑
Ri j⊂D2

ε
2q1

i j
h2

i
12

∫
Ri j

(∂ 3
x u)w− ∑

Ri j⊂D2

ε
2q1

i j
h2

i
12

∫
Ri j

∂
2
x u∂xw

=: Ξ1 +Ξ2.

Now we take into account that

|q1
i j| ≤ |∇β | ≤C

β

ε
≤Cε

−ηh βmin

ε
.

Then

|Ξ1| ≤Cε
−ηh

∑
Ri j⊂D2

(
εβ

1
2

minh2
i ∥∂

3u∥0,Ri j

)(
β

1
2

min∥w∥0,Ri j

)
.

Therefore, after applying Cauchy–Schwarz inequality and by using Lemma
6.2 it follows that

|Ξ1| ≤Cε
−ηh log

(
1
ε

) 1
2

h2|||w|||β .

Analogously we have

|Ξ2| ≤Cε
−ηh

∑
Ri j⊂D2

(
β

1
2

minh2
i ∥∂

2
x u∥0,Ri j

)(
εβ

1
2

min∥∂xw∥0,Ri j

)
.
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With similar arguments we easily obtain

|Ξ2| ≤Cε
−ηhh2|||w|||β .

Then we arrived at

|Ξ| ≤Cε
−ηh log

(
1
ε

) 1
2

h2|||w|||β .

This inequality together with (5.28) give∣∣∣∣∣ ∑
Ri j⊂D2

∫
Ri j

ε
2q1

i j∂x(u−Q1u)w

∣∣∣∣∣≤Cε
−ηh log

(
1
ε

) 1
2

h2|||w|||β .

Clearly a similar argument allow us to conclude that

(5.29) |III22| ≤Cε
−ηh log

(
1
ε

) 1
2

h2|||w|||β .

With inequalities (5.26), (5.27) and (5.29) we arrive at

(5.30) |III| ≤Cε
−ηh log

(
1
ε

) 1
2

h2|||w|||β .

5.4. Acotación de IV. From Proposition 4.1 we have

(5.31)

|IV | ≤C∥β
1
2 (u−Q1u)∥0,Ω∥β

1
2 w∥0, 1

2

≤Ch2
(

log
1
ε

) 1
2

|||w|||β .

5.5. Proof of Theorem 5.1. From (5.22), the splitting (5.23) with w= uh−
Q1u ∈Vh and the estimates (5.24), (5.25), (5.30) and (5.31) we obtain

|||uh −Q1u|||2
β
≤Cε

−ηh log
(

1
ε

) 1
2

h2|||uh −Q1u|||β

from where the poof concludes.

6. NUMERICAL EXPERIMENTS

We consider the problem

(6.32) −ε
2
∆u+u = f in Ω, u = 0 on ∂Ω

on Ω = [0,1]2 with two different choices for the function f . The first one
is taken from [5] and the second one was introduced by Kopteva [9] and is
widely used in the literature (see, for example, [1, 16]). In both cases we
take ε = 1e− 6 and ε = 1e− 8. All the numerical results were computed
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FIGURE 4. Solution of Example 6.1 with ε = 10−6.

using Firedrake [20]. In Tables 1-5 we report the estimated order of con-
vergence (eoc) of distinct quantities with respect to M, the number of grid
points along x and y axis. We recall that the number of degrees of freedom
is ∼ M2.

Example 6.1. Take f given by

f (x,y) =−2
1− e−

1√
2ε

1− e−
√

2
ε

(
e−

x√
2ε + e−

1−x√
2ε + e−

y√
2ε + e−

1−y√
2ε

)
+4.

By setting

u0(t) =−2
1− e−

1√
2ε

1− e−
√

2
ε

(
e−

t√
2ε + e−

1−t√
2ε

)
+2

it follows that the exact solution u is

u(x,y) = u0(x)u0(y).

We report in Table 1 (resp. Table 2) the errors and convergence orders
obtained using the discretization (2.2) with Vh being the space of piecewise
bilinear functions on the graded meshes introduced in Section 3 with ε =
1e−6 (resp. ε = 1e−8).

