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1. Introduction

Interpolation error estimates for finite elements play an important role in most of the classical
convergence arguments used in the finite element literature. For convex quadrilateral elements
and 1 ≤ p, the usual W 1,p error estimate for the Q1 isoparametric Lagrange interpolation, called
hereafter Q, reads

‖u−Qu‖Lp(K) + h|u−Qu|W 1,p(K) ≤ Ch2|u|W 2,p(K) (1.1)

where h denotes the diameter of K.
Two facts about (1.1) are well known: the convexity of K is a sufficient condition to get the

estimate

‖u−Qu‖Lp(K) ≤ Ch2|u|W 2,p(K) (1.2)

with C bounded independently of the shape of K, however

|u−Qu|W 1,p(K) ≤ Ch|u|W 2,p(K) (1.3)

requires extra assumptions on K to keep C uniformly bounded.
For the sake of completness, we will provide a sketched proof of (1.2) for a general convex

element K, while the main purpose of this article is to deal with (1.3) looking at the behaviour
of C on both p and the shape of K.

Available results for (1.3) go back to the early work by Ciarlet and Raviart [7], where the
authors show that if

h/h ≤ µ1 (1.4)

where h is the length of the shortest side of K, and

| cos θ| ≤ µ2 < 1 (1.5)

for each angle θ of K, then (1.3) holds with a constant C depending only on µ1 and µ2.
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Obviously (1.5) keeps the interior angles of K bounded away from 0, and π, and it is not difficult
to see that (1.5) together with (1.4) implies the so called regularity condition, i.e., the existence
of a constant σ such that

h/ρ ≤ σ (1.6)

where ρ denotes the diameter of the maximum circle contained in K (see for instance [6]). Under
this condition, the quadrilateral can degenerate into a triangle (i.e. its maximum angle might
approach π) but it can not become too narrow. In [9] Jamet improved the results of [7] proving
that the error estimate (1.3) holds with a constant depending only on σ.

Anisotropic finite elements, i.e., elements for which (1.6) does not hold, have deserved much
attention since the works [5, 8], where it is shown that (1.6) is not neccesary to get (1.3) for
triangular elements if the maximum angle of the triangle is bounded away from π. Since then,
the latter property has been called the maximum angle condition. For quadrilateral elements we
will use the same standard definition.

Definition 1.1. A quadrilateral or a triangle K verifies the maximum angle condition with con-
stant ψM < π, or shortly MAC(ψM ), if the interior angles of K are less than ψM .

Since for quadrilateral elements the convexity is equivalent to have the maximum angle bounded
by π, MAC(ψM ) can be seen as natural step in order to strengthen the convexity assumption.
For p = 2 it is shown in [2] that MAC(ψM ) implies (1.3), moreover the same result is also proved
there for the broader class of convex quadrilaterals given by the regular decomposition property
(see [2]) which reads as follows:

Definition 1.2. Let K be a convex quadrilateral, and let d1 and d2 be the diagonals of K. We
say that K satisfies the regular decomposition property with constants N ∈ IR and 0 < ψM < π,
or shortly RDP (N,ψM ), if we can divide K into two triangles along one of its diagonals, that
will be called always d1, in such a way that |d2|/|d1| ≤ N and both triangles satisfy MAC(ψM ).

This condition is, as far as we know, the more general one under wich (1.3) holds for p = 2.
A natural question is whether it can be generalized for different values of p. We will give an
affirmative answer for p in the range 1 ≤ p < 3 showing also, by means of an appropriate
counterexample, that this result is not longer true for 3 ≤ p.

A large amount of geometrical conditions on quadrilateral elements, besides those mentioned
above, have been introduced in the literature. We refer the reader to [2, 4, 10] where many of
them are recalled and compared.

For parallelograms it can be easily shown that MAC(ψM ) implies (1.3) for 1 ≤ p. Moreover,
the following sharp version of (1.3), called ”anisotropic estimate”, holds for rectangles (see [4])

|u−Qu|W 1,p(K) ≤ C
{

h1

∥

∥

∥

∂

∂x1
∇u

∥

∥

∥

Lp(K)
+ h2

∥

∥

∥

∂

∂x2
∇u

∥

∥

∥

Lp(K)

}

(1.7)

where h1 and h2 denote the size of the element in the directions x1 and x2. This estimate can be
extended to parallelograms under the MAC(ψM ), taking the derivatives in (1.7) along the sides
of the element. Also in [4] the same result is extended to some class of subparametric elements
which can be seen as the image of rectangles under certain small perturbations of linear mappings.
Let us notice the elementary fact that for parallelograms MAC(ψ) implies uniform bounds also
for the minimum angle of K. For this reason we introduce the following definition

Definition 1.3. We say that a quadrilateral K satisfies the double angle condition with constants
ψm, ψM , or shortly DAC(ψm, ψM ), if the interior angles θ of K verify 0 < ψm ≤ θ ≤ ψM < π.

Remark 1.1. Naturally, DAC(ψm, ψM ) is equivalent to (1.5). We prefer to introduce the previous
definition in order to stress its geometrical meaning.



One of our results shows that (1.3) holds for elements verifying DAC(ψm, ψM ) and any 1 ≤ p.
To our best knowledge there are no available results stating this property in such plain geometrical
terms. Moreover, we show that even when the condition on the maximum angle is not neccesary
for p = 2 (see for instance [9]) it can not be relaxed for 3 ≤ p.

Note that the following elementary implications hold:

DAC(ψm, ψM ) ⇒MAC(ψM ) ⇒ RDP (N,ψM )

(to prove the second implication let us notice that if K satisfies MAC(ψM ) then, dividing K
by its longest diagonal, we obviously have that it also satisfies RDP (1, ψM )). The reciprocal
implications are false as shown in Figure 1 a) and b) taking s→ 0 and s→ 1/2 respectively.
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The condition DAC(ψm, ψM ) is easier to handle than RDP (ψM , N). We have tried to keep
the article more readable dealing with both conditions in separate sections. Those results which
apply in both cases are treated at the same time in order to avoid repetitions.

