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Abstract. Sobolev functions defined on certain simple domains with an isolated singular point
(such as power type external cusps) can not be extended in standard but in appropriate weighted
spaces. In this article we show that this result holds for a large class of domains that general-
izes external cusps, allowing minimal boundary regularity. The construction of our extension
operator is based on a modification of reflection techniques originally developed for dealing with
uniform domains. The weight involved in the extension appears as a consequence of the failure
of the domain to comply with basic properties of uniform domains, and it turns out to be a
quantification of that failure. We show that weighted, rather than standard spaces, can be
treated with our approach for weights which are given by a monotonic function either of the
distance to the boundary or of the distance to the tip of the cusp.

1. Introduction

Let Ω be an open connected set in Rn and let ω : Rn → R≥0 be a locally integrable nonnegative

function. For k ∈ N and 1 ≤ p ≤ ∞, the weighted Sobolev space W k,p
ω (Ω) (W k,p(Ω) if ω ≡ 1) is

the space of functions defined in Ω having weak derivatives of order α, for |α| ≤ k, and satisfying

‖f‖
W k,p

ω (Ω)
:=
∑
|α|≤k

‖ωDαf‖Lp(Ω) <∞

For Ω � Rn, an extension operator is a linear bounded operator,

Λ : W k,p(Ω) →W k,p(Rn), such that Λf |Ω = f. (1.1)

If such an operator exists, then Ω is called an extension domain for Sobolev spaces (EDS).
It is well known that smooth domains are EDS. In fact, since the boundary of a smooth

domain can be locally flattened by means of a regular transformation, Λ can be constructed in
that case applying a simple reflection method (see [5, 14]). On the other hand, by using the
so called Sobolev representation formula in a cone and singular integrals Calderón [6] showed
that Lipschitz domains are also EDS for 1 < p < ∞. This result was extended to the range
1 ≤ p ≤ ∞ by Stein [5, 17] by using an appropriate averaged reflection procedure.

Reflection type techniques are a natural approach to deal with extension of functions and
more complex ways of reflection are needed in order to handle more general domains. In this
context Jones introduced in [11] the (broader than Lipschitz) class of (ε, δ) domains, also called
locally uniform domains and showed, thanks to a subtle reflection method, that every (ε, δ)
domain is indeed an EDS. In terms of the Whitney decompositions W and Wc, of Ω and (Ωc)o

respectively, Jones’s idea hinges on the fact that (ε, δ) domains enjoy the following properties:
(a) Whitney cubes Q ∈ Wc near Ω have a “reflected” cube of similar size Q∗ ∈ W.
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(b) reflected cubes Q∗
1, Q

∗
2 ∈ W of neighboring cubes Q1, Q2 ∈ Wc can be joined by a bounded

chain of touching cubes in W. Thank to this, an appropriate polynomial approximation of f in
Q∗ can be used to define Λ(f) in Q.

Even when (ε, δ) domains allow very rough boundaries, simple domains such as

Ω = {x ∈ R2 : 0 < x2 < 1, |x1| < xγ2} (1.2)

fail to be E.D.S. for γ > 1. This is a shared feature among general domains having outer peaks.
In this regard Maz’ya and Poborchi [14] introduced:

Definition A. Let Ω ⊂ Rn (n ≥ 2) be a domain with compact boundary ∂Ω. Assume that
0 ∈ ∂Ω and that ∂Ω \ {0} is locally the graph of a Lipschitz function. We say that Ω has an
external cusp at the origin if there exists a neighborhood of the origin, U ⊂ Rn, such that

U ∩ Ω = {(y, z) ∈ Rn−1 × R : y ∈ ϕ(z)�}
where � ⊂ Rn−1 is a bounded domain and ϕ : R+ → R+ is a Lipschitz increasing function such

that ϕ(t)
t → 0 (t→ 0+) and ϕ(0) = 0.

Remark 1.1. In Definition A, ϕ defines the profile of the cusp, that is Ω’s behavior toward
the origin is depicted exactly by ϕ. Every “horizontal” section of Ω has the same shape as �,
scaled by ϕ.

For the class of domains given by Maz’ya and Poborchi, Sobolev functions can not be extended
in standard, but in weighted spaces. To be more precise [14, 15]:

Theorem A (Maz’ya and Poborchi [14, 15]). Let Ω ⊂ Rn be a domain with an external cusp
in the origin (in the sense of to Definition A),

(a) If kp < n− 1, or k = n− 1 and p = 1, and ϕ satisfies:

ϕ(t)

t
is a non-decreasing function (1.3)

Then there exists an extension operator

Λ : W kp(Ω) →W kp
σ (R)

where

σ(x) =

{
1 x ∈ Ω(

ϕ(|x|)
|x|
)k

x ∈ Ωc

(b) If kp > n− 1, and ϕ is such that:

∃Cϕ constant : ϕ(2t) ≤ Cϕϕ(t) (1.4)

then, there exists an extension operator

Λ : W kp(Ω) →W kp
σ (R)

where

σ(x) =

 1 x ∈ Ω(
ϕ(|x|)
|x|
)n−1

p
x ∈ Ωc

In either case (a) or b)), assuming (1.4) holds, if σ̃ is such that there is an extension

operator Λ̃ : W kp(Ω) →W kp
σ̃ (Rn), then

σ̃(x) ≤ Cσ(x) ∀x ∈ U \Ω
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Remark 1.2. Let us mention that under the same hypotheses of Theorem A, and for the critical
case kp = n− 1, with ϕ satisfying a condition similar to (1.4) (but slightly weaker), the authors
show that: there exists an extension operator

Λ : W kp(Ω) →W kp
σ (R)

where

σ(x) =

(
ϕ(|x|)
|x|
)k∣∣∣∣ log(ϕ(|x|)|x|

)∣∣∣∣1− 1
p

.

Observe that property (1.4) excludes exponential cusps, with profiles given by functions such

as ϕ(t) = ae−
b
t . This property is not necessary for the existence of the extension operator

in the case kp < n − 1, but it is used in the proof of the optimality of the weight σ (item
c)). Throughout this work the weight given in item a) (resp. b)) is called derivative (resp.
dimensional) weight.

Among several applications [3, 4], Theorem A allows us to handle convergence issues in the
context of finite element approximations of elliptic partial differential equations. External cusps
can not be exactly fitted by polygonal discretizations and the finite element mesh needs to
be graded according to σ(x) in order to get optimal order error estimates . On the other
hand, weighted Sobolev spaces in external cusps have shown to be of interest in linear elasticity.
Indeed, the classical Korn inequality, fundamental to prove existence of solutions of the linearized
elasticity equations does not hold in domains with outer peaks, however a variant involving
weights depending on the distance to the boundary or the distance to the tip of the cusp does
hold. Similar results hold for the divergence operator for which a continuous right inverse can
be defined on this kind of weighted spaces [1, 2, 9, 10]. In this context becomes clear that a
version of Theorem A for weights of the type described can also be useful in applications.

In this paper we present a twofold generalization of Theorem A: a first involving a broader
class of domains and a second allowing weighthed spaces. Concerning the former, and loosely
speaking, we prove, in terms of Maz’ya and Poborchi’s definition, that the extension can be
performed even in a context in which ϕ does not give the precise profile of Ω, but just an
approximate description of the narrowing toward the origin, as long as the boundary of Ω
satisfies minimal regularity conditions. We also show that the extension is possible with either,
the derivative or the dimensional weight regardless the relationship between the parameters k, p
and n (although we do not treat the critical case kp = n−1). On the other hand we also present
some results for the weighted case. Even when Chua [7, 8] has shown that Jones’s technique can

also be applied to handle extensions in W k,p
ω for very general weights (essentially if ω is doubling

and if functions in W k,p
ω can be well approximated in cubes by polynomials), in our context, for

several reasons pointed out later, we need to restrict our study to weights that are mainly given
by monotonic functions of the distance to the boundary or the distance to the tip of the cusp.

Our arguments can be summarized as follows. We introduce a general definition of external
cusp, that includes those domains satisfying Definition A, (see Definitions 2.2 and 2.3). Our
definition is given in terms of a) a representative chain (called the spine of the cusp) of central
cubes belonging to W and b) certain local variable uniformity property. The latter property
ensures that any cube Q ∈ Wc close enough to Ω has a reflected cube Q∗ ∈ W of the type
needed in Jones’ arguments. Therefore, in a first stage, a local unweighted extension à la Jones
is carried out. In a second stage, and for cubes T ∈ Wc which are not too close to Ω we define
a reflected set T ∗ which is not necessarily a single, but a finite union of cubes belonging to the
central Spine. We show that T ∗ can be essentially taken in two different ways where either the
cardinal of T ∗ is large and the size of the cubes in T ∗ is much smaller than that of T or T ∗
has a single cube of the same size of T but the distance from T to T ∗ is much larger than the
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size of T . In each case our arguments lead to a proper weight required in the extension process.
Our reflection procedure makes the treatment of the weighted case easy, for weights of the type
described before.

The paper is organized in the following way. In Section 2 we introduce some notation, recall
basic aspects of uniform domains and Whitney decompositions, and finally give our definition
of normal and curved cusps. Section 3 is devoted to prove some preliminary lemmas on poly-
nomials. In Section 4 we present a detailed proof of the extension theorem for normal cusps
(Theorem 4.1) whereas the adaptation for curved cusps is developed in Section 5 (Theorem 5.1).
Section 6 is just an appendix to Sections 4 and 5, where some accessory results are proved. In
Section 7 we treat the weighted case. Finally, in Section 8 we summarize the results presented
in the paper, add some comments, and show a few examples.

2. A general definition for external cusp

Given a rectangle R ⊂ Rn with edges parallels to the coordinate axis (this is the case for

all the rectangles considered in this article), the size vector of R is denoted with 
�(R) =
(�1(R), �2(R), . . . , �n(R)), where �i(R) is the length of the R’s i-th edge. For a cube Q we
use �(Q) to denote the length of any of its edges, and for a rectangle R, we define �(R) :=
max1≤i≤n{�i(R)}. A pair of rectangles R1, R2 are equivalent, and we write R1 ∼ R2, if there
are constants C1, C2 such that

C1�i(R1) ≤ �i(R2) ≤ C2�i(R1)

for 1 ≤ i ≤ n. For a rectangle R, we denote its center with cR. If cR = (c1, · · · , cn) the upper
face F u

R of R is given by

F u
R = {(x1, · · · , xn) ∈ R : xn = cn +

1

2
�n(R)}

and analogously is defined the lower face F l
R.

Given a rectangle R, we denote by aR (a > 1), the expanded rectangle centered at cR with
edges �i(aR) = a�i(R). For a cube Q, centered in cQ = (c1, · · · , cn) we denote zQ = cn − 1

2�(Q)

(the last coordinate of points belonging to F l
Q). We say that R1 and R2 are touching rectangles

if Ro
1 ∩Ro

2 = ∅ and R1 ∩R2 = F with F a face of R1 or R2.
For every collection of sets C, we denote with ∪C the union of all the sets in C, i.e. ∪C :=

∪S∈CS. Finally, throughout this article x̂n stands for the xn axis, and C denotes a generic
constant that may change from line to line.

Let us recall the following definition that plays a crucial role in the sequel:

Definition 2.1. (Locally Uniform Domains) D is a (ε, δ) domain if for all x, y ∈ D with
|x− y| < δ there is a rectifiable curve ggm joining x and y such that:

�(γ) <
|x− y|
ε

(2.1)

d∂Ω(z) >
ε|x− z||z − y|

|x− y| ∀z ∈ γ (2.2)

If δ > diamD, we say that D is a uniform domain (note that then D is connected).

Lemma 2.1 (Jones [11]). If D is a (ε, δ) domain, |∂D| = 0.

