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Abstract

We analyze two well-known related aspects regarding the sequence of minor-
ity sides from the Minority Game (MG) in its symmetric phase: period-two
dynamics and quasi-periodic behavior. We also study the sequence of minor-
ity sides in a general way within a graph-theoretical framework. In order to
analyse the outcome dynamics of the MG, it is useful to define the MGprior,
namely an MG with a new choosing rule of the strategy to play, which takes
into account both prior preferences and game information. In this way, each
time an agent is undecided because two of her best strategies predict different
choices while being equally successful so far, she selects her a priori favorite
strategy to play, instead of performing a random tie-break as in the MG.
This new choosing rule leaves the generic behavior of the model unaffected
and simplifies the game analysis. Furthermore, interesting properties arise
which are only partially present in the MG, like the quasi-periodic behav-
ior of the sequence of minority sides, which turns out to be periodic for the
MGprior.
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1. Introduction

The Minority Game (MG) [1] is an agent-based model inspired in real
complex systems which presents interesting collective properties like coordi-
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nation among agents [2, 3, 4]. In the original formulation of the game, N
agents (usually odd) must simultaneously choose one out of two alternatives:
0 or 1, and the winners are those who happen to be in the minority group.
The MG tries to capture essential characteristics of some real situations in
which belonging to the minority group turns out to be the most convenient
situation (as, e.g., financial systems, traffic problems, and data networks).

At each step t of the game, N0(t) agents choose side 0 and N1(t) agents
choose side 1, so that N0(t) + N1(t) = N . The system state µ ∈ {0, 1}m

is the only global information available for agents to make decisions. After
each step, the state µ is updated on the basis of a certain updating rule. For
example, in the original MG, µ is determined by the sequence of minority
sides in the last m steps of the game.

A strategy is a function that assigns a prediction (0 or 1) to each possible
state. In our case, every agent has s = 2 strategies at hand and at each
step of the game, she plays using her best one. Whenever an agent’s two
strategies are equally ranked, she chooses one of them randomly.

An instance I of the MG with s = 2 is a particular assignment of two
strategies to the agents, I = {(e11, e

1
2), (e

2
1, e

2
2), · · · }. For i = 1, . . . , N , the

pair (ei1, e
i
2) represents the set of strategies assigned to the agent i. We define

a realization E of the game as a pair E = {SE , I}, where SE = {µ̃1, µ̃2, · · · } is
a sequence of states (generated by any updating rule), and I is an instance
of the MG.

The most studied variable in the MG is the reduced variance σ2/N =
〈(N1 − N/2)2/N〉E [5]. It measures the population’s waste of resources by
averaging –over time and over different realizations E– the quadratic devia-
tion from N/2 of the number of agents that choose a fixed side (for example,
N1). When crowds emerge in the game, their contribution to σ2/N is very
important, indicating that fewer resources are being allocated to the popu-
lation as a whole. On the other hand, for certain values of the parameters
m, N , and s, σ2/N results smaller than that obtained for a game in which
each of the N agents randomly chooses between the two sides.

Period Two Dynamics (PTD) in the sequence of the minority sides was
first observed by Savit et al. [9] within the symmetric phase of the MG. The
PTD can be summarized in the following way: if a state µ appears at step
t and this appearence is odd (i.e., the first, third, etc. step in which state
µ occurs), then in the next (and hence even) appearance of µ, the outcome
of the game is very likely to be the opposite of that obtained in the step t.
Broadly speaking, this dynamics is due to the fact that on even occurrences
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of µ, crowds of agents will move together to the side rewarded in the previous
odd appearance of the same state [9]. When PTD is met with probability 1
(i.e., when PPTD = 1), we call it Strict Period Two Dynamics (SPTD).