The article is organized as follows: in Section 2, and following closely [2], we present a general
family of ”reference” elements introducing some useful bounds for the subsequent sections and
showing how to decompose the error by means of the linear Lagrange interpolation, in Section 3 and
Section 4 we construct the changes of variable which allow us to work in the family of reference for
elements verifying RDP (ψM , N) and DAC(ψm, ψM ) respectively. Section 5 is devoted to bound
some terms given by the error decomposition and finally in the last section we present the main
results and some counterexamples.

2. The family of reference elements K(a, b, ã, b̃)

We will use the following notation. For a general convex quadrilateral K, Mi with 1 ≤ i ≤ 4,
will denote its vertices in anticlockwise order. If one vertex is placed at the origin we will use M1

to denote it. Given a, b, ã, b̃ > 0, K(a, b, ã, b̃) will represent a convex quadrilateral with vertices

M1 = (0, 0), M2 = (a, 0), M3 = (ã, b̃) and M4 = (0, b). In particular K̂ = K(1, 1, 1, 1) is the

reference unit square and its vertices will be denoted with M̂i. For a general convex K(a, b, ã, b̃)



we will denote with d1 the diagonal joining the vertices M2 and M4, and with d2 the remaining
diagonal. We will call T1 and T2 the triangles which lie respectively above and below d1, and α
the angle between d1 and the segment l joining M3 and M4.
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We will use the variable x̂ on K̂ and x onK, and when there is no danger of confusion we will also
use (x, y) ∈ K, (x̂, ŷ) ∈ K̂. In order to define the isoparametric elements on K, let FK : K̂ → K

be the transformation FK(x̂) =
∑4

i=1Miφ̂i(x̂), where φ̂i is the bilinear basis function associated

with the vertex M̂i, i.e., φ̂i(M̂j) = δji . Now, the basis functions on K, no longer bilinear in general,

are defined by φi(x) = φ̂i(F
−1
K (x)) and the Q1 isoparametric interpolation operator Q on K is

defined by

Qu(x) = Q̂û(x̂)

where x = FK(x̂) and Q̂ is the bilinear Lagrange interpolation of û = u ◦ FK on K̂.
In order to bound the interpolation error for a given K, we will construct, in the following

sections, an affine transformation L taking K into one element of the type K(a, b, ã, b̃). The
following elementary lemma provides some conditions on L which allow us to compare the error
on both elements.

Lemma 2.1. Let K,K be two quadrilateral elements, and let L : K → K be an affine trans-
formation L(x) = Bx + p. Assume that L(K) = K, κ(B) ≤ C and det(B) = 1, where κ is the
condition number of B. If Q is the isoparametric interpolation on K and u = u ◦L then there are
positive constants C1 and C2 depending only on C such that for any 1 ≤ p

C1|u−Qu|W 1,p(K) ≤ |u−Qu|W 1,p(K) ≤ C2|u−Qu|W 1,p(K)

and,

C1|u|W 2,p(K) ≤ |u|W 2,p(K) ≤ C2|u|W 2,p(K).

Proof. By definition of the isoparametric interpolation we have

Qu(x) = Q̂û(F−1
K (x)) and, Qu(x) = Q̂û(F−1

K
(x)).

Where x denotes the variable on K. Since L is an affine transformation, FK = L ◦ FK and so

Qu(x) = Qu(x). Then, the lemma follows easily by observing that ‖B‖, ‖B−1‖ < C and the fact
that detB = 1.



Assuming that the previous transformation can be performed (a fact that will be proved later)

we can suppose that our element belongs to the class K = K(a, b, ã, b̃) and following [2, 9], we
can decompose the error in the following way:

|u−Qu|W 1,p(K) ≤ |u− Πu|W 1,p(K) + |Πu−Qu|W 1,p(K)

where Π is the P1-Lagrange interpolation operator associated with the vertices M1 = (0, 0),
M2 = (a, 0) and M4 = (0, b) (i.e., Πu is an affine function which agrees with u on these three
vertices). Moreover, since Πu−Qu belongs to the finite element isoparametric space and vanishes
at M1, M2 and M4, it follows that

(Πu−Qu)(x) = (Πu− u)(M3)φ3(x)

(recall that φ3 is the basis function corresponding to M3), therefore,

|u−Qu|W 1,p(K) ≤ |u− Πu|W 1,p(K) + |(Πu− u)(M3)||φ3|W 1,p(K) (2.1)

and so, it is enough to estimate the two terms on the right hand side. This fact, toghether with
the construction of the affine transformation L, is the object of the rest of the present paper.

Before we finish this section, we present some general bounds for |φ3|W 1,p(K).

We start by analyzing the Jacobian of the the transformation FK : [0, 1]2 = K̂ → K defined as

FK(x̂, ŷ) = (ax̂(1 − ŷ) + ãx̂ŷ , bŷ(1 − x̂) + b̃x̂ŷ) = (x, y). (2.2)

We have

DFK(x̂, ŷ) =

(

a+ ŷ(ã− a) x̂(ã− a)

ŷ(b̃− b) b+ x̂(b̃− b)

)

and,

JK := detDFK(x̂, ŷ) = ab(1 + x̂(b̃/b− 1) + ŷ(ã/a− 1)). (2.3)

Observe that since K is convex, we have JK > 0 in the interior of K̂. Indeed, since JK is an
affine function it is enough to verify that it is positive at some vertex of K̂ and non negative at
the remaining ones. The positivity at M̂1 = (0, 0) is trivial, as well as the non negativity at M̂2

and M̂4. On the other hand, since K is convex, (ã, b̃) lies above the segment joining M2 and M4

and therefore, it follows that

JK(1, 1) = ab(b̃/b+ ã/a− 1) ≥ 0. (2.4)

Now, since ∂φ̂3

∂x̂ = ŷ and ∂φ̂3

∂ŷ = x̂, a simple computation yields

(

∂φ3

∂x
◦ FK

)

(x̂, ŷ) = bŷ/JK(x̂, ŷ)

and,
(

∂φ3

∂y
◦ FK

)

(x̂, ŷ) = ax̂/JK(x̂, ŷ).

