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Abstract. In [2] the finite element method was applied to a non-homogeneous Neumann prob-
lem on a cuspidal domain Ω ⊂ R2, and quasi-optimal order error estimates in the energy norm
were obtained for certain graded meshes. In this paper, we study the error in the L2 norm
obtaining similar results by using graded meshes of the type considered in [2]. Since many
classical results in the theory Sobolev spaces do not apply to the domain under consideration,
our estimates require a particular duality treatment working on appropriate weighted spaces.

On the other hand, since the discrete domain Ωh verifies Ω ⊂ Ωh, in [2] the source term of
the Poisson problem was taken equal to 0 outside Ω in the variational discrete formulation. In
this article we also consider the case in which this condition does not hold and obtain more
general estimates, which can be useful in different problems, for instance in the study of the
effect of numerical integration, or in eigenvalue approximations.

1. introduction

The finite element method has been widely studied in several contexts involving different kinds
of differential equations, however, the domains under consideration are in general polygons or
smooth domains. In the recent paper [2], the piecewise linear finite element method was applied
to a non-homogeneous Poisson problem in a domain with an external cusp. Despite its simplicity,
this problem provides an interesting starting point for the finite element analysis of more general
equations in non-Lipschitz domains. This kind of problems have interesting applications in fluid
mechanics. For instance, the motion of rigid bodies immersed in a fluid can lead to the presence
of cusps as a result of collisions between bodies or between a body and the boundary [18, 22].

An interesting feature related with problems in this kind of domains is that even regular
solutions may require some type of mesh adaptivity. Indeed, as it was proved in [1], the solution
of the proposed problem belongs to H2 and, despite of this fact, uniform meshes show a poor
convergence rate. The reason for this behavior is related with the fact that, in this context,
classical extension theorems do not apply [20, 23]. A solution for this drawback was also given
in [2] and (quasi) optimal convergence order error in the energy norm was recovered by using
appropriate mesh adaptivity. Let us notice that, for problems in polygonal domains with so-
lutions having corner like singularities, the use of graded meshes has been widely studied (see
[8, 11, 12, 15] and the references therein) and optimal or quasi-optimal convergence rates for
numerical approximations are usually obtained by using arguments based on weighted Sobolev
spaces.

In this paper we continue the analysis of the finite element method for the same problem
considered in [2], focusing on L2 convergence results. These estimates require a particular
treatment, making it necessary to take into account the regularity of the extended functions
outside the non-Lipschitz domain under consideration. We introduce two different kinds of
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auxiliary problems: one in the original domain Ω, and the other in the discrete domain Ωh. The
first one leads us to standard estimates of the error in Ω, and the second one to estimates of the
error between a certain extension of the original solution and the discrete solution in Ωh. The
latter case is more general than the former, however, it is also much more technical and relies
on certain extra assumptions. In both cases quasi-optimal order of convergence with respect to
the number of nodes is obtained by using appropriate graded meshes of the type considered in
[2]. We present some numerical examples supporting this analytical result, and in particular we
show that uniform meshes lead to poor L2 convergence order (similar conclusions for the H1

norm were obtained in [2]) .
Let Ω ⊂ R2 be defined by:

Ω = {(x, y) : 0 < x < 1, 0 < y < xα},
where α > 1. We denote the boundary of Ω by Γ = Γ1 ∪ Γ2 ∪ Γ3, where

Γ1 = {0 ≤ x ≤ 1, y = 0}, Γ2 = {x = 1, 0 ≤ y ≤ 1} and Γ3 = {0 ≤ x ≤ 1, y = xα}
(see Figure 1).

 Ω

 Γ
1

 Γ
3

 Γ
2

Figure 1. Cuspidal domain

Our model problem is: find u such that




−∆u = f , in Ω
∂u

∂ν
= g , on Γ3

∂u

∂ν
= 0 , on Γ1

u = 0 , on Γ2

(1.1)

where ν denotes the outside normal.
We will work along this paper with g = 0. This assumption partially simplifies the treatment

of the error and can be justified by recalling that H2 regularity results for (1.1) rely on the
smoothness of g, and its fast decay to zero, i.e., g ∼ 0 near the tip of the cusp [1].

Let V = {v ∈ H1(Ω) : v|Γ2 = 0}. Then, the variational formulation of our model problem
(1.1) is given by: find u ∈ V , such that

a(u, v) = L(v) ∀v ∈ V (1.2)

where a(u, v) =
∫
Ω∇u · ∇v and L(v) =

∫
Ω fv. It is known that this problems has a unique

solution in H2(Ω) and that there exists a constant C such that (see [1, 15, 19])

‖u‖H2(Ω) ≤ C‖f‖L2(Ω). (1.3)
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The natural way to approximate the solution of (1.2) is to replace Ω by a polygonal domain
Ωh and then use the standard finite element method. We will construct Ωh in such a way that
Ω ⊂ Ωh and the nodes of Γh, the boundary of Ωh, are on Γ.

Let {Th} be a family of triangulations of Ωh verifying the maximum angle condition. We can
associate to {Th} the finite element space

Vh = {v ∈ H1(Ωh) : v|Γ2 = 0 and v|T ∈ P1 ∀T ∈ Th}
where P1 denotes the space of linear polynomials.

Then, the finite element approximation problem of (1.2) is: find uh ∈ Vh, such that

ah(uh, vh) = Lh(uh) ∀vh ∈ Vh (1.4)

where ah(u, v) =
∫
Ωh
∇u·∇v and Lh(v) =

∫
Ωh

fv. Observe that the discrete problem corresponds
to a boundary problem on Ωh.

Since the solution of problem (1.1) depends on the values of f in Ω only, it seems natural to
assume that f vanishes outside Ω, in which case we have Lh(v) =

∫
Ω fv and so (1.4) agrees with

the discrete problem from [2]. In this paper we also consider the case in which this assumption
is dropped and obtain more general error estimates for finite element approximations. This
approach introduces an extra difficulty that was not addressed in [2], however, it provides more
information in different scenarios. Indeed, the contribution of terms like

∫
Ωh\Ω f̃vh, with f̃ being

a certain approximation of f defined on Ωh, can be useful to evaluate the effect of numerical
integration (see, for example, [24]). Moreover, since Ω 6= Ωh, the standard theory for eigenvalue
approximations [9] does not apply straightforwardly. In fact, the study of convergence for this
problems leads to problems like (1.4) with f not necessarily equal to zero outside Ω [17, 24].
On the other hand, the study of the error between a certain extension of the solution u and uh,
analyzed in Section 5, is also of interest in the context of eigenvalue approximations [17, 24].

Let us mention that, even when Ω is not regular enough, certain extension operators can be
constructed. More precisely, the solution of (1.2) can be extended to a function in a weighted
Sobolev space with the weight being a power of the distance to the cuspidal point (see [2, 20]).
In fact, there exists a function uE ∈ H2

α(R2) such that uE |Ω = u, and

‖uE‖H2
α(R2) ≤ C‖u‖H2(Ω), (1.5)

where the weighted Sobolev space H2
α is defined, for any domain D ⊂ R2, as follows:

H2
α(D) =

{
v : r

α−1
2 Dδv ∈ L2(D) ∀ δ , |δ| ≤ 2

}
(1.6)

with r =
√

x2 + y2, and

‖v‖2
H2

α(D) =
∑

|δ|≤2

‖r α−1
2 Dδv‖2

L2(D).

This extension result will be useful to bound the approximation error in L2.
The rest of the paper is organized as follows. In Section 2 we present some results involving

the graded meshes that we will use in the remainder of the paper. In Section 3, we obtain
L2 error estimates in Ω when f ≡ 0 outside Ω. Section 4 is devoted to obtain H1 and L2

error estimates when f is not necessarily equal to zero outside Ω in the discrete variational
formulation. In Section 5 we introduce and analyze an auxiliary problem on Ωh, which is the
main tool to obtain L2 error estimates in Ωh between uh and a certain extension of u. Finally,
in Section 6, we explain how the graded meshes can be constructed and we present numerical
approximations in which the error behaves according to our analytical results.
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2. Graded Meshes

We will assume that the family of meshes {Th} satisfies the same properties as those considered
in [2]. More precisely, we take 1 < α < 3 and define γ = (α − 1)/2. Let Th be a triangulation
of Ωh, where Ωh is an approximate polygon of Ω with all its vertices belonging to Γ, and h > 0
be a parameter that goes to 0. If for each T ∈ Th we denote by hT its diameter and by θT its
maximum angle, we assume that there exist positive constants σ and θM < π, independent of
h, such that

(1) θT < θM , ∀T ∈ Th (the maximum angle condition).
(2) hT ∼ σ h

1
1−γ , if (0, 0) ∈ T .

(3) hT ≤ σ h infT xγ , if (0, 0) /∈ T .

We denote by Γj
3,h, 1 ≤ j ≤ n, the edges on the boundary of Ωh, by Pj−1 = (xj−1, x

α
j−1) and

Pj = (xj , x
α
j ) their endpoints with x0 = 0 and xn = 1, and by Γj

3 the part on Γ3 with the same
endpoints (see Figure 2). By Ωj

h we denote the region bounded by Γj
3 and Γj

3,h.

 Ω
h
 j Γ

3,h
 j                  

 Γ
3
 j

(x
j−1
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j
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j
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T
j
 

Figure 2

In addition to the assumptions (1), (2) and (3) we will need for our error analysis the following
hypothesis on the meshes:

(Ha) For 1 ≤ j ≤ n the region Ωj
h is strictly contained in only one triangle denoted by Tj . We

denote the diameter of Tj by hj .
Let us also notice that, for 2 ≤ j ≤ n,

xj ≤ Cxj−1

where C can be taken independent of h. Indeed, from (Ha) we have xj − xj−1 ≤ C|Γj
3,h| for

some constant depending only on α. Then, xj − xj−1 ≤ Chj , and hence, from assumption (3)
we get

xj ≤ xj−1

(
1 + Chxγ−1

j−1

)
.

