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Abstract. In this paper we develop and analyze a family of mixed finite element methods for
the numerical solution of the Stokes problem in two space dimensions. In these schemes, the
pressure is interpolated on a mesh of quadrilateral elements, while the velocity is approximated
on a triangular mesh obtained by dividing each quadrilateral into four triangles by its diagonals.
Continuous interpolations of degrees k for the velocity and l for the pressure are considered,
so that the new finite elements are called cross-grid PkQl. A stability analysis of these ap-
proximations is provided, based on the macroelement technique of Stemberg. The lowest order
P1Q1 and P2Q1 cases are analyzed in detail; in the first case, a global spurious pressure mode
is shown to exist, so that this element is unstable. In the second case, however, stability is
rigorously proved. Numerical results obtained in these two cases (with both rectangular and
general quadrilateral elements) are also presented, which confirm the existence of the spurious
pressure mode for the P1Q1 element and the stability of the P2Q1 element.

1. Introduction

In order to approximate the solution of the Stokes problem by finite element methods, there
are basically two approaches. The first one consists in approximating the two independent
variables, velocity and pressure, using different spaces for each one. This leads to mixed finite
element methods, examples of which can be found in [4], [6], [8], [10], [16], [27] and in the
references therein; mixed methods have been widely analyzed and the theory of mixed problems
is well-established nowadays (see [5] and [9]). The second approach, which is based on stabilized
formulations, consists in modifying the discrete problem by the addition of new terms which
enhance its stability (see [1], [2], [3], [12], [13], [26] and the references therein).

Both of these approaches have some advantages and some disadvantages. For mixed finite
element methods the general theory states that the convergence of these methods is guaranteed
if the discrete spaces are selected such that they satisfy the well known inf-sup condition (see
[5], [9]), which is in general hard to check. On the other hand, stabilized methods depend on
algorithmic parameters which have to be tuned to get optimal results.

In this work we introduce and analyze a new family of mixed finite element methods in which
the pressure is interpolated on a mesh of quadrilateral elements and the velocity on a triangular
mesh obtained by dividing each quadrilateral into four triangles by its diagonals. The meshing
strategy is usually called cross-grid, and similar ideas were employed in [5], [9], [14], [17], [18],
[19], [22]. We denote by PkQl the elements in which the velocity is interpolated in each triangle
by polynomials of degree no greater than k and the pressure is interpolated in each quadrilateral
by polynomials of degree in each variable no greater than l, with k ≥ l ≥ 1.
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In order to analyze the stability of these methods, we use the well-known macroelement
technique of Stemberg ([23], [24], [25]) which allows to reduce the analysis of the global stability
to a simple local condition. We prove that if the method satisfies a local condition, optimal
order of convergence can be obtained. We analyze the lowest order P1Q1 element and show the
existence of a global spurious pressure mode, so that convergence of the pressure does not hold
for this element. Surprisingly, the alternate nature of the nodal values of the pressure in this
spurious mode resembles the structure of the well known checkboard mode of the Q1P0 element
(see for instance [5], [20] and [21]). On the other hand, we prove that the cross-grid P2Q1

element satisfies the local estimate and thus the inf-sup condition, so that it yields optimally
convergent solutions.

Some numerical results are also presented which confirm the presence of the spurious pressure
mode for the P1Q1 element and the stability of the P2Q1 element. Although the stability analysis
provided here applies only to rectangular elements, the methods we have developed can also be
applied to meshes of general quadrilateral elements; we include some numerical experiments on
such meshes which show that the nodal checkboard mode is also present in that case for the
P1Q1 element, so that the presence of this spurious model is not removed by mesh distortion.
The P2Q1 element, moreover, gives a correct pressure solution and so we conjeture the stability
of our cross-grid P2Q1 element for general meshes of quadrilateral elements.

The rest of the paper is organized as follows. In Section 2 we state the Stokes problem and
introduce the PkQl mixed finite element approximations. In Section 3 we present the stability
analysis based on the macrolement technique. In Section 4 we analyze the stability of the lowest
order cases P1Q1 and P2Q1. Finally, in Section 5 we present some numerical examples.

2. Cross-grid PkQl Finite Element approximation of The Stokes Problem

In this Section we recall the Stokes problem and we introduce the new family of cross-grid
PkQl mixed finite element methods for its numerical approximation.