Acosta et al. have analitically solved the Full Strategy Minority Game
(FSMG) [14, 10], a maximal instance of the MG, which includes a single
copy of every potential agent. For example, in a game with parameters m
and s = 2, the number of potential agents is N =

(

L

2

)

+ L, where the first
term represents all agents with two different strategies and the second term
represents the number of agents whose two strategies are identical. Thus,
the number of agents of the FSMG is a function of m. Certain strategies’
symmetries, broken in the MG, can be fully exploited in the FSMG. This
approach leads us to show that the FSMG verifies the SPTD for even occur-
rences of the states. The advantage of this approach lies in considering the
MG as a statistical sample of size N of the FSMG. As a consequence, theo-
retical results for the FSMG can be used to compute approximated values of
the key variable σ2/N for the standard MG in the symmetric phase, as well
as for other versions of the MG based on different updating rules, like the
random updating rule introduced in [6] (MGrand) and the periodic updating
rule introduced in [13] (denoted by MGper).

It is important to note that by an even (resp. odd) occurrence of a state we
refer to the situation in which the current state µp at step t has appeared an
odd (resp. even) number of times up to the step t−1. Since µp appears again
at step t, we consider this appearence to be an even (resp. odd) occurrence.
This is an important remark in order to understand the results in [14, 10]
and the appendix of this paper.

In this work, we first show that PTD is also met for odd occurrences of
the states in the symmetric phase, but this is not accompanied by a crowd
effect. This dynamics is reported as the antipersistence of the attendance.
Jefferies et al. [11] show the MG behaves as a stochastically-disturbed deter-
ministic system due to the random rule to resolve situations of tied strategies,
by averaging over this stochasticity in order to get a deterministic dynam-
ics of the MG. They also show that the trajectory of the outcomes of the
deterministic MG on a de Bruijn graph is periodic within an Eulerian trail.
Our article is closely related with that of Jefferies et al. Indeed, we use
the FSMG framework instead of the RSS (Reduced Strategy Space), and we
take into account the effect of undecided agents, which in fact not change
the underlying dynamics. We also give elementary proofs for the connec-
tion among the periodicity of the MG outcomes, the eulerian path on the de
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Bruijn graph, and the antipersistence of the attendance (or the PTD). On
the other hand, the works of Zheng et al. [12] and Liaw et al. [13] show the
existence of quasiperiods in the sequence of minority sides in the MG. In
fact, the outcome of minority sides resulting from a game with m = 2, we can
observe that there are two particular sequences of size 8 which appear several
times in the sequence (though both sequences do not necessarily appear in
the same realization of the game). These facts encourage us to propose an
alternative choosing rule of the strategy to play, for which each agent has an
a priori favorite strategy to use in case of indecision. We call MGprior the
resulting model. This modification holds the same behavior, which more-
over facilitates an analytical understanding of the general PTD observed in
the simulations of the MG. Furthermore, interesting properties arise which
are only partially present in the MG, like the quasi-periodic behavior of the
sequence of minority sides, which turns out to be periodic for the MGprior.

Just like in the MG, we can also define the Full Strategy Minority Game
with the prior choosing rule of strategies (FSMGprior) as the maximal in-
stance of the MGprior which verifies that I is the complete set of potential
agents of the MGprior. In Appendix A we prove that the FSMGprior neces-
sarily verifies the SPTD for even occurrences of the states. Finally, we prove
in Appendix B the equivalence between the MGprior and the MGprior

rand (i.e.,
MGprior with random updating rule by following [6]) in terms of σ2/N .

1.1. Additional definitions

We include here some specific definitions, notations and results about the
MG model. The number of states of the sytem is H = 2m, and we denote by
SH the complete set of states. The number of strategies is L = 2H, and the
complete set of strategies SL is known as the Full Strategy Space. At each
step of the game, each agent plays using her best strategy (i.e., the one which
has predicted the minority side the greatest number of times). To this end,
the strategies of every agent are ranked according to the number of rounds
that each one has correctly predicted the minority side. If the strategies
are tied then in the MG the agent selects one of her strategies at random,
whereas in the proposed MGprior the agent selects her favorite strategy.

