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Abstract. In this paper we consider a general class of external cusps defined by linking ap-
propriate collections of John domains. For that class, weighted Korn inequalities are proved by
means of rather elementary arguments.

1. Introduction

For a given a domain Ω ⊂ R
n and a vector field u ∈ W 1,2(Ω), Korn’s inequality states

‖Du‖L2(Ω)n×n ≤ C‖ε(u)‖L2(Ω)n×n , (1.1)

where Du is the differential matrix of u and ε(u) its symmetric part

ε(u)i,j =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

Inequality (1.1) introduced in [Korn, 1906, 1909] has become a classic subject in the literature
of continuum mechanics. In elasticity theory, u plays the role of the displacement field of an
elastic body. In this case ε(u) is called the linearized strain tensor and (1.1) equals to the
coercivity of the bilinear form associated to the underlying linear equations.

Non-constant vector fields in the kernel of ε can not obey (1.1) and therefore Korn’s inequality
can not hold without considering some extra conditions. Two classic cases treated in the seminal
works by Korn and called the first and the second case of the inequality state that (1.1) holds
if either u vanishes on the boundary of Ω or if

∫

Ω

Du−Dut

2
= 0, (1.2)

respectively. The first case can be proved by means of very simple arguments and as it is well
known it holds for any bounded domain. On the other hand, the second case requires deeper
considerations and actually it fails for domains with poor regularity.

Inequality (1.1) can be found in different forms involving traditional and weighted spaces. In
Lp norm it reads

‖Du‖Lp(Ω)n×n ≤ C‖ε(u)‖Lp(Ω)n×n , (1.3)

where p should be in the range 1 < p < ∞. Another version, sometimes called the general case
of Korn’s inequality, takes the form

‖Du‖Lp(Ω)n×n ≤ C
{
‖u‖Lp(Ω)n + ‖ε(u)‖Lp(Ω)n×n

}
, (1.4)

in which no extra conditions other than u ∈ W 1,p(Ω)n are required. It can be shown, see e.g.
[Brenner and Scott, 2008], that (1.3) implies (1.4) for any domain Ω. On the other hand, for
regular domains (1.3) can be deduced from (1.4) using compactness arguments [Kikuchi and
Oden, 1988].

Many proofs of the Korn inequality have been given since Korn’s original works, and even a
short review of this subject would involve a large number of references. Friedrichs [Friedrichs,
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1947] was unable to reproduce Korn’s arguments for the second case and proved the inequality for
smooth domains by reducing the second to the first case. Since then, different arguments allowed
to treat less regular domains. That is the case of those arguments involving singular integrals
(see [Kikuchi and Oden, 1988] and the references therein) where typically the derivatives of the
vector field u are written as an average of derivatives of ε(u) in a cone. This idea, that follows
closely Calderón’s extension method, applies naturally for Lipschitz domains since they enjoy
the cone property. In this regard, let us recall that the connection of Korn’s inequality with
extension procedures was also exploited by Nitsche, who used elementary arguments [Nitsche,
1981] to prove (1.1), in the second case, for Lipschitz domains by modifying appropriately the
extension operator due to Stein. The same line of reasoning is applied in [Durán and Muschietti,
2004], where the authors prove that (1.4) stands not only for Lipschitz but for the broader class
of uniform domains, using a modification of the extension operator given by Jones [Jones, 1981].
In spite of these results let us observe that the second case of (1.3) holds for

Ω∞ = B(0, 1) \ {(x, y) ∈ R
2 : 0 ≤ x ≤ 1, y = 0}, (1.5)

where B(0, 1) is the unitary ball. However it is easy to see that Ω∞ is not an extension domains.
Therefore it becomes clear that extension arguments should fail to tackle (1.3) in the more
general setting. Actually, (1.3) holds in the second case for a family of domains that contains
strictly the set of uniform domains. In this concern let us recall the class of domains introduced
in [John, 1961], and named John domains after that by Martio and Sarvas [Martio and Sarvas,
1979].

Definition 1.1. Let 0 < α ≤ β < ∞. A domain Ω ⊂ R
n is called a John domain with

parameters α and β if there is a point x0 ∈ Ω (the John-center of Ω) such that for every x ∈ Ω
there is a rectifiable curve with parametrization by arc length γ : [0, ℓ] → Ω such that γ(0) = x
and γ(ℓ) = x0, and:

ℓ ≤ β, (1.6)

d(γ(t), ∂Ω) ≥
α

ℓ
t ∀t ∈ [0, ℓ]. (1.7)

Given x ∈ Ω, and its correspondant curve γ, the set ∪tB(γ(t), α
ℓ
t) ⊂ Ω can be regarded as

a twisted cone with its axis depicted by the curve γ. In this sense we may say that in a John
domain Ω any x ∈ Ω can be joined with x0 through a curve that remains “away” from the
boundary. John domains contains star-shaped, Lipschitz and Uniform domains. The inner cusp

Ωα = B(0, 1) \ {(x, y) ∈ R
2 : |y| < xα} α > 1, (1.8)

as well as the limit case (1.5) are examples of John domains. The boundary of a John domain
can be very intricate, for instance the Koch snowflake, with fractal boundary is also a John
domain. In Figure 1, we show all these examples along with schematic twisted cones. Korn’s
inequality holds on John domains, with a constant depending only on the parameters α and
β. This is shown in [Acosta et al., 2006b] where an explicit continuous right inverse of the
divergence is constructed. In simple geometries it is possible to get more information about the
constant involved in the inequality. For instance, in a convex domain Ω the constant depends
linearly on the ratio between the diameter of Ω and the diameter of a maximal ball contained
in Ω [Durán, 2012]. Remarkably, for star-shaped domains the same bound is valid in dimension
two as it is shown in [Costabel and Dauge, 2013]. For star-shaped domains, the dependance of
the constant on that ratio in dimension n is also studied in [Durán, 2012].

Although Korn’s inequality holds for very general domains it fails, as it was early noticed by
Friedrichs, in domains with external cusps (see [Acosta et al., 2013] for a collection of counterex-
amples). Roughly speaking, an external cusp is a domain that narrows towards a point (the tip
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(c) The Koch snowflake

Figure 1. Examples of John domains.

of the cusp) faster than any cone. Observe that this narrowing prevents any external cusp to be
a John domain.

The simplest kind of external cusps are given by power type cusps:

Ω =
{
(x′, xn) ∈ R

n−1 × R : |x′| < xγn
}
, (1.9)

being γ > 1 a real number. This notion is naturally generalized to domains with a profile
depicted by a more general function ϕ:

Ω =
{
(x′, xn) ∈ R

n−1 ×R : |x′| < ϕ(xn)
}
, (1.10)

where ϕ : R≥0 −→ R≥0 is a non-decreasing derivable function such that ϕ(0) = 0 and ϕ′(0) = 0,

or, more generally , ϕ is non-decreasing, Lipschitz and ϕ(t)
t

−→ 0 (t −→ 0+).
The main precedents that we follow regarding Korn’s inequality on external cusps work with

these definitions. In [Durán and López Garćıa, 2010] power type cusps are treated, and the
existence of a right inverse for the divergence operator in weighted spaces is proved. As a
corollary, the following weighted Korn inequality is obtained (see [Durán and López Garćıa,
2010, Theorem 6.2]):

Theorem A. Given Ω a domain of the form (1.9), 1 < p < ∞, B ⊂ Ω an open ball and β ≥ 0;

there exists a constant C, depending only on Ω, B, p and β, such that for every u ∈ W 1,p
dpβ

(Ω)n:

‖Du‖Lp

dpβ
(Ω)n×n ≤ C

{
‖u‖Lp(B)n + ‖ε(u)‖Lp

dp(β+1−γ)
(Ω)n×n

}
,

where d = d(x) is the distance to the origin and γ is the exponent of the cusp.