2.1. Problem Statement. Let Ω ⊂ R2 be an open, bounded and polygonal domain. We
consider the classical Stokes problem which models the slow motion of an incompressible viscous
fluid occupying Ω: 




−µ∆u +∇p = f in Ω ,

∇ · u = 0 in Ω ,

u = 0 on Γ := ∂Ω ,

(2.1)

where u is the fluid velocity, p is the pressure, f ∈ (H−1(Ω))2 (the dual space of (H1
0 (Ω))2) is a

given body force per unit mass and µ > 0 is the kinematic viscosity, which we assume constant.
Let V := (H1

0 (Ω))2 and Q := L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω q = 0}. The weak form of (2.1) is

given by: Find u ∈ V and p ∈ Q such that

{
a(u,v) + b(v, p) =< f ,v >V ′×V ∀v ∈ V ,

b(u, q) = 0 ∀q ∈ Q ,
(2.2)

where the bilinear forms a(·, ·) and b(·, ·) are defined on V × V and V ×Q, respectively, as

a(u,v) = µ

∫

Ω
∇u : ∇v u,v ∈ V ,

b(v, q) = −
∫

Ω
∇ · v q v ∈ V, q ∈ Q .



CROSS-GRID PkQl MIXED FINITE ELEMENTS FOR THE STOKES PROBLEM 3

The norms and seminorms in (Hm(D))2, with m an integer, are denoted by ‖ · ‖m,D and
|·|m,D respectively and (·, ·)D denotes the inner product in L2(D) or (L2(D))2 for any subdomain
D ⊂ Ω. The domain subscript is dropped for the case D = Ω.

The bilinear form a(·, ·) is coercive in V and there exists a constant β > 0 (see for instance
[5]) such that for all q ∈ Q

sup
06=v∈V

b(v, q)
‖v‖1

≥ β‖q‖0. (2.3)

According to the general theory of mixed problems ([5, 9]) these conditions ensure that there
exists a unique solution of problem (2.2).

Let now Vh ⊂ V and Qh ⊂ Q be finite dimensional spaces. The standard Galerkin approxi-
mation of (2.2) is given by: Find (uh, ph) ∈ Vh ×Qh such that:

{
a(uh,v) + b(v, ph) =< f ,v >V ′×V ∀v ∈ Vh ,

b(uh, q) = 0 ∀q ∈ Qh .
(2.4)

In order to have a stable and convergent approximation, the discrete spaces Vh and Qh have
to satisfy the well-known LBB condition, i.e, there should exist a constant β̃ > 0, independent
of h, such that

sup
0 6=v∈Vh

b(v, q)
‖v‖1

≥ β̃‖q‖0 ∀q ∈ Qh. (2.5)

Then, if (2.5) holds the theory of mixed finite element methods [5, 9] states that problem (2.4) has
a unique solution which is stable and optimally convergent, i.e, there exists a positive constant
C such that:

‖u− uh‖1 + ‖p− ph‖0 ≤ C{ inf
v∈Vh

‖u− v‖1 + inf
q∈Qh

‖p− q‖0}. (2.6)

2.2. Cross-grid PkQl Mixed Finite Elements. We now consider a partition Ch of Ω̄ into
convex quadrilateral elements K, which we assume to be regular, i.e, there exists a constant
σ > 0 independent of the mesh size h such that

hK ≤ σρK ∀K ∈ Ch,

where hK denotes the diameter of K and ρK the diameter of the largest ball contained in K.
We assume that all quadrilateral elements K ∈ Ch are the image of a reference quadrilateral
element K̂ by a bilinear mapping FK from K̂ into K. Then, we divide each quadrilateral K by
its diagonals into four triangles and we call Th the resulting mesh of triangular elements T .