Therefore, using (2.3), and making a change of variables, we have

∥

∥

∥

∂φ3

∂x

∥

∥

∥

p

Lp(K)
=

∫ 1

0

∫ 1

0

bŷp

ap−1(1 + x̂(b̃/b− 1) + ŷ(ã/a− 1))p−1
dx̂ dŷ (2.5)



and,
∥

∥

∥

∂φ3

∂y

∥

∥

∥

p

Lp(K)
=

∫ 1

0

∫ 1

0

ax̂p

bp−1(1 + x̂(b̃/b− 1) + ŷ(ã/a− 1))p−1
dx̂ dŷ. (2.6)

Hence, calling

Ip(a, b, ã, b̃) :=

∫ 1

0

∫ 1

0

1

(1 + x̂(b̃/b− 1) + ŷ(ã/a− 1))p−1
dx̂ dŷ (2.7)

we get
∥

∥

∥

∂φ3

∂x

∥

∥

∥

p

Lp(K)
≤ b

ap−1
Ip(a, b, ã, b̃) (2.8)

and,

∥

∥

∥

∂φ3

∂y

∥

∥

∥

p

Lp(K)
≤ a

bp−1
Ip(a, b, ã, b̃). (2.9)

Thus, to control |φ3|W 1,p(K) we need to bound Ip(a, b, ã, b̃) for positive a, b, ã and b̃ satisfying
(2.4). This will be achieved later taking into account the geometrical conditions of K.

3. Implications of the RDP (N,ψM )

Error estimates in H1 for elements K verifying the RDP (N,ψM ) are handled in [2] by con-

structing an affine transformation L(x) = Bx+P and a ”reference” element K(a, b, ã, b̃) in such

a way that L(K(a, b, ã, b̃)) = K. In the next Lemma, we summarize the main results involving L
with the notation given in Figure 2, and refer the reader to [2] for the proof.

Lemma 3.1. Let K be a convex quadrilateral verifying the RDP (N,ψM ). Then, there exist an

affine transformation L(x) = Bx+P , a convex K(a, b, ã, b̃) given by positive numbers a, b, ã, b̃, and
positive constants C = C(ψM , N), N = N(ψM ,N), δ = δ(ψM ,N) and ψM = ψM (ψM ,N) < π
such that

a) L(K(a, b, ã, b̃)) = K;
b) ‖B‖, ‖B−1‖ < C, det(B) = 1;
c) The diameter of both elements are comparable, i.e.,

C−1diam(K) ≤ diam(K(a, b, ã, b̃)) ≤ Cdiam(K);

d) K(a, b, ã, b̃), satisfies RDP (ψM ,N) taking d1 = M2M4 as the dividing diagonal;
e) The length of the side l = M3M4 is comparable to the length of the shortest side s of

K(a, b, ã, b̃). Moreover
|s| ≤ |l| ≤ C2|s|;

f) The angle α is bounded away from 0 and π, indeed, 0 < δ < α < ψM < π.

Proof. See Lemma 3.3 of [2].

Remark 3.1. In view of the preceding lemma, and Lemma 2.1, whenever we deal with a convex
quadrilateral K of diameter h satisfying the RDP (N,ψM ) we will assume that it is of the type

K(a, b, ã, b̃). Moreover, we will assume the existence of positive constants N1(ψM ,N), N2(ψM ,N),
N3(ψM , N) and ψ < π such that:

(H1) |d2|/|d1| ≤ N1;

(H2) 1/ sinα ≤ N2;

(H3) |l| ≤ N3|s| where s is the shortest side of K(a, b, ã, b̃);



(H4) θ ≤ ψ , for all angle θ of T1 and T2.

Indeed, (H1) and (H4) follow immediately from d) of Lemma 3.1, (H2) follows from f), and
(H3) from e).

Some useful bounds can be derived from (H1), (H2), (H3) and (H4).

Lemma 3.2. Let K(a, b, ã, b̃) be a quadrilateral satisfying (H1), (H2), (H3) and (H4), then

ã/a ≤ N3 < N4 and, b̃/b ≤ N4 (3.1)

where N4 = N3 + 1
h ≤ N3(1 +N1)|d1| (3.2)

and,

|K|
|T2|

≤ N5, (3.3)

where N5 = 2N4 + 1.

Proof. We have, ã/a ≤ |l|/a and |b̃− b|/b ≤ |l|/b and so (3.1) follows from (H3).
In order to prove (3.2), let us observe that if h is the length of one of the diagonals, then, it

follows from (H1) that h ≤ max{1, N1}|d1| and so (3.2) holds because N3 ≥ 1. Otherwise, h
agrees with the length of one of the sides of K and so h = |l| or h = |l23|, where l23 is the side
joining M2 and M3, because the lengths of the other two sides are bounded by |d1|. Now, in view
of H3, |l| ≤ N3|l23| and therefore, it is enough to see that |l23| ≤ (1 + N1)|d1|. But, from the
triangle inequality, |l23| ≤ a+ |d2| ≤ |d1| + |d2| ≤ (1 +N1)|d1| and therefore (3.2) holds. Finally,
(3.3) follows easily from (3.1).

The following lemma can also be found in [[2], Lemma 4.5]. We reproduce its proof for the sake
of completness. To simplify notation we introduce N6 = max {N2, 1/ sin((π + ψ)/2)}.
Lemma 3.3. If K = K(a, b, ã, b̃) is convex and satisfies the hypotheses (H1), (H2), (H3), (H4)
then,

(1) max{|l|/a, |l|/b} ≤ N2(b̃/b+ ã/a− 1);

(2) If b̃/b ≤ 1 then a/b ≤ N2;

(3) If b̃/b ≤ 1/2 and ã/a > 1 then b/a ≤ 2N3;

(4) If b̃/b > 1 and a/b ≤ tg((π − ψ)/2) then |l| ≤ N6ã;

(5) If b̃/b > 1 and b/a ≤ tg(α/2) then |l| ≤ 2N2(b̃− b);

(6) min{1/|ã − a|, 1/b̃} ≤
√

2N3/|l|;
(7) min{1/|b̃ − b|, 1/ã} ≤

√
2/|l|.