Therefore, we have proved the following useful result

Lemma 2.1. For 2 ≤ j ≤ n,
xj−1 ≤ xj ≤ Cxj−1

with C depending only on α and σ.
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Remark 2.1. We will show in Section 6 that meshes verifying conditions (1),(2),(3) and (Ha),
can indeed be constructed.

We will assume that our family of triangulations satisfies conditions (1), (2) and (3), and
hypothesis (Ha). The following result is obtained in the proof of Lemma 4.1 in [2], we reproduce
it here as a separate result for the sake of completeness.

Lemma 2.2. Let γ = α−1
2 , with 1 < α < 3 and choose 0 < β and q > 1 such that

βq < min{2γ, 1}.
Then ∫

Ωh\Ω
x−2βq ≤ Ch2

Proof. ∫

Ωh\Ω
x−2βq =

N∑

j=1

∫

Ωj
h

x−2βq. (2.7)

Let us estimate each term in the right hand side of (2.7). Since

Ω1
h ⊂ T = {(x, y) : 0 ≤ x ≤ x1, 0 ≤ y ≤ xα−1

1 x},
we have ∫

Ω1
h

x−2βq ≤
∫

T
x−2βq.

Hence, using now that h1 ≤ σ h
1

1−γ and βq < 1, we obtain∫

T
x−2βq ≤ Ch

2(γ+1−βq)
1 ≤ Ch

2 γ+1−βq
1−γ

and, therefore, ∫

T
x−2βq ≤ Ch2

because βq < 2γ.
On the other hand, we have

∑

j>1

∫

Ωj
h

x−2βq ≤
∑

j>1

x−2βq
j−1 |Ωj

h|,

but, by using the well known error formula for the trapezoidal rule, we obtain

|Ωj
h| ≤ Ch3

jx
α−2
j−1 = Ch3

jx
2γ−1
j−1

where in the case when α > 2 we have used xj ≤ Cxj−1. Therefore, since hj ≤ σh xγ
j−1 we have

∑

j>1

∫

Ωj
h

x−2βq ≤ C
∑

j>1

x−2βq+2γ−1
j−1 h3

j ≤ Ch2
∑

j>1

x−2βq+4γ−1
j−1 hj

≤ Ch2

∫ 1

0
x−2βq+4γ−1

where we have used again that xj ≤ Cxj−1. But the last integral is finite because βq < 2γ. ¤
We will also need bounds for the measure of the set Ωh \ Ω in terms of the parameter h.

Lemma 2.3. It holds
|Ωh \ Ω| ≤ Ch2.
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Proof. It follows by using similar arguments as those in the proof of Lemma 2.2, or as a Corollary,
taking into account that 1 ≤ x−2βq, where β and q are as in the previous Lemma. ¤

In order to obtain L2 error estimates in the polygonal domains Ωh we will need a careful
estimate for the inner angles of Ωh. This computation is carried out in the following Lemma.

Lemma 2.4. Let ωh be the maximum inner angle of Ωh, then

i) If α < 2, ωh ≤ π + Cα(α− 1)h
α−1
3−α

ii) If 2 ≤ α < 3 , ωh ≤ π + Cα(α− 1)h,
where C is independent of α and h.

Proof. Assume first j ≥ 2 (the case j = 1 is treated below). If we denote by ωh,j the inner angle
between Γj

3,h and Γj+1
3,h , we obviously have

ωh,j = π + arctan
(

xα
j+1 − xα

j

xj+1 − xj

)
− arctan

(
xα

j − xα
j−1

xj − xj−1

)
(2.8)

But
xα

j+1 − xα
j

xj+1 − xj
= αx̃α−1

j+1

xα
j − xα

j−1

xj − xj−1
= αx̃α−1

j

for some x̃j+1 ∈ [xj , xj+1] x̃j ∈ [xj−1, xj ], and using the fact that the function arctan(αtα−1) is
increasing we get

ωh,j ≤ π + arctan(αxα−1
j+1 )− arctan(αxα−1

j−1 ).
By the mean value theorem and Lemma 2.1,

arctan(αxα−1
j+1 )− arctan(αxα−1

j−1 ) = C
α(α− 1)xα−2

j

1 + α2x
2(α−1)
j

(xj+1 − xj−1)

≤ Cα(α− 1)xα−2
j (xj+1 − xj−1)

≤ Chα(α− 1)xα−2
j x

α−1
2

j

where in the last inequality we have used condition (3).
Now, if α ≥ 2 the result follows immediately. For the case α < 2 we use that xj ≥ x1 and

that, by condition (2), x1 ∼ h
2

3−α = h
1

1−γ , so

arctan(αxα−1
j+1 )− arctan(αxα−1

j−1 ) ≤ Cα(α− 1)h
2(α−2)
3−α

+1 = Cα(α− 1)h
α−1
3−α

obtaining the desired result.
Let us focus now on the case j = 1. In this case (2.8) takes the form

ωh,1 = π + arctan(
xα

2 − xα
1

x2 − x1
)− arctan(xα−1

1 ) = π + arctan(αx̃α−1
2 )− arctan(xα−1

1 )

with x̃2 ∈ [x1, x2], but

xα−1
1 = α

( x1

α1/(α−1)

)α−1
= αx̃α−1

1

so
x̃1 ≤ x1 ≤ Cx̃1 (2.9)

with C depending only on α. Then

ωh,1 ≤ π + arctan(αx̃α−1
2 )− arctan(αx̃α−1

1 )

and the result follows now as in the case j ≥ 2 using (2.9).
¤
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In Theorem 2.4 from [5, page 63] T. Apel obtained interpolation error estimates for functions in
weighted Sobolev spaces on tetrahedral elements under the maximum angle condition. However,
we were unable to find analogous results for the two dimensional case. The reason for this seems
to be that corner singularities, which lead to the kind of spaces considered in this work, do not
require anisotropic elements in the case of polygonal domains (see, for instance, [15]). In our
case, the external cusp enforces the occurrence of flat elements and, hence, we need to obtain the
required error estimates for functions in H2

α in dimension 2 under the maximal angle condition.
In order to do that, we prove the following Poincaré type inequality for functions with zero
average on a side of a triangle.

Lemma 2.5. Let T̂ be the following “reference” triangle, T̂ = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤
x}, and w such that ‖w‖L2(T̂ ) + ‖∇wxs‖L2(T̂ ) < ∞ for some 0 ≤ s < 1. If

∫
` w = 0 where ` is a

side of T̂ , then, there exists a positive constant C, depending only on s and T̂ , such that

‖w‖L2(T̂ ) ≤ C‖∇wxs‖L2(T̂ ).

Proof. We observe that for any 0 ≤ s < 1, there exists p > 1 such that

‖v‖Lp(T̂ ) ≤ C‖vxs‖L2(T̂ ). (2.10)

Indeed, since ∫

T̂
|v|p =

∫

T̂
|v|pxpsx−ps,

applying Hölder’s inequality with exponent 2
p and its dual exponent 2

2−p we obtain (2.10) for any
p such that p < 2

s+1 . On the other hand, it is easy to see by standard compactness arguments
(see Lemma 2.2 in [3] for the case p = 2) that functions with zero average on one side of T̂ verify

‖w‖Lp(T̂ ) ≤ C‖∇w‖Lp(T̂ ) (2.11)

with C depending only on p and T̂ . Therefore,

‖w‖L2(T̂ ) ≤ C‖w‖W 1,p(T̂ ) ≤ C‖∇w‖Lp(T̂ ) ≤ C‖∇wxs‖L2(T̂ ).

Indeed, the first inequality follows by the classical embedding theorem, while the second and
third inequalities are consequences of (2.11) and (2.10) with v = ∇w. ¤
Theorem 2.1. Let T be a triangle with a maximum interior angle θT , and let vm be the vertex
corresponding to the minimum interior angle of T . We denote by dvm(x, y) the distance from
(x, y) ∈ T to vm. Let v be such that ‖v‖L2(T ) + ‖∇v‖L2(T ) +

∑
|δ|=2 ‖Dδvds

vm
‖L2(T ) < ∞ for

some 0 ≤ s < 1. Then, there exists a positive constant C, depending only on θT , such that

‖∇(v −Πv)‖L2(T ) ≤ Ch1−s
T

∑

|δ|=2

‖Dδvds
vm
‖L2(T ), (2.12)

‖v −Πv‖L2(T ) ≤ Ch2−s
T

∑

|δ|=2

‖Dδvds
vm
‖L2(T ). (2.13)

where Πv ∈ Vh denotes the piecewise linear Lagrange interpolation of v.

Proof. It is clear that it is enough to show (2.12) and (2.13) for a triangle obtained from T after a
rigid movement. Hence, we can assume that T is a triangle with vm = (0, 0) and with remaining
vertices of the form v2 = (h1, 0) v3 = (x1, h2) with h1, h2 > 0 and h1 ≥

√
x2

1 + h2
2 ≥ h2.

Therefore, the angle θ2 at v2 = (h1, 0) verifies θ2 ≤ π/2 and, since it is not the minimum angle
of T , θ2 ≥ π−θT

2 , i.e,
π − θT

2
≤ θ2 ≤ π/2. (2.14)
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Let us introduce a further linear transformation L given by the matrix

A =
(

1 x1−h1
h2

0 1

)
.