Using the standard notation Pk for the space of polynomials of degree not greater than k
and Ql for the space of polynomials of the form q(x, y) =

∑
j αjpj(x)qj(y) with pj and qj

polynomials of degree less than or equal to l, the cross-grid PkQl mixed finite element spaces
for the approximation of the velocity and the pressure are defined, respectively, as follows:

Vh = {v ∈ V : v|T ∈ (Pk)2, ∀T ∈ Th}
Qh = {q ∈ Q : q|K = q̂K ◦ F−1

K , q̂K ∈ Ql, ∀K ∈ Ch}.
The cases of interest are, of course, those for which l ≤ k. For l = k, we have an approximation

of the same order for both variables, although not an equal approximation. For l = k − 1 the
orders of the interpolation errors in the error estimate (2.6) are balanced. Moreover, we are
interested in continuous pressure approximations only, so that we assume that l ≥ 1.
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3. Stability analysis - Macroelement technique

The goal of this Section is to analyze the stability of cross-grid PkQl mixed finite element ap-
proximations of the Stokes problem by means of the satisfaction of the discrete inf-sup condition
(2.5). From now on we assume that the mesh consists only of rectangular elements and we align
the coordinate axes to their sides, so that the transformation FK is affine and its Jacobian is
diagonal. In this case, the approximating finite element spaces for the velocity and the pressure
can be redefined in a simpler way, using local variables, as:

Vh = {v ∈ V : v|T ∈ (Pk)2, ∀T ∈ Th}
Qh = {q ∈ Q : q|K ∈ Ql, ∀K ∈ Ch}.

Our stability analysis is based on the well known macroelement technique of Stenberg (see
[23, 24, 25]). In the general setting, a macroelement is defined as a connected set M of adjoining
(velocity) elements T ∈ Th. The macroelement partitioning is called Mh. Two macroelements
M and M̄ are said to be equivalent if there is a one-to-one and continuous mapping G : M → M̄
such that:

i) G(M) = M̄ .
ii) For all T ⊂ M , G(T ) = T̄ ⊂ M̄ .
iii) For all T ⊂ M , G|T = FT̄ ◦F−1

T , where FT and FT̄ are affine mappings from the reference
element T̃ onto Tj and T̂ , respectively.

The macroelement partitioning Mh is usually required to satisfy the following assumptions:
(M1) There is a fixed set of equivalence classes Di, i = 1, . . . , n of macroelements such that

each M ∈Mh belongs to one of Di.
(M2) There is a positive integer L such that each T ∈ Th is contained in at least one and not

more than L macroelements of Mh.
The cross-grid structure of our velocity mesh Th makes the macroelement technique specially

suitable for the stability analysis of this type of elements. The natural choice for macroelements
in our case is M = K, so that the macroelements are indeed the rectangular pressure elements
(we use the notation M for the macroelements from now on, rather than using K, since it is
standard in this context). Condition (M2) is automatically satisfied with this choice, with L = 1.
We take the unit square M̂ = [0, 1] × [0, 1] as reference macroelement. Since in our case every
M ∈ Mh is a rectangle of the partition Ch, it is clear that there exists an affine transformation
FM such that:

i) FM (M̂) = M .
ii) If we denote by T̂i , 1 ≤ i ≤ 4 the four triangles in M̂ obtained by diving it by its

diagonals, then Tj = FM (T̂j) are the four triangles of M obtained by dividing it by its
diagonals.

iii) FM|T̂j
= FTj ◦F−1

T̂j
, j = 1, · · · , 4 where FTj and FT̂j

are the mappings from the reference

element T̃ , i.e. the triangle of vertices (0, 0), (1, 0) and (0, 1), onto Tj and T̂j respectively.
Thus, all macroelements are equivalent, and condition (M1) is also automatically satisfied, with
n = 1. For each macroelement M , let us define the following finite element spaces consistent
with Vh and Qh:

VM = {v ∈ (H1
0 (M))2 : v|T ∈ (Pk)2, ∀T ⊂ M}

QM = {q ∈ L2(M) : q|M ∈ Ql}
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For the elements in QM we define the following seminorm:

|q|M = hM‖∇q‖0,M

and for q ∈ Qh let

‖q‖2
h =

∑

M∈Ch

h2
M‖∇q‖2

0,M ,

which can also be written as:

‖q‖2
h =

∑

M∈Ch

|q|2M .

From now on, C denotes a generic positive constant, possibly different at different occurrences,
which is independent of h but may depend on the mesh parameter σ and some others parameters
introduced in the text.

The following Lemmas are the tools to show that the global stability estimate (2.5) can be
obtained from local stability estimates. The proofs follow the same arguments as those given in
([23, 24, 25]).