The behavior of the MG as a function of the parameters has been char-
acterized by two phases: a symmetric one and an asymmetric one. In the
curve of σ2/N vs α = 2m/N , the minimun value of σ2/N attained in α = αc

is associated with the broken symmetry. When α < αc the MG is in the sym-
metric phase, and when α > αc the MG is in the asymmetric phase. Soon
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after the MG was introduced by Challet and Zhang [1], Cavagna proposed
a new updating rule for the state of the system [6] (here denoted MGrand)
for which the state is established at random (from a uniform distribution)
in each step. This modification essentially gives rise to a model bearing the
same qualitative behavior [7, 8].

2. Period Two and Periodic/Quasiperiodic Dynamics of theMG
prior

and MG by simulations

In this section we address the behavior of σ2/N , the PTD, and the period-
icity properties of theMG and theMGprior. The only difference betweenMG
and MGprior consists in that ties are broken a priori during the assignment
of strategies to the players. Thus, an instance (I) of the MGprior is a particu-
lar ordered assignment of strategies to the agents, I = {(e11, e

1
2), (e

2
1, e

2
2), · · · }.

For agent i, the order of the pair (ei1, e
i
2) defines her preferences, so that

ei1 is defined to be her favorite strategy when ei1 and ei2 are tied in virtual
points (the points assigned to strategies in order to record their success in
the game).

Numerical simulations of the MGprior evidence that σ2/N shows the same
behavior as in the MG case. The only difference appears in the fluctuations
of the reduced variance of the MGprior, which are bigger than in the MG
case, as shown in Figure 1. Since the MGprior reproduces similar dynamics
to that of the MG, we consider the MGprior to be of interest for us, despite
the fact that this model shows a completely deterministic development. This
fact allows a potentially easier analysis regarding the sequence of minority
sides and the PTD both for even and odd occurrences of the states.

Taking into account the sequence of the minority sides resulting from the
simulation of the MG, it is possible to compute the probability that the
PTD is met in a given realization of the game. Actually, we have computed
the probability for PTD to take place (PPTD) as 1 minus the probability of
breaking the PTD for the first time in a given simulation of the game, as
it was computed in [10]. Moreover, this can be done by distinguishing the
calculation for the even and odd cases of occurrences of the states. These
results are shown in Figure 2 and reflect that if 2m/N ≪ 1 then PPTD ∼ 1
both for even and odd occurrences of the states of the MGprior, while for the
MG case we have PPTD ∼ 1 for even occurrences and PPTD ∼ 0.8 for odd
occurrences. In the latter, however, there are no crowd effects, as Figure 3
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Figure 1: The X symbols show σ2/N as a function of α for the MG for different values ofm
(from 2 to 14) and N = 4001, and the circular symbols contain the same measurements for
the MGprior. For each value of m, 100 runs have been performed, each one of T = 100000
time steps discarding the first 50000 steps. In the inset, error bars of σ2/N are shown for
m = 2, . . . , 8. The widest error bars correspond to the MGprior.

shows. In this figure we plot the deviations of σ2
e/N and σ2

o/N for even and
odd occurrences of the states, respectively. High values of σ2

e/N evidence a
crowd effect. On the other hand, σ2

o/N ∼ 0.25 reflects that fluctuacions of
N1 with respect to the mean value are like the case in which agents randomly
choose their decision, without any type of crowd effect.

The fact that MGprior model meets SPTD for both even and odd occur-
rences of the states when 2m/N ≪ 1 is related with the periodicity of the
game for these values of m and N . We shall return to this topic in Section 3.

Let us consider a periodic sequence of minority sides for a game with m =
2 satisfying the SPTD (i.e., meeting PTD for all steps, involving both even
and odd occurrences of every state). There are only two possible sequences
with these characteristics, namely 00011101 and 11100010. In fact, these two
sequences correspond to the same case by swapping sides. It is important
to note that these sequences have length 2H = 8 (later in this work we will
show that there are only two possible sequences for m = 2 meeting SPTD
and periodicity, and why the corresponding period is 2H = 8).