Proof. 1) Calling y(x) = −(b/a)(x− a) the equation of the straight line passing through M2 and
M4 and calling y−1 its inverse, we have

b̃− y(ã)

b
=
ã− y−1(b̃)

a
=
b̃

b
+
ã

a
− 1. (3.4)

Now, an elementary geometrical analysis yields |l| sinα ≤ b̃− y(ã) and |l| sinα ≤ ã− y−1(b̃) and
therefore, 1) follows from (3.4) and (H2).

2) Calling β the angle between d1 and the segment joining M4 and (a, b), we have that, since

b̃ ≤ b, then α ≤ β. So, b/a = tgβ ≥ tgα and therefore, using again (H2) we obtain 2).

3) Under these hypotheses we have that |l| ≥ b − b̃ ≥ b/2. Then b/a ≤ 2|l|/a and therefore, 3)
follows from (H3).



4) Calling γ the angle between d1 and the segment joining M1 and M4 it is easy to see that, under
these hypotheses, γ ≤ (π − ψ)/2. Now, using (H4) we have

α ≤ α+ γ ≤ (π + ψ)/2

and, since |l|/ã = 1/ sin(α+ γ), 4) follows from (H2) and the fact that ψ < π.

5) With β as in 2), we have in this case that β ≤ α. Then, tgβ = b/a ≤ tg(α/2) and so, β ≤ α/2.
Therefore, α− β ≥ α/2 and 5) follows by observing that

b̃− b = |l| sin(α− β) ≥ |l| sin(α/2) ≥ |l|(sinα)/2.

6) Let us call η the interior angle of K at the vertex M2 and l23 the side joining M2 and M3.
Then, we have

|ã− a|/|l23| = cos η and, b̃/|l23| = sin η

and so, 6) follows from (H3).

7) Follows by an analysis similar to that given in 6).
Before finishing this section we focus on some partial bounds for |φ3|W 1,p(K), for 1 ≤ p < 3. We

start with the following remark which tells us that bounds for 1 ≤ p < 2 can be derived from the
case p = 2 already obtained in [2].

Remark 3.2. In Lemma 4.6 of [2] it is shown that

|φ3|2W 1,2(K) ≤ C(ψM ,N)
h

l
(3.5)

for any convex K satisfying (H1), (H2), (H3), and (H4) (this result also follows as a particular
case of Lemma 3.5 below).

This inequality allows us to bound |φ3|W 1,p(K) easily if 1 ≤ p < 2. Indeed, consider for instance
∥

∥

∥

∂φ3

∂x

∥

∥

∥

p

Lp(K)
. Taking p̂ = 1

p−1 > 1 and applying Hölder’s inequality in the rigth hand side of (2.5),

we have
∥

∥

∥

∂φ3

∂x

∥

∥

∥

p

Lp(K)
≤

(

∫ 1

0

∫ 1

0

b
1

p−1 ŷ
p

p−1

a(1 + x̂(b̃/b− 1) + ŷ(ã/a− 1))
dx̂ dŷ

)p−1

and, taking into account that ŷ ≤ 1 and 2 ≤ p
p−1 ,

∥

∥

∥

∂φ3

∂x

∥

∥

∥

p

Lp(K)
≤ b2−p

∥

∥

∥

∂φ3

∂x

∥

∥

∥

2(p−1)

L2(K)
.

Using now (3.5), and the facts that p < 2 and b ≤ h, we get
∥

∥

∥

∂φ3

∂x

∥

∥

∥

p

Lp(K)
≤ C(ψ,N)p−1 h

lp−1
.

Analougous arguments for
∥

∥

∥

∂φ3

∂y

∥

∥

∥

p

Lp(K)
show, for any 1 ≤ p ≤ 2, that

|φ3|W 1,p(K) ≤ C(ψM ,N)1/q
h1/p

l1/q
(3.6)

where q is the dual exponent of p. We will show that, under the same hypotheses on K, (3.6)
holds for 1 ≤ p < 3, even when it can not be deduced from (3.5).



Remark 3.3. For any 2 < p < 3, and 0 < t we define ηp(t) = t3−p
−t

(p−2)(1−t) . Taking the limit as

p→ 2 we will write η2(t) = tln(t)
t−1 .

An easy computation shows that ηp is an increasing function of t for any 2 ≤ p < 3, and

0 ≤ ηp(t) ≤ max{1, t}. (3.7)

Since the bound of |φ3|W 1,p(K) relies on Ip (see (2.8), (2.9)), we devote the next Lemma to the
study of Ip. In view of Remark 3.2, we will assume 2 ≤ p.

Lemma 3.4. Let 2 ≤ p < 3 and a, b, ã, b̃ > 0 such that b̃/b + ã/a − 1 > 0. Then, the integral

Ip = Ip(a, b, ã, b̃) defined in (2.7) satisfies

(1) If b̃/b ≤ 1 and ã/a ≤ 1 then, Ip ≤ 1
(b̃/b+ã/a−1)p−1

;

(2) If b̃/b ≤ 1 and ã/a > 1 then, Ip ≤ 1
3−p min{ µp(ã/a)

(1−b̃/b)(ã/a−1)
, b
b̃
};

(3) If b̃/b > 1 and ã/a ≤ 1 then, Ip ≤ 1
3−p min{ µp(b̃/b)

(1−b̃/b)(ã/a−1)
, aã};

(4) If b̃/b > 1 and ã/a > 1 then, Ip ≤ 1;

where in (2) it is understood that the minimum is b/b̃ when b̃/b = 1 and analogously in (3).
Finally, µp(t) = (t− 1)ηp(t) + 1, with 1 ≤ t and ηp defined in Remark 3.3.

Observe that, thanks to (3.7), µp can be easily bounded in terms of t.

Proof. 1) Since 0 ≤ x̂, ŷ ≤ 1, it follows that

1

(1 + x̂(b̃/b− 1) + ŷ(ã/a− 1))p−1
≤ 1

(b̃/b+ ã/a− 1)p−1

and so, 1) holds.