Lemma 3.1. If there exists a constant C such that for any M ∈ Ch

sup
06=v∈VM

(∇ · v, q)M

|v|1,M
≥ C|q|M ∀q ∈ QM , (3.7)

then there exists a constant C such that the following stability inequality holds:

sup
06=v∈Vh

(∇ · v, q)
‖v‖1

≥ C‖q‖h ∀q ∈ Qh. (3.8)

Proof. Given q ∈ Qh, the local stability estimates (3.7) implies that for any M ∈ Ch, there exists
vM ∈ VM such that

(∇ · vM , q)M ≥ C|q|2M (3.9)

and

|vM |1,M ≤ |q|M . (3.10)

Since vM = 0 on ∂M , we can define an extension function ve
M ∈ Vh as

ve
M =

{vM in M

0 in Ω \M

Thus, from (3.9) we have that

(∇ · ve
M , q) = (∇ · vM , q)M ≥ C|q|2M (3.11)

and from (3.10) we get
|ve

M |1 = |vM |1,M ≤ |q|M . (3.12)

Let us now define
v =

∑

M∈Ch

ve
M .
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Then, v ∈ Vh and from (3.11) we get

(∇ · v, q) =
∑

M∈Ch

(∇ · ve
M , q) ≥ C

∑

M∈Ch

|q|2M = C‖q‖2
h. (3.13)

On the other hand, by using Poincaré inequality and (3.12) we obtain that

‖v‖2
1 ≤ C|v|21 = C

∑

M∈Ch

|ve
M |21 ≤ C

∑

M∈Ch

|q|2M = C‖q‖2
h. (3.14)

Therefore, the Lemma follows from (3.13) and (3.14).
¤

The following Lemmas provide a relationship between stability in the mesh-dependent norm
|| · ||h and in the L2 norm ‖ · ‖0.

Lemma 3.2. There exist two constants C1 and C2 such that

sup
06=v∈Vh

(∇ · v, q)
‖v‖1

≥ C1‖q‖0 − C2‖q‖h ∀q ∈ Qh.

Proof. From the inf-sup condition (2.3) we infer that for any q ∈ Qh there exists v ∈ V such
that

(∇ · v, q) ≥ Ĉ‖q‖2
0 (3.15)

and

‖v‖1 ≤ ‖q‖0. (3.16)

We now consider the Clemènt interpolator I : V → Vh. It is well known that there exists a
constant C such that for any T ∈ Th

‖v − I(v)‖0,T ≤ ChT ‖v‖1,ωT

‖I(v)‖1,T ≤ C‖v‖1,ωT

where ωT denotes the union of all the elements sharing a vertex with T (see, for example, [11]).
Therefore, by using that the triangulation satisfies the minimum angle condition we get

∑

T∈Th

h−2
T ‖v − I(v)‖2

0,T ≤ C‖v‖2
1 (3.17)

and

‖I(v)‖1 ≤ C‖v‖1. (3.18)

Then, integrating by parts in each rectangle M ∈ Ch and using (3.15), we have

(∇ · I(v), q) = (∇ · (I(v)− v), q) + (∇ · v, q)

≥
∑

M∈Ch

(∇ · (I(v)− v), q)M + Ĉ‖q‖2
0

=
∑

M∈Ch

(v − I(v),∇q)M +
∑

M∈Ch

∫

∂M
(v − I(v)) · n q + Ĉ‖q‖2

0.

Due to the continuity of the pressure across interelement boundaries and the fact that the
function v− I(v) ∈ V , the second term is zero. Thus, applying the Cauchy-Schwartz inequality
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and estimates (3.16) and (3.17), we obtain

(∇ · I(v), q) ≥ −






 ∑

M∈Ch

h−2
M ‖v − I(v)‖2

0,M




1/2 
 ∑

M∈Ch

h2
M‖∇q‖2

0,M




1/2




+ Ĉ‖q‖2
0

≥ −






 ∑

M∈Ch

∑

T⊂M

h−2
T ‖v − I(v)‖2

0,T




1/2 
 ∑

M∈Ch

h2
M‖∇q‖2

0,M




1/2




+ Ĉ‖q‖2
0

= −






 ∑

T∈Th

h−2
T ‖v − I(v)‖2

0,T




1/2 
 ∑

M∈Ch

h2
M‖∇q‖2

0,M




1/2




+ Ĉ‖q‖2
0

≥ −C‖v‖1‖q‖h + Ĉ‖q‖2
0 ≥ −C‖q‖0‖q‖h + Ĉ‖q‖2

0

and using this estimate together with (3.16) and (3.18), we get

(∇ · I(v), q)
‖I(v)‖1

≥ ‖q‖0(Ĉ‖q‖0 − C‖q‖h)
‖I(v)‖1

≥ C1‖q‖0 − C2‖q‖h

and the Lemma follows. ¤

The next Lemma is a consequence of Lemma 3.2. Its proof is essentially the same as that of
Lemma 3 in [24], and it is therefore omitted.