Notice that for W 1,p(Ω)n (i.e. β = 0) the weight on the right hand side, due to the cuspidal

behavior of Ω is dp(1−γ). The optimality of Theorem A is treated in [Acosta et al., 2013], where
the authors work with cusps with a general profile ϕ and prove the following theorem:

Theorem B. Let Ω be a cusp with profile ϕ, according to (1.10), β1, β2 ∈ R, 1 < p < ∞ and B
a ball compactly contained in Ω. If there is a constant C such that:

‖Dv‖Lp

(ϕ′)pβ1
(Ω)n×n ≤ C

{
‖v‖Lp(B)n + ‖ε(v)‖Lp

(ϕ′)pβ2
(Ω)n×n

}
,

for every v ∈ W 1,p

(ϕ′)pβ1
(Ω)n, then β1 ≥ β2 + 1

Observe that for a power type cusp ϕ′(t) = γtγ−1, and since inside the cusp one has d(x) ∼ xn,
then Korn’s inequality in Theorem A corresponds with the case β1 = β2+1 in Theorem B, which
shows that Theorem A is sharp.
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Other results about external cusps can be found in [Nazarov, 2012], where weighted anisotropic
Korn inequalities for power type cusps are proved in R

3. There, the author mentions that more
general cases could be treated by using the same arguments developed in that paper.

Let us recall that for a Hölder-α domain weighted versions of Korn’s inequality can be found
in [Acosta et al., 2006a]. Since such a domain may have many ”cuspidal” singularities, the
weight that naturally arises depends on the distance to the whole boundary. On the other
hand, for more general domains abstract weighted Korn inequalities can be derived from results
concerning the existence of a right inverse of the divergence operator, see for instance [Durán
et al., 2010], [López Garćıa, 2013].

The aim of the present paper is to extend Theorem A to a wider class of external cusps.
Actually, we prove that such a result can be generalized to external cusps whose boundary is
locally the one of a John domain. In this context we show that the function ϕ does not need
to depict the precise profile of the domain, but only to give a qualitative description of the
narrowing.

Our technique is based on rather simple ideas. Since the behavior of the constant in Korn’s
inequality on rectangles is known, we consider chains of rectangles, and use a discrete Hardy in-
equality to pass from one rectangle to another, proving a weighted Korn inequality for the whole
chain. The weight is piecewise constant and it is given by Korn’s constant on each rectangle.
This approach depends exclusively on the existence of intermediate rectangles that link each
rectangle in the chain with its two neighbors. This approach can be applied to more general
subdomains and in this regard we introduce the notion of quasi-rectangle. A quasi-rectangle is,
essentially, a domain that contains a rectangle and where Korn and Poincaré inequalities hold
with constants similar to those corresponding to this interior rectangle. The boundary of a quasi
rectangle can be locally as general as the one of a John domain. The results obtained for chains
of rectangles are straightforwardly generalized to chains of quasi-rectangles, yielding weighted
Korn’s inequalities for a very general class of domains. Finally, we consider as an example,
external cusps formed by chains of quasi-rectangles. This chains are defined by requiring an
appropriate narrowing towards a “singular” point. In this way our generalization of Theorem A
is a simple corollary of our results for chains of quasi-rectangles. Counterexamples proposed in
[Acosta et al., 2013] can be easily adapted for proving the optimality of the weights obtained in
this paper.

Finally, before proceeding, let us mention that the extension procedure for external cusps
used in [Acosta and Ojea, 2012] can be appropriately combined with the extension operator for
uniform domains constucted in [Durán and Muschietti, 2004]. In that way it is possible to obtain
similar results to those given here. However, by doing that, the notion of ”locally John” should
be replaced by the notion of ”locally uniform” proposed in [Acosta and Ojea, 2012]. This allows
to handle a less general class of external cusps than that treated here. This limitation is not
surprising in the light of the facts mentioned above concerning the use of extension arguments
in the context of Korn’s inequality. For that reason we do not follow this approach.

2. Notation and Preliminaries

Throughout this article x̂n stands for the xn axis, and C denotes a generic constant that may
change from line to line. We say that two positive numbers a and b are C-comparable, and we
write a ∼

C
b, if 1

C
a ≤ b ≤ Ca. For every collection of sets C, we denote with ∪C the union of all

the sets in C, i.e. ∪C := ∪S∈CS. Given two sets, we write A ≡ B if they differ in measure zero.
In this work we deal with open rectangles R ⊂ R

n with edges parallels to the coordinate

axes. The size vector of R is denoted with ~ℓ(R) = (ℓ1(R), ℓ2(R), . . . , ℓn(R)), where ℓi(R) is the
length of the R’s i-th edge. For a cube Q we use ℓ(Q) to denote the length of any of its edges,
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and for a rectangle R we take: LM (R) := max1≤i≤n{ℓi(R)} and Lm(R) := min1≤i≤n{ℓi(R)}.
In some point we restrict our attention to rectangles with n − 1 short edges of equal size that
we denote ℓ(R) and a long edge (the vertical) L(R). A pair of rectangles R1, R2 are called
C-comparable, and we write R1 ∼

C
R2, if ℓi(R1) ∼

C
ℓi(R2) for 1 ≤ i ≤ n. For a rectangle

R, we denote its center with cR. If cR = (c1, · · · , cn) the upper face F u
R of R is given by

F u
R = {(x1, · · · , xn) ∈ R : xn = cn + 1

2ℓn(R)}, and analogously is defined the lower face F l
R.

Given a rectangle R, we denote aR (a > 1), the expanded rectangle centered in cR with edges
ℓi(aR) = aℓi(R). With zR we denote the last coordinate of points belonging to F l

R, that

is zR = cn − 1
2ℓn(R). We say that R1 and R2 are touching rectangles if R1 ∩ R2 = ∅ and

R1 ∩R2 = F with F a face of R1 or R2.
When we consider external cusps, with tip at the origin, we write, for every x ∈ R

n, d = d(x)
for the distance to the origin. For any p, 1 < p < ∞, p′ stands for the conjugate exponent of p,
1
p
+ 1

p′
= 1. For a matrix A ∈ R

n×n we denote: |A|p =
∑n

i=1

∑n
j=1 |Ai,j |

p, and analogoulsy for

vectors v ∈ R
n.