Uniform domains include Lipschitz domains, but they form a much larger class. If fact, if Ω
is uniform, ∂Ω could be very rough. On the other hand, classical examples of domains with a
single singular point and that are not uniform are precisely external cusps of power type, where
property (2.2) fails, and also inner cups of the same kind, where property (2.1) fails.

Below we define cusps in terms of its Whitney decomposition, so we recall:
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Theorem 2.2 (Whitney). Let Ω ⊂ Rn, Ω �= Rn, be an open set. Then, there is a collection
W = W(Ω) := {Qj} of (countably) infinite dyadic closed cubes such that Ω = ∪W, and:

• Qo
j ∩Qo

k = ∅ ∀Qj, Qk ∈ W(Ω)

• �(Qj) ≤ d(Qj , ∂Ω) ≤ 4
√
n�(Qj) ∀Qj

• if Qj ∩Qk �= ∅ then: �(Qj) ≤ 4�(Qk)

Remark 2.3. The proof of Theorem 2.2 can be found, for instance, in [17]. One can easily
observe that for any pair of open sets A and B, with A ⊂ B, every cube Q ∈ W(A) is contained

in some cube Q̃ ∈ W(B).

Remark 2.4. Like in Definition A, the cusps defined below are assumed to be tangential to
certain fixed direction that is taken arbitrarily along x̂n, with the tip of the cusp placed at the
origin 0. Our definition is “intrinsic” to some extent, since it is based on Whitney cubes and
certain variable uniformity property.

Let us recall that we denote W and Wc the Whitney decompositions of Ω and (Ωc)o respec-
tively.

Definition 2.2 (Normal Cusp). Let Ω ⊂ Rn be an open set such that 0 ∈ ∂Ω. Let ε > 0 and
K > 1 be given parameters. We say that Ω has a (ε,K)−normal external cusp (or outer peak)
at the origin if it satisfies:

(i) There exists a chain S = {Si}∞i=1 ⊂ W of cubes increasingly numbered towards the origin
(i.e.: d(Si+1, 0) ≤ d(Si, 0)), such that

Si ∩ Si+1 = F u
Si+1

, (2.3)

and
d(Si, 0) → 0 (i→ ∞). (2.4)

(ii) Using the abbreviated notation zi := zSi for cubes Si ∈ S, denoting by S(z) the cube at
heigth z > 0 (i.e. S(z) := Si if zi ≤ z < zi−1) and iz the index of the cube at height z
(i.e. iz = i if Si = S(z)), we have that{

x ∈ Ω : xn < z
} ⊂ ∞⋃

i=iz

Ωi for any z1 > z > 0 (2.5)

with Ωi = KSi ∩ Ω.
(iii) For every pair of points x, y ∈ Ωi ∪ Ωi+1, there is a rectifiable curve, γ ⊂ Ω, joining x

and y, and satisfying:

�(γ) ≤ 1

ε
|x− y| (2.6)

d∂Ω(z) ≥ ε
|x− z||z − y|

|x− y| . (2.7)

(iv) We have
�(Si)

zi
−→ 0 (i→ ∞) (2.8)

The set S is named the spine of Ω.

Condition (2.3) means that the spine S is straight, and parallel to x̂n. It also implies that
the chain is decreasing, or �(Si+1) ≤ �(Si). This last fact is not really necessary but is assumed
for the sake of simplicity: the sizes of the cubes in S could oscillate, as long as its oscillation is
controlled by some universal parameter, depending only on Ω.

On the other hand, conditions (2.3) and (2.4) imply that every cube Si of S touches x̂n, while
(2.5) guarantees that Ω’s behavior (its narrowing toward the origin) is faithfully represented by
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the behavior of the chain S: a fixed expansion of the tails of S reaches the whole boundary of
Ω below certain height z, and consequently ∂Ω narrows toward the origin as fast as �(S(z)). In
other words, the function �(S(z)) plays the role of ϕ(z) in Definition A.

Finally, conditions (2.6) and (2.7) provide some regularity to the boundary of Ω and exclude
the existence of non connected components in Ω.

Condition (2.8) is not necessary at all for the extension process. We include it in order
to exclude cones and other non-singular domains from our definition of cusp. However, it is
important to notice that our extension theorems (see Theorems 4.1 and 5.1) stand even for
domains where (2.8) is not fulfilled. In that cases the weight turns to be a constant, and a
classical (unweighted) extension is obtained.

Figure 1. Cusp of type (1.2) vs. Normal cusp with its spine

Normal cusps are, somehow, “symmetric” with respect to x̂n. More precisely, normal cusps
are those that grow around an axis, which is placed approximately at its center; see 1. The
following definition includes cusps that are tangential to a certain axis, which is not necessarily
interior to the domain:

Definition 2.3 (Curved Cusp). Let Ω ⊂ Rn be an open set such that 0 ∈ ∂Ω. Let ε > 0 and
K > 1 be given parameters. We say that Ω has a (ε,K)−curved external cusp (or outer peak)
at the origin if there exists a chain of cubes S = {Si}i, Si ∈ W increasingly numbered toward
the origin 0, satisfying:

Si ∩ Si+1 �= ∅ (2.9)

d(Si, x̂n) ≤ CΩ�(Si) for some CΩ (2.10)

�(Si+1) ≤ �(Si) (2.11)

and if Ω satisfies conditions (ii), (iii) and (iv) of Definition 2.2.

Conditions (2.9) and (2.10) constitute a relaxation of condition (2.3). Here, the chain is not
forced to be straight and parallel to x̂n, but to approximate it asymptotically. As we remarked
earlier, condition (2.11) is not necessary, but comfortable. Since we abandoned property (2.3),
(2.11) it is not implicit any more, and so we include it in the definition of curved cusps.

Remark 2.5. For both normal or curved cusps we add two extra conditions, that are analogous
to the ones requiered by Maz’ya and Poborchi in Theorem A.

�(Si)

zi
≤ C

�(Sj)

zj
∀i > j C constant. (2.12)

and

�(Sj) ≤ K�(Si) ∀i > j such that d(Si, 0) >
1

2
d(Sj , 0) (2.13)
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Property (2.12) is a generalization of (1.3). We use it to proof item a) in Theorems 4.1 and
5.1. On the other hand, (2.13) is a generalization of (1.4), and it is necessary for the proof of
item b) in both theorems.

Finally, let us point out some details that arise from the comparison between Definition A
and Definitions 2.2 and 2.3:

Note that a set satisfying Definition A is a domain that, being cut at different heights, shows
the same shape, scaled according to the height by function ϕ. This is clearly not the case in
Definition 2.3. On the other hand, since the decreasing conditions are stated on the spine S,
and not on ∂Ω, our definitions allow small oscillations in ∂Ω, instead of the monotonic behavior
imposed by ϕ. Furthermore, Definition A asks ∂Ω \ {0} to be locally Lipschitz, whereas the
variable uniform properties (2.6) and (2.7) constitute a much more relaxed condition. In Section
8 we provide some examples that show in different ways the generalization implicit in Definitions
2.2 and 2.3.

3. Some preliminary lemmas

For a polynomial P , degP stands for the degree of P .

Lemma 3.1. Let R be a rectangle, P a polynomial with deg(P ) ≤ k, then:

‖P‖L∞(R) ≤
C

|R| 1p
‖P‖Lp(R) 1 ≤ p ≤ ∞

with C depending only on k.

Proof. Let Q̂ = [−1
2 ,

1
2 ]

n. Let F : Q̂ → R be the linear application: F : x̂ → x, F (x̂) =

�(R) · x̂t + cR. Observe that |DF | = |R|. We consider the polinomial P̂ defined on Q̂ as

P̂ (x̂) = P (F (x̂)). Notice that deg(P̂ ) = deg(P ). Changing variables, we obtain:

‖P‖L∞(R) = ‖P̂‖L∞(Q̂) ≤ Ĉ‖P̂‖Lp(Q̂)

= Ĉ

(∫
Q̂
|P̂ (x̂)|pdx̂

) 1
p

≤ Ĉ

(∫
R
|P (x)|p 1

|R|dx
) 1

p

where the first inequality follows from the equivalence of norms in the finite dimensional space
of polynomials of degree ≤ k defined on Q̂.

�

Lemma 3.2. Let R and Q be rectangles such that R ⊂ Q, and P a polynomial with degP ≤ k.
Then, there exists a constant C, depending only on k, such that:

‖P‖Lp(Q) ≤ C
( |Q|
|R|
) 1

p
∑
|α|≤k

‖DαP‖Lp(R)

�(Q)α

Proof. We may asume 0 ∈ R. Let q ∈ Q such that ‖P‖L∞(Q) = |P (q)|, then:

‖P‖Lp(Q) ≤ ‖P‖L∞(Q)|Q| 1p = |P (q)||Q| 1p ≤ |Q| 1p
∑
|α|≤k

|DαP (0)| |q
α|
α!

≤ C|Q| 1p
∑
|α|≤k

‖DαP‖L∞(R)

�(Q)α ≤ C

( |Q|
|R|
) 1

p
∑
|α|≤k

‖DαP‖Lp(R)

�(Q)α

�
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Corolary 3.3. Let R ⊂ Q rectangles such that |Q|
|R| ≤ C, and P a polynomial with deg(P ) ≤ k.

Then, there exists a constant C, depending only on k such that:

‖P‖Lp(Q) ≤ C‖P‖Lp(R)

Remark 3.4. A version of Corollary 3.3 is proved in [11], Lemma 2.1. In our case we need to
compare polynomials in rectangles that are not of similar size (a fact that eventually leads to the
weights involved in the extension) and we need the less comfortable variant given in Lemma 3.2.

Following [11], the extension operator is built in terms of polynomials that approximate the
function in certain sets. Let f ∈W k,p(Ω), and S ⊂ Ω a set of positive measure, we denote with
Pk−1(S) (or just P (S) if the degree is clear from the context) the unique polynomial of degree
k − 1 such that: ∫

S
Dα(f − Pk−1(S)) = 0 for allα, with |α| ≤ k − 1.

Thanks to the Poincaré inequality one knows that P (R) has good approximation properties
if R is a rectangle (regardless the eccentricity of R). In the spirit of Lemma 2.2 in [11] we also
need such a result for the union of two touching rectangles of similar size.

Lemma 3.5. Let R1, R2 rectangles such that R1 ∼ R2. Assume that either R1 and R2 are
touching or R1 ⊆ R2 (renumbering if necessary). Then, for any f ∈W k,p(R1 ∪R2):

‖f − P (R1 ∪R2)‖Lp(R1∪R2) ≤ C�(R1)
k
∑
|α|=k

‖Dαf‖Lp(R1∪R2).

Proof. Clearly it is enough to prove the result in the case k = 1. If R1 ⊆ R2 (or vice versa) then
the result follows by the Poincaré inequality for convex domains (or from a fixed cube by scaling
arguments). Let us then treat the case of touching rectangles. Define fR1∪R2 = 1

|R1∪R2|
∫
R1∪R2

f ,

then P (R1 ∪R2) = fR1∪R2 . Write

‖f − P (R1 ∪R2)‖pLp(R1∪R2)
= ‖f − P (R1 ∪R2)‖pLp(R1)

+ ‖f − P (R1 ∪R2)‖pLp(R2)
.