Lemma 3.3. If the stability in the mesh-dependent norm (3.8) is valid then, the stability con-
dition (2.5) holds.

Therefore, the problem of proving that the inf-sup condition (2.5) holds is reduced to proving
the local estimates (3.7). In order to get sufficient conditions for these to hold, let us define the
space:

NM = {q ∈ QM | (∇q,v)M = 0, ∀v ∈ VM}.
Since we are in the same conditions as in Lemma 4 of [24] and using the same arguments as
there, we can prove the following result which gives the fundamental tool to prove the stability
of the proposed finite element methods:

Lemma 3.4. If the space NM is one-dimensional, i.e., it consists only of functions which are
constant on M , then the local stability condition (3.7) holds.

Combining Lemmas 3.1, 3.3 and 3.4 we obtain the main result of this Section:

Theorem 3.1. If the space NM is one-dimensional, i.e., it consists only of functions which
are constant on M , then the inf-sup condition (2.5) holds, problem (2.4) has a unique solution
(uh, p) and there exists a constant C independent of the mesh size h such that:

‖u− uh‖1 + ‖p− ph‖0 ≤ C{ inf
v∈Vh

‖u− v‖1 + inf
q∈Qh

‖p− q‖0}.

Remark 3.1. We observe that, under the hypothesis of the previous Theorem, if the continuous
solution satisfies u ∈ (Hk+1(Ω)

⋂
H1

0 (Ω))2 and p ∈ H l+1(Ω)
⋂

L2
0(Ω), using classical interpo-

lation error estimates (see for example [7]) we can conclude that ‖u − uh‖1 + ‖p − ph‖0 ≤
C{hk‖u‖k+1 + hl+1‖p‖l+1}.
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4. Stability of cross-grid PkQl Mixed Finite Elements

The aim of this Section is to analyze the stability of cross-grid PkQl mixed finite elements
for different values of k and l, with k ≥ l and l ≥ 1, using the numerical analysis given in
Section 3. According to Theorem 3.1, for this type of elements stability holds if the condition
dim(NM ) = 1 is satisfied. Therefore, the following patch-test type condition (see for example
[28]) should first be checked if stability is to be expected:

dimVM ≥ dimQM − 1
for every macroelement M . Since in our case M is a rectangle of the partition Ch, it is easy to
see that for PkQl elements:

dimVM = 2 {1 + 4(k − 1) + 2(k − 2)(k − 1)} = 4k2 − 4k + 2
dimQM = (l + 1)2

and therefore, PkQl elements satisfy the patch test if

4k2 − 4k + 2 ≥ l2 + 2l

Thus, for the PkQk (k ≥ 1) mixed interpolations this gives k > 1.58, so that the lowest order
P1Q1 element is suspected to be unstable. For the PkQk−1 (k ≥ 2) methods, on the other
hand, this condition holds for all values of k; the simplest case P2Q1 may thus be stable. In the
following Subsections we consider and analyze in detail the cases P1Q1 and P2Q1 (see Figures 1
and 3).

O  Pressure Nodes

 *  Velocity Nodes

Figure 1. Velocity and pressure nodes of the cross-grid P1Q1 mixed finite element.