It is clear that L transforms the right triangle TR with vertices (0, 0), (h1, 0), (h1, h2) into T .
From (2.14), it is easy to see that x1−h1

h2
≤ C for some C = C(θT ) and, as a consequence,

‖A‖ ≤ C and ‖A−1‖ ≤ C. Since in both triangles T and TR the minimum angle is placed at the
origin, the inequalities ‖(x, y)‖ ≤ ‖A−1‖‖L(x, y)‖ ≤ ‖A‖‖A−1‖‖(x, y)‖ imply the equivalence
between the distance dvm(x, y) and the norm of L(x, y). Therefore, changing variables, we have
that it is enough to prove (2.12) and (2.13) for TR with h1 ≥ h2. On the other hand, in TR it is
clear that dvm = ‖(x, y)‖ ∼ x and so in order to show that (2.12) holds it is enough to prove

‖∇(v −Πv)‖L2(TR) ≤ Ch1−s
TR

∑

|δ|=2

‖Dδvxs‖L2(TR). (2.15)

We prove the previous inequality for ∂(v−Πv)
∂x ; the other derivative can be treated in the same

way. Taking w = ∂(v−Πv)
∂x we have that

∫
`1

w = 0, `1 being the side joining the vertices (0, 0)
and (h1, 0). Changing variables to the reference element defined in Lemma 2.5 we get, taking
L̂(x̂, ŷ) = (x̂h1, ŷh2), that the function ŵ = w ◦ L̂ has zero average on the side of T̂ joining the
vertices (0, 0) and (1, 0). Then, by Lemma 2.5 applied to ŵ we get

‖w‖2
L2(TR) = h1h2‖ŵ‖2

L2(T̂ )
≤ h1h2C‖∇ŵx̂s‖2

L2(T̂ )

and changing variables back to the original TR

‖w‖L2(TR) ≤ C

(
h1‖∂w

∂x

(
x

h1

)s

‖L2(T̂ ) + h2‖∂w

∂y

(
x

h1

)s

‖L2(T̂ )

)

since h1 ≥ h2,
‖w‖L2(TR) ≤ Ch1−s

TR
‖∇wxs‖L2(TR)

and (2.15) follows. As it is usual when considering anisotropic elements, inequality (2.13) is
easier to prove than (2.12), since its left hand side does not involve derivatives. The estimate
for T̂

‖v̂ −Πv̂‖L2(T̂ ) ≤ C
∑

|δ|=2

‖Dδ v̂x̂s‖L2(T̂ ) (2.16)

follows by using embedding results and standard Lagrange interpolation error estimates in Lp

together with (2.10). In fact,

‖v̂ −Πv̂‖L2(T̂ ) ≤ C‖v̂ −Πv̂‖W 1,p(T̂ ) ≤ C
∑

|δ|=2

‖Dδ v̂‖Lp(T̂ ) ≤
∑

|δ|=2

‖Dδ v̂x̂s‖L2(T̂ ).

Now, (2.13) follows on TR from (2.16) by using the change of variables L̂(x̂, ŷ) = (x̂h1, ŷh2) and
taking into account that Πv̂ = Πv ◦ L̂. ¤

We define a fixed (i.e., independent of h) domain TU , which contains our discrete domain Ωh,
in the following way:

TU = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ x}. (2.17)

Although TU agrees with T̂ , we use a different notation for both triangles for the sake of clarity,
since T̂ plays the standard role of the reference element in interpolation error estimates, and TU

is the domain where the extension uE of u will be studied.
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Lemma 2.6. If 1 < α < 3, there exists a constant C, which depends only on α, such that

‖uE‖W 2,p(TU ) ≤ C‖uE‖H2
α(TU )

for all 1 ≤ p < 4
α+1 .

Proof. The proof follows by using (2.10), with s = α−1
2 < 1, for uE and its derivatives. ¤

Remark 2.2. Conditions (1), (2) and (Ha), together with the fact that α > 1, imply that there
exists only one triangle T in the mesh such that (0, 0) ∈ T . Moreover, its vertices are necessarily
of the form (0, 0), (0, h1), and (x1, x

α
1 ). Furthermore, if hT → 0, the angle θ0 placed at (0, 0)

tends to zero since xα
1

x1
= xα−1

1 ≤ hα−1
T → 0 and, hence, condition (1) implies that for hT small

enough θ0 is in fact the minimum interior angle.

Now we can prove the following “global” version of the interpolation error estimates,

Theorem 2.2. There exists a constant C depending only on θM , σ and α such that

‖∇(uE −ΠuE)‖L2(Ωh) ≤ Ch|uE |H2
α(Ωh), (2.18)

and
‖uE −ΠuE‖L2(Ωh) ≤ Ch2|uE |H2

α(Ωh), (2.19)

where ΠuE ∈ Vh denotes the piecewise linear Lagrange interpolation of uE and |uE |H2
α(Ωh) de-

notes the usual semi-norm on H2
α,

Proof. We will only sketch the proof because it is standard (see [15]). For (2.18) we write

‖∇(uE −ΠuE)‖2
L2(Ωh) = ‖∇(uE −ΠuE)‖2

L2(T1) +
∑

T∈Th,T 6=T1

‖∇(uE −ΠuE)‖2
L2(T )

We observe that, in view of Remark 2.2, the triangle T1 defined in (Ha) is the unique triangle
which contains (0, 0). The first term can be bounded using condition (1), Theorem 2.1 with
s = α−1

2 < 1 (recall that α < 3), and noticing that Lemma 2.6 gives the necessary regularity
for uE (use embedding results on TU ). Finally, condition (2) allows us to replace hT1 by h.
The second term can be handled using error estimates for Lagrange interpolation for classical
unweighted Sobolev spaces under the maximal angle condition (see, for example, [6]) together
with condition (3). Indeed, since (0, 0) is not in T , we have

‖∇(uE −ΠuE)‖L2(T ) ≤ ChT |uE |H2(T ) ≤ Ch inf
T

xγ |uE |H2(T ) ≤ Ch|uE |H2
α(T ).

The estimate (2.19) is handled in the same way. ¤
We finish this Section recalling the following estimate that will be useful later on.

Lemma 2.7. If 1 < α < 3, then there exists a constant C, which depends only on α, θM and σ,
such that

‖∇uE‖L2(Ωh\Ω) ≤ Ch
√

log(1/h)‖u‖H2(Ω).

Proof. See Lemma 4.1 in [2]. ¤

3. L2 error estimates in Ω when f ≡ 0 outside Ω

In this section we obtain error estimates in L2(Ω) of quasi-optimal order (i.e., optimal up to a
logarithmic factor) with respect to the number of nodes using appropriate graded meshes, when
f vanishes outside Ω.

The following error estimate in H1(Ω) for the finite element approximation of the Poisson
problem (1.2) with f ≡ 0 outside Ω was obtained in [2]
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Theorem 3.1. Let u be the solution of (1.2) and uh ∈ Vh be the solution of (1.4). Assume that
1 < α < 3 and that f ∈ L2(Ω) is extended by zero outside Ω.

If the family of meshes satisfies (1), (2), (3) and (Ha), then there exists a constant C depend-
ing only on α, θM and σ such that

‖u− uh‖H1(Ω) ≤ ‖uE − uh‖H1(Ωh) ≤ Ch
√

log(1/h) ‖f‖L2(Ω).

Our next goal is to obtain error estimates in L2 norm. In order to use the Aubin-Nitsche-
duality arguments we introduce the following auxiliary problem: Let Φ ∈ H1(Ω) be the solution
of 




−∆Φ = u− uh , in Ω
∂Φ
∂ν

= 0 , on Γ1 ∪ Γ3

Φ = 0 , on Γ2

(3.20)

where ν denotes the outside normal. Applying the a priori estimate (1.3) to Φ, we have that
Φ ∈ H2(Ω) and there exists a constant C such that

‖Φ‖H2(Ω) ≤ C‖u− uh‖L2(Ω). (3.21)

Moreover, solutions of (3.20) can be extended to R2. Indeed, the analogous of (1.5) applied to
Φ shows that there exists a function ΦE ∈ H2

α(R2) such that ΦE |Ω = Φ, and

‖ΦE‖H2
α(R2) ≤ C‖Φ‖H2(Ω). (3.22)

On the other hand, applying Lemma 2.6 to ΦE , we get

‖ΦE‖W 2,p(TU ) ≤ C‖ΦE‖H2
α(TU ) (3.23)

for 1 ≤ p < 4
α+1 .

Theorem 3.2. Let u be the solution of (1.2) and uh be the solution of (1.4). Assume that
1 < α < 3 and that f ∈ L2(Ω) is extended by zero outside Ω. Then,

‖u− uh‖L2(Ω) ≤ Ch2 log(1/h)‖f‖L2(Ω).

Proof. Let e = u− uh and Φ be the solution of (3.20) we have that∫

Ω
e2 =

∫

Ω
(−∆Φ)e =

∫

Ω
∇Φ∇e =

∫

Ω
∇(Φ−ΠΦ)∇e +

∫

Ω
∇(ΠΦ)∇e (3.24)

From (1.2) and (1.4) we get ∫

Ω
∇e∇v =

∫

Ωh\Ω
∇uh∇v ∀v ∈ Vh

Hence, ∫

Ω
e2 =

∫

Ω
∇(Φ−ΠΦ)∇e +

∫

Ωh\Ω
∇uh∇(ΠΦE) (3.25)

From Theorem 2.2 applied to ΦE and (3.22) we have that

‖∇(Φ−ΠΦ)‖L2(Ω) ≤ ‖∇(ΦE −ΠΦE)‖L2(Ωh) ≤ Ch‖ΦE‖H2
α(Ωh) ≤ Ch‖Φ‖H2(Ω). (3.26)

Then, the first term of (3.25) can be bounded by means of Theorem 3.1 and (3.21). Indeed,∫

Ω
∇(Φ−ΠΦ)∇e ≤ Ch2 log(1/h)‖f‖L2(Ω)‖e‖L2(Ω).