2) For 2 < p < 3 a direct computation shows

Ip =
1

(3 − p)(p − 2)

1 + ( ãa + b̃
b − 1)3−p − ( ãa)

3−p − ( b̃b)
3−p

( ãa − 1)(1 − b̃
b )

. (3.8)

Clearly, the numerator can be bounded in terms of ã/a since b̃/b ≤ 1 and p < 3, however this
would provide a poor bound as p approaches 2. In order to avoid this problem we define

IIp =
1 + ( ãa + b̃

b − 1)3−p − ( ãa)
3−p − ( b̃b )

3−p

p− 2
(3.9)

and notice that it can be written as

IIp = (1 − (
ã

a
+
b̃

b
− 1))ηp(

ã

a
+
b̃

b
− 1) + (

ã

a
− 1)ηp(

ã

a
) + (

b̃

b
− 1)ηp(

b̃

b
)

where ηp has been defined in Remark 3.3. Now, since 0 ≤ ηp(t) and b̃
b ≤ 1, we know that the last

term of IIp is negative, so

IIp ≤ (1 − (
ã

a
+
b̃

b
− 1))ηp(

ã

a
+
b̃

b
− 1) + (

ã

a
− 1)ηp(

ã

a
)

and by (3.7) we easily deduce that (1 − t)ηp(t) ≤ 1 for any 0 ≤ t. Hence,

IIp ≤ 1 + (
ã

a
− 1)ηp(

ã

a
) = µp(

ã

a
).



Thus, from (3.8) and (3.9) and the previous inequality we get

Ip =
IIp

(3 − p)( ãa − 1)(1 − b̃
b)

≤ µp(
ã
a)

(3 − p)( ãa − 1)(1 − b̃
b)
. (3.10)

On the other hand, since ã
a ≥ 1, b̃

b ≤ 1, and η(t) ≤ 1 for 0 ≤ t ≤ 1,

Ip ≤
∫ 1

0

∫ 1

0

1

(1 + x̂(b̃/b− 1))p−1
dx̂ dŷ =

( b̃b )
2−p − 1

(2 − p)( b̃b − 1)
=
b

b̃
ηp(

b̃

b
) ≤ b

b̃
. (3.11)

Hence, for 2 < p < 3, item 2) follows from (3.10) and (3.11) by observing that 1 ≤ 1
3−p .

The case p = 2 follows by taking p → 2 in (3.10) and (3.11), yielding the same bound as that
given in [2].

3) Follows like part 2) after changing the roles of a and ã with b and b̃ respectively.

4) Under these hypotheses it follows immediately that 1 + x̂(b̃/b− 1) + ŷ(ã/a− 1) ≥ 1 and so 4)
holds.

Now we are ready to get bounds for |φ3|W 1,p(K) in terms of geometric properties of the reference
configuration for elements verifying the RDP (ψM ,N).

Lemma 3.5. If K = K(a, b, ã, b̃) is convex and satisfies (H1), (H2), (H3), and (H4) then, for any
1 ≤ p < 3 there exists a constant C depending only on ψ, p, and Ni, i = 1, 2, 3 such that

|φ3|W 1,p(K) ≤ C
h1/p

|l|1/q . (3.12)

Proof. We only need to deal with the case 2 ≤ p < 3, since 1 ≤ p < 2 was derived from the case
p = 2 in Remark 3.2.

Let us consider four cases as in Lemma 3.4.
1) If b̃/b ≤ 1 and ã/a ≤ 1 then, from (2.8), part 1) of Lemma 3.4 and part 1) of Lemma 3.3, it
follows that

∥

∥

∥

∂φ3

∂x

∥

∥

∥

p

Lp(K)
≤ b

ap−1

1

(b̃/b+ ã/a− 1)p−1
≤ Np−1

2

b

|l|p−1
≤ Np−1

2

h

|l|p−1
.

Analogously, using now (2.9), we obtain

∥

∥

∥

∂φ3

∂y

∥

∥

∥

p

Lp(K)
≤ Np−1

2

h

|l|p−1
.

2) Assume now that b̃/b ≤ 1 and ã/a > 1. Using again (2.8) and (2.9) but combined now with
part 2) of Lemma 3.4 and (3.1) we obtain

∥

∥

∥

∂φ3

∂x

∥

∥

∥

p

Lp(K)
≤ b

ap−1(3 − p)
min

{ µp(N4)

(1 − b̃/b)(ã/a− 1)
,
b

b̃

}

(3.13)

and,
∥

∥

∥

∂φ3

∂y

∥

∥

∥

p

Lp(K)
≤ a

bp−1(3 − p)
min

{ µp(N4)

(1 − b̃/b)(ã/a− 1)
,
b

b̃

}

. (3.14)

Now, if b/b̃ ≤ 2, the proof concludes by using (3.13), (3.14) and (H3). Otherwise, b̃/b < 1/2 and

so 1/(1 − b̃/b) < 2. On the other hand, from part 3) of Lemma 3.3 we know that b/a ≤ 2N3 and
therefore, using again (3.13) combined with part 6) of Lemma 3.3 we obtain



∥

∥

∥

∂φ3

∂x

∥

∥

∥

p

Lp(K)
≤ 2N3

ap−2(3 − p)
min

{2µp(N4)

ã/a− 1
,
b

b̃

}

≤ 4N3

(3 − p)ap−2
(µp(N4) + 1)hmin

{ 1

ã− a
,
1

b̃

}

≤ 4
√

2N2
3

(3 − p)ap−2
(µp(N4) + 1)

h

|l| .

and from (H3), |l| ≤ N3a, and the fact that p− 2 ≥ 0

∥

∥

∥

∂φ3

∂x

∥

∥

∥

p

Lp(K)
≤ 4

√
2Np

3

(3 − p)
(µp(N4) + 1)

h

|l|p−1
.

The bound for ‖∂φ3

∂y ‖
p
Lp(K) follows in a similar way from (3.14) and part 2) of Lemma 3.3.

3) Consider now the case b̃/b > 1 and ã/a ≤ 1. Once again we use (2.8) and (2.9) combined now
with part 3) of Lemma 3.4 to obtain

∥

∥

∥

∂φ3

∂x

∥

∥

∥

p

Lp(K)
≤ b

ap−1(3 − p)
min

{ µp(N4)

(b̃/b− 1)(1 − ã/a)
,
a

ã

}

(3.15)

and,
∥

∥

∥

∂φ3

∂y

∥

∥

∥

p

Lp(K)
≤ a

bp−1(3 − p)
min

{ µp(N4)

(b̃/b− 1)(1 − ã/a)
,
a

ã

}

. (3.16)

However, we can not proceed exactly as in the previous case because now we do not know, as
before, that a/b is bounded from above and below.