4.1. The cross-grid P1Q1 element. We first consider the cross-grid P1Q1 element, which
is the simplest cross-grid element that one can consider among those which use a continuous
pressure interpolation. The velocity and pressure nodes of this element are shown in Figure 1.
In this case, dim(VM ) = 2 and dim(QM ) = 4, so that the space NM is at least 2-dimensional. In
fact, dim(NM ) = 2 and NM consists of functions which take the same value at opposite vertices
of M . These local spurious pressure modes add up to conform a global spurious pressure mode.
The next Lemma shows the existence of such pressure mode when Ω is a rectangle and a uniform
mesh is considered. Thus, this element does not satisfy the inf-sup condition (2.5).
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Lemma 4.1. Let Ω = (0, A) × (0, B) and let Ch be a uniform mesh consisting of N × M
rectangles. Let us consider the P1Q1 mixed finite element approximation. Then, there exists a
global spurious pressure mode q̂h ∈ Qh \ {0} such that

(∇q̂h,vh) = 0 ∀vh ∈ Vh

Proof. Let Ki,j = [(i − 1)h, ih] × [(j − 1)k, jk] be the rectangles of the uniform mesh Ch, with
h = A/N , k = B/M , 1 ≤ i ≤ N and 1 ≤ j ≤ M , and let ni,j = (ih, jk), 0 ≤ i ≤ N , 0 ≤ j ≤ M
be the nodes of the mesh Ch. We define q̂h ∈ Qh as:

q̂h(ni,j) =
{

a if i + j is even
− a if i + j is odd

with a ∈ R, a 6= 0. In order to simplify notation we denote by q̂i,j = q̂h(ni.j)
Let pi,j be the Lagrange basis of Qh, i.e pi,j ∈ Qh, pi,j(ni,j) = 1 and it is zero in the rest of

the nodes of the mesh Ch. Then, if i + j is even we have that

q̂h(x, y)|Ki,j
= q̂i−1,j−1pi−1,j−1 + q̂i,j−1pi,j−1 + q̂i−1,jpi−1,j + q̂i,jpi,j

= a
(
pi−1,j−1 + pi,j − pi,j−1 − pi−1,j

)

= a

{
(
ih− x

h
)(

jk − y

k
) + (

x− (i− 1)h
h

)(
y − (j − 1)k

k
)

− (
x− (i− 1)h

h
)(

jk − y

k
)− (

ih− x

h
)(

y − (j − 1)k
k

)
}

and so
∂q̂h

∂x
(x, y)|Ki,j

= a

(
y − jk

hk
+

y − (j − 1)k
hk

− jk − y

hk
− (j − 1)k − y

hk

)
.

Let Th be the corresponding triangular mesh obtained by dividing each rectangle into four
triangles by its diagonals. We denote by ni−1/2,j−1/2 = ((i − 1/2)h, (j − 1/2)k), 1 ≤ i ≤ N ,
1 ≤ j ≤ M , the internal node in each rectangle. Let βi,j be the piecewise lineal Lagrange basis
of Vh, i.e., βi,j ∈ Vh such that βi,j(ni,j) = 1 and it is zero in the rest of the nodes of Th.

Let us consider internal nodes ni−1/2,j−1/2 first; the support of βi−1/2,j−1/2 is Ki,j . Since
∂q̂h
∂x (x, ·)|Ki,j

is an odd function with respect to the line y = (j − 1/2)k and βi−1/2,j−1/2(x, ·) is
an even function with respect to that line, we conclude that∫

Ω

∂q̂h

∂x
(x, y)βi−1/2,j−1/2(x, y)dxdy =

∫

Ki,j

∂q̂h

∂x
(x, y)βi−1/2,j−1/2(x, y)dxdy = 0.

Now we consider corner nodes ni,j and denote the support of βi,j by wi,j =
⋃

ni,j∈T

T =
⋃

1≤l≤8

Tl

(see Figure 2). An easy calculation shows that
∫

Tl

∂q̂h

∂x
(x, y)βi,j = −

∫

Tl+4

∂q̂h

∂x
(x, y)βi,j 1 ≤ l ≤ 4

and thus, ∫

Ω

∂q̂h

∂x
(x, y)βi,j =

∫

wi,j

∂q̂h

∂x
(x, y)βi,j = 0.

By using the same arguments, we can prove that∫

Ω

∂q̂h

∂y
(x, y)βi−1/2,j−1/2(x, y)dxdy = 0
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Figure 2. Support of the shape function βi,j for corner nodes ni,j .

and ∫

Ω

∂q̂h

∂y
(x, y)βi,j(x, y)dxdy = 0.