We now show how to deal with the first term (the other follows analogously). We have

‖f − P (R1 ∪R2)‖Lp(R1) ≤
|R1|

|R1|+ |R2|‖f − P (R1)‖Lp(R1) +
|R2|

|R1|+ |R2|‖f − P (R2)‖Lp(R1)

the first term is fine. For the other term we write

‖f − P (R2)‖Lp(R1) ≤ ‖f − P (R1)‖Lp(R1) + ‖P (R1)− P (R2)‖Lp(R1)

and again the first term is all right. In order to treat ‖P (R1) − P (R2)‖Lp(R1) observe that,
since R1 and R2 are touching, there exist rectangles R3 and R4 such that R3 ⊂ R1 ∪ R2 ⊂ R4,
R1 ∼ R1 ∩R3 ∼ R2 ∩R3 ∼ R2 ∼ R3 ∼ R4 then (using, for instance, Corollary 3.3)

‖P (R1)− P (R2)‖Lp(R1) ≤ C‖P (R1)− P (R3)‖Lp(R1∩R3) + ‖P (R3)− P (R2)‖Lp(R4)

and

‖P (R1)− P (R3)‖Lp(R1∩R3) ≤ ‖P (R1)− f‖Lp(R1) + ‖f − P (R3)‖Lp(R3)

while (using again Corollary 3.3)

‖P (R3)−P (R2)‖Lp(R4) ≤ C‖P (R3)−P (R2)‖Lp(R2∩R3) ≤ C‖f−P (R2)‖Lp(R2)+‖P (R3)−f‖Lp(R3).

The lemma follows.
�
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4. Extension

The objective of this section is to build an extension operator for cusps in the unweighted
case W k,p, proving the main result of this paper:

Theorem 4.1. Let Ω ⊂ Rn be a domain with an external normal cusp at the origin.

(a) If the spine S satisfies (2.12), there is an extension operator

Λ :W k,p(Ω) → W k,p
σ (Rn)

where

σ(x) =

{
1 x ∈ Ω(

�(S(|x|))
|x|

)k
x ∈ Ωc

(b) If the spine S satisfies (2.13), there is an extension operator

Λ :W k,p(Ω) → W k,p
σ (Rn)

where

σ(x) =

 1 x ∈ Ω(
�(S(|x|))

|x|
)n−1

p
x ∈ Ωc

(c) In either case (a) or b)), assuming (2.13) stands, if σ̃ is such that there is an extension

operator Λ̃ : W k,p(Ω) → W k,p
σ̃ (Rn), then

σ̃(x) ≤ Cσ(x) ∀x ∈ U \Ω
Remark 4.2. Theorem 4.1 states the existence of a general extension operator for normal cusps.
The only difference between items (a) and (b) is the requierement of properties (2.12) and (2.13)
respectively. In contrast to Theorem A, no conditions on k, p or n are needed in the proof of
any of these cases.

Remark 4.3. Condition (2.12) is not necessary if kp �= 1 (see Remark 4.20). Consequently,
since every domain satisfying Definition A is an external cusp (normal or curved) in our terms
(see Corollary 8.5), hyphotesis (1.3) is not necessary in Theorem A when kp �= 1.

Below we provide a detailed proof for items a) and b) of Theorem 4.1. Item c) is discussed
in the last section of this article. The case of curved cusps requires a little modification (similar
to that needed in [14]) of our arguments and therefore is sketched later in Theorem 5.1.

Let us notice that thanks to item iii), in Definition 2.2, and the results of Jones for locally
uniform domains it is clear that it is enough to construct an extension operator Λ for functions
u such that supp(u) ⊂ Dr = {x = (x1, · · · , xn) : |xn| < r/2}, where r << ∑∞

i=1 �(Si). Our
operator Λ is defined in a set of cubes belonging to Wc. Let us call W2 ⊂ Wc to the set of cubes
belonging to Wc and contained in Dr. We divide W2 in three parts related to three different
stages of the extension process.

W3 =

{
Q ∈ W2 : zQ > 0 and �(Q) ≤

( ε

5
√
n

K − 1

K

)
�(S(zQ))

}
(4.1)

W4 =
{
Q ∈ W2 \ W3 : zQ > 0 and �(Q) ≤ zQ/(8

√
N)
}

(4.2)

W5 =
{
Q ∈ W2 \ (W3 ∪W4)

}
(4.3)

Furthermore, let us denote Qj the cubes in W3, so: W3 = {Qj}j , and similarly, {Tj}j the
cubes in W4, and {Uj}j those in W5. Finally, let {ξj}j , {φj}j and {ψj}j be a partition of the
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unity on ∪W2, such that ξj ∈ C∞
0 , φj ∈ C∞

0 , ψj ∈ C∞
0 ; sop(ξj) ⊂ 17

16Qj , sop(φj) ⊂ 17
16Tj,

sop(ψj) ⊂ 17
16Uj , and:∑

j

ξj(x) +
∑
j

φj(x) +
∑
j

ψj(x) = 1 ∀x ∈ ∪W2

As usual, we may also assume that:

|Dαξj(x)| ≤ C

�(Qj)|α|
, |Dαφj(x)| ≤ C

�(Tj)|α|
, |Dαψj(x)| ≤ C

�(Uj)|α|

In each stage of the extension process we define a polynomial for each cube in each set Wi

(in the first stage, a polynomial for each cube in W3, etc.). The extension operator is finally
constructed by using our partition of the unity.

Following Jones’ ideas we define, for each Q ∈ W2, some set S(Q) ⊂ Ω, so the polynomial for
Q will be P (S(Q)).

First stage. This stage follows closely the reflection method given in [11]. It is based on Lemma
4.6, where the existence of a reflected cube for every Q ∈ W3 is proved. We need to state a
previous lemma:

Lemma 4.4. Given Ω an external normal cusp, with parameters ε,K, there is a constant K̃

(that could be taken K̃ = K(K+1)
2 ) such that, if x ∈ Ω, and

zi − K − 1

2
�(Si) ≤ xn ≤ zi +

K + 1

2
�(Si)

then, x ∈ K̃Si.

Proof. Let us take j = ixn . We suppose j < i (the complementary case is analogous). Property
(2.5) implies that KSj � x. On the other hand zj ≤ zi +

K+1
2 �(Si). But, since �(Sj) ≥ �(Si),

we have �(Sj) = 2N�(Si) for some N ∈ N0. The largest size for Sj is obtained when the cubes
in S grow exponentially between Si and Sj. In that case:

zj − zi =

N−1∑
m=0

2m�(Si) ≤ K + 1

2
�(Si)

and 2N ≤ K+1
2 , which leads us to conclude that

�(Sj) ≤ K + 1

2
�(Si).

But then x ∈ KK+1
2 Si, since x ∈ KSj. �

Remark 4.5. It is easy to see that properties (2.6) and (2.7) hold for finite unions of sets Ωi

(and not only for Ωi ∪ Ωi+1). Therefore we may apply both properties for Ω̃i ∪ Ω̃i+1, where

Ω̃i = K̃Si∩Ω. On the other hand (2.6) implies that the curve from (2.6) is contained in a finite
union of sets Ωi (or in a universal dilation of Si).

Lemma 4.6. For each Q ∈ W3 there is a cube Q∗ ∈ W such that:

1

4
�(Q) ≤ �(Q∗) ≤ �(Q) (4.4)

d(Q∗, Q) ≤ C�(Q) (4.5)
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Proof. Let i be such that zQ ∈ [zi, zi−1), and x ∈ Ω such that d(Q,x) ≤ 5
√
n�(Q). We may

asume that ε√
nK

< 1
2 . In this case, observe that

xn ≥ zQ − 5�(Q) ≥ zi − 5
ε(K − 1)

5
√
nK

�(Si) ≥ zi − K − 1

2
�(Si)

The right hand term of the equation is exactly the floor of the expanded cube KSi. On the
other hand:

xn ≤ zi−1 + 5�(Q) ≤ zi−1 + 5
ε(K − 1)

5
√
nK

�(Si)

≤ zi + �(Si) +
K − 1

2
�(Si) = zi +

K + 1

2
�(Si)

and the right term is the roof of the expanded cube KSi. Consequently, x ∈ Ω̃i. Let y ∈ Ω̃i be

such that |x− y| = 5
√
n

ε �(Q). Note that this is possible because:

|x− y| = 5
√
n

ε
�(Q) ≤ K − 1

K
�(Si) < diam(Ω̃i)

Let, then, γ be the curve given by properties (2.6) and (2.7). If ξ ∈ γ is such that |x− ξ|, |ξ−
y| ≥ |x−y|

2 , we have: d∂Ω(ξ) ≥ ε
4 |x− y| = 5

√
n

4 �(Q). If S ∈ W, S � ξ, then:

4
√
n�(S) ≥ d(S, ∂Ω) ≥ d∂Ω(ξ)−

√
n�(S) ≥ 5

√
n

4
�(Q)−√

n�(S)

Therefore

�(S) ≥ 1

4
�(Q)

Let us consider all the cubes T ∈ W satisfying �(T ) ≥ 1
4�(Q) and take Q∗ to be the one that

minimizes the distance to Q. Then �(Q∗) ≤ �(Q). On the other hand

d(Q∗, Q) ≤ d(S,Q) ≤ 1

ε
|x− y|+ d(x,Q) ≤

(5√n
ε2

+ 5
√
n
)
�(Q)

This completes the proof of the lemma. �
Corolary 4.7. If Q1, Q2 ∈ W3, Q1 ∩Q2 �= ∅, then d(Q∗

1, Q
∗
2) ≤ C�(Q1)

The following lemma is crucial. It is analogous to Lemma 2.8 in [11].

Lemma 4.8. Given Q1, Q2 ∈ W3, Q1 ∩Q2 �= ∅, there is a constant C = C(ε, n,K) and a chain
of cubes F1,2 = {V1 := Q∗

1, V2, . . . , Vr := Q∗
2} ⊂ W such that r ≤ C and �(Vi) ∼ �(Q1), ∀i.

Proof. Since Q1 ∩ Q2 �= ∅, we may assume that either zQ1 , zQ2 ∈ [zi, zi−1), or zQ1 ∈ [zi, zi−1)
and zQ2 ∈ [zi+1, zi), for some i. In any case, thanks to Remark 4.5, Q∗

1 and Q∗
2 are not far from

Ωi ∪ Ωi+1. Let us then assume, for the sake of simplicity, that Q∗
1, Q

∗
2 ⊂ Ωi ∪ Ωi+1. Then there

is a curve γ joining Q∗
1 and Q∗

2 with �(γ) ≤ Cd(Q∗
1, Q

∗
2) ≤ C�(Q1). Here C denotes different

constants, but all of them independent of the cubes considered. Let us consider, then, the chain

F1,2 = {V1 = Q∗
1, V2, . . . , Vr = Q∗

2} ⊂ W
of cubes touching γ. We need a lower bound for the size of Vj, j = 1, . . . , r. �(V2) ≥ 1

4�(Q
∗
1) ≥

1
16�(Q1). Analogously, �(Vr−1) ≥ C�(Q1). If 1 < j < r, let us take z ∈ γ ∩ Vj . Then:

d∂Ω(z) ≥ ε
|x− z||z − y|

|x− y| ≥ C
�(Q1)

2

�(Q1)
≥ C�(Q1)

If follows that no more than C cubes can be placed along γ, and then r ≤ C.
�
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For each Qj ∈ W3 let us define PQj = P (Q∗
j ). The first term of the extension operator will

be:

Λ1f(x) =
∑

Qj∈W3

PQj(x)ξj(x)

Thanks to Lemmas 4.6 and 4.8, and Corollary 4.7, this operator can be bounded following
[11, 7]. We give the details for the sake of completeness.

Remark 4.9. In this first stage, and in particular during the proof of the next lemma, we could
invoke Corollary 3.3. However, in order to be consistent with the rest of the stages we show how
to use Lemma 3.2 instead.