Assume first that b/a < 1/tg((π − ψ)/2). Then, as in part 2), we can assume that ã/a ≤ 1/2
(otherwise, the estimate follows easily from (3.15) and (3.16)). In this case we have

∥

∥

∥

∂φ3

∂x

∥

∥

∥

p

Lp(K)
≤ 2

ap−2(3 − p)tg((π − ψ)/2)
(µp(N4) + 1)min

{ b

b̃− b
,
a

ã

}

≤ 2

ap−2(3 − p)tg((π − ψ)/2)
(µp(N4) + 1)hmin

{ 1

b̃− b
,
1

ã

}

and so, the result follows from part 7) of Lemma 3.3.
On the other hand, if b/a ≥ 1/tg((π − ψ)/2), we can use part 4) of Lemma 3.3 and (3.15) to

get

∥

∥

∥

∂φ3

∂x

∥

∥

∥

p

Lp(K)
≤ b

ap−2(3 − p)ã
≤ N6N

p−2
3

b

(3 − p)|l|p−1
≤ N6N

p−2
3

h

(3 − p)|l|p−1
.

Now, in order to bound the derivative with respect to y, we consider again two cases: a/b <

1/tg(α/2) and a/b ≥ 1/tg(α/2). In the first case, we bound
∥

∥

∥

∂φ3

∂y

∥

∥

∥

p

Lp(K)
proceeding as before by

using part 7) of Lemma 3.3.
In the second case, we use (3.16) to obtain

∥

∥

∥

∂φ3

∂x

∥

∥

∥

p

Lp(K)
≤ 2

a

(3 − p)bp−2
(µp(N4) + 1)

1

b̃− b

and the proof concludes by using part 5) of Lemma 3.3.

4) Finally, in the case b̃/b > 1 and ã/a > 1 the result follows trivially from part 4) of Lemma 3.4
and (H3) by using again (2.8) and (2.9).



4. Implications of the DAC(ψm, ψM )

Before we proceed, we need the following lemma, which says how the angles are transformed
under an affine mapping.

Lemma 4.1. Let L an affine transformation associated with a matrix B. Given two vectors v1
and v2, let α1 and α2 be the angles between them and between L(v1) and L(v2), respectively. Then

2

κ(B)π
α1 ≤ α2 ≤ π(1 − 2

κ(B)π
) + α1

2

κ(B)π
.

Proof. The proof is elementary and can be found in [1].
The next lemma is in the same spirit of Lemma 3.1 for elements verifying DAC(ψm, ψM ). Since

DAC(ψm, ψM ) ⇒ RDP (ψM , 1)

we could use the same L given in Lemma 3.1. However, with this choice of L, some conditions
which are important to bound the error for 3 ≤ p, do not neccesarily hold. With this in mind, we
will construct a different affine mapping L̃.

Lemma 4.2. Let K be a quadrilateral verifying the DAC(ψm, ψM ). Then there exist an affine

transformation L̃(x) = Bx + P , a convex K(a, b, ã, b̃) given by positive numbers a, b, ã, b̃, and
positive constants C = C(ψm, ψM ), ψm = ψm(ψm, ψM ), ψM = ψM (ψm, ψM ) < π such that

a) ã
a ,

b̃
b ≤ 1 and L̃(K(a, b, ã, b̃)) = K;

b) ‖B‖, ‖B−1‖ < C, det(B) = 1;
c) The diameter of both elements are comparable, i.e.,

C−1diam(K) ≤ diam(K(a, b, ã, b̃)) ≤ Cdiam(K);

d) K(a, b, ã, b̃) satisfies DAC(ψm, ψM );

e) The angle α is bounded away from 0 and π, indeed, π−ψM

2 ≤ α ≤ π − ψm.

Proof. It is always possible to choose two adjacent sides of K, l1 and l2, such that K is contained
in the parallelogram defined by these two sides. Observe that the diameter of this parallelogram
has the same order of K. Call M1 the vertex where l1 and l2 intersect, and β the angle at M1 .
After a rigid movement we may asumme that M1 is placed at the origin and that the side l2 lies
on the x axis. Let us call a the length of l2 (see Figure 3). Now, let l14 be the side with vertices
M1 and M4 (in anticlockwise vertex order), and define b = |l14|sin(β). Thus, M4 = (b cotg(β), b).

We define the linear mapping L̃ associated with the matrix
(

1 cotg(β)
0 1

)

and ã, b̃ such that L̃(K(a, b, ã, b̃)) = K. It is easy to check that ã ≤ a and b̃ ≤ b, and hence

a) is proved. Item b) follows easily taking into account that ‖B‖, ‖B−1‖ ≤
√

2
sin(β) and the fact

that K verifies DAC(ψm, ψM ). Item c) is evident from b), and item d) follows again from b)

together with Lemma 4.1. Finally, the last item follows from d), indeed, since K(a, b, ã, b̃) verifies
DAC(ψm, ψM ) the angle θ at M3 verifies ψm ≤ θ ≤ ψM . Thus, one of the remaining angles of T1,
which we may assume to be α (if this is not the case, we can perform a rigid movement keeping

the properties a), b), c) and d) unchanged), verifies π−ψM

2 ≤ α ≤ π − ψm .
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Figure 3

Remark 4.1. In view of the preceding lemma, and of Lemma 2.1, whenever we deal with a convex
quadrilateral K of diameter h satisfying the DAC(ψm, ψM ) we will assume that it is of the type

K(a, b, ã, b̃). Moreover, we will assume the existence of a positive constant Ñ(ψm, ψM ) such that:

(H̃1) ã
a ,

b̃
b ≤ 1;

(H̃2) 1/ sinα ≤ Ñ .

Let us notice that (H̃2) follows immediatly from item e) of Lemma 4.2.