For the second term in (3.25) we have that∫

Ωh\Ω
∇uh∇(ΠΦE) =

∫

Ωh\Ω
∇(uh − uE)∇(ΠΦE) +

∫

Ωh\Ω
∇uE∇(ΠΦE). (3.27)
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The first term can be bounded using Theorem 3.1 by
∫

Ωh\Ω
∇(uh−uE)∇(ΠΦE) ≤ Ch

√
log(1/h)‖f‖L2(Ω){‖∇(ΠΦE−ΦE)‖L2(Ωh\Ω)+‖∇ΦE‖L2(Ωh\Ω)}

while the second term can be bounded using Lemma 2.7 and (1.3) by
∫

Ωh\Ω
∇uE∇(ΠΦE) ≤ Ch

√
log(1/h)‖f‖L2(Ω)‖∇ΠΦE‖L2(Ωh\Ω)

≤ Ch
√

log(1/h)‖f‖L2(Ω){‖∇(ΠΦE − ΦE)‖L2(Ωh\Ω) + ‖∇ΦE‖L2(Ωh\Ω)}.
Therefore, from (3.27) we get

∫

Ωh\Ω
∇uh∇(ΠΦE) ≤ Ch

√
log(1/h)‖f‖L2(Ω){‖∇(ΠΦE − ΦE)‖L2(Ωh\Ω) + ‖∇ΦE‖L2(Ωh\Ω)}

and using (3.26), Lemma 2.7 applied to ΦE , and (3.21), we obtain
∫

Ωh\Ω
∇uh∇(ΠΦE) ≤ Ch2 log(1/h)‖f‖L2(Ω)‖e‖L2(Ω)

and the theorem follows. ¤

Remark 3.1. Whether or not the logarithmic factor log h in Theorem 3.1 and Theorem 3.2 can
be removed is an open problem, and it is not easy to obtain information about either possibility
from numerical experiments.

4. Error estimates in the case in which f 6≡ 0 outside Ω

In this section we will obtain error estimates in H1 norm and L2 norm when f does not
necessarily vanish outside Ω. This kind of estimates can be useful in several situations. For
example, even for simple sources like f ≡ 1 in Ω, the term

∫
Ωh

χΩv in (1.4) is usually replaced
by

∫
Ωh

1v (i.e. as if f were defined as 1 over Ωh) in numerical computations when any standard
quadrature rule is applied. In general, the contribution of the terms like

∫
Ωh\Ω f̃vh, f̃ being

a certain approximation of f defined on Ωh, may be useful in order to evaluate the effect of
numerical integration. On the other hand, in eigenvalue approximations the usual approach (see
[9]) is based on the convergence of appropriate operators Th to the limit operator T , T being the
inverse of the Laplacian. Since Ωh 6= Ω, the operators Th are mesh dependent and the analysis
leads to the study of problems like (1.4) with f not necessarily equal to zero outside Ω [17].

In order to analyze the contribution of the consistency term arising from the integral
∫
Ωh\Ω fvh

in equation (1.4) we will need, in addition to assumptions (1),(2),(3) and (Ha), the following
hypothesis about the mesh:

(Hb) For each triangle Tj with vertices Pj−1, Pj , Rj , and for hj small enough, the triangle T̃j

with vertices Pj−1+Rj

2 ,
Pj+Rj

2 , Rj (see Figure 3) does not intersect Ωj
h.

Remark 4.1. It can easily be deduced that (Hb) holds for meshes with only regular elements,
and for domains with smooth boundaries. Meshes for the domains under consideration in this
paper involve necessarily anisotropic elements (consider, for instance, any element with a vertex
at (0, 0)) and this kind of elements may fail to verify condition (Hb). In fact, an easy example is
given by taking α = 5 and the triangle T defined by the vertices (0, 0), (h, 0), (h, h5). In Section
6 we will show that meshes verifying conditions (1),(2),(3),(Ha) and (Hb) can be constructed
(we recall that 1 < α < 3).
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T̃j

Ω
j
h

Pj

Pj−1 Rj

Figure 3

In what follows we will assume that the family of triangulations under consideration verifies
(1),(2),(3), (Ha) and (Hb).

Our first goal is to obtain the H1 error estimates for the solutions of (1.2) and (1.4). In order
to do that we will use the following result (let us recall that Ωh is not uniformly Lipschitz in h):

Lemma 4.1. For any vh ∈ Vh there exists a constant C such that

‖vh‖Lp(Ωh) ≤ C‖vh‖H1(Ωh)

for 1 ≤ p ≤ 2(α+1)
α−1 .

Proof. Since Ω ⊂ Ωh and vh ∈ Vh, we see that vh|Ω ∈ H1(Ω) and then, using the imbedding
result for cusps given in Theorem 5.35 of [4] (with ν = α− 1), we get

‖vh‖Lp(Ω) ≤ C‖vh‖H1(Ω)

for 1 ≤ p ≤ 2(α+1)
α−1 . We now need to show that vh can also be bounded on Ωh\Ω. More precisely,

since vh is a piecewise linear function, we claim that

‖vh‖Lp(Ωh) ≤ C‖vh‖Lp(Ω) (4.28)

from which we can easily obtain the desired result. Inequalities like (4.28) for Lipschitz domains
have been obtained in different works (see, for example, [16]).

Let us introduce the notation M j = Tj \ Ωj
h (i.e. M j stands for Ω ∩ Tj). All we need is to

show that the local estimates
‖vh‖Lp(Tj) ≤ C‖vh‖Lp(Mj) (4.29)

hold with C depending only on α. From (Hb) we have that T̃j ∩ Ωj
h = ∅, so T̃j ⊂ M j ⊂

Tj . On the other hand, calling T̂ and T̂ 1
2

the triangles of vertices {(0, 0), (1, 0), (0, 1)} and

{(0, 0), (1
2 , 0), (0, 1

2)} respectively, we have that there exists an affine mapping F̂ such that
F̂ (T̂ ) = Tj and F̂ (T̂ 1

2
) = T̃j . Now, since the space of linear functions has finite dimension,

we have
‖v̂‖Lp(T̂ ) ≤ C‖v̂‖Lp(T̂ 1

2
)

for any linear function v̂ (the constant C depends only on T̂ and T̂ 1
2
). Changing variables we

get
‖vh‖Lp(Tj) ≤ C‖vh‖Lp(T̃j)

from which (4.29) follows, since T̃j ⊂ M j . ¤
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Remark 4.2. Note that, since functions in Vh vanish at Γ2, the previous Lemma implies,
together with Poincaré inequality, that

‖vh‖Lp(Ωh) ≤ C|vh|H1(Ωh) (4.30)

for 1 ≤ p ≤ 2(α+1)
α−1 .

Theorem 4.1 below is a generalization of Theorem 3.1 and essentially says that the contri-
bution to the error of the consistency type term due to fact that f 6≡ 0 outside Ω is at most
Ch

2
α+1 ‖f‖L2(Ωh\Ω).

Theorem 4.1. Let u be the solution of (1.2) and uh be the solution of (1.4). If we assume that
α < 3 and f ∈ L2(R2), then there exists a positive constant C, depending only on α, θM , and
σ, such that

‖u− uh‖H1(Ω) ≤ ‖uE − uh‖H1(Ωh) ≤ Ch
√

log 1/h‖f‖L2(Ω) + Ch
2

α+1 ‖f‖L2(Ωh\Ω).

Proof. Since Ω ⊂ Ωh, by Poincaré inequality and (1.3) we observe that it is enough to prove
that

|uE − uh|H1(Ωh) ≤ Ch
√

log 1/h‖u‖H2(Ω) + Ch
2

α+1 ‖f‖L2(Ωh\Ω). (4.31)
Now,

|uE − uh|2H1(Ωh) =
∫

Ωh

∇(uE − uh) · ∇(uE −ΠuE) +
∫

Ωh

∇(uE − uh) · ∇(ΠuE − uh), (4.32)

but we know from (1.5) and (2.18) that

|uE −ΠuE |H1(Ωh) ≤ Ch‖uE‖H2
α(Ωh) ≤ Ch‖u‖H2(Ω).

Thus, for the first term in (4.32), by Young’s inequality, we have
∫

Ωh

∇(uE − uh) · ∇(uE −ΠuE) ≤ ε|uE − uh|2H1(Ωh) + Cεh
2‖u‖2

H2(Ω) (4.33)

with ε to be chosen below.
For the second term of (4.32) we proceed as follows. Let us introduce the notation wh :=

ΠuE − uh. From (1.2) and (1.4) we have∫

Ωh

∇(uE − uh) · ∇wh =
∫

Ωh

∇uE · ∇wh −
∫

Ωh

∇uh · ∇wh

=
∫

Ωh\Ω
∇uE · ∇wh −

∫

Ωh\Ω
fwh. (4.34)

From Lemma 2.7 using Young’s inequality again we obtain
∣∣∣∣∣
∫

Ωh\Ω
∇uE · ∇wh

∣∣∣∣∣ ≤ Cεh
2 log(1/h)‖u‖2

H2(Ω) + ε|wh|2H1(Ωh), (4.35)

while for the second term in (4.34), if we take 1
p + 1

q = 1 as

q = 2
α + 1
α + 3

< 2 p = 2
α + 1
α− 1

,

we can write

|
∫

Ωh\Ω
fwh| ≤

(∫

Ωh\Ω
f q

) 1
q
(∫

Ωh\Ω
wp

h

) 1
p

≤
(∫

Ωh\Ω
f q

) 1
q (∫

Ωh

wp
h

) 1
p

.