A directed graph is a pair G = (V,E), where V is a finite set of so-called
nodes and E ⊆ {(i, j) : i, j ∈ V, i 6= j} is the set of arcs or directed edges. In
order to make the periodicity behavior of MGprior and the quasi-periodicity
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Figure 2: Probability PPTD for PTD to take place in even (circles) and odd (X) occurrences
of the states as a function of α, calculated as one minus the probability of breaking the
PTD for the first time in a given simulation of the game. In the left, simulations for
the MG model; in the right, simulations for the MGprior model. In the simulations we
have computed PPTD as follows: at each even occurrence of each state, if after the poll
of players the PTD is not fulfilled (i.e., the minority side agrees with that obtained after
the previous odd occurrence of the same state), then we consider that this step does not
contribute to PPTD. At the same time, present state and virtual points are assigned as if
the PTD had not failed. This way we compute the probability of breaking the PTD for
the first time in the game.

behavior ofMG evident, we shall represent the outcomes of a particular game
through a directed graph. To this end, arrange the set of minority sides into
chains of length 2H (= 8 for m = 2). At each game step, the new minor-
ity side is used to construct the new chain, along with the previous 2H − 1
minority sides, by attaching this bit at the end. Each node of the graph
represents a particular chain of minority sides. For example, in Figure 4.a
the outcomes of a realization of the MGprior only discarding a few begin-
ning steps are represented. Since the outcomes lie in the periodic sequence
. . . 0001110100011101. . . then only eight nodes appear in the graph, namely
00011101, 00111010, 01110100, 11101000, 111010001, 10100011, 01000111,
10001110. A link between node i and j is established every time the game
goes from node i to node j. The node sizes are proportional to the probabil-
ity of occurrence of each node. Figure 4.b corresponds to another realization
of the MGprior model, which results in the periodic sequence 11100010. In
both figures, all the links of the graph are equally toured, as shown in the
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Figure 3: Values of σ2

e/N (circles) and σ2

o/N (triangles) as a function of α for the MG for
different values of m (in the range from 2 to 14) and N . For each value of N and m we
perform 100 runs, each one of T = 100000 time steps discarding the first 50000 steps for
values of m < 8; and each one of T = 500000 time steps discarding the first 250000 steps
for values of m ≥ 8.

frequencies of occurrence of each link in Tables 1 and 2. The node sizes
are equal, and only the eight nodes associated with a periodic sequence are
present. These two facts are in accordance with the periodicity of the game
(periodicity reached after less than 20 steps for these particular realizations).
Every realization of the MGprior model which meets SPTD for even and odd
occurences of the states results in one of these two possible graphs: either the
graph associated with the sequence 00011101 or the graph associated with
the sequence 11100010. The periodic sequence that the system chooses is
determined by the initial conditions: the initial state and the instance I of
the realization.

In Figure 5 we show simulations of the MGprior for m = 2, 3, 4, 5 and N =
1001, where the periodicity of the sequence of N1 is reflected. Furthermore,
Figure 6 illustrates the strong periodicity of the MGprior for m = 2 and
N = 101 in the form of a “2D code”, where each pixel represents an agent
who can choose either 1 (black) or 0 (white). These results show that not
only the sequence of outcomes is periodic but that the behavior of each agent
is periodic too, accumulating more evidence concerning the periodicity of the
MGprior. The same behavior is observed for m = 2 and N = 1001, but in
this case the 1001 pixels are more difficult to appreciate in a small graph.
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Source node Destination node Frequency
10100011 01000111 248
01000111 10001110 248
10001110 00011101 248
00011101 00111010 248
00111010 01110100 248
01110100 11101000 248
11101000 11010001 248
11010001 10100011 249

Table 1: Frequencies of occurrence of the links in the graph of Figure 4.a. Data correspond
to a realization of the MGprior with N = 1001, m = 2, and 2000 time steps, discarding
the first 15 steps.