Lemma 4.10. If Q ∈ W3 far from W4 (i.e. Q ∈ W3 is surrounded by cubes in W3) , then:

‖DαΛ1f‖Lp(Q) ≤ C
{
�(Q)k−|α|‖∇kf‖Lp(∪F(Q)) + ‖f‖W kp(Q∗)

}
where F(Q) is the set of all the cubes that participate in a chain Fj(Q), connecting Q∗ with Q∗

j ,

for Qj ∩Q �= ∅.
Proof. We have

‖DαΛ1f‖Lp(Q) =
∥∥∥Dα

∑
Qj∩Q 	=∅

PQjξj

∥∥∥
Lp(Q)

≤
∥∥∥Dα

∑
Qj∩Q 	=∅

(PQj−PQ)ξj

∥∥∥
Lp(Q)

+
∥∥DαPQ

∥∥
Lp(Q)

= I+II

The second term is easily bounded by means of Lemma 3.2, taking into account that Q and
Q∗ can be included inside an auxiliary cube Q̃, Q ∼ Q̃ ∼ Q∗. Alternating the derivatives of f
we get

II ≤ C
∑

|γ+α|<k

�(Q)|γ|‖Dγ+αPQ‖Lp(Q∗)

≤ C
∑

|γ+α|<k

�(Q)|γ|
{
‖Dγ+α(PQ − f)‖Lp(Q∗) + ‖Dγ+αf‖Lp(Q∗)

}
≤

≤ C‖∇kf‖Lp(Q∗)�(Q)k−|α| + ‖f‖W kp(Q∗) ≤ C‖f‖W kp(Q∗)

On the other hand:

I ≤ C
∑

Qj∩Q 	=∅

∑
β≤α

‖Dα−βξjD
β(PQj − PQ)‖Lp(Q)

≤ C
∑

Qj∩Q 	=∅

∑
β≤α

1

�(Q)|α−β| ‖Dβ(PQj − PQ)‖Lp(Q)

For each j, let us alternate the polynomials associated to the cubes of the chain between Q∗
j and

Q∗, given by Lemma 4.8. We set Fj = {T1 = Q∗, T2, . . . , Tr = Q∗
j} and obtain:

‖Dβ(PQj − PQ)‖Lp(Q) ≤
r−1∑
i=1

‖Dβ(P (Ti+1)− P (Ti))‖Lp(Q) ≤

r−1∑
i=1

{
‖Dβ(P (Ti+1)− P (Ti ∪ Ti+1))‖Lp(Q) + ‖Dβ((P (Ti ∪ Ti+1)− P (Ti))‖Lp(Q)

}
≤

C
r−1∑
i=1

{
‖Dβ(P (Ti+1)− P (Ti ∪ Ti+1))‖Lp(Ti+1) + ‖Dβ((P (Ti ∪ Ti+1)− P (Ti)‖Lp(Ti)

}
≤
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C

r−1∑
i=1

{
‖Dβ(P (Ti+1)−f)‖Lp(Ti+1)+‖Dβ(f−P (Ti∪Ti+1))‖Lp(Ti∪Ti+1)+‖Dβ(f−P (Ti))‖Lp(Ti)

}
≤

C

r−1∑
i=1

�(Q)k−|β|‖∇kf‖Lp(Ti∪Ti+1) ≤ �(Q)k−|β|‖∇kf‖Lp(∪Fj)

And then:

I ≤ C�(Q)k−|α|‖∇kf‖Lp(∪F(Q))

�

Finally, let us observe that from Lemmas 4.6 and 4.8 it follows that:∥∥∥ ∑
Ql∈W3

Ql∩Qj 	=∅

χ∪Fjl

∥∥∥
∞

≤ C <∞ for allQj ∈ W3, (4.6)

∥∥∥ ∑
Qj∈W3

χ∪F(Qj)

∥∥∥
∞

≤ C <∞ (4.7)

This means that each cube Q∗
j is used at most a fixed number of times, then

‖DαΛ1f‖pLp(∪W3)
=
∑

Q∈W3

‖DαΛ1f‖pLp(Q) ≤ C‖f‖p
W k,p(Ω)

therefore

‖DαΛ1f‖Lp(∪W3) ≤ C‖f‖W k,p(Ω) (4.8)

hence, the operator (Λ1) is bounded far from W4.

4.1. Second stage. This stage, where the extension operator is defined over W4, is the heart
of the extension process. The first stage was essentially a translation of Jones’ theorem, which
extends functions to an expanded cusp, where no weight is needed. Second stage, on the other
hand, extends functions to a cone: the cuspidal behaviour of Ω is compensated here by a
weight. Stage three, in turn, completes the extension to a neighborhood of the origin, but does
not contain any interesting idea: we detail it later for the sake of completeness.

Let us begin stating some properties of W4 itself. Let T be a cube in W4, and Si = S(zT ).
Observe that from the definition of W3 we know that �(T ) > C�(Si), with the constant C =
ε

5
√
n
K−1
K . In order to simplify notation in subsequent calculations we set C = 1 and assume that

�(T ) ≥ �(Si).

Let W̃4 denote de Whitney decomposition of Rn\x̂n. Observe that the structure of W̃4 is very
simple: cubes grow exponentially as we move away from the axis. Since the positive semiaxis of

x̂n is contained in Ω, Remark 2.3 implies that for every cube T ∈ W4, there is a cube T̃ ∈ W̃4,

such that T ⊂ T̃ . The following lemma proves that in fact �(T ) ∼ �(T̃ ), ∀T ∈ W4.

Lemma 4.11. There is a constant C such that d(T, x̂n) ≤ C�(T ), for all T ∈ W4

Proof. Let x∗ ∈ ∂Ω be such that d(T, ∂Ω) = d(T, x∗). Let γ be the segment joining T and x∗,
and Q ∈ W3, the nearest cube to T such that Q ∩ γ �= ∅. It is clear that �(Q) ≤ d(Q, ∂Ω) ≤
d(T, ∂Ω) ≤ 4

√
n�(T ). Let us denote xq ∈ ∂Ω the point such that d(Q, ∂Ω) = d(Q,xq). Then:

d(T, x̂n) ≤ d(T,Q) +
√
n�(Q) + d(Q, x̂n) ≤ 4

√
n�(T ) + 4n�(T ) + d(Q,xq) + d(xq, x̂n)

≤ C�(T ) + d(xq, x̂n) ≤ C�(T ) + K̃�(S(zQ))

Consequently, if �(S(zQ)) ≤ C�(T ), the result is proved.
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Let us denote I = izQ . Furthermore, let T1 ∈ W4 be such that T1 ∩ Q �= ∅ and T1 ∩ γ �= ∅.
Then, 1

4�(Q) ≤ �(T1) ≤ 4�(Q). Suppose that �(Q) < 1
16�(SI). Then

zT1 ≥ zQ − �(T1) ≥ zI − 4�(Q) > zI − 1

4
�(SI) ≥ zI − �(SI+1) ≥ zI+1

But, since T1 ∈ W4,

�(Q) ≥ 1

4
�(T1) ≥ 1

4
�(S(zT1)) ≥

1

4
�(SI+1) ≥ 1

16
�(SI)

which is a contradiction. Consequently, �(T ) ≥ C�(Q) ≥ C�(SI), and the result follows. �

Remark 4.12. A much simpler proof for this lemma can be provided assuming property (2.13).
However, item i) in Theorem 4.1 can be proved without (2.13), and so we prefer to detail the
general proof.

As we stated above, Lemma 4.11 shows that �(T ) ∼ �(T̃ ), ∀T ∈ W4. This fact implies that
the number of cubes of a certain size in W4 is comparable with the number of cubes of the

same size in W̃4. In some passages of this stage, we estimate the number of cubes in W4 by the

number of cubes in W̃4, which is easier to count.
In this second stage a weight is needed in order to bound the norm of the extension operator:

we provide two different versions for the extension to the cubes in W4, the first one is horizontal
(each cube will be associated with a set at the same height), leading to the weight σ(x) =(
�(S(|x|))

|x|
)n−1

p
corresponding to item (b) in Theorem 4.1. Property (2.13) is needed in this case.

The second version is vertical giving another possible weight: σ(x) =
(
�(S(|x|))

|x|
)k

as in item (a)

in Theorem 4.1). Property (2.13) is not needed for this version.

First version: dimensional-horizontal weight. For each cube Tj ∈ W4 let us define

S(Tj) =
⋃

{Si : zTj ≤ zi < zTj + �(Tj)}

TS(T)

Figure 2. Reflected tower: second stage’s first version.

Remark 4.13. S(Tj) is the reflected set of Tj as well as Q∗
j is the reflected cube for Qj in the

first stage. Observe that S(Tj) is not a cube, nor a rectangle. However, normality property (2.3)
implies that it is a tower of cubes, eventually of different sizes. Since cubes in W4 are far from Ω,
Tj will be larger than the Si’s in S(Tj). Nevertheless, the dyadic nature of cubes in Whitney de-
compositions implies that its height is exactly �(Tj). Finally, if S(Tj) = {SIj , SIj+1 . . . , SIj+Nj},
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property (2.13) guarantees that
�(SIj

)

�(SIj+Nj
) ≤ C < ∞. Therefore, for each Tj there is a pair of

rectangles R1
j and R2

j such that:

R1
j ⊂ S(Tj) ⊂ R2

j ,


�(R1
j ) = (�(SIj+Nj ), . . . , �(SIj+Nj ), �(Tj))

,

�(R2

j ) = (�(SIj ), . . . , �(SIj ), �(Tj)),

satisfying:
�i(R

2
j )

�i(R1
j )

≤ C for all Tj and i = 1, . . . , n; i.e.: R1
j ∼ R2

j .

Let us define, for each Tj ∈ W4, PTj = P (R1
j ). Our extension operator is

Λ2f(x) =
∑

Tj∈W4

PTj (x)φj(x) (4.9)

for x ∈ T ∈ W4.
The following lemma is equivalent to Lemma 4.10. However, since W4 is far from Ω, a weight

is needed:

Lemma 4.14. If T ∈ W4 (far from W3 and W5), then:

‖DαΛ2f‖Lp(T ) ≤ C
( |T |
|R1|
) 1

p ‖f‖W k,p(∪F(T ))

where F(T ) is the union of all the S(Tj) with Tj ∩ T �= ∅, and R1 is the rectangle in S(T )
provided by Remark 4.13.

Proof. As we procceded in Lemma 4.10, we alternate the polinomial corresponding to T , PT :

‖DαΛ2f‖Lp(T ) =
∥∥∥Dα

∑
Tj∩T 	=∅

PTjφj

∥∥∥
Lp(T )

≤
∥∥∥Dα

∑
Tj∩T 	=∅

(PTj − PT )φj

∥∥∥
Lp(T )︸ ︷︷ ︸

I

+
∥∥DαPT

∥∥
Lp(T )︸ ︷︷ ︸

II

Since d(T, S(T )) ≤ C�(T ), the second term can be bounded by means of Lemma 3.2, by

considering an auxiliary cube T̃ ∼ T , such that T, S(T ) ⊂ T̃ :

II ≤ C
( |T |
|R1|
) 1

p
∑

γ:|γ+α|<k

�(T )|γ|‖Dα+γPT ‖Lp(S(T )).