FINITE ELEMENT APPROXIMATIONS IN A NON-LIPSCHITZ DOMAIN: PART II 14

Applying again Hölder’s inequality and Lemma 4.1 to the limit case p = 2α+1
α−1 (wh ∈ Vh, see

also (4.30)), we get
∣∣∣∣∣
∫

Ωh\Ω
fwh

∣∣∣∣∣ ≤ C|Ωh \ Ω| 2−q
2q ‖f‖L2(Ωh\Ω)|wh|H1(Ωh)

and by Young’s inequality, Lemma 2.3, and replacing q = 2α+1
α+3 we obtain

∣∣∣∣∣
∫

Ωh\Ω
fwh

∣∣∣∣∣ ≤ Cεh
4

α+1 ‖f‖2
L2(Ωh\Ω) + ε|wh|2H1(Ωh).

This inequality together with (4.34) and (4.35) gives
∣∣∣∣
∫

Ωh

∇(uE − uh) · ∇wh

∣∣∣∣ ≤ Cεh
2 log(1/h)‖u‖2

H2(Ω) + Cεh
4

α+1 ‖f‖2
L2(Ωh\Ω) + 2ε|wh|2H1(Ωh). (4.36)

By (2.18)

|wh|2H1(Ωh) ≤ 2(|ΠuE − uE |2H1(Ωh) + |uE − uh|2H1(Ωh)) ≤ Ch2‖u‖2
H2(Ω) + 2|uE − uh|2H1(Ωh)(4.37)

and replacing (4.37) in (4.36) we get (Cε may change from line to line)
∣∣∣∣
∫

Ωh

∇(uE − uh) · ∇wh

∣∣∣∣ ≤ Cεh
2 log(1/h)‖u‖2

H2(Ω) + Cεh
4

α+1 ‖f‖2
L2(Ωh\Ω)

+ 4ε|ũ− uh|2H1(Ωh). (4.38)

Finally, taking ε small enough, by (4.32), (4.33) and (4.38) we obtain (4.31), and the theorem
follows. ¤

Our next goal is to obtain error estimates in L2(Ω).

Theorem 4.2. Let u be the solution of (1.2) and uh be the solution of (1.4). Assume α < 3,
and f ∈ L2(R2). Then,

‖u− uh‖L2(Ω) ≤ Ch2 log(1/h)‖f‖L2(Ω) + Ch‖f‖L2(Ωh\Ω).

Proof. Let e = u− uh and Φ be the solution of (3.20). Then,
∫

Ω
e2 =

∫

Ω
(−∆Φ)e =

∫

Ω
∇Φ∇e =

∫

Ω
∇(Φ−ΠΦ)∇e +

∫

Ω
∇(ΠΦ)∇e.

From (1.2) and (1.4) we get
∫

Ω
∇e∇v =

∫

Ωh\Ω
∇uh∇v −

∫

Ωh\Ω
fv ∀v ∈ Vh,

hence, ∫

Ω
e2 =

∫

Ω
∇(Φ−ΠΦ)∇e +

∫

Ωh\Ω
∇uh∇(ΠΦE)−

∫

Ωh\Ω
f(ΠΦE). (4.39)

The first term of (4.39) can be bounded by means of Theorem 4.1, (3.26) and the a priori
estimates (3.21). Indeed,

∫

Ω
∇(Φ−ΠΦ)∇e ≤ Ch

{
h
√

log(1/h)‖f‖L2(Ω) + h
2

α+1 ‖f‖L2(Ωh\Ω)

}
‖e‖L2(Ω).
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For the second term in (4.39), using Lemma 2.7 and Theorem 4.1 we know that∫

Ωh\Ω
∇uh∇(ΠΦE) =

∫

Ωh\Ω
∇(uh − uE)∇(ΠΦE) +

∫

Ωh\Ω
∇uE∇(ΠΦE)

≤ Ch
√

log(1/h)‖f‖L2(Ω){‖∇(ΠΦE − ΦE)‖L2(Ωh\Ω) + ‖∇ΦE‖L2(Ωh\Ω)}
Then, using (3.26), Lemma 2.7 applied to ΦE , and (3.21), we get∫

Ωh\Ω
∇uh∇(ΠΦE) ≤ Ch2 log(1/h)‖f‖L2(Ω)‖e‖L2(Ω).

Therefore, we only have to estimate the third term in (4.39):∫

Ωh\Ω
f(ΠΦE) =

∫

Ωh\Ω
f(ΠΦE − ΦE) +

∫

Ωh\Ω
fΦE . (4.40)

Now, the L2 interpolation error estimate given in Theorem 2.2 says that

‖ΠΦE − ΦE‖L2(Ωh) ≤ Ch2‖ΦE‖H2
α(Ωh)

and then, using (3.21) and (3.22) we get∫

Ωh\Ω
f(ΠΦE − ΦE) ≤ Ch2‖e‖L2(Ωh)‖f‖L2(Ωh\Ω).

Now, for the second term in (4.40) we use (3.23) and the fact that for p > 1 functions in
W 2,p(TU ) are bounded, together with (3.21), (3.22) and Lemma 2.3, to obtain∫

Ωh\Ω
fΦE ≤ C‖ΦE‖L∞(TU )|Ωh \ Ω| 12 ‖f‖L2(Ωh\Ω)

≤ Ch‖ΦE‖H2
α(TU )‖f‖L2(Ωh\Ω) ≤ Ch‖f‖L2(Ωh\Ω)‖e‖L2(Ω)

and the theorem follows. ¤

5. L2 error estimates between uE and uh in Ωh

In this section we obtain L2 error estimates between the extended function uE and the numer-
ical solution uh in the polygonal domain Ωh. The results given below allow us, in particular, to
obtain a precise computation of terms like ‖uh‖L2(Ωh\Ω) which, for example, provides an optimal
bound for the error between ‖u‖L2(Ω) and ‖uh‖L2(Ωh). On the other hand, estimates for the
error between uE and uh are useful in the analysis of the error of eigenvalue problems [17].

The approach follows the lines of the previous sections, however, several extra complications
arise since the dual problem is posed over the polygonal domain Ωh. The main result of this
section is Theorem 5.1, which is more general than Theorem 4.2. However, we want to remark
that Theorem 5.1 relies on the Assumption 1 below, which is not necessary for the estimates in
L2(Ω) obtained in the previous sections.

We recall that error estimates between the extended function uE and the numerical solution
uh in the H1(Ωh) norm have been obtained in Theorem 4.1.

We want to use duality arguments similar to those in the previous section. For this reason
we introduce the following auxiliary problem closely related to (3.20):

For any h let Φh ∈ H1(Ωh) be the solution of




−∆Φh = uE − uh , in Ωh

∂Φh

∂ν
= 0 , on Γ1 ∪ Γ3,h

Φh = 0 , on Γ2

(5.41)



FINITE ELEMENT APPROXIMATIONS IN A NON-LIPSCHITZ DOMAIN: PART II 16

where ν denotes the outside normal.
A priori estimates for (5.41) in fractional and weighted Sobolev spaces are well-known. Calling

ωh the maximum inner angle of Ωh, and taking
{

rh = 1− Cα(α− 1)h
α−1
3−α , for α < 2

rh = 1− Cα(α− 1)h, for α ≥ 2
, (5.42)

for a suitable C we can assume, from Lemma 2.4, that rh < π/ωh and, hence, we have that
Φh ∈ H1+rh(Ωh) [15] (with rh = 1 if Ωh is convex), and that [15, page 388] Φh belongs to the
weighted Sobolev space H2,γh(Ωh) defined by:

H2,γh(Ωh) =
{

v : r̂γhDβv ∈ L2(Ωh) ∀β , |β| ≤ 2
}

,

where
r̂ = min

1≤j≤n
rj (5.43)

with rj =
√

(x− xj)2 + (y − xα
j )2 and

{
γh = Cαh

α−1
3−α , for α < 2

γh = Cαh for α ≥ 2
. (5.44)

The following a-priori estimates also holds:

‖Φh‖H1+rh (Ωh) ≤ Ch‖uE − uh‖L2(Ωh) (5.45)

‖Φh‖H2,γh (Ωh) ≤ Ch‖uE − uh‖L2(Ωh). (5.46)

For (5.45) we refer the reader to [15], while (5.46) can be found in [7, 10].
The constants Ch in (5.45) and (5.46) may change with the number of vertices of the polygonal

domain Ωh (and hence with h). On the other hand, as mentioned in [16], the classical proof for
(5.45) provides a very poor control of the constant Ch (see Remark 4.3.2.6 in [15]). However, in
[16] it is also mentioned that for Lipschitz domains Ω with piecewise C2 boundary the uniform
boundedness of Ch with respect to h is a plausible hypothesis for reasonable triangulations, since
the constants Ch could be bounded [16, page 141] via a boundary integral formulation. As far
as we know, there is not an explicit proof of this fact in the literature, even for regular domains
Ω.

Although our domain Ω is not Lipschitz, it has a C2 piecewise boundary and, in view of (1.3),
the a-priori estimate for Ω, we consider also plausible the following assumption:

Assumption 1. Our family of triangulations {Th} is such that the constants Ch in (5.45)
and in (5.46) are uniformly bounded with respect to h. For this reason we will drop the subindex
h in Ch in further references to (5.45) and (5.46).