Different periodic sequences exist, e.g., with period length L = 16 and
L = 24, although in these cases the SPTD is not met for odd occurrences of
the states. We performed 500 realizations of the MGprior with N = 101 and
m = 2, and we found 15 realizations in which the period was greater than
L = 8. In 13 such realizations the period was L = 16 and in the 2 remaining
cases the period was L = 24. We show some of these results in Table 3. In
these simulations we have α ∼ 0.04 in order to ensure that the MGprior is in
the region in which SPTD is met for even occurrences, but the SPTD may
be broken in odd occurrences of the states.

Figures 4.c and 4.d show the graphs associated with the MG for two
further realizations. The nodes appearing with a probability smaller than
0.6% have been deleted from Figure 4.c, and nodes with probability smaller
than 0.9% have been deleted from Figure 4.d. In the case of Figure 4.d, the
two sets of nodes consistent with the two periodic sequences 11100010 and
00011101 are present, but there are also other nodes in the graph with smaller
associated frequencies. We call outer path to a path joining two nodes from
the cycle. Note that the two outer paths in Figure 4.d have the same size and
opposite directions (the first one goes from the cycle depicted in Figure 4.a
to the cycle in Figure 4.b, whereas the other outer path goes the other way
around). We shall further discuss these observations in the last section. This
fact reflects that the system moves from one cycle to the other cycle, usually
one of them having a greater frequency of occurrence.

In the case of Figure 4.c, only one of the periodic cycles is depicted (the
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Source node Destination node Frequency
11100010 11000101 248
11000101 10001011 249
10001011 00010111 249
00010111 00101110 249
00101110 01011100 249
01011100 10111000 249
10111000 01110001 249
01110001 11100010 249

Table 2: Frequencies of occurrence of the links in the graph of Figure 4.a. Data correspond
to a realization of the MGprior with N = 1001, m = 2, and 2000 time steps, discarding
the first 9 steps.

PPTD in Periodic Period
odd states sequence length L

0.5 1110010111010000 16
0.5 0000111101001101 16
0.25 0000101111001101 16
0.25 0001000110111101 16
0.25 1110010000101110 16
0.5 1101001110000101 16
0.5 0000110100111101 16
0.5 1010011101110000 16
0.25 1111000101011000 16
0.5 0111010111000010 16
0.5 0111001000011101 16
0.5 1000011101011100 16
0.25 1111010110000100 16
0.5 111101000011101011001000 24
0.5 000011010011101111000101 24

Table 3: Periodic sequences of length L > 8 appear in realizations of the MGprior with
N = 101 and m = 2. We performed 500 realizations and only 15 of them resulted in
periodic sequences both with period length L > 8 and with PPTD < 1 in odd occurrences
of the states, but PPTD = 1 in even occurrences of the states.
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Figure 4: Figures a and b show the cycles in an MGprior realization (in Section IV we will
prove that they correspond to eulerian paths of a De Bruijn graph of order m). Figures c
and d correspond to two realizations of the MG. In all cases there are N = 1001 agents,
we set m = 2, and we perform 2000 game steps in the MG cases. Graphs made using the
igraph package of R [15, 16].

other cycle appears in the simulation but its frequency of occurrence is too
small and hence below the threshold for inclusion in the figure). The fact
that other links and nodes are present (with smaller associated frequency of
occurrence) reflects the quasi-periodic behavior of the MG.

For m > 2 there are more than two possible sequences that meet SPTD
for all the steps. In section 3 we will return to this general case.

3. FSMG
prior: definition and properties

We define the Full Strategy Minority Game with an a priori favorite
strategy (FSMGprior) to be an instance of the MGprior which includes a
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single copy of every potential agent of this game.
As mentioned in the introduction, H = 2m and L = 2H are the number

of different states and different strategies for the MG and MGprior with
parameter m, respectively. Then, FSMGprior has N = L2 different agents,
because there are N ways of choosing an ordered pair of strategies from the
Full Strategy Space.