If we go on like in Lemma 4.10:

II ≤ C
( |T |
|R1|
) 1

p ‖f‖W k,p(S(T ))

On the other hand:

I ≤ C
∑

Tj∩T 	=∅

∑
β≤α

1

�(T )|α−β| ‖Dβ(PTj − PT )‖Lp(T ),

and T ∩ Tj �= ∅, implies that S(T ) ∩ S(Tj) �= ∅ and R1 ∼ R1
j . In fact, S(T ) ⊂ S(Tj) or

S(Tj) ⊂ S(T ) (which imply R1 ⊂ R1
j or R1

j ⊂ R1 resp.), or S(T ) and S(Tj) form a new, longer

tower where S(T ) is over S(Tj), or vice versa (which implies that R1 and R1
j are touching). We

show only the case that leads to touching rectangles (the other cases follow similarly):

‖Dβ(PTj − PT )‖Lp(T ) ≤ ‖Dβ(PTj − P (R1 ∪R1
j )‖Lp(T ) + ‖Dβ(PT − P (R1 ∪R1

j ))‖Lp(T ) ≤
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≤ C
( |T |
|R1|
) 1

p
∑

γ:|γ+β|<k

�(T )|γ|
{
‖Dβ+γ(PT − P (R1 ∪R1

j ))‖Lp(R1)

+ ‖Dβ+γ(PTj − P (R1 ∪R1
j ))‖Lp(R1

j )

}
≤

≤ C
( |T |
|R1|
) 1

p
∑

γ:|γ+β|<k

�(T )|γ|
{
‖Dβ+γ(PT − f)‖Lp(R1) + ‖Dγ+β(f − P (R1 ∪R1

j ))‖Lp(R1)

+ ‖Dβ+γ(PTj − f)‖Lp(R1
j )
+ ‖Dγ+β(f − P (R1 ∪R1

j ))‖Lp(R1
j )

}
Applying Lemma 3.5 we obtain:

‖Dβ(PTj − PT )‖Lp(T ) ≤ C
( |T |
|R1|
) 1

p
∑

γ:|γ+β|<k

�(T )|γ|�(R1)k−|γ|−|β| ∑
τ :|τ |=k

‖Dτf‖Lp(S(T )∪S(Tj ))

And, consequently:

I ≤ C
∑

Tj∩T 	=∅

∑
|β|≤|α|

1

�(T )|α−β|C
( |T |
|R1|
) 1

p
∑

γ:|γ+β|≤k

�(T )|γ|�(R1)k−|γ|−|β| ∑
τ :|τ |=k

‖Dτf‖Lp(S(T )∪S(Tj ))

≤ C
∑

Tj∩T 	=∅

∑
|β|≤|α|

�(T )|k|−|α|C
( |T |
|R1|
) 1

p
∑

γ:|γ+β|<k

∑
τ :|τ |=k

‖Dτf‖Lp(S(T )∪S(Tj ))

≤ C
( |T |
|R1|
) 1

p ‖f‖W k,p(F(T ))

�

Lemma 4.10 bounds the norm of the extension operator in all the cubes in W3 far from W4.
That is, in all cubes Q ∈ W3 such that all the neighbours of Q are in W3. Lemma 4.14 does
the same thing for cubes in W4, far from W3. Let us consider now cubes in the frontier of these

sets: let Q ∈ W3 and T ∈ W4 be such that Q ∩ T �= ∅. Notice that 1
4 ≤ �(Q)

�(T ) ≤ 4. Furthermore:

4
√
n�(Q) ≥ d(Q, ∂Ω) ≥ d(T, ∂Ω)−√

n�(Q) ≥ �(T )−√
n�(Q)

and then

�(T ) ≤ 5
√
n�(Q) ≤ C�(SI)

where SI is the cube in the spine of Ω such that zQ ∈ [zI , zI−1). This implies that �(Q∗) ∼ �(T ),
and since SI ∩S(T ) �= ∅, by means of lemma 4.8, there is a chain of cubes joining Q∗ and S(T ).
Hence, the proof for the following lemma is the same that the one for Lemmas 4.10 and 4.14.

Lemma 4.15. Let Q ∈ W3 and T ∈ W4 be such that Q ∩ T �= ∅, then:
‖Dα(Λ1 + Λ2)f‖Lp(Q) ≤ C‖f‖W k,p(F(Q)),

‖Dα(Λ1 + Λ2)f‖Lp(T ) ≤ C‖f‖W k,p(F(T ))

We need to prove that the norm of the extension is bounded as in Lemma 4.14 all over W4

and not only in a particular cube. Let us pick, then, a cube Si ∈ S. A simple comparison

with W̃4 implies that the number of cubes Tj , with �(Tj) = 2m�(Si) , such that Si ⊂ S(Tj) is
bounded by a constant independent of Si. Furthermore, such a comparison allows us to bound
the possible values of m, for each i: 0 ≤ m ≤ log

(
zi

�(Si)

)
, where log = log2.
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Proposition 4.16. If we denote σ(x) =
(
�(S(|x|))

|x|
)n−1

p
, then:

‖σDαf‖Lp(∪W4) ≤ C‖f‖W k,p(∪S)

Proof. We can take σ as constant in each cube T ∈ W4: σT ∼
(
�(S(zT ))

zT

)n 1
p
. Then

‖σDαf‖pLp(∪W4)
=
∑

T :T∈W4

‖σDαf‖pLp(T ) ≤ C
∑

T :T∈W4

(�(S(zT ))
zT

)n−1
‖Dαf‖pLp(T )

≤ C
∑

T :T∈W4

(�(S(zT ))
zT

)n−1 |T |
|R1| ‖f‖

p
W k,p(∪F(T ))

Now, since �i(R
1) ∼ �(S(zT )) for i = 1, . . . , n− 1, and �n(R

1) = �(T ), we have:

‖σDαf‖pLp(∪W4)
≤ C

∑
T :T∈W4

(�(T )
zT

)n−1‖f‖p
W k,p(∪F(T ))

= C
∑

T :T∈W4

∑
S:S∈F(T )

(�(T )
zT

)n−1
‖f‖p

W k,p(S)

= C
∑

S:S∈S

∑
T :F(T )�S

(�(T )
zT

)n−1‖f‖p
W k,p(S)

Given a fixed cube S ∈ S, the cubes T ∈ W4 can be classified by their sizes: �(T ) = 2m�(S),
where 0 ≤ m ≤ M = log( zS

�(S)). Furthermore, zT ∼ zS for every T ∈ W4 such that S ∈ F(T ).

Finally, the comparison between cubes in W4 and cubes in W̃4, guarantees that, given a cube
S ∈ S, there is a bound C, depending only on the dimension n, such that

#{T ∈ W4 : S ∈ F(T ) �(T ) = 2m�(S)} ≤ C.

Then:

‖σDαf‖pLp(∪W4)
≤ C

∑
S:S∈S

M−1∑
m=1

∑
T :F(T )�S

�(T )=2m�(S)

(�(T )
zT

)n−1‖f‖p
W k,p(S)

≤ C
∑

S:S∈S
z1−n
S �(S)n−1

(M−1∑
m=1

(
2n−1

)m)‖f‖p
W k,p(S)

,

and the result follows by recalling that M = log( zS
�(S)). �

This result concludes the first version of the second stage of the extension.

Second version: derivative-vertical weight. This version of the extension is based on a different
construction of the reflected set of a cube in W4. For each T , we find some T ∗ ∈ S such that
�(T ∗) ∼ �(T ), but T ∗ is far above T . The weight in this case is due to the distance between T
and T ∗.

Let us consider T̃ a cube belonging to W̃4 (the Whitney decomposition of Rn \ x̂n) such that

T̃ ∩T �= ∅, for some T ∈ W4. Thanks to Lemma 4.11 only a finite number (the number does not

depend on T̃ ) of cubes belonging to W4 are contained in T̃ . We can now pack the elements of

W4 in cylinders of the form η(T̃ ) = Q′ ×R, where Q′ ⊂ Rn−1 is the projected face F u
T̃
of T̃ into

Rn−1. We identify cylinders given by cubes T̃ sharing the projection Q′. In this way each cube
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T ∈ W4 belongs to only one cylinder. Moreover, cubes inside the cylinder η(T̃ ) are equivalent,

i.e T1, T2 ∈ η(T̃ ) implies that T1 ∼ T̃ ∼ T2. For each Tj ∈ W4, we denote with τ(Tj) the set of
cubes in W4 that share the cylinder with Tj . The set τ is called a tower.

Let us consider T 1 one of the upper cubes in τ(T 1). We define T ∗ = S(zT 1) for every
T ∈ τ(T 1). This situation is represented in Figure 3.

T1 T1,1

TN

T1*=T1,1*=...=TN*

Figure 3. Reflected cubes: second stage’s second version.

It is important that, with this definition, for every T ∈ W4 we have T ∗ ∈ S, and T ∗ ∼ T .
However, the distance between T and T ∗ could be large, particularly in the xn direction. In
fact, since d(T 1, TN ) ∼ zT 1 , we have d(T 1, T 1∗) ∼ �(T 1), but d(TN , TN∗) ∼ zT 1 (where T 1 and
TN are upper and lower cubes in a certain tower τ).

As in the first version of the second stage extension, we define PTj = P (T ∗
j ) and

Λ2f(x) =
∑

Tj∈W4

PTj (x)φj(x)

Observe that, if Tj , T ∈ W4, and Tj ∩ T �= ∅, the tops of the towers τ(T ) and τ(Tj) could be
setted at very different heights (and so would be the heights of the reflected cubes T ∗

j and T ∗).
This is so because of the following fact:

Remark 4.17. Suppose S ∈ S is the higher cube of a certain size. Let us denote c(S) the
number of cubes with edges of lengh exactly �(S). Then, since 0 ∈ ∂Ω, zS − c(S)�(S) > 0, and
consequently, c(S) ≤ zS

�(S) . However, no better estimate can be provided (in fact, it is easy to see

that for cusps with profile ϕ(z) = zν, there are ∼ z1−ν cubes with edges zν), so the worst case,
that there could be ∼ zS

�(S) cubes in S with side �(S), should be assumed to hold.

Consequently, the shape of W4 could show long steps. When two towers touching each other
are in the edge of a long step, their heights are very different. This situation is represented in
Figure 4. In this figure, two touching towers are shown, where reflected cubes are far from each
other. Therefore, the chain (in S) joining the reflected cubes for each tower is large.

Lemma 4.18. For every cube T ∈ W4:

‖DαΛ2f‖Lp(T ) ≤ C�(T )k−|α|
(
�n(τ(T ))

�(T )

)k− 1
p

‖f‖W k,p(∪F(T ))

where F(T ) is the union of the cubes in all the chains connecting T ∗ and T ∗
j for Tj ∩ T �= ∅.
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T1

{ l (S(z))
z

Figure 4. Long steps imply long chains.

Proof.

‖DαΛ2f‖Lp(T ) ≤
∥∥∥Dα

∑
Tj∩T 	=∅

(PTj − PT )φj

∥∥∥
Lp(T )︸ ︷︷ ︸

I

+
∥∥DαPT

∥∥
Lp(T )︸ ︷︷ ︸

II

As usual:

I ≤ C
∑
β≤α

1

�(T )|α|−|β|
∑

Tj∩T 	=∅
‖Dβ(PTj − PT )‖Lp(T )

Let us denote Fj(T ) = {T ∗ = S1, S2 . . . , T ∗
j = SM} the chain of cubes joining T ∗ and T ∗

j ,
then:

‖Dβ(PTj − PT )‖Lp(T ) ≤
M−1∑
l=1

‖Dβ(P (Sl+1)− P (Sl))‖Lp(T )

Now, if we denote Rl the minimal rectangle containing T and Sl, we have �i(Rl) ∼ �(T ),
i = 1, . . . , n− 1, and �n(R) ≤ �n(τ(T )).