Example 6.2. Now, f is chosen such that

u(x,y) =

[
cos
(

π

2
x
)
− e−

x
ε − e−

1
ε

1− e−
1
ε

](
1− y− e−

y
ε − e−

1
ε

1− e−
1
ε

)
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h M ∥u−uh∥0 eoc |||u−uh|||β eoc |||uI −uh|||β eoc
0.2 245 5.5510e-5 - 1.2455e-1 - 2.2199e-2 -
0.1 521 1.6126e-5 1.6384 6.6549e-2 0.8307 6.3379e-3 1.6614
0.05 1055 4.3530e-6 1.8561 3.4499e-2 0.9312 1.7021e-3 1.8633
0.03 1758 1.6160e-6 1.9406 2.1014e-2 0.9708 6.3126e-4 1.9425

TABLE 1. Report of errors for the numerical experiment of
Example 6.1 with ε = 10−6.

h M ∥u−uh∥0 eoc |||u−uh|||β eoc |||uI −uh|||β eoc
0.2 333 5.6529e-6 - 1.2443e-01 - 2.2354e-2 -
0.1 707 1.6423e-6 1.6418 6.6517e-02 0.8318 6.3922e-3 1.6628
0.05 1431 4.4411e-7 1.8547 3.4493e-02 0.9314 1.7183e-3 1.8632
0.03 2384 1.6498e-7 1.9401 2.1013e-02 0.9710 6.3753e-4 1.9425

TABLE 2. Report of errors for the numerical experiment of
Example 6.1 with ε = 10−8.

h M ∥u−uh∥0 eoc |||u−uh|||β eoc |||uI −uh|||β eoc
0.2 245 1.3125e-3 - 2.0775e-2 - 6.6800e-3 -
0.1 521 3.3423e-4 1.8129 1.1058e-2 0.8358 1.8082e-3 1.7320
0.05 1055 8.4654e-5 1.9464 5.7287e-3 0.9322 4.7234e-4 1.9026
0.03 1758 2.9457e-5 2.0673 3.4892e-3 0.9710 1.6900e-4 2.0128

TABLE 3. Report of errors for Example 6.2 using graded
meshes towards the entire boundary of Ω with ε = 10−6.

is the solution of (6.32). This solution exhibits boundary layers only along
the sides x = 0 and y = 0. In Table 3 (resp. Table 4) we report the conver-
gence results obtained by using meshes graded towards the entire boundary
∂Ω for ε = 1e−6 (resp. ε = 1e−8), and we note that the expected orders of
convergence are observed. On the other hand, in Table 5(resp. Table 6) we
report the results obtained by grading the mesh only close to the boundary
layers of the solution. In this case, we observe the correct order of conver-
gence in ||| · |||β , but the ones for the L2-norm and the supercloseness are
suboptimal. This curious behavior will be in the future subject of further
investigation.

Remark 6.1. As we mentioned in the Introduction, it is desirable that graded
meshes designed for a small value of ε work well for reaction–diffusion
problems with larger values of the diffusion parameter. Although this fact is
not included in our analysis, we show computationally that behaviour. As
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FIGURE 5. Solution of Example 6.2 for ε = 10−6.

h M ∥u−uh∥0 eoc |||u−uh|||β eoc |||uI −uh|||β eoc
0.2 333 1.2517e-3 - 2.0709e-2 - 6.4672e-3 -
0.1 707 3.2785e-4 1.7794 1.1032e-2 0.8365 1.7876e-3 1.7079
0.05 1431 8.3918e-5 1.9327 5.7167e-3 0.9324 4.7048e-4 1.8932
0.03 2384 2.9208e-5 2.0678 3.4823e-3 0.9712 1.6842e-4 2.0126

TABLE 4. Report of errors for Example 6.2 using graded
meshes towards the entire boundary of Ω with ε = 10−8.

h M ∥u−uh∥0 eoc |||u−uh|||β eoc |||uI −uh|||β eoc
0.2 125 4.6034e-2 - 7.9234e-2 - 7.6137e-2 -
0.1 265 1.9384e-2 1.1511 3.3988e-2 1.1264 3.2117e-2 1.1487
0.05 537 6.9052e-3 1.4614 1.2799e-2 1.3828 1.1448e-2 1.4606
0.03 895 3.2052e-3 1.5024 6.3562e-3 1.3703 5.3146e-3 1.5024

TABLE 5. Report of errors for Example 6.2 using graded
meshes towards x = 0 and y = 0 with ε = 10−6.