In the Appendix A we show that the FSMGprior necessarily meets the
SPTD for any realization E .

In the following we will prove that a minority game with the choosing rule
“prior” (specifying the strategy to play in case of tie) for which the SPTD for
even occurrences of the states is met, is a periodic game. This is applicable
for the MGprior in the region of validity of SPTD for even occurrences, and
for the FSMGprior in general.

Let us first assume the following simplified scenario. If SPTD for even
occurrences is met for a MG game, then consider the following scoring rule
for rewarding strategies: if a strategy rightly predicts the minority side in an
odd occurrence of a state µ then it is rewarded with one point, and if the
strategy wrongly predicts the minority side in an even occurrence of a state
µ then one point is removed from its score [14, 10]. This rule allows us to
make a remarkable analytic simplification of the game, since the number of
virtual points accumulated for any strategy at any time step ranges from 0
to H.

For an agent J of the FSMGprior whose two strategies are (eJ1 , e
J
2 ), let us

denote the virtual points accumulated for her set of strategies by (vJ1 , v
J
2 ).

The choosing rule of the strategy to play can be formalized by a function
D(vJ1 , v

J
2 ) that returns the best ranked strategy of both and, in the case of

a tie, it returns her a priori favorite one, i.e., eJ1 . SPTD implies that the
number of possible combinations of virtual points in a given step k of the
game for the set of strategies (vJ1 , v

J
2 )k is finite (in fact, there are at most

(H + 1)2 combinations) for the agent J . In the following, we will denote
♯X as the size of the set X . In a realization of the game with an infinite
number of steps, ♯SE = ∞, at least one state µ ∈ H appears an infinite
number of times in the succession of states SE , because the number of states
is finite. Due to the fact that there are both finite combinations of virtual
points for the strategies per agent J and finite number of agents (N ), a step
l exists (k < l) in which the state µl coincides with µk. In addition, for
every player J , (vJ1 , v

J
2 )k = (vJ1 , v

J
2 )l is verified. Given that in case of tie,

the choosing rule is not random, then D(vJ1 , v
J
2 )k = D(vJ1 , v

J
2 )l and all the
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agents use the same strategy for l which they had used for k. That is why
they choose the same side in both stepts k and l, and as a consequence,
the minority side results the same in both k and l steps. Therefore, given
(vJ1 , v

J
2 )k = (vJ1 , v

J
2 )l, the next step yields (vJ1 , v

J
2 )k+1 = (vJ1 , v

J
2 )l+1. On the

other hand, applying the same argument, from (vJ1 , v
J
2 )k+1 = (vJ1 , v

J
2 )l+1 one

gets (vJ1 , v
J
2 )k+2 = (vJ1 , v

J
2 )l+2, and so on. Since the minority game with the

prior choosing rule to the strategy to play (both FSMGprior and MGprior) is
deterministic, the game is periodic.

Note that the previous argument only relies on the facts that virtual
points of strategies range between 0 and H (taking into account the SPTD)
and that the decision function D is not random in case of tie (taking into
account the choosing rule of MGprior). Moreover, if the period length is P ,
then it is easy to see that the agents voting a given side in step l + P are
exactly the same agents than in step l. We call this fact strong periodicity,
which obviously implies the periodicity of the minority side, an the periodiciy
of the sequence ofN1. These results are consistent with the evidence observed
in simulation of the MGprior game showed in previous section.