Let ω : Ω −→ R≥0 be, a measurable function, the weighted Lp
ω norm of a matrix field

A : Rn −→ R
n×n is defined as

‖A‖p
L
p
ω(Ω)n×n :=

∫

Ω
|A|pω =

n∑

i=1

n∑

j=1

‖ω
1
pAi,j‖

p

Lp(Ω),

and analogously for vector fields. The weighted Sobolev space W 1,p
ω (Ω)n is defined by the set of

vector fields u : Ω → R
n for which

‖u‖p
W

1,p
ω (Ω)n

:=
n∑

i=1

∫

Ω
(|u|p + |Du(x)|p)ω =

n∑

i=1

∑

|α|≤1

‖ω
1
pDαui‖

p

Lp(Ω)
,

is finite. In the case ω ≡ 1, we drop the subscript and write ‖u‖W 1,p(Ω)n and ‖A‖W 1,p(Ω)n×n ,
respectively. The average value of a function u over a domain D is written with either of
the following notations: uD := −

∫
D
u := 1

|D|
∫
D
u, where |D| stands for the measure of D, and

analogously for the weighted average we write uDω := −
∫
Dω

u := 1
ω(D)

∫
D
uω

Let us state the following discrete weighted inequality of Hardy type [Kufner and Persson,
2003, page 52]:

Lemma 2.1. Let {ui}i and {vi}i be sequences of non-negative weights; and let 1 < p ≤ q < ∞.
Then the inequality:

[ ∞∑

j=1

uj

( j∑

i=1

bi

)q
] 1

q

≤ c

[ ∞∑

j=1

vjb
p
j

] 1
p

holds for every non-negative sequences {bi}i if

A = sup
k>0

( ∞∑

j=k

uj

) 1
q
( k∑

j=0

v1−p′

j

) 1
p′

< ∞

The constant c is c = MA, where M depends only on p and q.

Throughout this paper we make extensive use of the following Lemma.

Lemma 2.2. Let {ri}i and a = {ai}i be sequences such that {ri}i > 0, and
∑

i ri = r < ∞. Let
us denote

ā =
1

r

∑

j

ajrj.
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Then the inequality:
( ∞∑

j=1

|aj − ā|prj

) 1
p

≤ c

( ∞∑

j=1

|aj+1 − aj |
prj+1

) 1
p

(2.1)

holds if

A = sup
k>0

( ∞∑

j=k

rj

) 1
p
( k∑

j=0

r1−p′

j

) 1
p′

< ∞ (2.2)

The constant c is c = MA where M depends only on p.

Proof. Let us define the norm:

‖a‖p =
(∑

i

|ai|
pri

) 1
p
.

From Hölder’s inequality, it holds |ā|r ≤ ‖a‖pr
1
p′ and then ‖a− ā‖p ≤ 2‖a‖p. Applying this last

inequality with a replaced by a− a0, we obtain

‖a− ā‖p ≤ 2‖a− a0‖p.

Therefore:

∑

i

|ai − ā|pri ≤ 2p
∑

i

|ai − a0|
pri ≤ 2p

∑

i

( i∑

j=1

|aj − aj−1|
)p

ri

And we conclude applying Lemma 2.1 with ui = vi = ri, q = p and bi = |ai − ai−1|. �

Remark 2.3. Observe that if in Lemma 2.2, {ri}1≤i≤N is finite and ri ∼
C
r for any i, then

A = max
N≥k>0

( N∑

j=k

rj

) 1
p
( k∑

j=0

r1−p′

j

) 1
p′

≤ CN

Proof. In fact,

A = max
N≥k>0

( N∑

j=k

rj

) 1
p
( k∑

j=0

r1−p′

j

) 1
p′

≤ C max
N≥k>0

( N∑

j=k

r

) 1
p
( k∑

j=0

r1−p′
) 1

p′

= C max
N≥k>0

(
(N − k)r

) 1
p
(
kr1−p′

) 1
p′ = max

N≥k>0
(N − k)

1
pk

1
p′ r

1
p
+ 1

p′
−1

≤ CN

�

3. Korn and Poincaré Inequalities for Chains of Rectangles

Definition 3.1. A (finite or countable) collection of rectangles C = {Ri} for which
∑

i |Ri| < ∞,

is called a chain of rectangles if a) Ri ∩ Rj = ∅ for |i − j| > 1, b) for any i, Ri and Ri+1 are
touching, and c) there exists a constant C such that Ri ∼

C
Ri+1, for any i.

Remark 3.1. Given a chain of rectangles C = {Ri} we have the following elementary facts

• since Ri and Ri+1 are touching and C − comparable there exists a rectangle Ri,i+1 ⊂

Ri ∪Ri+1 and a constant C̃ depending only on C, such that

Ri,i+1 ∼
C̃
(Ri,i+1 ∩Ri) ∼

C̃
Ri ∼

C̃
(Ri,i+1 ∩Ri+1) ∼

C̃
Ri+1
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• thanks to the previous item

|Ri,i+1| ∼
C̃

| (Ri,i+1 ∩Ri) | ∼
C̃

|Ri| ∼
C̃

| (Ri,i+1 ∩Ri+1) | ∼
C̃

|Ri+1|

with C̃ depending only on C.
• using that Ri, Ri+1 and Ri,i+1 are C̃ − comparable we get (for instance by changing

variables) that there exists a constant Ĉ, depending only on C̃ (therefore only on C)
such that

Ci ∼
Ĉ

Ci+1 ∼
Ĉ

Ci,i+1

being Ci, Ci+1, Ci,i+1 the constants in the second case of Korn’s inequality for Ri, Ri+1

and Ri,i+1 respectively.

Definition 3.2. Given a chain of rectangles C, any given collection of intermediate rectangles
Ri,i+1 enjoying properties like those mentioned in Remark 3.1 is denoted with CI = {Ri,i+1}.

Definition 3.3. Given a chain of rectangles C, a C− linked domain Ω is any open set such that
∪(CI ∪ C) ⊂ Ω and Ω ≡ ∪C.

Theorem 3.2 (Second Case of Korn’s Inequality for Chains of Rectangles). Let C = {Ri} be a
chain of rectangles, and let Ci be the constants for the second case of Korn’s inequality on Ri.

Then for any C − linked domain Ω, and any u ∈ W 1,p(Ω)n such that −
∫
Ω

Du−Dut

2 = 0 we have

‖Du‖Lp(Ω)n×n ≤ C(1 +A)‖ε(u)‖Lp
σ (R)n×n ,

where A is defined in (2.2) with rj = |Rj |, and the weight σ is constant on each Ri being
σ|Ri

= Ci.

Proof. Let

Ai =
1

2|Ri|

∫

Ri

(Du−Dut).