an example, Figure 6 exhibits the solution of Example 6.2 with ε = 1e− 3
obtained using the graded mesh designed for h = 0.1 and ε = 1e−8. Using
the same fixed graded mesh, Table 7 shows the errors obtained for ε varying
between 1e− 8 and 1e− 3. We observe that for all the values of diffusion
parameter the errors are almost the same.
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h M ∥u−uh∥0 eoc |||u−uh|||β eoc |||uI −uh|||β eoc
0.2 169 4.5459e-2 - 7.8290e-2 - 7.5187e-2 -
0.1 358 1.9286e-2 1.1423 3.3825e-2 1.1180 3.1953e-2 1.1400
0.05 725 6.8893e-3 1.4588 1.2771e-2 1.3804 1.1423e-2 1.4578
0.03 1208 3.1980e-3 1.5032 6.3424e-3 1.3708 5.3026e-3 1.5031

TABLE 6. Report of errors for Example 6.2 using graded
meshes towards x = 0 and y = 0 with ε = 10−8.

FIGURE 6. Solution of Example 6.2, for ε = 10−3, ob-
tained using the mesh designed with h = 0.1 and ε = 10−8.

ε ∥u−uh∥0 |||u−uh|||β |||uI −uh|||β
1.0e-3 3.2820e-04 8.4978e-03 1.5048e-03
1.0e-4 3.2793e-04 8.7397e-03 1.5486e-03
1.0e-5 3.2786e-04 9.2645e-03 1.5964e-03
1.0e-6 3.2785e-04 9.8217e-03 1.6513e-03
1.0e-7 3.2785e-04 1.0410e-02 1.7146e-03
1.0e-8 3.2785e-04 1.1032e-02 1.7876e-03

TABLE 7. Report of errors for the numerical experiment
of Example 6.2 for distinct values of ε with a fixed mesh
designed with h = 0.1 and ε = 10−8.
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APPENDIX

In this section we present some technical results which have been used
along the paper.

The following Lemma is a consequence of [14, Lemmata 1.1 and 1.2].
In addition to the compatibility conditions of Section 4 we assume here
that the fourth order derivatives of f and b are Hölder continuous up to the
boundary. It is also assumed that b(x,y)≥ 2b2

0.

Lemma 6.1. Let u be the solution of (2.1). Then for all x ∈ (0, 3
4)× (0, 3

4)
and k ≤ 2, it holds∣∣∣∂x∂

k
y u(x,y)

∣∣∣ ≤ C
(

1+ ε
1−k
)
+ ε

−1e−b0
x
ε + ε

−ke−b0
y
ε + ε

−1−ke−b0
x+y

ε ,∣∣∣∂y∂
k
x u(x,y)

∣∣∣ ≤ C
(

1+ ε
1−k
)
+ ε

−ke−b0
x
ε + ε

−1e−b0
y
ε + ε

−1−ke−b0
x+y

ε .

Similar estimates are valid on the subdomains (0, 3
4)× (1

4 ,1) (replace y
by 1−y), (1

4 ,1)× (0, 3
4) (replace x by (1−x)) and (1

4 ,1)× (1
4 ,1) replace (x

by 1− x and y by 1− y).
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This Lemma allows us to obtain the next result.

Lemma 6.2. Let u be the solution of (2.1). Then, under Assumption 1, we
have that there exists a constant C such that

(6.33) ε

[
∑
i, j

βmin
(
h2

i ∥∂
3
x u∥0,Ri j +hih j∥∂

2
x ∂yu∥0,Ri j +h2

j∥∂x∂
2
y u∥0,Ri j

)2
] 1

2

≤C
(

log
1
ε

) 1
2

h2.

Proof. It is clear that by symmetry arguments it is enough to obtain (6.33)
when the sum on the right hand side is restricted to the indices i, j with
Ri j ⊆ Ωs := [0, 1

2 ]× [0, 1
2 ]. Let us split Ωs as indicated in Figure 7. More

precisely we set

Λ0 =
(
xm̄,

1
2

)
×
(
xm̄,

1
2

)
, Λ1 =

(
xm̄,

1
2

)
× (x1,xm̄),

Λ2 = (x1,xm̄)×
(
x1,

1
2

)
, Λ3 =

(
x1,

1
2

)
× (0,x1),

Λ4 = (0,x1)×
(
0, 1

2

)
,

where xm̄ is a grid point with xm̄ = γ0ε log 1
ε
. We use the notation

A(Λk) :=

ε

[
∑

i, j:Ri j⊂Λk

βmin
(
h2

i ∥∂
3
x u∥0,Ri j +hih j∥∂

2
x ∂yu∥0,Ri j +h2

j∥∂x∂
2
y u∥0,Ri j

)2
] 1

2

.