4. General properties met by periodic SPTD sequences

A directed graph G = (V,E) is strongly connected if for each pair of
vertices v, u ∈ V , u 6= v, there exists a directed path from v to u and a
directed path from u to v. Let us consider the operator T : SH×{0, 1} → SH

that, given the current state µ = a1a2 . . . am and the new minority side b,
the resulting state is defined by T (µ, b) = a2a3 . . . amb. In other words,
T gives the state which follows a particular state µ (i.e., the successor of
the state µ) when the new minority side is b. The MG graph for the m
parameter is the graph G = (V,E) where V = SH (the set of states) and
E = {(µ, T (µ, i)) : µ ∈ V, i = 0, 1}. This graph corresponds to the De Bruijn
graph of order m, usual to analyse MG outcomes [7, 11]. Note that every
vertex of G has indegree and outdegree equal to 2, i.e., each state admits
exactly two successors and exactly two predecessors) in G. We now state the
following theorems about the behavior of periodic games which meet SPTD
for even occurrences of the states using the MG graph.

(1) The MG graph is strongly connected.
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Figure 5: Periodicity of the sequence of the values of N1 (equivalently, numbers of agents
choosing side 0) for the MGprior. The figures show periods of length a) 8, b) 16, c) 32,
and d) 64 in games with N = 1001 agents for values of m = 2, 3, 4 and 5, respectively.
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Figure 6: Strong periodicity: each pixel corresponds to the side chosen by an agent, black
for side 1 and white for side 0. The simulation corresponds to m = 2 and N = 121 agents,
and the images correspond to 10 consecutive steps of the game. In this case, the game is
periodic with period P = 8, so the image for t = 1 coincides with the image for t = 9, and
the image for t = 2 coincides with the image for t = 10.
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Since any sequence of m bits can be obtained from any other after a
finite number of iterations, the MG graph is strongly connected.

(2) In the sequence of minority sides from the MG of infinite size which
meet SPTD in even occurrences of the states, all the states appear an
infinite number of times.

We define the set SE to be the sequence of states appearing in a given
realization E of the MG. Since SE is infinite and the MG graph is
strongly connected, then at least one state, say µ, appears an infinite
number of times. In particular, from the SPTD in even occurrences of
the states, the successors of the state µ, namely T (µ, 0) and T (µ, 1), also
appear an infinite number of times. By applying the same argument to
the successors, we conclude that in the sequence of states SE , all states
from SH appear an infinite number of times.

Theorems (3), (4), and (5) assume that the sequence is both periodic and
that the SPTD is met for even occurrences of the states.

(3) If the MG is periodic and meets the SPTD for the even occurrences
of the states, then every state appears an even number of times in the
period.

Let µ be a state and let t be the number of times that µ appears in
the period. If t = 1 then µ has different occurrence parity in each
two consecutive periods and the minority side in each period should
swap (because of the SPTD), a fact which contradicts the periodicity
of the MG. Suppose now that t is odd and t ≥ 3, and consider two
consecutive periods. The even occurrences of µ in the first period will
become odd occurrences in the second one and viceversa, which implies
that there will be at least one alternance of minority sides between
periods. However, if µk denotes the state in step k and P is the period
length, then µk and µk+P must have the same minority result (by the
periodicity), which shows that t cannot be odd, a contradiction.

(4) If the MG is periodic and meets the SPTD for the even occurrences of
the states, then all the states appear in the period the same even number
of times, which implies the ergodicity of the game.

In fact, let µ be the most frequently appearing state per period and
let c be the number of times it appears. As c is even, we can write
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c = 2k, with k ∈ N. Let µ0 and µ1 be the two preceding states of µ,
so that T (µ0, 0) = T (µ1, 1) = µ. On the one hand, if a state µ̃ appears
in a period c̃ times preceding a minority side õ then it appears another
c̃ times preceding the opposite minority side ∼ õ. This is explained
because, without lost of generality, taking the period as starting from
an odd occurrence of µ̃, the SPTD implies a minority side ∼ õ per any
side õ. On the other hand, µ appears 2k times and is preceded only
by µ0 and µ1. Let us call k0 (resp. k1) the number of times the state
µ0 (resp. µ1) appears preceding µ. Then k0 + k1 = c (the argument
includes the case in which µ0 = µ or µ1 = µ) and we claim that
k0 = k1 = c/2 = k. Otherwise, we could suppose that k0 > c/2, but if
µ0 appears k0 times preceding µ (hence a given minority side õ), and
then another k0 times preceding ∼ õ, we get that µ0 appears at least
2k0 > 2k = c times, a contradiction since c is the highest number of
times that a given state appears in a period. Therefore, k0 = k1 = c/2
and both predecessors of µ appear c times per period. Taking into
account that the graph is strongly connected, the same argument can
be applied to each state of the period.