Then:

‖Du‖p
Lp(Ω)n×n =

∑

i

‖Du‖p
Lp(Ri)n×n ≤ C

∑

i

‖Du−Ai‖p
Lp(Ri)n×n

︸ ︷︷ ︸
I

+C
∑

i

‖Ai‖p
Lp(Ri)n×n

︸ ︷︷ ︸
II

I leads to

I ≤ C
∑

i

Cp
i ‖ε(u)‖

p

Lp(Ri)n×n ≤ C
∑

i

‖ε(u)‖p
L
p
σ (Ri)n×n = C‖ε(u)‖p

L
p
σ(Ω)n×n

For II, apply inequality (2.1) with rj = |Rj |. Let us observe that
∑

|Ri|A
i = 0, therefore taking

A = sup
k>0

(∑

j≥k

|Rj |
) 1

p
(∑

j≤k

|Rj|
1−p′

) 1
p′

we have
II = C

∑

i

|Ai|p|Ri| ≤ CAp
∑

i

|Ai+1 −Ai|p|Ri+1|

where C is a constant depending on n and p. For each i, let us now introduce a rectangle Ri,i+1

as defined in Remark 3.1. Calling

Ai,i+1 =
1

2|Ri,i+1|

∫

Ri,i+1

Du−Dut
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we get, using extensively Remark 3.1,

II ≤ CAp
∑

i

{
|Ai+1 −Ai,i+1|p + |Ai,i+1 −Ai|p

}
|Ri+1|

≤ CAp
∑

i

{
|Ai+1 −Ai,i+1|p|Ri+1 ∩Ri,i+1|+ |Ai,i+1 −Ai|p|Ri ∩Ri,i+1|

}

= CAp
∑

i

{
‖Ai+1 −Ai,i+1‖p

Lp(Ri+1∩Ri,i+1)
+ ‖Ai −Ai,i+1‖p

Lp(Ri∩Ri,i+1)

}

≤ CAp
∑

i

{
‖Ai+1 −Du‖p

Lp(Ri+1)n×n + ‖Du−Ai,i+1‖p
Lp(Ri,i+1)n×n + ‖Du−Ai‖p

Lp(Ri)n×n

}

≤ CAp
∑

i

Cp
i ‖ε(u)‖

p

Lp(Ri+1∪Ri)n×n

≤ CAp
∑

i

Cp
i ‖ε(u)‖

p

Lp(Rn×n
i )

where, in the last inequality we use that for each Ri, Ri ∩Rj = ∅ if |i− j| > 1. Therefore

II ≤ CAp‖ε(u)‖p
L
p
σ (Ω)n×n

and the Theorem follows. �

Remark 3.3. In a recent paper, R. Durán proves that the constant for the second case of Korn’s
inequality for any convex domain Ω can be bounded taking the quotient between the diameter of
Ω and the diameter of a maximal ball contained in Ω (see [Durán, 2012, Theorem 4.2]). Even
when in [Durán, 2012] that result is stated only for p = 2, the same proof works for 1 < p < ∞.
It is important to notice that this implies that given a rectangle R with edges ℓi(R), eventually

all different, Korn’s constant in the second case can be taken LM (Ri)
Lm(Ri)

1. That estimate is sharp.

Take, for instance, n = 2 and u(x, y) = (−xy, x
2

2 ), defined over R = (0, LM ) × (−Lm

2 , Lm

2 ) we
have that

‖Du‖p
Lp(R)n×n ∼

C
LmLp+1

M and ‖ε(u)‖p
Lp(R)n×n ∼

C
Lp+1
m LM ,

and therefore
‖Du‖p

Lp(R)n×n

‖ε(u)‖p
Lp(R)n×n

∼
C

(LM

Lm

)p

.

Remark 3.4. Thanks to the previous Remark, in Theorem 3.2, Ci (and therefore σ) can be
taken as follows

Ci =
LMi

Lmi

. (3.1)

Theorem 3.2 can be straightforwardly extended to some weighted spaces.

Definition 3.4. Let C = {Ri}, be a chain of rectangles, and Ω a domain such that Ω ≡ ∪C.
We say that ω is an admissible weight in Ω if for any x ∈ Ri

ω(x) ∼
C
ωRi

∼
C
ωRi+1 ∀i. (3.2)

being ωRi
appropriate constants.

The following is an elementary generalization of Theorem 3.2

1Observe that aligning N identical cubes in a rectangle R we have that Remark 2.3 yields such a constant,
written there in terms of N = LM (R)/Lm(R).
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Theorem 3.5 (Second Case of Weighted Korn’s Inequality for Chains of Rectangles). Let
C = {Ri} be a chain of rectangles and Ω a C − linked domain.

Let u ∈ W 1,p
ω (Ω)n, with ω an admissible weight (see (3.2)), be such that

1

ω(Ω)

∫

Ω

Du−Dut

2
ω = 0.

If
∑

i ω(Ri) = r < ∞,

‖Du‖Lp
ω(Ω)n×n ≤ C(1 +Aω)‖ε‖Lp

ωσ(Ω)n×n

where σ|Ri
can be taken as in Theorem 3.2, and

Aω := sup
k>0

(∑

j≥k

ω(Rj)
) 1

p
(
ω(Rj)

1−p′
) 1

p′

(3.3)

Proof. Let:

Ai =
1

|Ri|

∫

Ri

Du−Dut

2
and Ai

ω =
1

ω(Ri)

∫

Ri

Du−Dut

2
ω

We take:

‖Du‖p
L
p
ω(Ω)n×n =

∑

i

‖Du‖p
L
p
ω(Ri)n×n ≤ C

{∑

i

‖Du−Ai
ω‖

p

L
p
ω(Ri)n×n

︸ ︷︷ ︸
(a)

+
∑

i

‖Ai
ω‖

p

L
p
ω(Ri)n×n

}

︸ ︷︷ ︸
(b)

For (a) we write

‖Du−Ai
ω‖Lp

ω(Ri)n×n ≤ ‖Du−Ai‖Lp
ω(Ri)n×n

︸ ︷︷ ︸
I

+ ‖Ai −Ai
ω‖Lp

ω(Ri)n×n

︸ ︷︷ ︸
II

and for I, we can take the weight off the norms

Ip = ‖Du−Ai‖p
L
p
ω(Ri)n×n ≤ ωp

Ri
‖Du−Ai‖p

Lp(Ri)n×n ≤ Cωp
Ri
‖ε(u)‖p

L
p
σ (Ri)

≤ C‖ε(u)‖p
L
p
ωσ(Ri)

.

On the other hand

IIp = ‖Ai −Ai
ω‖

p

L
p
ω(Ri)n×n = ω(Ri)

∣∣∣∣Ai −
1

ω(Ri)

∫

Ri

Du−Dut

2
ω(x)dx

∣∣∣∣
p

= ω(Ri)

∣∣∣∣
1

ω(Ri)

∫

Ri

(
Ai −

Du−Dut

2

)
ω(x)dx

∣∣∣∣
p

≤ Cω(Ri)
1−p

{∣∣∣
∫

Ri

(Ai −Du)ω(x)dx
∣∣∣
p

+
∣∣∣
∫

Ri

(Du−
Du−Dut

2
)ω(x)dx

∣∣∣
p
}

= Cω(Ri)
1−p

{∣∣∣
∫

Ri

(Ai −Du)ω(x)
1
pω(x)

1
p′ dx

∣∣∣
p

+
∣∣∣
∫

Ri

ε(u)ω(x)
1
pω(x)

1
p′ dx

∣∣∣
p
}

Applying Hölder inequality in both terms,

IIp ≤ Cω(Ri)
1−p

{
‖Ai −Du‖p

L
p
ω(Ri)n×nω(Ri)

p

p′ + ‖ε(u)‖p
L
p
ω(Ri)n×nω(Ri)

p

p′

}

= C
{
Ip + ‖ε(u)‖p

L
p
ω(Ri)n×n

}
≤ C‖ε(u)‖p

L
p
ωσ(Ri)
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On the other hand, for (b), let us observe that
∑

i

ω(Ri)A
i
ω = 0

and that: ∑

i

‖Ai
ω‖

p

L
p
ω(Ri)n×n =

∑

i

ω(Ri)|A
i
ω|

p

Consequently, Lemma 2.2 with ai = Ai
ω and ri = ω(Ri), yields

∑

i

‖Ai
ω‖

p

L
p
ω(Ri)n×n ≤ CAω

∞∑

i=1

|Ai+1
ω −Ai

ω|
pω(Ri+1) ≤ CAω

∞∑

i=1

‖Ai+1
ω −Ai

ω‖
p

L
p
ω(Ri+1)

,

Now we may proceed like in Theorem 3.2, alternating Ai,i+1
ω , the weighted average of (Du −

Dut)/2 on an overlaping rectangle Ri,i+1, afterwards alternating Du, and finally applying the
estimates for (a). We leave the final details to the reader. �

Observe that Theorem 3.2 is a Corollary of the previous theorem taking ω ≡ 1. However,
Theorem 3.5 does not provide information unless Aω < ∞. A simple way to bound Aω involves
a reasonable decay for ω(Ri).