The proof concludes by observing that the case i + j odd is completely analogous and so
(∇q̂h,vh) = 0, ∀vh ∈ Vh. ¤

Remark 4.1. Due to the alternate nature of the spurious pressure mode q̂h, which resembles
the well-known checkboard mode of the elemental pressures in the Q1P0 element, we call this
pressure distribution a nodal checkboard mode.

O  Pressure Nodes

 *  Velocity Nodes

Figure 3. Velocity and pressure nodes of the cross-grid P2Q1 mixed finite element.

4.2. The cross-grid P2Q1 element. We now consider the cross-grid P2Q1 element (see Figure
3). In this case, dim(VM ) = 10 and dim(QM ) = 4. The following Lemma shows that for the
P2Q1 element the space NM is one dimensional and therefore, from Theorem 3.1, we conclude
that this element is stable and optimally convergent.
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Lemma 4.2. The space NM for the cross-grid P2Q1 element is one-dimensional.

Proof. Let q ∈ NM be, i.e., q ∈ QM such that (∇q,v)M = 0 ∀v ∈ VM . We denote by nj ,
1 ≤ j ≤ 13 the nodes of the triangulation lying on M and by Ti, 1 ≤ i ≤ 4, the triangles in
M , as shown in Figure 4. Let βj , 1 ≤ j ≤ 13, be such that βj |T ∈ P2 and βj(ni) = δi,j , i.e,
the corresponding P2-Lagrange basis function of node j. Finally, let pj , 1 ≤ j ≤ 4 be such that
pj ∈ QM and pj(ni) = δi,j . Then, any q ∈ QM can be written as

q(x, y) =
4∑

j=1

q(nj)pj(x, y).

T
4

T
1

T
2

T
3

n
1

n
5

n
2

n
6

n
3

n
7

n
4

n
8

n
9

n
10

n
11

n
12

n
13

Figure 4. Local numbering of nodes and triangular elements in the P2Q1 case.

We compute explicitly the products (∇q,v) for selected velocity fields v. We first notice that
these products can be computed on the reference macroelement M̂ = [0, 1]× [0, 1]. Indeed, for
any macroelement M ∈ Ch, we have that β̂j = βj ◦FM , 1 ≤ j ≤ 13, and p̂i = pi ◦FM , 1 ≤ i ≤ 4,
are the corresponding Lagrange basis in M̂ , and from a simple changes of variables we get:

∫

M

∂pj

∂x
(x, y)βj(x, y)dxdy =

∫

M̂

1
h

∂p̂j

∂x̂
(x̂, ŷ) β̂j(x̂, ŷ)hk dx̂dŷ

= k

∫

M̂

∂p̂j

∂x̂
(x̂, ŷ)β̂j(x̂, ŷ)dx̂dŷ,

∫

M

∂pj

∂y
(x, y)βj(x, y)dxdy =

∫

M̂

1
k

∂p̂j

∂ŷ
(x̂, ŷ) β̂j(x̂, ŷ)hk dx̂dŷ

= h

∫

M̂

∂p̂j

∂ŷ
(x̂, ŷ)β̂j(x̂, ŷ)dx̂dŷ.

where h and k denote the lengths of the edges of M .
Let us first take v = (β10, 0); by the simple calculation of the corresponding integrals we have

that condition (∇q,v)M = 0 leads to:

− 7
60

q(n1) +
7
60

q(n2) +
1
20

q(n3)− 1
20

q(n4) = 0, (4.19)

and taking now v = (0, β10) yields:
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− 7
60

q(n1)− 1
20

q(n2) +
1
20

q(n3) +
7
60

q(n4) = 0. (4.20)

Finally, taking v = (0, β12) we obtain:

− 1
20

q(n1)− 7
60

q(n2) +
7
60

q(n3) +
1
20

q(n4) = 0. (4.21)

Subtracting (4.20) from (4.19) we get q(n2) = q(n4) and adding up (4.19) and (4.21) we get
q(n1) = q(n3). Substituting these in (4.19) we get q(n1) = q(n2), and the proof concludes. ¤
Remark 4.2. Let us notice that for cross-grid meshes this P2Q1 element has the same optimal
order of convergence as the well-known P2P1 Taylor-Hood element, with the advantage that our
element requires one less pressure node in each quadrilateral.

5. Numerical Results

We present in this Section some numerical results obtained with the P1Q1 and the P2Q1

cross-grid mixed finite elements on two test cases of the Stokes problem.