The following elementary facts are deduced from (H̃1):

h = |d1|; (4.1)

|K|
|T2|

≤ 2. (4.2)

Remark 4.2. Trying to replicate the construction of L̃ carried out in Lemma 4.2, for an ele-
ment verifiyng the RDP (N,ψM ), will eventually lead to the fact that it is not possible to bound
κ(B) in terms of ψM and N , since the angle β might approach 0. The transformation L con-

structed in Lemma 3.1 overcomes this difficulty relaxing the bounds on ã
a ,

b̃
b (see (3.1)). As we

shall see, the condition (H̃1), valid for elements verifying DAC(ψm, ψM ), simplifies the study of
the interpolation error.

Lemma 4.3. If K = K(a, b, ã, b̃) is convex and satisfies the hypotheses (H̃1) and (H̃2), then,

max{|l|/a, |l|/b} ≤ Ñ(b̃/b+ ã/a− 1).

Proof. The proof is the same as that given for item 1) of Lemma 3.3 changing (H2) by (H̃2). .
For K verifying DAC(ψm, ψM ) the bounds for |φ3|W 1,p(K) can be handled easier than in the

case of the RDP . This fact allows us to present directly the next lemma:



Lemma 4.4. If K = K(a, b, ã, b̃) is convex and satisfies (H̃1) and (H̃2), then, for any 1 ≤ p,

|φ3|W 1,p(K) ≤ CÑ1/q h
1/p

|l|1/q (4.3)

where q is the dual exponent of p, and with C independent of K.

Proof. We will bound only
∥

∥

∥

∂φ3

∂x

∥

∥

∥

p

Lp(K)
, since the other derivative can be treated in the same way.

First, let us notice that the fact that ã
a ,

b̃
b ≤ 1 allows us to bound Ip like we did in item 1) of

Lemma 3.4, to get

Ip ≤
1

(b̃/b+ ã/a− 1)p−1
.

Hence, from (2.8) and Lemma 4.3 we get
∥

∥

∥

∂φ3

∂x

∥

∥

∥

p

Lp(K)
≤ b

ap−1

1

(b̃/b+ ã/a− 1)p−1
≤ Ñp−1 b

lp−1

and the proof concludes by taking into account that b ≤ h.

5. Bounding |u− Πu|W 1,p(K) and |(Πu− u)(M3)|
In order to handle |u− Πu|W 1,p(K) and |(Πu− u)(M3)| (see (2.1)) we will require a sharp form

of the trace theorem on a triangle. The L2 version of the following lemma can be found in [12],
we state it in Lp and omit the proof since it follows step by step the one given in [12].

Lemma 5.1. Let T be a triangle with diameter hT and e be any of its sides. For any 1 ≤ p we
have

‖u‖Lp(e) ≤ 2
1

q

( |e|
|T |

)1/p

{‖u‖Lp(T ) + hT |u|W1,p(T )}

where q is the dual exponent of p.

In the next lemma we give an estimate for |(u−Πu)(M3)| in terms of |u−Πu|W 1,p(K). We will
use the notation of Figure 2.

Lemma 5.2. If K = K(a, b, ã, b̃) is convex and verifies either

a) (H1), (H2), (H3), (H4) or b) (H̃1), (H̃2)

then, for any 1 ≤ p,

|(u− Πu)(M3)| ≤ C
|l|1/q
h1/p

{|u− Πu|W 1,p(T1) + h|u|W 2,p(T1)} (5.1)

where q is the dual exponent of p, and C = 2(N2N3(1 +N1))
1/p in case a), or C = 2Ñ1/p in case

b).

Proof. Let us denote with ∂l the derivative in the direction of l. Using that (u − Πu)(M4) = 0,
Hölder’s inequality, and Lemma 5.1 we have

|(u− Πu)(M3)| =
∣

∣

∣

∫

l
∂l(u− Πu)

∣

∣

∣
≤ |l|1/q‖∂l(u− Πu)‖Lp(l)

≤ 2
1− 1

p
|l|

|T1|1/p
{|u− Πu|W 1,p(T1) + hT1

|u|W 2,p(T1)}

where q is the dual exponent of p.



Writing |T1| = |l||d1| sinα/2, it follows that

|l|
|T1|1/p

= 21/p |l|1/q
(sin(α)|d1|)1/p

and, in case a), we get from (3.2) and (H2) that

|l|
|T1|1/p

≤ (2N2N3(1 +N1))
1/p |l|1/q

h1/p

while in case b), we get from (H̃2) and (4.1) that

|l|
|T1|1/p

≤ (2Ñ )1/p
|l|1/q
h1/p

and the proof concludes in both cases by observing that hT1
≤ h.

Remark 5.1. Since K is convex, it is well known that, for any 1 ≤ p, there exists a constant Cp
depending only on p such that

‖w‖Lp(K) ≤ Cph|w|W 1,p(K) (5.2)

for any w with vanishing average on K. For p = 1 and p = 2, and general convex domains, the
optimal constants are known to be C1 = 1

2 and C2 = 1
π (see [3, 11]).

The following lemma gives an estimate for the error |u− Πu|W 1,p(K) of the linear interpolant.

Lemma 5.3. If K = K(a, b, ã, b̃) is convex and verifies either

a) (H1), (H2), (H3), (H4) or b) (H̃1), (H̃2)

then, for any 1 ≤ p,

|u− Πu|W 1,p(K) ≤ Ch|u|W 2,p(K) (5.3)

where C = 2
(

Cp(1 + 2
1

qN
1

p

5 ) + 2
1

qN
1

p

5

)

in case a), and C = 2(3Cp + 2) in case b).

Proof. Consider, for example, v = ∂
∂x(u− Πu). We want to show that

‖v‖Lp(K) ≤ Ch|v|W 1,p(K).

Let vK be the mean value of v on K, from (5.2) we have

‖v − vK‖Lp(K) ≤ Cph|v|W 1,p(K). (5.4)

Therefore, it remains to bound ‖vK‖Lp(K). Using the fact that the integral between 0 and a of
v(x, 0) vanishes, Hölder’s inequality, and Lemma 5.1 , we obtain

‖vK‖Lp(K) = |vK ||K|1/p =
|K|1/p
a

∣

∣

∣

∫ a

0
(v − vK)(x, 0)dx

∣

∣

∣

≤ 21−1/p

( |K|
|T2|

)1/p

{‖v − vK‖Lp(K) + h|v|W 1,p(K)}

and the bound for ∂
∂x(u − Πu) is obtained by means of the triangle inequality, and using again

(5.4) toghether with (3.3) in case a) and (4.2) in case b). Finally, the result follows by observing
that the derivative with respect to y can be bounded in a similar fashion.