‖Dβ(P (Sl+1)− P (Sl))‖Lp(T ) ≤ C
{
‖Dβ(P (Sl+1)− P (Sl+1 ∪ Sl))‖Lp(T )+

‖P (Sl+1 ∪ Sl)− P (Sl))‖Lp(T )

}

≤ C|T | 1p
{
‖Dβ(P (Sl+1)− P (Sl+1 ∪ Sl))‖L∞(Rl+1)

+ ‖Dβ(P (Sl+1 ∪ Sl)− P (Sl))‖L∞(Rl)

}

≤ C|T | 1p
∑

|γ+β|<k

{
�(Rl)|γ|

|Sl+1| 1p
‖Dβ+γ(P (Sl+1)− P (Sl+1 ∪ Sl)‖Lp(Sl+1)

+
�(Rl)|γ|

|Sl| 1p
‖Dβ+γ(P (Sl)− P (Sl+1 ∪ Sl)‖Lp(Sl)

}

≤ C
∑

|γ+β|<k

�n(τ(T ))
|γ|�(Sl)k−|β|−|γ|‖∇kf‖Lp(Sl∪Sl+1)
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Consequently:

I ≤ C
∑

Tj∩T 	=∅

∑
β≤α

1

�(T )|α|−|β|

M−1∑
l=1

∑
|γ+β|<k

�n(τ(T ))
|γ|�(Sl)k−|β|−|γ|‖∇kf‖Lp(Sl∪Sl+1)

≤ C�(T )k−|α|
(
�n(τ(T ))

�(T )

)k−1 M−1∑
l=1

‖∇kf‖Lp(Sl∪Sl+1)

Applying the Hölder inequality gives

I ≤ C�(T )k−|α|
(
�n(τ(T ))

�(T )

)k−1

M
1
p′ ‖∇kf‖Lp(∪F(T ))

where 1
p +

1
p′ = 1. But M is the number of cubes in the chain joining T ∗ and T ∗

j , which we saw

that could be as large as �n(τ(T ))
�(T ) , and then:

I ≤ C�(T )k−|α|
(
�n(τ(T ))

�(T )

)k− 1
p

‖∇kf‖Lp(∪F(T ))

II could be bounded by means of the same ideas.
�

A proposition equivalent to 4.16 can now be easily proved:

Proposition 4.19. If we denote σ(x) =
(
�(S(|x|))

|x|
)k

, then:

‖σDαΛ2f‖Lp(∪W4) ≤ C‖f‖W k,p(∪S)

Proof. As we did in Proposition 4.16, let us observe that the weight σ could be considered

constant in each cube T ∈ W4, σT ∼
(
�(S(zT ))

zT

)k
. Then:

‖σDαΛ2f‖pLp(∪W4)
=
∑

T∈W4

‖σDαΛ2f‖pLp(T ) ≤ C
∑

T∈W4

(�(S(zT ))
zT

)kp‖DαΛ2f‖pLp(T )

≤ C
∑

T∈W4

(�(S(zT ))
zT

)kp
�(T )(k−|α|)p

(
�n(τ(T ))

�(T )

)kp−1

‖f‖p
W k,p(∪F(T ))

= C
∑

S:S∈S

∑
T :F(T )�S

(�(S(zT ))
zT

)kp
�(T )(k−|α|)p

(
�n(τ(T ))

�(T )

)kp−1

‖f‖p
W k,p(S)

Now, observe that if we fix a cube S ∈ S, every cube T ∈ W4 such that S ∈ F(T ) satisfies:
�(T ) ∼ �(S) and �n(τ(T )) ≤ zS . By considering this and |α| ≤ k, we obtain:

‖σDαΛ2f‖pLp(∪W4)
≤ C

∑
S:S∈S

∑
T :F(T )�S

(�(S(zT ))
zT

)kp( zS
�(T )

)kp−1

‖f‖p
W k,p(S)

Now, using property (2.12) we obtain:

≤ C
∑

S:S∈S

∑
T :F(T )�S

(�(S)
zS

)kp( zS
�(T )

)kp−1

‖f‖p
W k,p(S)

≤ C
∑

S:S∈S

∑
T :F(T )�S

�(S)

zS
‖f‖p

W k,p(S)
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But, for a fixed S ∈ S, the number of cubes T such that S ∈ F(T ) is at most C zS
�(S) and then:

≤ C
∑

S:S∈S

zS
�(S)

�(S)

zS
‖f‖p

W k,p(S)
≤ C

∑
S:S∈S

‖f‖p
W k,p(S)

= ‖f‖p
W k,p(∪S)

�

Remark 4.20. If kp �= 1, Property (2.12) is not necessary. Using �(S(zT )) ≤ �(T ), an argument
similar to the one given in Proposition 4.16 can be applied: at the end of the proof of Proposition
4.16 the edges of all cubes T such that S ⊂ S(T ) are classified in terms of �(S). In the last part
of the proof of Proposition 4.19, the same idea can be used in order to classify zT for all cubes
T such that S ∈ F(T ). When kp �= 1 the summation is bounded and the result follows.

Third Stage. This stage is devoted to define our extension operator in the cubes of W5. We
explain the construction of the reflected sets for each version of the extension, but we do not enter
into details since the ideas are exactly the same given in Lemmas 4.14 and 4.18 and Propositions
4.16 and 4.19, according to the case.

For the first (dimensional) version of the extension, let us define:

S(U) =
⋃

{Si : �(U) ≤ zi < 2�(U)}

It is clear that d(U,S(U)) ≤ C�(U). On the other hand, S(U) is a tower of cubes that admits an
interior rectangle R1, with �i(R

1) ∼ �(S(�(U))) for i = 1, . . . , n− 1 and �n(R
1) ∼ �(U). Because

of property (2.13), there is an exterior rectangle R2 ⊃ S(U) such that R2 ∼ R1. Hence, Remark
4.13 holds for cubes in W5, and so do Lemma 4.14 and Proposition 4.16. As we did earlier, we
define PUj = P (R1

j ). The last thing to notice is that if T ∈ W4 and U ∈ W5 are such that

T ∩ U �= ∅, then d(S(U), S(T )) ≤ C�(T ), and then there is a finite chain of towers that join
S(U) and S(T ). This guarantees that the transition between W4 and W5 is smooth.

For the second (derivative) version, let us define U∗ = Si the cube in S with i the maximum
index such that �(Si) ≥ �(U). This implies �(U∗) ∼ �(U), which is the essential property of
the reflected cube in this case. On the other hand, d(U,U∗) ≤ CzU∗. Once again, we define
PUj = P (U∗

j ). It is clear that if T ∈ W4 and U ∈ W5 are such that T ∩U �= ∅ and U∗ ∼ T ∗, then
d(U∗, T ∗) ≤ CzT ∗ , and so the norm of the extension can be bounded in the frontier between W4

and W5 as we did in W4.
As we did in the previous sections, let us define, for both versions:

Λ3f(x) =
∑

Uj∈W5

PUj (x)ψj(x)

The last matter that we need to deal with is the superposition induced by this definitions of

reflected sets. In the previous stage we introduced W̃4 in order to help us counting some sets

of cubes in W4. Similarly, let us introduce now W̃5 = W(Rn \ {0}). Thanks to Remark 2.3 we

may define, for every U ∈ W5, Ũ the cube in W̃5 such that U ⊂ Ũ . On the other hand the ideas

exposed earlier (see Lemma 4.11) lead us to conclude that U ∼ Ũ . The number of cubes in W̃5

with edges of a certain length 2−l are bounded by a constant depending only on the dimension
n. The same holds for cubes in W5. Consequently, after this third stage, every cube in S is
loaded with at most a bounded quantity of cubes of the exterior of Ω.

Our complete extension operator is, then,

Λf(x) = Λ1f(x) + Λ2f(x) + Λ3f(x)
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For every x = (x′, xn) ∈ W4, xn ∼ |x|. We used this fact to write the weight in terms of |x|
instead of xn. Since the third term of the extension is also radial, the weight can be taken(

�(S(|x|))
|x|

)γ

for every x ∈ ∪W2, where γ is the exponent corresponding to the case.
Except for a few technical details that are treated in Section 6, the proof of Theorem 4.1 is

concluded.

5. Curved cusps

Theorem 5.1. Let Ω ⊂ Rn be a domain with an external curved cusp at the origin.

(a) If the spine S satisfies (2.12), there is an extension operator

Λ :W k,p(Ω) → W k,p
σ (Rn)

where

σ(x) =

{
1 x ∈ Ω(

�(S(|x|))
|x|

)k
x ∈ Ωc

(b) If the spine S satisfies (2.13), there is an extension operator

Λ :W k,p(Ω) → W k,p
σ (Rn)

where

σ(x) =

 1 x ∈ Ω(
�(S(|x|))

|x|
)n−1

p
x ∈ Ωc

(c) In either case (a) or b)), assuming (2.13) stands, if σ̃ is such that there is an extension

operator Λ̃ : W k,p(Ω) → W k,p
σ̃ (Rn), then

σ̃(x) ≤ Cσ(x) ∀x ∈ U \Ω
We only sketch a proof of Theorem 5.1. We introduce a stage zero, consisting of an extension

of a curved cusp Ω to a larger domain that includes a normal cusp Ω̂. Functions defined on Ω̂
will be extended as in Theorem 4.1. The most important fact to mention is that after the stage

one, the distance of cubes in W4 and W5 to Ω are comparable with the distance of them to Ω̂,
and so will be the weights.

5.1. Stage zero. Let Ω be a domain satisfying Definition 2.3, and S = {Si}∞i=1 its spine. Then
d(Si, x̂n) ≤ CΩ�(Si), and we may take CΩ ≥ K. Assuming �(Si) ≤ 1, let us consider:

Ω̃ =
⋃
i

4(CΩ + 1)Si

Clearly, Ω ⊂ ⋃iCΩSi. Even more: let us take S′
i the traslation of Si to x̂n, so S

′
i∩S′

i+1 = F u
S′
i+1

,

and zS′
i
= zSi . Then, if we denote Ω̂ =

⋃
i 2CΩS

′
i, we have:

Ω ⊂ Ω̂ ⊂ Ω̃

Lemma 4.6 can be reproduced in order to find a reflected cube for every Q ∈ W2 such that

Q ⊂ Ω̃, by just changing K for 4(CΩ + 1). Consequently, a first (unweighted) extension can

be performed as in stage one. Let us denote Λ0f the extension of f to Ω̃, and let us take

f̂ : Ω̂ → R, f̂ = Λ0f |Ω̂. Observe that Ω̂ is a normal cusp. Then, we can extend f̂ as in Theorem

4.1. Let us denote Ŵ3, Ŵ4, Ŵ5, the subsets of the Whitney decomposition of the exterior of Ω̂

corresponding to stage one, two and three respectively. If we denote Ŝ = {Ŝi}i the spine of Ω̂
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(observe that Ŝi is not necessaily S
′
i, but they are equivalent), we have Ŝi ∼ Si. Now, if we take

T ∈ Ŵ4, such that zi ≤ zT < zi−1, then

�(T ) ≥ C�(Ŝi) ≥ C�(Si) (5.1)

Furthermore,

d(T, Si) ≤ Cd(T, Ŝi) ≤ C�(T ) (5.2)

and

d(T, ∂Ω̂) ≤ d(T, ∂Ω) ≤ Cd(T, Ŝi) ≤ Cd(T, ∂Ω̂) (5.3)

The weight of the extension operator based on Ω̂ is expressed in terms of Ŝi, but these
inequalities allow us to change it for Si, and then Theorem 5.1 is proved by using the results
given in the next section.

6. Density of C∞
functions

Following Jones we prove that certain set of regular functions is dense in W k,p(Ω).

Proposition 6.1 ([11]). Let D be a ε-uniform domain, and f ∈ W k,p(D). For every η > 0
there is a function g ∈ C∞(Rn) such that ‖f − g‖W k,p(D) < η.

Remark 6.2. The proof of this result relies on the existence of certain chain of dyadic cubes
constructed in [11] by means of properties (2.1) and (2.2). Similar arguments can be carried out
using properties (2.6) and (2.7) instead of (2.1) and (2.2). In this way Proposition 6.1 can be
proved for certain sets Ω̌i ⊂ Ωi ∪ Ωi+1 defined below.

Theorem 6.3. Let Ω be a cusp, and f ∈W k,p(Ω). Given η > 0, there is a function g ∈ C∞(Rn
+)

such that ‖f − g‖W k,p(Ω) < Cη

Proof. Let us define

Ω̌i = Ω ∩
{
x = (x′, xn) : zi − �(Si+1)

2
≤ xn < zi−1 +

�(Si−1)

2

}
,

Ω̌′
i = Ω ∩

{
x = (x′, xn) : zi − �(Si+1)

2
≤ xn < zi +

�(Si)

2

}
Let us consider gi ∈ C∞ such that ‖f − gi‖W k,p(Ω̌i)

< η
2i
�(Si)

k. Observe that the existence of

such a function is guaranteed by Proposition 6.1 and Remark 6.2.
Let {ψi}i a partition of the unity such that

ψi ∈ C∞
0

([
zi − �(Si+1)

2
, zi−1 +

�(Si−1)

2

])
,∑

ψi(t) ≡ 1 ∀t ∈ (0, z1], and |Drψi| ≤ C
�(Si)r

.