5.1. Lid-driven cavity flow problem. In this first example we solved the classical lid-driven
cavity flow problem. The fluid domain is the unit square Ω = [0, 1]× [0, 1] and the flow is driven
by the top lid {y = 1 , 0 < x < 1}, which moves with constant velocity u = (1, 0); in the rest of
the boundary, homogeneous Dirichlet conditions are imposed. Moreover, in this flow problem
f = 0, and we took ν = 0.1. In the Stokes case that we consider, the solution to this problem
is known to be symmetric about the cavity centerline x = 0.5, with a unique primary vortex
centered on that line. The pressure is singular at the top corners.

Figure 5. Cavity flow, P1Q1 element: velocity vectors.

We solved this problem with both the P1Q1 and the P2Q1 mixed finite elements. In the first
case, a uniform mesh of 20×20 quadrilateral elements was used for the pressure approximation,
from which a uniform cross-grid mesh of 1600 triangular elements was generated for the velocity
approximation. In the second case, the pressure mesh was courser and consisted only of 10× 10
quadrilateral elements, from which 400 quadratic triangular elements were generated for the
velocity. This way, the number of velocity nodes is the same in both cases, and equal to 841.

Both elements produced correct velocity solutions, which are plotted in Figures 5 and 6. As
can be observed, both solutions reproduce the main features of the flow such as symmetry and
a unique primary vortex.
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Figure 6. Cavity flow, P2Q1 element: velocity vectors.

The pressure solution obtained with the two elements is shown in Figures 7 and 8 in the form
of pressure contours. A clear nodal checkboard mode phenomenon can be seen in the solution
of the P1Q1 element, just as predicted by Lemma 4.1. The P2Q1 element, on the other hand,
gave correct pressure results. It has to be said that the hydrostatic (constant) pressure mode
was avoided by setting to zero the value of the pressure at the top-right corner of the cavity.

Figure 7. Cavity flow, P1Q1 element: pressure contours.

Figures 9 and 10 plot a three-dimensional view of the two pressure solutions. The nodal
nature of the spurious pressure mode in the P1Q1 case can be clearly observed there. In the
P2Q1 case, on the other hand, the pressure singularity at the top corners is clearly captured.

5.2. Trapezoidal domain. Although the analysis of the cross-grid mixed finite elements pre-
sented in Sections 3 and 4 covers only the case of meshes of rectangular elements, the methods
we have developed can be applied to meshes of general quadrilateral elements, as described in
Section 2. This second example is intended to test the performance of the P1Q1 and the P2Q1

elements in such cases.
The problem consists of a fully developed plane Poiseuille flow on a trapezoidal domain of

vertices (0,−1), (5,−1), (2, 1) and (3, 1). A parabolic velocity profile is prescribed both at the
inlet (left boundary) and at the outlet (right boundary), with a maximum inflow velocity of
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Figure 8. Cavity flow, P2Q1 element: pressure contours.
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Figure 9. Cavity flow, P1Q1 element: 3D view of the pressure solution.

1, and a no slip boundary condition is imposed at the top and bottom sides. The solution of
this simple flow problem can introduce some inconsistent boundary conditions on the pressure
in some stabilized residual-based formulations (such as GLS) if linear elements are used, which
forces the numerical pressure contours to be normal to the boundary (see [15]).

The quadrilateral meshes employed for the pressure approximation in this problem are con-
structed from 10 (resp. 5) equally spaced subdivisions of each boundary for the P1Q1 element
(resp. the P2Q1 element); the resulting cross-grid triangular meshes can be seen in Figures 11
for the P1Q1 and 12 for the P2Q1 element.

The velocity solutions obtained reproduce accurately the analytical solution u = (1 − y2, 0)
in both cases, and are not plotted. The pressure solutions obtained are shown in Figures 13 and
14. A nodal checkboard mode was obtained again with the P1Q1 element, so that the presence
of this spurious model is not removed by mesh distortion. The P2Q1 element, on the other
hand, gave a correct pressure solution with a linear variation in the x variable, as can be seen in
Figure 14. With this mixed formulation, the pressure is not affected by inconsistent boundary
conditions.
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Figure 10. Cavity flow, P2Q1 element: 3D view of the pressure solution.

Figure 11. Trapezoidal domain, P1Q1 element: velocity mesh.
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