6. Main Results

In this section we prove the interpolation theorem and by means of counterexamples we show
that some of our results are sharp.

We begin with the following elementary Lemma, and include a sketch of its proof for the sake
of completness:

Lemma 6.1. Let K = K(1, 1, ã, b̃), K convex, and ã, b̃ ≤ 1. Then for any 1 ≤ p we have

‖u−Qu‖Lp(K) ≤ C|u|W 2,p(K) (6.1)

for a constant C independent of K.

Proof. We obviously have

‖u−Q(u)‖Lp(K) ≤ ‖u− P (u)‖Lp(K) + ‖Q(P (u) − u)‖Lp(K)

where P is the linear Taylor polinomial of u averaged over a fixed ball (see [6], Chapter 4) contained
in the triangle of vertices (0, 0), (1, 0) and (0, 1).

Bramble-Hilbert’s lemma, and Sobolev’s inequality as stated in [6], yield on one hand

‖u− P (u)‖W 2,p(K) ≤ C|u|W 2,p(K)

and, on the other
‖P (u) − u‖L∞(K) ≤ C‖P (u) − u‖W 2,p(K)

with C independent of K in both cases (recall that ã, b̃ ≤ 1). We conclude the proof just taking
into account that

‖Q(P (u) − u)‖Lp(K) ≤ ‖Q(P (u) − u)‖L∞(K) ≤ C‖P (u) − u‖L∞(K).

Collecting the previous lemmas, we obtain our main theorem which gives the optimal error
estimate for convex quadrilaterals.

Theorem 6.1. Let K be a convex quadrilateral with diameter h, and 1 ≤ p. There exists a
constant C0 independent of K such that

‖u−Qu‖Lp(K) ≤ C0h
2|u|W 2,p(K). (6.2)

For 1 ≤ p < 3 and K satisfying RDP (N,ψM ) we have

|u−Qu|W 1,p(K) ≤ Ch|u|W 2,p(K) (6.3)

with C = C(N,ψM , p), and the restriction on p can not be removed.
Finally, for any 1 ≤ p and K verifying DAC(ψm, ψM ) we have

|u−Qu|W 1,p(K) ≤ Ch|u|W 2,p(K) (6.4)

with C = C(ψm, ψM , p), and for 3 ≤ p the condition on the maximum angle can not be relaxed.

Proof. It is always possible to choose two adjacent sides of K, l1 and l2, such that K is contained
in the parallelogram defined by these two sides. Observe that this parallelogram has a diameter
of the same order as that of K. Now, let L be the affine transformation taking l1 into the segment
joining (0, 0) and (1, 0) and l2 into the segment joining (0, 0) and (0, 1) and call K̃ = L(K) (this

transformation was also used in [13]). It is easy to see that K̃ = K(1, 1, ã, b̃) with ã, b̃ ≤ 1, and
standard arguments show that (6.2) follows from (6.1) by changing variables.

In order to prove (6.3), we observe that Lemma 3.1 says thatK can be transformed into a convex

K(a, b, ã, b̃) satisfying (H1), (H2), (H3), (H4) with constants ψ and Ni, i = 1, 2, 3 depending only



on N and ψM and with diameter h equivalent to that of K. Moreover, from Lemma 2.1 we know
that the error estimate on K follows from that on K(a, b, ã, b̃). Therefore, it is enough to prove
the error estimate for these reference configurations with a constant depending only on ψ and Ni.

Now, inequality (6.3) follows from (2.1) combined with (5.3), (5.1) and (3.12). Counterexample
6.1 shows that p < 3 is neccesary.

Finally, the proof of (6.4) follows like that of (6.3) replacing Lemma 3.1 by Lemma 4.2, and
using again Lemma 2.1 and equations (2.1) combined with (5.3), (5.1) and (4.3). Counterexample
6.1 also shows that the condition on the maximum angle is neccesary if 3 ≤ p.

Counterexample 6.1. We will show that the assumption 1 ≤ p < 3 is not removable in the
last theorem if K verifies the RDP condition. Take K = K(1, 1, s, s) (see Figure 1 b)) with
1
2 < s < 1, the idea is to take s→ 1

2 . Clearly, K verifies RDP (π2 , 2) independently of s, moreover,
K is regular for s in that range. Consider now u(x, y) = xy (observe that this function is not in

the Q1 space if s < 1). On the one hand
∥

∥

∥

∂u
∂x

∥

∥

∥

Lp(K)
, |u|W 2,p(K) ≤ 1, and on the other, we have

Qu = s2φ3, so
∥

∥

∥

∂Qu

∂x

∥

∥

∥

Lp(K)
= s2

∥

∥

∥

∂φ3

∂x

∥

∥

∥

Lp(K)

and from (2.5) we can write

∥

∥

∥

∂φ3

∂x

∥

∥

∥

p

Lp(K)
≥ 1

2p

∫ 1

1

2

∫ 1

0

1

(1 + (s− 1)x̂+ (s− 1)ŷ)p−1
dx̂dŷ.

Integrating explicitly for p > 3 we get

∥

∥

∥

∂φ3

∂x

∥

∥

∥

p

Lp(K)
≥

(

(2s− 1)3−p − (3
2s− 1

2)3−p − s3−p + (1
2 + s

2)3−p
)

2p(3 − p)(2 − p)(s − 1)2

and hence
∥

∥

∥

∂φ3

∂x

∥

∥

∥

p

Lp(K)
→ ∞ if s→ 1

2 (due to the first term inside the brackets), thus showing that

(6.3) can not hold independently of s. The case p = 3 is similar but a logarithmic term of the

type ln(2s − 1) is responsible for the fact
∥

∥

∥

∂φ3

∂x

∥

∥

∥

p

Lp(K)
→ ∞, leading us to the same conclusion.

Finally, let us observe that the same counterexample implies that the restriction on the maximum
angle can not be relaxed if p ≥ 3.
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