We will estimate separately A(Λk) for k = 0, . . . ,4.

(0) Since γ0 ≥ 2
b0

we have from Lemmata 4.1 and 6.1 that |D3u(x,y)| ≤
Cε−1 and being γ0 ≥ 1

γ
we also have βmin ≤ |β (x,y)| ≤ C for all

(x,y) ∈ Λ0. Since hi ≤ h for all i easily arrive at

A(Λ0)≤Ch2.

(1) On Λ1 we also have β ≤ C/ε . Taking into account that the length
of Λ1 in the y-direction is ≤Cε log 1

ε
, hi ≤ hxα for (x,y)∈ Ri j ⊆ Λ1,

and using Lemma 4.1 we have

(6.34) ∑
Ri j⊆Λ1

βmin
(
h2

i ∥∂
3
x u∥0,Ri j

)2 ≤Cε
−1h4 log

1
ε
.
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FIGURE 7. Split of Ωs = [0, 1
2 ]

2 used in the proof of Lemma 6.2

Now we again have into account the estimate

(6.35)
∣∣∂ 2

x ∂yu(x,y)
∣∣≤C

(
1+ ε

−1)+ ε
−2e−b0

x
ε + ε

−1e−b0
y
ε + ε

−3e−b0
x+y

ε .

With the previous arguments, and in addition using that γ0 ≥ 2
b0

,
we have ε−2e−b0

x
ε ≤ C on Λ1, hi,h j ≤ h, h j ≤ Chyα for (x,y) ∈

Ri j ⊆ Λ1. Thus we obtain

∑
Ri j⊂Λ1

βmin
(
hih j∥(1+ ε

−1)∥0,Ri j

)2 ≤Ch4
ε
−2 log

1
ε
,

∑
Ri j⊂Λ1

βmin

(
hih j∥ε

−2e−b0
x
ε ∥0,Ri j

)2
≤Ch4 log

1
ε
,

∑
Ri j⊂Λ1

βmin

(
hih j∥ε

−1e−b0
y
ε ∥0,Ri j

)2
≤Ch4,

∑
Ri j⊂Λ1

βmin

(
hih j∥ε

−3e−b0
(x+y)

ε ∥0,Ri j

)2
≤Ch4.

Then, together with (6.35) we arrive at

(6.36) ∑
Ri j⊂Λ1

βmin
(
hih j∥∂

2
x ∂yu∥0,Ri j

)2 ≤Ch4
ε
−2 log

1
ε
.

Now, from Lemma 6.1 we further have

(6.37)
∣∣∂x∂

2
y u(x,y)

∣∣≤C
(
1+ ε

−1)+ ε
−1e−b0

x
ε + ε

−2e−b0
y
ε + ε

−3e−b0
x+y

ε .
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Now we use that h j ≤ h, |S4| ≤ Cε log 1
ε
, ε−2e−b0

x
ε ≤ C on Λ1 and

h j ≤ hyα for (x,y) ∈ Ri j ⊆ Λ1 to obtain

∑
Ri j⊂Λ1

βmin

(
h2

j∥(1+ ε
−1)+ ε

−1e−b0
x
ε ∥0,Ri j

)2
≤Ch4

ε
−2 log

1
ε
,

∑
Ri j⊂Λ1

βmin

(
h2

j∥ε
−2e−b0

y
ε ∥0,Ri j

)2
≤Ch4,

∑
Ri j⊂Λ1

βmin

(
h2

j∥ε
−3e−b0

x+y
ε ∥0,Ri j

)2
≤Ch4

ε
2,

which joint with (6.37) give

(6.38) ∑
Ri j⊂Λ1

βmin
(
h2

j∥∂x∂
2
y u∥0,Ri j

)2 ≤Ch4
ε
−2 log

1
ε
.

Inequalities (6.34), (6.36) and (6.38) leave

A(Λ1)≤C
(

log
1
ε

) 1
2

h2.

(2) On Λ2 we use that β ≤C/ε . In order to estimate A(Λ2) we first note
that since hi ≤Chxα for (x,y) ∈ Ri j ⊆ Λ2 we have from Lemma 4.1
with k = 3 that

(6.39) ∑
Ri j⊂Λ2

βminh4
i ∥∂

3
x u∥2

0,Ri j
≤Ch4

ε
−2.