Corollary 3.6. Under the same hypotheses of Theorem 3.5. Assume that for any k,

ω(Rk+1) ≤ αω(Rk) with 0 ≤ α < 1. (3.4)

Then for any u ∈ W 1,p
ω (Ω)n such that

∫
Ω

Du−Dut

2 ω = 0, we have

‖Du‖Lp
ω(Ω)n×n ≤ C‖ε(u)‖Lp

ωσ(R)n×n ,

where the weight σ is constant on each element of C, and can be taken as σ|Ri
=

LMi

Lmi
.

Proof. From Remark 3.3, we know that Ci ≤ C
LMi

Lmi
with Ci defined in Theorem 3.2. Therefore

only remains to show that
∑

i ω(Ri) < ∞ and Aω < C. These follow from the bounds ω(Rk) ≤
αk−iω(Ri) for 0 ≤ i ≤ k and ω(Ri) ≤ αi−kω(Rk) for i ≥ k. Indeed

Aω = sup
k>0

( ∞∑

j=k

ω(Rj)

) 1
p
( k∑

j=0

ω(Rj)
1−p′

) 1
p′

≤ ω(Rk)
1
p

( ∞∑

j=0

αj

) 1
p

ω(Rk)
1
p′
−1

( k∑

j=0

α(p′−1)j

) 1
p′

then

Aω ≤

(
1

1− α

) 1
p
(

1

1− αp′−1

) 1
p′

,

and the Corollary follows. �

Everything done so far for the second case of Korn’s inequality for chains of rectangles can
be done for Poincaré inequality following step by step the arguments given above. Since the
constant in Poincaré inequality for rectangles (and in general for convex domains) depends only
on the diameter of the rectangle, the weight involved in the inequality can be weakened as it is
stated below.

Theorem 3.7 (Poincaré inequality for Chains of Rectangles). Let 1 ≤ p ≤ ∞ and C = {Ri} be
a chain of rectangles and Ω a C − linked domain. Let ω be an addmissible weight (see (3.2)),

such that for any k, ω(Rk+1) ≤ αω(Rk) with 0 ≤ α < 1. Then if u ∈ W 1,p
ω (Ω)n, and

∫
Ω uω = 0,

we have
‖u‖Lp

ω(Ω) ≤ C‖Du‖Lp
ωσ(Ω)n×n ,

where the weight σ is constant on each Ri and can be taken as σ|Ri
= LMi

.



KORN’S INEQUALITIES FOR GENERALIZED EXTERNAL CUSPS 11

The following version will be useful in the sequel.

Corollary 3.8. With the same hypotheses of Theorem 3.7, assume that B is a ball such that
B ⊂ Ω, and B ∩Rj 6= ∅ only for a finite number of rectangles. Then, for every u ∈ W 1,p

ω (Ω)n,
we have:

‖u‖Lp
ω(Ω)n ≤ C

{
‖u‖Lp(B)n + ‖Du‖Lp

ωσ(Ω)n×n

}

where the weight σ is constant on each Ri and can be taken as σ|Ri
= LMi

.

Proof. For the sake of clarity we write the case ω ≡ 1.

‖u‖Lp(Ω)n ≤ ‖u− uB‖Lp(Ω)n + ‖uB‖Lp(Ω)n ≤ ‖u− uΩ‖Lp(Ω)n︸ ︷︷ ︸
I

+ ‖uΩ − uB‖Lp(Ω)n︸ ︷︷ ︸
II

+ ‖uB‖Lp(Ω)n︸ ︷︷ ︸
III

.

Applying Theorem 3.7:
I ≤ C‖Du‖Lp

σ(Ω)n×n .

On the other hand,

IIIp =

∫

Ω

(
−

∫

B

u
)p

=
|Ω|

|B|p

( ∫

B

u
)p

≤
|Ω|

|B|p
|B|

p

p′

∫

B

up =
|Ω|

|B|
‖u‖p

Lp(B)n .

For II, applying Hölder inequality:

|uΩ − uB | ≤
1

|B|

∫

B

|uΩ − u| ≤
|B|

1
p′

|B|
‖u− uΩ‖Lp(B) ≤

1

|B|
1
p

‖u− uΩ‖Lp(Ω)n ≤
C

|B|
1
p

‖Du‖Lp(Ω)n×n
σ

then

II ≤ C
|Ω|

1
p

|B|
1
p

‖Du‖Lp(Ω)n×n
σ

,

and the lemma follows for ω ≡ 1.
The general case follows similarly using (3.2), and taking into account that B only meets a

finite number of rectangles and then ‖u‖Lp
ω(B) ∼

C
‖u‖Lp(B).

�

We now prove the general case of Korn’s inequality for chains of rectangles. Our proof is a
straigthforward adaptation of the classic argument given in [Brenner and Scott, 2008]. Let us
notice that we require that LMi

≤ C for any i. That is in order to remove the weigth σ from
the Poincaré inequality given above.

Theorem 3.9 (General Case of Korn’s inequality for Chains of Rectangles). Let C = {Ri} be
a chain of rectangles, and Ω a C − linked domain. Consider a weight ω such that (3.2) holds,
and assume that ω(Rk+1) ≤ αω(Rk) with 0 ≤ α < 1 and that LMi

< C, for any i. If B is a ball

such that B ⊂ Ω, and B meets only a finite number of rectangles Ri then for any u ∈ W 1,p
ω (Ω)n,

we have

‖Du‖Lp
ω(Ω)n×n ≤ C

{
‖u‖Lp(B)n + ‖ε(u)‖Lp

ωσ (Ω)n×n

}
, (3.5)

where the weight σ is constant on each element of C, and can be taken as σ|Ri
=

LMi

Lmi
.

Proof. Again, let us focus first on the case ω ≡ 1. Consider the space

RM(Ω)n = {v ∈ W 1,p(Ω)n : ε(v) = 0},

every function in RM can be written as

v(x) = a+Mx,
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where M ∈ R
n×n is skew symmetric. On the other hand, a complement of RM in W 1,p can be

defined as follows

Ŵ 1,p(Ω)n =

{
w ∈ W 1,p(Ω)n : −

∫

B

w = 0, −

∫

Ω

Dw −Dw′

2
= 0

}
.