In order to obtain L2 error estimates using the auxiliary problem (5.41), we will need some
embedding results in Ωh for the solution Φh. Since Ωh is not uniformly Lipschitz in h (in fact,
Ωh → Ω, and Ω is not a Lipschitz domain), the classical embedding theorems for Lipschitz
domains do not apply, neither do the general results for cusps given in [20] since Φh belongs to
a weighted Sobolev space. As a consequence, we will extend Φh to some fixed Lipschitz domain
in a certain weighted Sobolev space (we recall that the extension results given in [20] do not
apply in our case), and then we will get proper embedding results. Therefore, we will follow the
approach given in Lemma 3.1 of [2].

We first extend Φh from Ωh to the following domain Dh (see Figure 4),

Dh = {(x, y) ∈ R2 : −x < y < gh(x), 0 < x < 1}
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where gh : [0, 1] → Γ3,h is a parametrization of Γ3,h := ∪jΓ
j
3,h, and we show that the extension

Ω
h

T
L

T
U

Figure 4. Left: Domain Dh. Right: Triangle TU .

belongs to the space

H2,γh

α+A(h)(Dh) =
{

v : r
α−1

2
+

A(h)
2 ργhDβv ∈ L2(Dh) ∀β , |β| ≤ 2

}

where A(h) = 6γh, r =
√

x2 + y2 and

ρ = min
1≤j≤n

{rj , dj} , (5.47)

with rj =
√

(x− xj)2 + (y − xα
j )2 and dj =

√
(x− xj)2 + (y + xj)2.

In the next lemma we find equivalent expressions for the distances involved in the weights.

Lemma 5.1. Let us denote by dΓ3(x, η) the distance from (x, η) ∈ Ω to Γ3. Then,

dΓ3(x, η) ≤ xα − η ≤ CdΓ3(x, η), (5.48)

with C depending only on α.
What is more, a similar discrete version of this property holds. Indeed, for any sequence

0 = x0 < x1 < · · · < xN = 1, if we define Ωj = {(x, η) : xj−1 ≤ x ≤ xj , 0 ≤ η ≤ xα}, 1 ≤ j ≤ N ,
then for any (x, η) ∈ Ωj there exists a constant C depending only on α such that

ρ(x, η) ≤ min
i=j−1,j

{ri(x, η)} ≤ Cρ(x, η) (5.49)

where ri(x, η) stands for the distance from (x, η) to (xi, x
α
i ), and ρ(x, η) = min1≤i≤N {ri(x, η)}.

Proof. It is clear that dΓ3(x, η) ≤ xα−η. On the other hand, denoting by P∗ ∈ Γ3, P∗ = (x∗, xα∗ )
the point for which dΓ3(x, η) = ‖P∗ − (x, η)‖, and by L the line joining the point P∗ with
(x, xα) ∈ Γ3, we get that dL, the distance from (x, η) to L, verifies dL(x, η) ≤ dΓ3(x, η) (since
P∗ ∈ L ∩ Γ3).

Let us consider the point Q∗ ∈ L such that dL(x, η) = ‖Q∗ − (x, η)‖, and the triangle given
by the points Q∗, (x, η) and (x, xα). This triangle has a right angle at Q∗ and the angle θ placed
at (x, xα) is clearly bounded by below by some fixed θ0 > 0 depending only on α. Now (5.48)
follows because of the following inequalities

dΓ3(x, η) ≥ dL(x, η) = ‖(Q∗ − (x, η))‖ = ‖(x, xα)− (x, η)‖ sin(θ)
≥ ‖(x, xα)− (x, η)‖ sin(θ0) = sin(θ0)(xα − η).

Let us now consider (5.49). A direct calculation shows that the function h : (0, 1) → R,
h(t) = (t−x)2 +(tα−η)2, decreases before its global minimum and increases after that. Indeed,
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if x∗ verifies h′(x∗) = 0, with h′(t) = 2(t−x)+2α(tα−η)tα−1 hence x∗ ∈ [η1/α, x] since obviously
h′(t) < 0 for t < η1/α and h′ > 0 for t > x. On the other hand, h′′(t) > 0 for η1/α ≤ t ≤ x,
which shows the existence of an unique x∗ ∈ [η1/α, x] global minimum of h.

For (x, η) ∈ Ωj and P∗ = (x∗, xα∗ ), the point for which dΓ3(x, η) = ‖P∗− (x, η)‖ =
√

h(x∗), we
consider the index l such that P∗ ∈ Ωl. If l = j, then minj−1≤i≤j{ri(x, η)} = min1≤i≤N{ri(x, η)}
(since h is increasing for t > x∗, and decreasing if t < x∗). If l 6= j then, without loss of generality
we may assume l < j, and we write

ρ(x, η) = min
1≤i≤N

{ri(x, η)} = min
l−1≤i≤l

{ri(x, η)} ≤
√

h(x) = xα − η ≤ CdΓ3(x, η),

where we have used that x ≥ xl, the point (x, xα) ∈ Γ3, h is increasing in the range [xl, x], and
(5.48). Now, (5.49) follows from the fact that dΓ3(x, η) ≤ minj−1≤i≤j{ri(x, η)}. ¤
Remark 5.1. It is easy to see that for (x, η) ∈ Ωh ⊂ Dh, ρ = r̂ where r̂ and ρ are defined in
(5.43) and (5.47) respectively.

We are now ready to extend Φh to Dh.

Lemma 5.2. Given v ∈ H2,γh(Ωh) such that ∂v
∂ν = 0 on Γ1, there exists a function ṽ ∈

H2,γh

α+A(h)(Dh) such that ṽ|Ωh
= v and

‖ṽ‖
H

2,γh
α+A(h)

(Dh)
≤ C‖v‖H2,γh (Ω),

where A(h) = 6γh and, in particular, A(h) → 0 when h → 0.

Proof. The proof follows the ideas given in Lemma 3.1 of [2]. We extend v by reflection in the
following way.

For any (x, y) ∈ Dh with y ≤ 0, let us define η = −xα−1y. Observe that the function
(x, y) → (x, η) maps TL onto Ω ⊂ Ωh (see Figure 4), and therefore, calling TL := Dh \ Ωh =
{0 ≤ x ≤ 1, −x ≤ y < 0},

we can define
{

ṽ(x, y) = v(x, y), for (x, y) ∈ Ωh

ṽ(x, y) = v(x, η), for (x, y) ∈ TL

We notice that for (x, y) ∈ TL we have r =
√

x2 + y2 ∼ x and, therefore, we can replace the
weight rα−1+A(h) by xα−1+A(h) in our estimates.

Now, it is clear that ∫

TL

ṽ2(x, y)xα−1+A(h)ρ2γh(x, y)dxdy ≤ A + B (5.50)

with

A =
∫

TL1

ṽ2(x, y)xα−1+A(h)
[
(x− x1)2 + (y + x1)2

]γhdxdy (5.51)

and

B =
N∑

j=2

Bj (5.52)

Bj =
∫

TLj

ṽ2(x, y)xα−1+A(h) min
i=j−1,j

[
(x− xi)2 + (y + xi)2

]γhdxdy

where TLj = {xj−1 ≤ x ≤ xj , −x ≤ y ≤ 0} (notice that we have used the fact that ρ ≤ dj =√
(x− xj)2 + (y + xj)2, for any j).
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Changing variables, and taking into account that α < 3, we get for j > 1

Bj =
∫

Ωj

v2(x, η)xA(h) min
i=j−1,j

{
(x− xi)2 + (− η

xα−1
+ xi)2

}γh

dxdη

≤ C

∫

Ωj

v2(x, η)xA(h)−4γh min
i=j−1,j

{
(x− xj)2 + (−η + xjx

α−1)2
}γh dxdη

where Ωj = {xj−1 ≤ x ≤ xj , 0 ≤ η ≤ xα}. Similarly,

A ≤ C

∫

Ω1

v2(x, η)xA(h)−4γh
{
(x− x1)2 + (−η + x1x

α−1)2
}γh dxdη.

Since
(−η + xjx

α−1)2 ≤ C[(η − xα
j )2 + (xα

j − xjx
α−1)2],

using the mean value theorem, Lemma 2.1, the fact that x, xj ≤ 1, and 1 < α, we obtain for
j > 1

(xα
j − xjx

α−1)2 ≤ Cx2
jx

2(α−2)(x− xj)2 ≤ C max{x2(α−2), 1}(x− xj)2 ≤ x−2(x− xj)2

and, hence,

Bj ≤ C

∫

Ωj

v2(x, η)xA(h)−6γh min
i=j−1,j

{
ri(x, η)2

}γh dxdη

where ri(x, η) =
√

(x− xi)2 + (η − xα
i )2. Using that A(h) = 6γh and Lemma 5.1 we get

Bj ≤ C

∫

Ωj

v2(x, η)ρ2γhdxdη. (5.53)

Similarly, for j = 1 we have that

(xα
1 − x1x

α−1)2 ≤ C max{x2(α−2), 1}(x− x1)2 ≤ Cx−2(x− x1)2

As a consequence,

A ≤ C

∫

Ω1

v2(x, η)xA(h)−6γh
{
r1(x, η)2

}γh dxdη

let us notice that, for (x, η) ∈ Ω1, it is clear that r1(x, η) = ρ(x, η), then

A ≤ C

∫

Ω1

v2(x, η)ρ(x, η)2γhdxdη.

From the previous inequality, (5.50) and (5.53), we have
∫

TL

ṽ2(x, y)xα−1+A(h)ρ2γh(x, y)dxdy ≤
∫

Ω
v2(x, η)ρ(x, η)2γhdxdη.

Bounds for the first and second derivatives of ṽ follow similarly using the same ideas given
in Lemma 3.1 of [2] and the estimates given above. Therefore, we have proved that ṽ ∈
H2,γh

α+A(h)(TL), and that

‖ṽ‖
H

2,γh
α+A(h)

(TL)
≤ C‖v‖H2,γh (Ω).