Let us define

g(x) =
∞∑
i=2

gi(x)ψi(xn)

Observe that, in Ω̌′
i, ψi + ψi+1 ≡ 1. And then:

‖Dα(f − g)‖Lp(Ω̌′
i)
≤ ‖Dα(f − (ψigi + ψi+1gi+1))‖Lp(Ω̌′

i)

≤ ‖Dα(ψi(f − gi))‖Lp(Ω̌′
i)
+ ‖Dα(ψi+1(f − gi+1))‖Lp(Ω̌′

i)
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But,

‖Dα(ψi(f − gi))‖Lp(Ω̌′
i)
≤ ‖
∑
β≤α

Dα−βψiD
β(f − gi)‖Lp(Ω̌′

i)

≤
∑
β≤α

C

�(Si)|α|−|β|‖Dβ(f − gi)‖Lp(Ω̌′
i)

≤ C

�(Si)|α|−|β|
η

2i
�(Si)

k ≤ C
η

2i

Consequently:

‖f − g‖p
W k,p(Ω)

=

∞∑
i=1

‖f − g‖p
W k,p(Ω̌′

i)
≤

∞∑
i=1

C
ηp

2pi
≤ Cηp

�
Following Jones’s arguments one can show that DαΛf = DαfχΩ̄+DαΛfχΩ̄c is in Liploc(R

n \
{0}) for all α, |α| ≤ k − 1 and for any f ∈ C∞(Rn

+). Indeed, taking into account that the first
stage of our extension process follows the Jones’s reflection method we can reproduce the ideas
of Lemma 3.5 in [11]. The boundedness of f in the arguments given in that reference is crucial:
here we should use the fact that f is bounded in any compact set K such that 0 /∈ K.

Recalling that |∂Ω| = 0 we see that Theorems 4.1 and 5.1 are proved by using density
arguments and Theorem 6.3.

7. The weighted case

For all measurable set S ⊂ Rn, let ω(S) be the measure induced by the weight ω:

ω(S) =

∫
S
ω

We say ω is doubling if for every cube Q ∈ Rn, ω(2Q) ≤ Cω(Q) with C independent of Q.
Chua [7, 8] adapts Jones’s techniques for proving an extension theorem for locally uniform

domains in the weighted case. We state a version of this results.

Theorem B. Let Ω be an (ε, δ) connected domain, 1 ≤ p < ∞. Suppose that ω is doubling,

ω− 1
p−1 is locally integrable and Lipk−1

loc (Rn) is dense on W k,p
ω (Ω). Finally, suppose that for every

cube Q and every f ∈ Liploc(R
n)

‖f − fQ,ω‖Lp
ω(Q) ≤ C�(Q)‖∇f‖Lp

ω(Q) (7.1)

where fQ,ω =
∫
fdω/ω(Q). Then an extension operator Λ : W k,p

ω (Ω) →W k,p
ω (Rn) exists.

Property (7.1) is just a weighted Poincaré inequality. A simpler but stronger hyphothesis,
that implies all the requirements on the weight, is that ω ∈ Ap, the class of weights satisfying
Muckenhoupt’s condition:

sup
Q⊂Rncube

1

|Q|
(∫

Q
ω(x)dx

)(∫
Q
ω(x)

− 1
p−1dx

)p−1

≤ C <∞.

Chua’s extension operator is constructed as Jones’ one: For each cube Qj ∈ Wc near the

domain, a reflected cube Q∗
j ∈ W is found (as in Lemma 4.6). Given f ∈ W k,p

ω (Ω), a suitable

polynomial Pj = P (Q∗
j , ω), that can be constructed thanks to (7.1), is associated to Qj . Thence,

the operator is the smooth summation of all the {Pj}j .
The doubling condition is crucial for Chua’s arguments to hold. Indeed, since d(Q,Q∗) ≤

C�(Q), a bounded expansion of Q, Q̃ = cQ, contains both cubes Q and Q∗. But ω being
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doubling, ω(Q̃) ≤ Cω(Q). This allows the comparison between the values of the weight ω over
Q and over Q∗. Therefore, the weighted norm of the extension in Q can be bounded by the
weighted norm of the function in Q∗ just as in Lemma 3.2 in [11] or Lemma 4.10 in this paper.

Since the first stage of our extension process agrees with that of uniform domains, Chua’s
techniques could be applied. However, second stage presents a very different situation. Reflected
sets for cubes in W4 do not fulfill properties (4.4) and (4.5) of Jones’s reflected cube: (4.4) and
(4.5). In the dimensional-horizontal version, the reflected set of Q is a rectangle S(Q), not a
cube, and whereas d(Q,S(Q)) ∼ �(Q), the edges �i(S(Q)) are not equivalent to �(Q), so (4.4)
fails. Consequently, the values of the weight ω over Q cannot be estimated by its values over
S(Q). On the other hand: in the derivative-vertical version, the reflected set of Q is a cube Q∗,
with �(Q∗) ∼ �(Q), but it may happen that d(Q,Q∗) >> �(Q), so (4.5) fails. In this case, no
bounded fixed expansion of Q could reach Q∗, and the doubling property of ω is useless.

However, it is noteworthy that some particular weights can be easily integrated into our
extension process. We present here two examples involved in several applications: weights
depending on the distance to the boundary of Ω, that fit easily with the Derivative Version
of the extension, and weights depending on the distance to 0 (the tip of the cusp), that are
naturally adapted for the Dimensional Version.

We analyze each type of weight separately.

7.1. Weights depending on d(x, 0) = |x| - Dimensional Case. Observe that near the
origin we have that |x| ∼ xn, ∀x ∈ Ω. Moreover, the same thing holds close enough to Ω,
and in particular in the sets ∪W3 and ∪W4. Let ω : Rn → R, ω ≥ 0, a radial weight. We
denote ω(x) = ω̂(|x|), and we assume that ω̂ : R≥0 → R≥0 is a monotonic function that satisfies
ω̂(2t) ∼ ω̂(t). Notice that the only interesting case is that either ω̂(t) → 0 or ω̂(t) → ∞ when
t → 0, since otherwise the weighted space agrees with the already treated case of W k,p. Let us

mention that W k,p
ω is a Banach space [12] for any open set Ω.

Remark 7.1. Observe that for every x, x̃ ∈ Q ∈ W3 ∪W4, we have ω(x) ∼ ω(x̃), therefore we
can pick a constant value ωQ such that ω(x) ∼ ωQ ∀x ∈ Q ∈ W3 ∪W4.

This fact is the key tool for our weighted extension process. We detail the proof of the first
stage: Lemma 4.6 guarantees that d(Q,Q∗) ≤ C�(Q), ∀Q ∈ W3. This implies zQ∗ ∼ zQ, and
consequently ωQ ∼ ωQ∗. Furthermore, it is easy to see that ωQ ∼ ωS for every S ∈ F(Q).

Lemma 7.2. If Q ∈ W3 if far from W4, then:

‖DαΛf‖Lp
ω(Q) ≤ C

{
�(Q)k−|α|‖∇kf‖Lp

ω(F(Q)) + ‖f‖
W k,p

ω (Q∗)

}
Proof. Just applying the constant approximation of the weight and Lemma 4.10:

‖DαΛf‖Lp
ω(Q) = ‖ωDαΛf‖Lp(Q) ≤ CωQ‖DαΛf‖Lp(Q)

≤ CωQ

{
�(Q)k−|α|‖∇kf‖Lp(F(Q)) + ‖f‖W kp(Q∗)

}
≤ C
{
�(Q)k−|α|‖∇kf‖Lp

ω(F(Q)) + ‖f‖
W kp

ω (Q∗)

}
�

For the second stage we use essentially the same idea: the weight, being approximately
constant over every cube, can be pulled in or out integrals, so the weighted norm can be estimated
using the non-weighted lemmas proved in Section 4.

It is clear that ωT ∼ ωS(T ), ∀T ∈ W4. The weighted form of Lemma 4.14 can be proved
exactly as Lemma 7.2, so the next proposition follows, completing the second stage for this
version:
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Proposition 7.3. If we denote σ(x) =
(
�(S(|x|))

|x|
)n−1

p
, then:

‖σDαf‖Lp
ω(W4) ≤ C‖f‖

W k,p
ω (S)

Exactly the same ideas can be used for the third stage.

Weights depending on d∂Ω - the derivative case. We obviously have:

d(x, ∂Ω) ∼ �(Q) ∀x ∈ Q, ∀Q ∈ W ∪Wc. (7.2)

Let us set ω̂ : R+ → R+ a monotonic function such that ω̂(2t) ∼ ω̂(t). And let ω : Rn → Rn,
be the weight ω(x) = ω̂(d∂Ω(x)). In this case this implies that ω can be taken as a constant ωQ

over every cube Q ∈ W ∪Wc.
This leads us to the following corollary of Lemma 4.10 (which proof is exactly as the one of

Lemma 7.2):

Lemma 7.4. Let Ω be a domain satisfying Definition 2.2, then:

‖DΛ1f‖Lp
ω(Q) ≤ C

{
�(Q)k−|α|‖∇kf‖Lp

ω(F(Q)) + ‖Dαf‖Lp
ω(Q∗)

}
For the second stage, let us recall that in the derivative version, �(Q) ∼ �(Q∗), and then

d∂Ω(Q) ∼ d∂Ω(Q
∗). This fact is enough to complete the second stage.

Once again, the third stage follows in the same way.

Theorem 7.5. Let Ω ⊂ Rn be a domain with an external normal cusp at the origin. Let
ω̂ : R+ → R+ be a monotonic function satisfying ω̂(2t) ∼ ω̂(t), and 1 ≤ p <∞.

(a) Consider the weighted Sobolev space W k,p
ω (Ω), where ω(x) = ω̂(d∂Ω(x)), ∀x. Suppose

that C∞(Ω̄∩Rn
+)∩W k,p

ω (Ω) is dense in W k,p
ω (Ω) (see Remark 7.6 below) and that ω− 1

p−1

is locally integrable. If the spine S satisfies (2.12), there exists an extension operator

Λ :W k,p
ω (Ω) → W k,p

ωσ (R
n)

where

σ(x) =

{
1 x ∈ Ω(

�(S(|x|))
|x|

)k
x ∈ Ωc

(b) Consider the weighted Sobolev space W k,p
ω (Ω), where ω(x) = ω̂(|x|), ∀x. If the spine S

satisfies (2.13), there exists an extension operator

Λ :W k,p
ω (Ω) → W k,p

ωσ (R
n)

where

σ(x) =

 1 x ∈ Ω(
�(S(|x|))

|x|
)n−1

p
x ∈ Ωc

Definition 7.1. For 0 ≤ m ≤ n, a set F is called m−regular, if there exists a positive constant
C such that

C−1rm < Hm(B(x, r)) < Crm,

for all x ∈ F and 0 < r ≤ diam(F ). Where Hm stands for the m dimensional Hausdorff measure
and the restriction 0 < r ≤ diam(F ) is eliminated if F is a set with only one point.

Let us mention that some self similiar fractals such as the well known Koch curve are m −
regular with m /∈ N (in fact m = log(4)/ log(3) in the Koch example).
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Remark 7.6. As we stated above, for a uniform domain D, a general and simple condition that

guarantees the density of C∞(D̄) in W k,p
ω (D), is that ω ∈ Ap (see [7]). Under extra assumptions

on the boundary of D it is possible to find conditions for which weights of the type d(·, ∂D)µ

belong to Ap. Indeed that holds for −(n − m) < µ < (n − m)(p − 1) provided that ∂D is a
compact set contained in an m− regular set (see Durán and López Garćıa [9]). In such a case
we can replicate Theorem 6.3 by using a weighted version of Proposition 6.1 and arguing along
the lines given in Remark 6.2 (using Chua’s results). Therefore the density assumption in item
(a) of Theorem 7.5 can be removed.