In fact, given u ∈ W 1,p(Ω)n, we can take v ∈ RM(Ω)n:

v = a+M(x− x̄)

with

a = −

∫

B

u and mij =
1

2
−

∫

Ω

( ∂ui
∂xj

−
∂uj
∂xi

)

being x̄ the center of B. Obviously w = u− v ∈ Ŵ 1,p(Ω)n, and in particular

W 1,p(Ω)n = RM(Ω)n ⊕ Ŵ 1,p(Ω)n.

Moreover, it is clear by definition that

‖v‖W 1,p(Ω)n ≤ C‖u‖W 1,p(Ω)n ‖w‖W 1,p(Ω)n ≤ C‖u‖W 1,p(Ω)n .

If (3.5) does not hold, there is a sequence {un} ⊂ W 1,p(Ω)n such that

‖Dun‖Lp(Ω)n×n = 1 (3.6)

but,

‖un‖Lp(B)n + ‖ε(un)‖Lp
σ(Ω)n×n <

1

n
. (3.7)

If we write

un = vn + wn

with vn ∈ RM(Ω)n and wn ∈ Ŵ 1,p(Ω)n, wn admits both Poincaré inequality in B, and second
case of Korn inequality in Ω

‖wn‖W 1,p(Ω)n = ‖wn‖Lp(Ω)n + ‖Dwn‖Lp(Ω)n×n ≤ C
(
‖wn‖Lp(B)n + ‖Dwn‖Lp( gO)n×n

)

≤ C‖Dwn‖Lp(Ω)n×n ≤ C‖ε(wn)‖Lp
σ(Ωn×n) < C

1

n

And then, wn −→ 0 in W 1,p. On the other hand, vn belongs to the finite dimensional space
RM(Ω)n and is bounded on Ω. Consequently, there is a subsequence, called again vn, such that
vn −→ v ∈ RM(Ω)n strongly in W 1,p(B)n. As wn −→ 0, we have that

un −→ v ∈ RM(B)n in W 1,p(Ω)n

But because of (3.7), ‖v‖Lp(B)n = 0, and v is a linear function, so v ≡ 0 on Ω, which contradicts
(3.6), and the result follows in the case ω ≡ 1. The general case can be treated by the same

means defining the appropriate weighted versions RMω(Ω)
n = {v ∈ W 1,p

ω (Ω)n : ε(v) = 0},

and Ŵ 1,p
ω (Ω)n =

{
ṽ ∈ W 1,p

ω (Ω)n :
∫
B
ṽω = 0,

∫
Ω

Dṽ−Dṽ′

2 ω = 0
}
. �
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4. Korn and Poincaré Inequalities for Chains of Quasi-Rectangles

The job done for chains of rectangles can be easily generalized to chains of more general sets,
all we have to do is to write appropriate hypotheses.

Definition 4.1. Let W = {Ωi} be a (finite or countable) collection of disjoint open sets. Assume
that there exists a chain of rectangles C = {Ri} (in the sense of Definition 3.1) with Ri ⊂
Ωi ⊂ CRRi for a fixed constant CR. Finally assume that there exist fixed constants CK , CP

such that CKi
≤ CK

LMi

Lmi
and CPi

≤ CPLMi
being CKi

and CPi
the constants for the Korn’s

second inequality and Poincaré inequality respectively for Ωi. Then W = {Ωi} is called a C-
chain of quasi-rectangles associated to the chain of rectangles C. The constant C is taken as
C = max{CR, CK , CP }. Each Ωi is called a C-quasi-rectangle associated to Ri.

In order to minimize the notation we use quasi-rectangle (resp. chain of quasi-rectangles)
instead of C-quasi-rectangle (resp. C-chain of quasi-rectangles).

Definition 4.2. If each Ri in Definition 4.1 is a cube Qi (instead of a general rectangle), then
Ωi is called a quasi-cube associated to the cube Qi, and CKi

≤ C,CPi
≤ CLQi

.

Definition 4.3. Let W be a chain of quasi-rectangles associated to the chain of rectangles C.
A W − linked domain Ω is any open set such that ∪(CI ∪W) ⊂ Ω and Ω ≡ ∪W. Here CI is a
collection of intermediate rectangles associated to the chain of rectangles C (see Definition 3.2).

Definition 4.4. Let W = {Ωi}, be a chain of quasi-rectangles, and Ω a domain such that
Ω ≡ ∪W. We say that ω is an admissible weight in Ω if for any x ∈ Ωi

ω(x) ∼
C
ωΩi

∼
C
ωΩi+1 ∀i. (4.1)

being ωΩi
appropriate constants.

Remark 4.1. From Definitions 4.1, 4.3 and 4.4 one readily finds that any proof given in previous
section for C − linked domains can be carried out for W − linked domains. For this reason
Theorems 4.2, 4.3, 4.4 and 4.5 are stated below without further analysis.

Theorem 4.2 (Second Case of Korn’s Inequality for Chains of Quasi-Rectangles). Let W = {Ωi}
be a chain of rectangles, and let CKi

be the constants for the second case of Korn’s inequality

on Ωi. Then for any W − linked domain Ω, and any u ∈ W 1,p(Ω)n such that −
∫
Ω

Du−Dut

2 = 0 we
have

‖Du‖Lp(Ω)n×n ≤ C(1 +A)‖ε(u)‖Lp
σ (Ω)n×n ,

where A is defined in (2.2) with rj = |Ωj |, and the weight σ is constant on each Ωi being
σ|Ωi

= CKi
.

Theorem 4.3 (Second Case of Korn’s Inequality for Chains of Quasi-Rectangles: weighted
version). Let W = {Ωi} be a chain of quasi-rectangles and Ω a W − linked domain. Assume

that for any k, ω(Rk+1) ≤ αω(Rk) with 0 ≤ α < 1. Let u ∈ W 1,p
ω (Ω), with ω an admissible

weight (see (4.1)), be such that
∫
Ω

Du−Dut

2 ω = 0. Then

‖Du‖Lp
ω(Ω)n×n ≤ C‖ε‖Lp

ωσ(Ω)n×n

where σ|Ωi
can be taken as σ|Ri

=
LMi

Lmi
.

Theorem 4.4 (Poincaré inequality for Chains of Rectangles). Let 1 ≤ p ≤ ∞ and W = {Ωi}

be a chain of quasi rectangles and Ω a W − linked domain. Let u ∈ W 1,p
ω (Ω)n, with ω an

admissible weight (see (4.1)), be such that u ∈ W 1,p
ω (Ω)n, and

∫
Ω uω = 0. Assume that for any

k, ω(Rk+1) ≤ αω(Rk) with 0 ≤ α < 1, then we have

‖u‖Lp
ω(Ω) ≤ C‖Du‖Lp

ωσ(Ω)n×n ,
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where the weight σ is constant on each Ωi and can be taken as σ|Ωi
= LMi

.

Theorem 4.5 (General Case of Korn’s inequality for Chains of Quasi-Rectangles). Let W =
{Ωi} be a chain of rectangles, and Ω a W− linked domain. Consider a weight ω such that (4.1)
holds, and assume that ω(Rk+1) ≤ αω(Rk) with 0 ≤ α < 1 and that LMi

< C, for any i. If B
is a ball such that B ⊂ Ω, and B meets only a finite number of quasi-rectangles Ωi then for any
u ∈ W 1,p

ω (Ω)n, we have

‖Du‖Lp
ω(Ω)n×n ≤ C

{
‖u‖Lp(B)n + ‖ε(u)‖Lp

ωσ (Ω)n×n

}
, (4.2)

where the weight σ is constant on each element of C, and can be taken as σ|Ri
=

LMi

Lmi
.