On the other hand, using that ∂v
∂ν = 0 on Γ1, it is easy to see that ṽ ∈ H2,γh

α+A(h)(Dh) concluding
the proof. ¤
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From the previous Lemma we conclude that any Φ̃h ∈ H2,γh(Ωh) has an extension Φ̃E
h be-

longing to H2,γh

α+A(h)(Dh). Since Dh is uniformly Lipschitz, and the weights involved belong to
the Muckenhoupt class A2, we can use Chua’s results [13] with the same arguments given in [2],
and then Φ̃E

h (and hence Φh) can be extended to R2. More precisely, there exists a function ΦE
h

belonging to

H2,γh

α+A(h)(R
2) =

{
v : r

α−1
2

+
A(h)

2 ργhDβv ∈ L2(R2) ∀β , |β| ≤ 2
}

(5.54)

such that
‖ΦE

h ‖H
2,γh
α+A(h)

(R2)
≤ C‖Φh‖Ĥ2,γh (Ωh). (5.55)

Remark 5.2. The extension result given in (5.55) agrees with (1.5), in the sense that when h
goes to zero γh → 0, A(h) → 0, and Ωh → Ω . We emphasize the fact that this sort of extension
cannot be obtained in a direct way from the results given in [20] due to the weights involved in
the space of functions.

In what follows we will make use of ΦE
h restricted to the domain TU (see (2.17) and Figure

4). Let us notice that Ωh ⊂ TU for any 0 < h and, for (x, y) ∈ TU , we have that min1≤j≤nrj ≤
min1≤j≤ndj , and r ∼ x. Therefore, we can state the following result (see (5.46), and Assumption
1).

Lemma 5.3. There exists an extension ΦE
h of Φh (the solution of (5.41)) belonging to the space

H2,γh

α+A(h)(TU ) =
{

v : x
(α−1)

2
+

A(h)
2 ργhDβv ∈ L2(TU ) ∀β , |β| ≤ 2

}
.

where
TU = {(x, y) ∈ R2 : 0 < y < x 0 < x < 1}

ρ = min1≤j≤n {rj}, with rj =
√

(x− xj)2 + (y − xα
j )2. Moreover,

‖ΦE
h ‖H

2,γh
α+A(h)

(TU )
≤ ‖Φh‖H2,γh (Ωh) ≤ C‖uE − uh‖L2(Ωh).

Lemma 5.4. Let Φh be the solution of (5.41), and ΦE
h be the extension defined in Lemma 5.3.

For h small enough we have

(1) ΦE
h ∈ W 2,p(TU ) for 1 ≤ p < 4

1+α . Moreover,

‖ΦE
h ‖W 2,p(TU ) ≤ C‖ΦE

h ‖H
2,γh
α+A(h)

(TU )
(5.56)

with a constant C independent of h.
(2) ∇Φhxβ ∈ W 1,s(TU ), for β > α−1

2 , and s = 2− ε, with ε > 4γh. Moreover,

‖∇ΦE
h xβ‖W 1,s(TU ) ≤ C‖ΦE

h ‖H
2,γh
α+A(h)

(TU )
(5.57)

with a constant C independent of h.
(3) With β and s as in (2), we have that ∇ΦE

h xβ ∈ Ls∗(TU ), with s∗ = 2s
2−s = 2(2−ε)

ε .
Moreover,

‖∇ΦE
h xβ‖Ls∗ (TU ) ≤

C

ε
‖ΦE

h ‖H
2,γh
α+A(h)

(TU )
(5.58)

with a constant C independent of h.
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Proof. Let us write ∫

TU

|v|p =
∫

TU

|v|px p(α−1+A(h))
2 ρpγhx−

p(α−1+A(h))
2 ρ−pγh

for some p < 4
α+1 < 2 fixed. Applying Hölder’s inequality with exponent 2/p and its dual

exponent we obtain
∫

TU

|v|p ≤
(∫

TU

|v|2x(α−1+A(h))ρ2γh

) p
2
( ∫

TU

x
− p

2−p
(α−1+A(h))

ρ
− 2p

2−p
γh

) 2−p
2 (5.59)

Calling sh = 2p
2−pγh, and applying Hölder’s inequality again with 1

1−2sh
(its dual exponent is

1
2sh

) we have

(∫

TU

x
− p(α−1+A(h))

2−p ρ
− 2p

2−p
γh

) 2−p
2 ≤ I1I2 (5.60)

where

I1 =
( ∫

TU

x
−(α−1+A(h)) p

(2−p)(1−2sh)

) 2−p
2

(1−2sh)

and
I2 =

(∫

TU

ρ−
1
2

)(2−p)sh

.

Now, since 1 ≤ p < 4
1+α , for h small enough we can assume that 1 ≤ p < 4

1+α+14γh
, and using

that A(h) = 6γh, one can easily check that (α − 1 + A(h)) p
(2−p)(1−2sh) < 2, which is precisely

the condition that implies
I1 ≤ C

with C = C(α).
On the other hand, since

ρ ≥ dΓ3 , (5.61)
where dΓ3 is the distance function to Γ3, and taking into account that

∫
TU

1
ds < C for any s < 1

(see for instance [15]), we get that
∫
TU

ρ−
1
2 ≤ C. As a consequence, we have proved that for any

function v and 1 ≤ p < 4
α+1+14γh

‖v‖Lp(TU ) ≤ C‖vx
α−1+A(h)

2 ργh‖L2(TU ).

Thanks to Lemma 5.3, we conclude that ΦE
h ∈ W 2,p(TU ), and (1) follows.

Our next goal is to prove (2). Take β > α−1
2 , then, for h small enough, we also have

β > (α−1+A(h))
2 . Let s = 2− ε, with ε to be chosen below. Following similar arguments as those

of Lemma 4.1 of [2], we have that

D2ΦE
h xβ ∈ L2−ε(TU ).

Indeed, since D2ΦE
h xβργh ∈ L2(TU ), we can write for fixed ε,
∫

TU

|D2ΦE
h |sxsβ ≤

(∫

TU

(
D2ΦE

h xβργh

)2
) 2−ε

2
(∫

TU

ρ−
2γh

ε

) ε
2

and the last integral in the previous inequality is finite, taking for instance

4γh < ε (5.62)

and using (5.61). On the other hand,

∇ΦE
h xβ−1 ∈ L2(TU ).
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In fact, from (5.56), and embedding results for the planar Lipschitz domain TU

∇ΦE
h ∈ Lp∗(TU )

with p∗ = 2p
2−p and 1 ≤ p < 4

α+1 . Now, by Hölder’s inequality with exponent p∗/2 and its
conjugate exponent p

2(p−1) we get

∫

TU

|∇ΦE
h |2x2(β−1) ≤

(∫

TU

|∇ΦE
h |p

∗
) 2

p∗
(∫

TU

xp(β−1)/(p−1)

) 2(p−1)
p

.

A straightforward computation shows that the condition for the last integral to be finite is

p(β − 1)/(p− 1) + 2 > 0

or, equivalently,

p >
2

β + 1
.

Choosing p such that
2

β + 1
< p <

4
1 + α

which is possible since β > α−1
2 , (2) follows.

The proof of (3) is now direct using the imbedding Ls∗(TU ) ⊂ W 1,s(TU ), s∗ = 2s
2−s = 2(2−ε)

ε ,
the explicit dependence on s of the constant (see the proof of Theorem 1 in [14, page 277]), and
the result obtained in (2).

In fact,

‖∇ΦE
h xβ‖Ls∗ (TU ) ≤

C

2− s
‖∇ΦE

h xβ‖W 1,s(TU ) ≤
C

ε
‖ΦE

h ‖H
2,γh
α (TU )

for s = 2− ε, with ε verifying (5.62). ¤
Lemma 5.5. Let Φh be the solution of (5.41), then there exists a constant C such that

‖∇Φh‖L2(Ωh\Ω) ≤ Ch log(1/h)‖uE − uh‖L2(Ωh)

and
‖Φh‖L2(Ωh\Ω) ≤ Ch‖uE − uh‖L2(Ωh).

Proof. Let β, s, and ε > 4γh, as in Lemma 5.4. Applying Hölder’s inequality with s∗/2 = 2−ε
ε

and its dual exponent q = s∗
s∗−2 = 2−ε

2−2ε , we have
∫

Ωh\Ω
|∇Φh|2 ≤

(∫

Ωh\Ω
|∇ΦE

h |s
∗
xβs∗

) 2
s∗

(∫

Ωh\Ω
x−2βq

) 1
q
, (5.63)

and, therefore, from (3) in Lemma 5.4 we obtain
∫

Ωh\Ω
|∇Φh|2 ≤ C

ε2
‖ΦE

h ‖2

H
2,γh
α+A(h)

(TU )

(∫

Ωh\Ω
x−2βq

) 1
q
. (5.64)

From Lemma 2.2 we get (observe that the constant given in that Lemma remains bounded when
q → 1, and in the present context q = 2−ε

2−2ε while ε will be chosen such that ε → 0 when h → 0)
∫

Ωh\Ω
|∇Φh|2 ≤ C

ε2
‖ΦE

h ‖2

H
2,γh
α+A(h)

(TU )
h

2
q (5.65)

and, since 1
q = 2−2ε

2−ε = 1− ε
2−ε ,

∫

Ωh\Ω
|∇Φh|2 ≤ C

(
h1− ε

2−ε

ε

)2

‖ΦE
h ‖2

H
2,γh
α+A(h)