We use again (6.35) stated in Lemma 6.1. Using that for Ri j ⊆ Λ2
the inequalities hi,h j ≤Ch, hi ≤ hxα h j ≤ hyα for (x,y) ∈ Ri j, hi ≤
Chε log 1

ε
and |Λ2| ≤Cε log 1

ε
hold true, it can be checked that

∑
Ri j⊂Λ2

βminh2
i h2

j∥(1+ ε
−1)∥2

0,Ri j
≤C

(
log

1
ε

)3

h4,

∑
Ri j⊂Λ2

βminh2
i h2

j∥ε
−2e−b0

x
ε ∥2

0,Ri j
≤Cε

−2h4,

∑
Ri j⊂Λ2

βminh2
i h2

j∥ε
−1e−b0

y
ε ∥2

0,Ri j
≤Ch4,

∑
Ri j⊂Λ2

βminh2
i h2

j∥ε
−3e−b0

(x+y)
ε ∥2

0,Ri j
≤Cε

−1h4.

Therefore we obtain

(6.40) ∑
Ri j⊂Λ2

βmin
(
hih j∥∂

2
x ∂yu∥0,Ri j

)2 ≤Ch4
ε
−2.
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We use now the etimate (6.37). Then, using that for Ri j ⊆ Λ2 we
have h j ≤ h and h j ≤ hyα for (x,y) ∈ Ri j and since |Λ2| ≤Cε log 1

ε

it follows

∑
Ri j⊂Λ2

βmin

(
h2

j∥(1+ ε
−1 + ε

−1e−b0
x
ε )∥0,Ri j

)2
≤Ch4

ε
−2 log

1
ε
,

∑
Ri j⊂Λ2

βmin

(
h2

j∥ε
−2e−b0

y
ε ∥0,Ri j

)2
≤Ch4,

∑
Ri j⊂Λ2

βmin

(
h2

j∥ε
−3e−b0

x+y
ε ∥0,Ri j

)2
≤Cε

−2h4.

It follows that

(6.41) ∑
Ri j⊂S1

βmin
(
h2

j∥∂x∂
2
y u∥0,Ri j

)2 ≤Ch4
ε
−2 log

1
ε
.

Collecting (6.39)–(6.41) we find

A(Λ2)≤C
(

log
1
ε

) 1
2

h2.

(3) We consider the estimate on Λ3. We note that R11 is exterior to Λ3
and then we have hi ≤ hxα for all (x,y) ∈ Ri1 ⊆ Λ3. Since h ≤ e−1

we have
h1 = h2log 1

ε = ε
2log 1

h < ε
2

and then we also have |Λ3| ≤Cε2. We will also use that β ≤ C
ε

on
Λ3. Then, from the estimate for ∂ 3

x u from Lemma 4.1 we have

(6.42) ∑
Ri1⊂Λ3

βmin
(
h2

i ∥0,Ri1∂
3
x u∥
)2

≤Ch4
∫ h1

0

∫ 1

0

(
1+ ε

−3x2αe−b0
x
ε

)2
dxdy ≤Ch4.

Now we again take into account the estimate (6.35). Following the
previous argument and since hi ≤ h, h1 ≤ hε we have

∑
Ri1⊂Λ3

βmin

(
hih1∥1+ ε

−1 + ε
−1e−b0

y
ε ∥0,Ri1

)2
≤Ch4

ε,

∑
Ri1⊂Λ3

βmin

(
hih1∥ε

−2e−b0
x
ε ∥0,Ri1

)2
≤Ch4

ε
2,

and since hi ≤ hxα for all (x,y) ∈ Ri1 ⊆ Λ3 we also have

∑
Ri1⊂Λ3

βmin

(
hih1∥ε

−3e−b0
x+y

ε ∥
)2

≤Ch4.
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Thus we arrive at

(6.43) ∑
Ri1⊂Λ3

βmin
(
hih1∥∂

2
x ∂yu∥0,Ri1

)2 ≤ h4.

On the other hand, we now use the estimate (6.37). Since again
h1 ≤ hε we obtain

∑
Ri1⊂Λ3

βmin

(
h2

1∥1+ ε
−1 + ε

−1e−b0
x
ε ∥0,Ri1

)2
≤Ch4

ε
3,

∑
Ri1⊂S8

βmin

(
h2

1∥ε
−2e−b0

y
ε ∥0,Ri1

)2
≤Ch4

ε.

With all the previous arguments we also can check that

∑
Ri1⊂Λ3

βmin

(
h2

1∥ε
−3e−b0

x+y
ε ∥
)2

≤Ch4
ε

4.