Remark 4.6. All these results can be proved exactly like the ones for chains of rectangles, except
for a subtle detail: we impose the decreasing measure condition (3.4) on the rectangles Ri and
not on the subdomains Ωi, as it would be natural. This is possible because of the relationship
between the measures of Ωi and Ri. Indeed, since ω is admissible and |Ri| ≤ |Ωi| ≤ C|Ri|, we
have

ω(Ωi) ≤ Cωi|Ωi| ≤ Cωi|Ri| ≤ Cω(Ri),

and
ω(Ri) ≤ Cωi|Ri| ≤ Cωi|Ωi| ≤ Cω(Ωi).

And consequently:

Aω = sup
k>0

( ∞∑

j=k

ω(Ωj)

) 1
p
( k∑

j=0

ω(Ωj)
1−p′

) 1
p′

≤ C sup
k>0

( ∞∑

j=k

ω(Rj)

) 1
p
( k∑

j=0

ω(Rj)
1−p′

) 1
p′

.

So, if the decreasing property (3.4) is imposed on the rectangles Ri we have that Aω is finite.

The reader may wonder how a quasi-rectagle could be. An easy corollary of Theorem 4.2,
useful in the next section, shows that some quasi-rectangles can be obtained from finite union
of quasi-cubes.

Corollary 4.7. Let W = {Ωi}1≤i≤N be a a finite chain of quasi-cubes associated to a finite
chain of cubes C = {Qi}1≤i≤N with their centers placed along a straight line parallel to an axis.
Assume that for 1 ≤ i ≤ N , ℓ(Qi) = ℓ. Then any W − linked domain Ω is a quasi-rectangle
associated to R, being R the minimal rectangle containing the chain C.

Proof. It is enough to show that Korn and Poincaré constants CK and CP can be bounded as

CK ≤ C
LM (R)

Lm(R)
(4.3)

and
CP ≤ CLM(R) (4.4)

respectively. We show how to handle (4.3) since the other one follows similarly. We use Theorem
4.2 applied to chain W. Since |Ωi| ∼

C
|Qi| = ℓn, we get from (2.2) and Remark 2.3 that A ≤ CN .

On the other hand N = LM (R)
Lm(R) , and then (4.3) follows straightforwardly, since by definition of

quasi-cube CK(Ωi) ≤ C LM (Qi)
Lm(Qi)

= C. �

Observe that this corollary only provides quasi-rectangles with interior rectangles having n−1
equal short edges and a long one. We limit our approach to that kind of quasi-rectangles in the
context of external cusps treated later.

Taking into account that we work with quasi-rectangles that are made of quasi-cubes we need
now to provide examples of general C−quasi-cubes.
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A non trivial quasi-cube is given, for instance, by any bounded star-shaped domain with
respect to a maximal ball B contained in a cube Q. For such a domain D, calling CQ a constant
for which Q ⊂ D ⊂ CQQ, it is known that second case of Korn and Poincaré inequalities
hold. For star-shaped domains, some information about the constants DK and DP for Korn’s
and Poincaré inequality respectively is available in the literature (see [Durán, 2012], [Costabel
and Dauge, 2013] [Veeser and Verfurth, 2012]). However, all we need, in order to build quasi-
rectangles, is to find a chain of quasi-cubesW = {Di} for which CKi

≤ C and CPi
≤ Cl(Q). This

behavior of the constants is guaranteed in general for John domains, thanks to the solvability
of the divergence equation[Acosta et al., 2006b] and the validity of the (improved) Poincaré
inequality [Hurri-Syrjänen, 1994].

In Figure 2a we show a John domain which is a quasi-cube obtained by adding iteratively
properly scaled cubes to a central fixed cube. In Figure 2b a quasi-rectangle is given by collecting
identical quasi-cubes like the one in Figure 2a. Finally Figure 2c shows a quasi-rectangle formed
by a finite union of quasi-cubes that are not identical, but have similar aspect ratio.

Preceding remarks lead to the following example.

Example 4.1 (Locally John quasi-rectangle). Let C = {Qi}, i = 1, . . . , N a chain of cubes with
ℓ(Qi) = ℓ and with centers cQi

placed along a straight line. Let U = {Ωi}, i = 1, . . . , N a set of
disjoint John domains with parameters α, β and with centers in cQi

such that Qi ⊂ Ωi ⊂ CiQi.
Then any U−linked domain Ω is a quasi-rectangle associated to R, being R the minimal rectangle
containing ∪C. This sort of quasi-rectangle is called a locally John quasi-rectangle.

(a) Non-trivial quasi-cube (b) Non-trivial quasi-rectangle (c) Another quasi-rectangle

Figure 2. Quasi-rectangles

5. Application to External Cusps

External cusps are easily described using a “profile” function ϕ, as presented in (1.10). In
particular if ϕ(xn) ∼

C
xγn the weighted version of Korn’s inequality given in Theorem A was

presented in [Durán and López Garćıa, 2010, Theorem 6.2]. A more general class of external
cusps can be defined as follows:
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Definition 5.1. Let ̟ ⊂ Rn−1 a Lipschitz domain, assume that 0 ∈ ̟. We say that Ω is a
sectionally Lipschitz external cusp if

Ω ∩ U = {(x′, xn) ∈ R
n−1 × R : x′ ∈ ϕ(xn)̟} (5.1)

for some neighborhood of the origin U , and with ϕ a non-decreasing Lipschitz function, such
that ϕ(0) = 0 and ϕ(t)/t → 0 (t → 0+).

This definition is introduced in [Maz’ya and Poborchǐı, 1997], in the context of extension
of functions in Sobolev spaces. In fact, in [Maz’ya and Poborchǐı, 1997] the authors drop the
requirement 0 ∈ ̟ that here is considered for the sake of simplicity. In Figure 3, we show
two external cusps satisfying Maz’ya and Poborchǐı’s definition. In Figure 3a, ̟ is an ellipse
containing the origin , whereas in Figure 3b, ̟ is an ellipse that not contains the origin.
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(a) Cusp containing the vertical axis
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(b) Cusp tangential to the vertical axis

Figure 3. Maz’ya and Poborchǐı’s cusps.

In this work we consider external cusps of a very general kind given by linking appropriate
chains of quasi-rectangles.

Definition 5.2 (General External Cusp). Let W = {Ωi} be a chain of quasi-rectangles with an
associated chain of rectangles C = {Ri}. Let us assume that:

• each Ri is such that ~ℓ(Ri) = (ℓi, ℓi, · · · , ℓi, Li), with ℓi ≤ Li.
• the rectangles Ri are placed one above the other, along the xn axis in such a way that
R̄i+1 ∩ R̄i = F u

Ri+1
(the upper face of Ri+1).

• zi → 0, where zi is the xn coordinate of the points in the floor of Ri.
• |Ri+1| ≤ α|Ri| for some α < 1.
• there exists a a nondecreasing C1 function ϕ : R≥0 −→ R≥0 such that ϕ′ is nondecreasing,
ϕ(0) = ϕ′(0) = 0 and ϕ(zi) = ℓi.