(TU )
.
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Let us now take ε = − 1
log(h) . It is clear that for h small enough, ε verifies ε > 4γh for any choice

of γh in (5.44). Taking into account that 1 − ε
2−2ε ∼ 1 − 1

2ε for ε → 0, we get by standard
arguments ∫

Ωh\Ω
|∇Φh|2 ≤ Ch2 log2(1/h)‖ΦE

h ‖2

H
2,γh
α+A(h)

(TU )
(5.66)

and the first estimate of the Lemma follows from Lemma 5.3.
The estimate for

∫
Ωh\Ω |Φh|2 follows immediately. Since for p > 1, functions in W 2,p(TU ) are

bounded, using (5.56) we can write
∫

Ωh\Ω
|Φh|2 ≤ ‖ΦE

h ‖2
L∞(TU )|Ωh \ Ω| ≤ C‖ΦE

h ‖2
W 2,p(TU )|Ωh \ Ω| ≤ C‖ΦE

h ‖2

H
2,γh
α+A(h)

(TU )
|Ωh \ Ω|

and the proof concludes using Lemma 5.3 and Lemma 2.3. ¤

Now we are ready to obtain error bounds in the L2 norm. Mainly due to Lemma 5.5, it will
not be possible (at least with the present approach, see Remark 3.1) to improve the logarithmic
factor log h in the estimates. For this reason, in the intermediate computations we will replace
terms like hrh , with rh given by (5.42), by C

√
log(1/h)h. This can be done thanks to the bound

hrh ≤ C
√

log(1/h)h, (5.67)

that holds for rh ∼ 1− Chs with any 0 < s ≤ 1, as one can easily check from the fact that

lim
h→0

hhs
= 1.

Our next goal is to obtain error estimates in L2(Ωh).

Theorem 5.1. Let u be the solution of (1.2) and uh be the solution of (1.4). Assume α < 3,
and f ∈ L2(R2). Then,

‖uE − uh‖L2(Ωh) ≤ Ch2 log(1/h)‖f‖L2(Ω) + Ch‖f‖L2(Ωh\Ω).

Proof. Let e = uE − uh and Φh be the solution of (5.41). We have that
∫

Ωh

e2 =
∫

Ωh

(−∆Φh)e =
∫

Ωh

∇Φh∇e =
∫

Ωh

∇(Φh −ΠΦh)∇e +
∫

Ωh

∇(ΠΦh)∇e. (5.68)

From (1.2) and (1.4) we get
∫

Ωh

∇e∇v =
∫

Ωh\Ω
∇uE∇v −

∫

Ωh\Ω
fv ∀v ∈ Vh.

Hence, ∫

Ωh

e2 =
∫

Ωh

∇(Φh −ΠΦh)∇e +
∫

Ωh\Ω
∇uE∇(ΠΦh)−

∫

Ωh\Ω
f(ΠΦh). (5.69)

From standard estimates for the Lagrange interpolation using finite triangular elements verifying
the maximal angle condition, and (5.67), we get

‖∇(Φh −ΠΦh)‖L2(Ωh) ≤ Chrh‖Φh‖H1+rh (Ωh) ≤ Ch
√

log(1/h)‖Φh‖H1+rh (Ωh)

which under Assumption 1 for (5.45) yields

‖∇(Φh −ΠΦh)‖L2(Ωh) ≤ Ch
√

log(1/h)‖e‖L2(Ωh). (5.70)

Therefore, the first term of (5.69) can be bounded using Theorem 4.1. Indeed,
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∫

Ωh

∇(Φ−ΠΦh)∇e ≤ Ch
√

log(1/h)
{

h
√

log(1/h)‖f‖L2(Ω) + h
2

α+1 ‖f‖L2(Ωh\Ω)

}
‖e‖L2(Ωh)

(5.71)
For the second term in (5.69), using the estimates given in Lemma 2.7 and (1.3) we know that

∫

Ωh\Ω
∇uE∇(ΠΦh) ≤ Ch

√
log(1/h)‖f‖L2(Ω){‖∇(ΠΦh − Φh)‖L2(Ωh\Ω) + ‖∇Φh‖L2(Ωh\Ω)}.

Using (5.70), Lemma 5.5, and Assumption 1 for (5.45), we get
∫

Ωh\Ω
∇uE∇(ΠΦh) ≤ Ch2 log(1/h)‖f‖L2(Ω)‖e‖L2(Ωh). (5.72)

Therefore, we only have to estimate the third term in (5.69)
∫

Ωh\Ω
f(ΠΦh) =

∫

Ωh\Ω
f(ΠΦh − Φh) +

∫

Ωh\Ω
fΦh (5.73)

Now, L2 interpolation error estimates give

‖ΠΦh − Φh‖L2(Ωh) ≤ Ch1+rh‖Φh‖H1+rh (Ωh)

and then, (5.45) with Assumption 1 and (5.67) give
∫

Ωh\Ω
f(ΠΦh − Φh) ≤ Ch2

√
log(1/h)‖e‖L2(Ωh)‖f‖L2(Ωh\Ω).

Now, for the second term in (5.73), by using Lemma 5.5 we have
∫

Ωh\Ω
fΦh ≤ Ch‖f‖L2(Ωh\Ω)‖e‖L2(Ωh). (5.74)

So, from (5.69), (5.71), (5.72) and (5.74) we get the estimate of the theorem, taking into
account that the term arising from (5.71)

h1+ 2
α+1

√
log(1/h)‖f‖L2(Ωh\Ω)

is bounded, up to a multiplicative constant, by the term

h‖f‖L2(Ωh\Ω)

given in (5.74). ¤

6. Numerical examples

Now we show that meshes verifying hypotheses (1)-(3) and (Ha)-(Hb) can be constructed by
the same method given in [2].

(1) Introduce the partition of the interval (0, 1) given by

xj =
(

j

n

) 2
3−α

0 ≤ j ≤ n.

(2) Take the points (xj , 0) in Γ1, (xj , x
α
j ) in Γ3, and for j > 1, divide each of the vertical

lines {(xj , y) : 0 ≤ y ≤ xα
j } uniformly into subintervals such that each of them has length

∼ xj − xj−1.



FINITE ELEMENT APPROXIMATIONS IN A NON-LIPSCHITZ DOMAIN: PART II 25

Figure 5. Graded mesh with α = 2 and n = 3

Figure 5 shows an example of one of these meshes.
We observe that is clear that the meshes constructed in this way satisfy hypotheses (1), (2),

(3) and (Ha). Moreover, these meshes satisfy the additional condition (Hb). Indeed, the first
triangle T1 has vertices (0, 0), (x1, 0) and (x1, x

α
1 ) and so the triangle T̃1 has vertices (x1

2 , 0),
(x1, 0) and (x1,

xα
1
2 ) and then, in order to check that this triangle does not intersect Ω1

h, we
analyze the function

g(x) = xα − xα−1
1 (x− x1

2
).

Hence, the hypothesis holds if we prove that g(x) > 0 for 0 ≤ x ≤ x1. An easy calculation
shows that g is convex and has a minimum in x∗ = x1

α
1

α−1
and

g(x∗) = xα
1

(
1
2

+
1

α
α

α−1

− 1

α
1

α−1

)

which is positive for 1 < α < 3.
Similar arguments can be used for the rest of the triangles Tj , 2 ≤ j ≤ n.
If N is the number of nodes in the partition Th, it can be proved that h2 ∼ 1/N [15, page

393],[21]. Therefore, if f is assumed to be zero outside Ω, we have the following error estimate
in terms of the number of nodes,

‖u− uh‖L2(Ω) ≤ C
log N

N
‖f‖L2(Ω).

Observe that this estimate is quasi-optimal. Indeed, up to the logarithmic factor, the order
with respect to the number of nodes is the same as that obtained for a smooth problem using
quasi-uniform meshes.

We end this section by considering the same example presented in [2]. Here, we compare
the L2 order obtained by using uniform and graded meshes. Let us notice that we take a non-
homogeneous Neumann condition, for which we know the analytical solution, and hence, the
exact error. However, similar results are obtained for the same source term f taking g = 0, and
computing an estimated order of convergence from successive refinements.

Example 6.1. Consider the problem (1.1), with

f(x, y) = s(s− 1)(1 + y2/2)xs−2 + xs − 1

and

g(t, tα) =
−sαtα+s−2(1 + t2α/2) + (1− ts)tα√

1 + α2t2(α−1)
.
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value of s order in number of nodes order in h
0.55 0.769 1.497
0.6 0.785 1.528
0.65 0.801 1.561
0.7 0.820 1.597
0.75 0.842 1.640
0.8 0.869 1.693
0.85 0.904 1.761
0.9 0.949 1.847
0.95 1.001 1.951

Table 1. L2 order using quasi-uniform meshes for α = 2

value of s order in number of nodes order in h
0.55 1.090 2.024
0.6 1.086 2.018
0.65 1.084 2.013
0.7 1.081 2.009
0.75 1.080 2.006
0.8 1.078 2.003
0.85 1.077 2.001
0.9 1.076 1.999
0.95 1.076 1.999

Table 2. L2 order using graded meshes for α = 2

Then, the solution is
u(x, y) = (1− xs)(1 + y2/2)

and an easy calculation shows that u ∈ H2(Ω) whenever s > 3−α
2 .

We solve using quasi-uniform meshes and graded meshes. Table 1 and Table 2 show the order
of the error in the L2 norm, in terms of the number of nodes and in terms of the mesh size for
both kind of meshes. Although the solution is in H2(Ω), for all the values of s considered, the
order of convergence is not optimal when quasi-uniform meshes are used. On the other hand,
the optimal order of convergence is recovered by using appropriate graded meshes according to
our theoretical results.
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