The last three inequalities give us

(6.44) ∑
Ri1⊂Λ3

βmin
(
h2

1∥∂x∂
2
y u∥0,Ri1

)2 ≤ h4
ε.

Finally, from (6.42)–(6.44) leave

A(Λ3)≤Ch2
ε.

(4) Now, we consider the estimate on Λ4. We note that

h1 = h2log 1
ε = hlog 1

ε hlog 1
ε = hlog 1

ε ε
log 1

h ≤ hε.

Furthermore, as we proved in the previous item, we also have h1 <
ε2, and as a consequence |Λ4| ≤ ε2. Then, we can simply use that
∂ 3

x u ≤Cε−3, which follows from Lemma 4.1 to obtain

(6.45) ∑
R1 j⊂Λ4

j ̸=1

βmin
(
h2

1∥∂
3
x u∥0,R1 j

)2 ≤Ch4
ε
−1.

Now, take into account again (6.35)∣∣∂ 2
x ∂yu(x,y)

∣∣≤C
(
1+ ε

−1)+ ε
−2e−b0

x
ε + ε

−1e−b0
y
ε + ε

−3e−b0
x+y

ε .

We firstly note that, since h j ≤ h, we have

∑
R1 j⊂Λ4

j ̸=1

βmin

(
h1h j∥(1+ ε

−1 + ε
−1e−b0

y
ε )∥0,R1 j

)2
≤Ch4

ε,

∑
R1 j⊂Λ4

j ̸=1

βmin

(
h1h j∥ε

−2e−b0
x
ε ∥0,R1 j

)2
≤Ch4

ε
−1.
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and secondly, since h j ≤ hyα for all (x,y)∈R1 j ⊆Λ4, j ̸= 1 we have

∑
R1 j⊂Λ4

j ̸=1

βmin

(
h1h j∥ε

−3e−b0
x+y

ε ∥0,R1 j

)2
≤Ch4.

From the last three inequalities we obtain

(6.46) ∑
R1 j⊂Λ4

j ̸=1

βmin
(
h1h j∥∂

2
x ∂yu∥0,R1 j

)
≤Ch4

ε
−1.

Now we use the estimate (6.37)∣∣∂x∂
2
y u(x,y)

∣∣≤C
(
1+ ε

−1)+ ε
−1e−b0

x
ε + ε

−2e−b0
y
ε + ε

−3e−b0
x+y

ε .

Since |Λ4| ≤ ε2 and h j ≤ h we have

∑
R1 j⊂Λ4

j ̸=1

βmin

(
h2

j∥(1+ ε
−1 + ε

−1e−b0
x
ε )∥0,R1 j

)2
≤Ch4

ε
−1.

We also have

∑
R1 j⊂Λ4

j ̸=1

βmin

(
h2

j∥ε
−2e−b0

y
ε ∥0,R1 j

)2
≤Ch4

ε
2,

∑
R1 j⊂Λ4

j ̸=1

βmin

(
h2

j∥ε
−3e−b0

x+y
ε ∥0,R1 j

)2
≤Ch4,

where we used again h1 ≤ ε2 and h j ≤ hyα for (x,y) ∈ R1 j ⊆ Λ4,
j ̸= 1. Then we obtain

(6.47) ∑
R1 j⊂Λ4

j ̸=1

βmin
(
h2

j∥∂x∂
2
y u∥0,R1 j

)
≤Ch4

ε
−1.

Finally, since

|∂ 3
x u|, |∂ 2

x ∂yu|, |∂x∂
2
y u| ≤Cε

−3

and using h1 ≤ hε and h1 ≤ ε2, and so |R11| ≤ ε4, we obtain

(6.48) βminh4
1
(
∥∂

3
x u∥0,R11 +∥∂

2
x ∂yu∥0,R11 +∥∂x∂

2
y ∥0,R11

)2 ≤Ch4
ε.

Therefore, inequalities (6.45)–(6.48) leave

A(Λ4)≤Ch2
ε

1
2 .

In this way we obtain (6.33) when the indices i, j are restricted to the ones
for which Ri j ⊂ Ωs. The proof concludes by symmetry arguments. □ □
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2000 ROSARIO, ARGENTINA., CONICET, CCT ROSARIO, ARGENTINA.

Email address: ariel@fceia.unr.edu.ar

UNIVERSIDAD NACIONAL DE ROSARIO. FACULTAD DE CIENCIAS EXACTAS, INGE-
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