Then, any W − linked domain Ω is called a general external cusp.

It is clear that a general external cusp Ω agrees with previous notions of external cusps.
However, ϕ does not give the precise profile of Ω, but only a qualitative description of its
narrowing toward the origin. On the other hand, the theory presented in the previous section
applies straightforwardly for general external cusps.

In Figure 4 we show examples of general external cusps. Figure 4a is just a chain of rectangles
satisfying: Li+1 ∼ 1√

2
Li and ℓi = z2i . Figure 4b shows an external cusp with locally smooth

boundary away from the origin. The interior chain of rectangles is like the one in 4a, but leant.
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On the other hand, Figure 4c is a perturbation of 4b, formed by a chain of locally John quasi-
rectangles. Finally, observe that a domain satisfying (5.1), but taking ̟ ⊂ R

n−1 a John domain
with respect to the center of a cube included in ̟, is a general external cusp based on John
quasi-rectangles. We provide a proof of this for a particular case later. In Figure 4d we present
an example of this situation, taking ϕ(t) = t2 and ̟ an inner cusp like Ωα.

(a) External cusp
using a chain of rect-
angles.

(b) A general external cusp.

(c) General external cusp
based on locally John quasi-
rectangles.

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

(d) General external cusp by dilatation of a fixed
John domain.

Figure 4. Examples of General External Cusps

The unweighted results of the previous section can be immediately applied to general external
cusps obtaining Poincaré and Korn inequalities for them. Moreover, if we take a weight ω which
is a nondecreasing function of xn (or |x|), we have:

ω(Ri+1) ≤
{

max
[zi+1,zi]

ϕ
}
|Ri+1| ≤ α

{
min

[zi,zi−1]
ϕ
}
|Ri| ≤ αω(Ri),

and the decreasing property (3.4) is fulfilled. In this way we can consider some particularly
interesting weights. For example, being ϕ′ non-decreasing, we can take weights of the form:
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ω(x) =
(
ϕ′)pβ with β ≥ 0. On the other hand, we can also take weights of the form ω(x) = xpβn ,

being β ≥ 0. In this way, we obtain the following theorem where we denote L(a) and ℓ(a) the
lengths of the edges L(R) and ℓ(R), being R the rectangle at height a.

Theorem 5.1. Let Ω be a General External Cusp, and σ(x) =
(

ℓ(|x|)
L(|x|)

)−p

. Then the inequality:

‖Du‖Lp
ω(Ω)n×n ≤ C

{
‖u‖Lp(B)n + ‖ε(u)‖Lp

ωσ(Ω)n×n

}

holds for weights of the form:

(a)

ω(x) = γxpβn , β ≥ 0

(b)

ω(x) =
(
ϕ′)pβ, β ≥ 0

It is important to observe that, if ϕ is such that ϕ(zi−1)− ϕ(zi) ∼ ϕ(zi), then:

ℓi
Li

=
ϕ(zi)

zi−1 − zi
∼

ϕ(zi−1)− ϕ(zi)

zi−1 − zi
∼ ϕ′(zi).

Hence, σ ∼ (ϕ′)−p and item (b) in Theorem 5.1 is a generalization of Theorem A. In fact, as in
Theorem A, the weight on the left hand side is (ϕ′)pβ, whereas the one on the right hand side is

(ϕ′)p(β−1). Here, ϕ is not forced to be a power function and it does not depict the precise profile
of Ω but only provides a qualitative description of its cuspidal behavior, allowing the boundary
of Ω to be very general considering that it might be based on locally John quasi-rectangles. It
is also noteworthy that the critical case of Theorem B is reached.

On the other hand, let us consider a profile cusp satisfying (5.1), but taking ̟ a John domain
(an example can be seen in Figure 4d). Moreover, let us suppose ϕ(z) = zγ for some γ > 1. We
show how the rectangles can be chosen in order to prove that such a cusp is a general external
cusp based on locally John quasi-rectangles.

Let us take

zi =
1

2i
.

The rectangle Ri is placed at height zi, and the length of its edges is

ℓi = ϕ(zi) =
1

2iγ
, and Li = zi−1 − zi =

1

2i
.

Let us consider a weight of the form:

ω(x) =

(
ℓi
Li

)pβ

=
1

2i(γ−1)pβ
∀x ∈ Ri.

Then

ω(Ri+1) =
1

2(i+1)(γ−1)pβ
|Ri+1| =

1

2(i+1)(γ−1)pβ

1

2(i+1)γ(n−1)

1

2i+1
=

1

2(i+1)
(
(γ−1)pβ+γ(n−1)+1

)

=
1

2(γ−1)pβ+γ(n−1)+1
ω(Ri).

Hence, the decresing property (3.4) is satisfied when

1

2(γ−1)pβ+γ(n−1)+1
< 1,

or, in other words:

(γ − 1)pβ + γ(n− 1) + 1 > 0,
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whi ch leads us to:

β > −
1 + γ(n− 1)

(γ − 1)p

Notice that in this case ω ∼ (ϕ′)pβ and then we can express the weight in terms of ϕ′.
On the other hand observe that each Ri is a locally John quasi-rectangle. Indeed, each Ri

can be thought as an Wi-linked domain, being Wi = {Ωj}1≤j≤N . Here N is the integer part of
Li

li
and each Ωj has height almost equal to li. It can be easily seen that any Ωj is a quasi-cube

given by a John domain. Indeed: first show that a cylindrical set J of the form ̟× (a, b) ⊂ R
n,

with b − a ∼ diam(Ω), is a John domain with constants given by those of ̟. Then conclude
by observing that Ωj almost agrees with a dilatation of J (actually it is possible to construct a
bi-Lipschitz mapping F such that F (Ωj) = liJ [Acosta and Ojea, 2012]).

Therefore can now state:

Theorem 5.2. Let Ω be an external cusp satisfying (5.1), but taking ̟ ⊂ R
n−1 a John domain,

and ϕ(z) = zγ , with γ > 1. Then:

‖Du‖Lp
ω(Ω) ≤ C

{
‖u‖Lp(B) + ‖ε(u)‖Lp

ωσ (Ω)}
}
,

with:
σ(x) =

(
ϕ′(x)

)−p
and ω(x) = (ϕ′(x))pβ ,

being β > −1+γ(n−1)
(γ−1)p .

This result is also a generalization of Theorem A. It imposes more restrictions than Theorem
5.1 on the boundary of Ω, but it admits a negative range for the exponent β. On the other
hand, the critical case β1 = β2 + 1 in Theorem B is once again reached. It is important to
notice that the counterexamples proposed in [Acosta et al., 2013] for proving Theorem B, are
given in terms of functions that depend only on the last coordinate and on the profile function
ϕ. Consequently, they are independent of the boundary of the cusp, and can be easily adapted
for general external cusps based on locally John quasi-rectangles.
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Departamento de Matemática Facultad de Ciencias Exactas y Naturales, Universidad de Buenos
Aires,, Pabellón I, Ciudad Universitaria, (1428) Buenos Aires, Argentina

E-mail address: gacosta@dm.uba.ar
E-mail address: iojea@dm.uba.ar