Let us observe that for a “good” domain D, one expects m = n − 1, therefore the range
−1 < µ < p − 1 is precisely the one for which the extension problem makes sense and it is

non-trivial. Indeed, on the one hand if µ ≥ p−1, then ω
− 1

p−1 /∈ L1
loc(R

n) and the weighted global
space can not be defined in the standard way. On the other, taking for instance D Lipschitz and

µ ≤ −1 it can be shown that C∞
0 (D) is dense in W k,p

ω (D) [12], and therefore functions in that
space can be extended by 0.

Remark 7.7. Let us notice that the density is not needed in item b) since it can be obtained
by using the same arguments given in Theorem 6.3 and taking into account that the weight is
essentially constant over every Ω̌i.

Theorem 7.5 can be reproduced for curved cusps, by means of an easy adaptation of stage
zero.

8. Examples and Concluding Remarks

Below we show that every domain satisfying Definition A is an external cusp in terms of
Definition 2.3 (or Definition 2.2). On the other hand our results can be understood in the
following way: the role of the “profile” function φ given in Definition A can be relaxed in the
sense that it can just describe the speed of the narrowing of Ω towards the origin (i.e. if the
spine of Ω decreases as φ: �(S(z)) ∼ φ(z)) provided that ∂Ω \ {0} remains smooth enough.
Consequently, the weight σ in Theorem 5.1 can be expressed:

σ(x) =

(
φ(|x|)
|x|
)γ

where γ = k or n−1
p , depending on the case.

Let us notice that both extension procedures for Theorems 4.1 and 5.1 –in contrast to what
happens in Theorem A– are independent of the relationship between k, p and n. Consequently,
we proved that hypothesis (1.3) (or its generalization, (2.12)) is not necessary in any case as
long as (1.4) (or (2.13)) stands, and vice-versa.

First, we present some domains that do not satisfy Definition A but are included in Definitions
2.2 or 2.3.

The first simple example is given by:

Ω = {(x, y) ∈ R2 : y3 < x < y2}.
This domain does not satisfy Definition A, however, it is easy to see that it is an external curved
cusp.

The second example is general, and we devote a few lines to it:

Definition 8.1. Let Ω ⊂ Rn (n ≥ 2) be a domain with compact boundary ∂Ω. Assume that
0 ∈ ∂Ω. We say that Ω has a restricted external cusp at the origin if there exists a neighborhood
of 0, U ⊂ Rn such that

U ∩ Ω = {(x, z) ∈ Rn−1 × R : x ∈ ϕ(z)�}
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where � ⊂ Rn−1 is a bounded uniform domain and ϕ : R+ → R+ is a Lipschitz increasing

function such that ϕ(0) = 0 and ϕ(t)
t → 0 (t→ 0+).

It is clear that every outer peak satisfying Definition A is a restricted external cusp.

Claim 8.1. Every restricted cusp satisfies Definition 2.3 (or 2.2).

We sketch the proof of this claim through a series of observations:
Given Ω a restricted cusp, let us define Ωz the set of points of Ω at height z and the boundary

of this set ∂Ωz := {(x, z) ∈ Rn : x ∈ ϕ(z)∂�}.
Observe that the distance from a point (x, z) ∈ Ω to ∂Ω is equivalent to its distance to ∂Ωz.

Indeed, it is clear that d((x, z), ∂Ω) ≤ d((x, z), ∂Ωz). On the other hand, let us denote x = ϕ(z)ζ,
for some ζ ∈ �. Let (x0, z0) = (φ(z0)ζ0, z0) ∈ ∂Ω be such that d((x, z), ∂Ω) = d((x, z), (x0 , z0)).
Naturally, x̃0 = (ϕ(z)ζ0, z) is in ∂Ωz. Then

d((x, z), ∂Ωz) ≤ |x− x̃0| = |ϕ(z)ζ − ϕ(z)ζ0| ≤ |ϕ(z)ζ − ϕ(z0)ζ0|+ |ϕ(z0)− ϕ(z)||ζ0|
≤ |ϕ(z)ζ − ϕ(z0)ζ0|+ CϕC|z0 − z| ≤ C(|ϕ(z)ζ − ϕ(z0)ζ0|+ |z0 − z|)
≤ Cd((x, z), (x0, z0)) = Cd((x, z), ∂Ω)

where Cϕ is the Lipschitz constant of ϕ and C = sup{‖ξ‖ : ξ ∈ �}
Let r be the inner radius of �:

r = sup
x∈

inf
y∈∂

d(x, y)

and c ∈ � a point such that B(c, r) ⊂ �.
Let us consider the curve Γ : R+ → Rn, Γ(t) = (ϕ(t)c , t) that describes the “center” of Ω.

Let S̃ be the set of all cubes S ∈ W = W(Ω) such that S ∩ Γ(t) �= ∅. Let S = {Si}∞i=1 be a

subset of S̃ such that Si ∩ Si+1 �= ∅ and zSi+1 < zSi (this is posible because ϕ(t)
t → 0). S is the

spine of Ω.
Since ϕ is Lipschitz, we have:

ϕ(z + Cϕ(z)) − ϕ(z) ≤ Cϕ(z + Cϕ(z)− z) = Cϕ(z)

Then:

ϕ(z + Cϕ(z)) ≤ Cϕ(z) (8.1)

On the other hand d(Γ(t), ∂Ωt) = rϕ(t), and consequently d(Γ(t), ∂Ω) ∼ ϕ(t). Taking this
into account, (8.1) implies that �(Si) ∼ ϕ(zi).

Properties (2.10) and (2.11) (as well as (2.3) and (2.4) when c can be taken equal to 0)
follow easily from the definition of S. The covering property (2.5) is a consequence of (8.1).
Since � is a fixed bounded domain, there is a radius R such that � ⊂ B(c, R). This radius
scaled to the section Ωz is ϕ(z)R, but ϕ(z) is essentially the length �(S(z)). Taking (8.1) into
consideration, this implies that there is a constant K (depending on r, R and n), such that
KSi covers the slice of Ω between heights zi and zi + �(Si), ∀i. Thence, (2.5) follows.

The last thing to prove, then, is that uniformity properties (2.6) and (2.7) stand for every
restricted cusp. We use the following result stated by Smith, Stanoyevitch and Stegenga in [16]:

Lemma 8.2. Let Ω1 and Ω2 be uniform domains with finite diameters. Then Ω1 × Ω2 is a
uniform domain.

Remark 8.3. The definition of uniform domain used in [16] (for the proof of this lemma) is
slightly different than that stated here. For the equivalence between both see [18] and [13].

In Definition 2.2, Properties (2.6) and (2.7) are requiered for points in Ωi ∪ Ωi+1. We prove
that they stand in every slice between heights z−Cϕ(z) and z+Cϕ(z), for every fixed constant
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C. Our proof is based on the following idea: since ϕ is Lipschitz Ω ∩ {(x, z) ∈ Rn : z ∈
(z0 − Cϕ(z0), z0 + Cϕ(z0))} is almost the cylinder:

Ω̂0 := ϕ(z0)� × (z0 −Cϕ(z0), z0 + Cϕ(z0)) (8.2)

which is uniform thanks to Lemma 8.2. In that lemma, the ε parameter of Ω1 × Ω2 depends

on the respective values of the parameters of Ω1 and Ω2 and on the quotient diam(Ω1)
diam(Ω2)

. Since in

(8.2) diam(Ω1) ∼ diam(Ω2), we may assume that the same ε stands for the cylinder for every
z0.

Let z0 > 0 be a fixed number and C0 a constant such that C0 <
z0

ϕ(z0)
. Observe that since

t
ϕ(t) → ∞ as t→ 0, the constant C0 chosen for a certain z0 remains useful for every z < z0. Let

us denote:
Ω0 = Ω ∩ {(x, z) ∈ Ω : z0 − C0ϕ(z0) < z < z0 +C0ϕ(z0)}.

We want to prove that Ω0 is uniform. We associate points in Ω̂0 with points in Ω0 at the

same heights, so we denote (x̂, z) the points in Ω̂0 and (x, z) those in Ω0. Let F : Ω̂0 → Ω0 be
the function:

F (x̂, z) =
( ϕ(z)
ϕ(z0)

x̂, z
)
.

Suposse that ζ ∈ � is such that ϕ(z0)ζ = x̂. Then x = ϕ(z)
ϕ(z0)

x̂ = ϕ(z)ζ, and F (x̂, z) = (x, z) ∈
Ω0. F is obviously bijective, with

F−1(x, z) =
(ϕ(z0)
ϕ(z)

x, z
)
.

Now we prove that both F and F−1 are Lipschitz with constants independent of z0 (this, in
turn, shows that Ω0 is uniform). We show only the case F−1 since proof for F is similar. Let
us consider (x, z), (y,w) ∈ Ω0, x = ϕ(z)ζ, y = ϕ(w)ξ for some ζ, ξ ∈ �.

|F−1(x, z)− F−1(y,w)| = |(ϕ(z0)ζ − ϕ(z0)ξ, z − w)| ≤ |ϕ(z0)ζ − ϕ(z0)ξ
∣∣∣︸ ︷︷ ︸

I

+ |x− w|︸ ︷︷ ︸
II

And

I ≤ ϕ(z0)
∣∣∣ϕ(z)
ϕ(z)

ζ − ϕ(w)

ϕ(w)
ξ
∣∣∣ = ϕ(z0)

∣∣∣ϕ(w)x − ϕ(z)y

ϕ(z)ϕ(w)

∣∣∣
Since z, w ∈ (z0 − Cϕ(z0), z0 + Cϕ(z0), Equation (8.1) implies that ϕ(z0) ∼ ϕ(z) so:

I ≤ C
∣∣∣ϕ(w)x − ϕ(z)y

ϕ(w)

∣∣∣
On the other hand:

|ϕ(w)x − ϕ(z)y| ≤ |ϕ(w)x − ϕ(w)y| + |ϕ(w)y − ϕ(z)y| ≤ ϕ(w)|x − y|+ |ϕ(w) − ϕ(z)||y|
≤ ϕ(w)|x − y|+ Cϕ|w − z||ϕ(w)ξ| ≤ CϕCϕ(w){|x − y|+ |w − z|}

Hence: I ≤ C{|x− y|+ |w − z|}, and consequently

|F−1(x, z)− F−1(y,w)| ≤ C{|x− y|+ |w − z|} ≤ C|(x, z)− (y,w)|
So, F−1 is Lipschitz with a Lipschitz constant depending only on the constants C0, Cϕ and C.

Remark 8.4. We do not really need Ω0 to be uniform as a separate domain (with its floor and
its roof as parts of the boundary): we just need to prove that the curve joining two points in
Ω0 satisfy property (2.7), which is given in terms of the distance to the boundary of Ω. But
d∂Ω(x, z) ≥ d∂Ω0(x, z), ∀(x, z) ∈ Ω0, so (2.7) stands.
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This complete the proof of Claim 8.1. Since the class of domains given by Definition 8.1 is
broader than that of Definition A, we can state the following:

Corolary 8.5. Every domain satisfying Definition A is an external cusp in terms of Definition
2.3 (or Definition 2.2).

Finally, let us observe that items (c) in Theorems 4.1 and 5.1 follow by using the same
arguments given in [14] p. 274 and p. 295, with �(S(z)) in the role of ϕ(z).
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Departamento de Matemática Facultad de Ciencias Exactas y Naturales, Universidad de Buenos

Aires,, Pabellón I, Ciudad Universitaria, (1428) Buenos Aires, Argentina

E-mail address: gacosta@dm.uba.ar
E-mail address: iojea@dm.uba.ar