From the previous results we obtain that if we have a periodic game
which meets the SPTD for even occurrence of states, then all the states
of the set SH appear the same even number of times. Thus the period
P can be written as P = 2kH = k2m+1.

(5) If the MG is periodic and meets the SPTD for the even occurrences of
the states, then it also meets the SPTD for the odd occurrences if and
only if the period is P = 2H = 2m+1.

Let us first prove the converse implication. In fact, if P = 2H = 2m+1

and knowing that the number of states is H = 2m and all of them
appear the same number of times, we conclude that such a number of
times equals two. Let us build the period in such a way that a given
state µ appears first in an odd occurrence with resulting minority side õ.
Then, the SPTD for even occurrences implies that the next occurrence
(which is even and lies within the same period) corresponds to the
minority side ∼ õ. The next occurrence of µ is again an odd occurrence
(there are two states per period) and the periodicity implies that the
resulting minority side will be õ. Hence, minority sides alternate in each
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occurrence of µ, which implies the SPTD is met for odd occurrences.

For the forward implication, suppose that SPTD is valid for both even
and odd occurrences of the states. The SPTD in odd and even occur-
rences implies alternances in the minority sides for any given state.

Let us select a state µ with the minimum number of steps between
three consecutive occurrences within a period. Let µ̃k = µ̃l = µ̃s = µ
be such consecutive occurrences of µ, with k < l < s. In this setting,
s− k is the smallest possible separation between three repetitions of a
state.

Note that the preceding states of µl and µs (i.e., µ̃l−1 and µ̃s−1) must
be different from each other. Otherwise, if µ̃l−1 = µ̃s−1, there must be
another occurrence of the state µ̃l−1 between the former ones due to
the fact that no state can be followed by the same minority side in two
consecutive occurrences. But this is impossible because s − k is the
smallest separation between three consecutive repetitions of any state.
We conclude that µ̃l−1 6= µ̃s−1. As a consequence, the preceding state
of µ̃s is the same preceding µ̃k, taking into account that SPTD is valid
in both even and odd occurences, and that the only appearances of the
state µ between the steps k and s are in the steps k, l and s.

Now, as µ̃k−1 = µ̃s−1, then µ̃k−1 must necessarily appear exactly once
between the steps k − 1 and s − 1, in order not to be followed by the
same minority side twice in a row.

By repeating this argument with the preceding states of µ̃k−1 and µ̃s−1,
we can see that in a finite number of steps we will attain the state µ̃k.
Also, we obtain that the sequence between k and s − 1 is previously
repeated in exactly the same way. Formally, if s−k = L, then µt = µt−L

for t = k, . . . , s−1. As this sequence of size L is repeated infinitely, then
this sequence corresponds to some multiple of the period of minority
sides, which we know to be of size P = 2kH. Then, L = 2jH, with
j/k ∈ N. On the other hand, in this sequence of size L, each state
appears exactly twice (i.e., those states which do appear, though we do
not know yet if all the states of the game are present in the sequence).
Therefore, L must have size at most 2H. As a consequence, since
L ≤ 2H and L = 2jH, then j = 1 and L = 2H.

Thus, a periodic sequence of a periodic MG which meets SPTD for even
occurences results in an eulerian path in the De Bruijn graph of order m, and
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in a hamiltonian path in the De Bruijn graph or order m + 1. The number
of different eulerian paths in a De Bruijn graph of order m (established in
[11]) can be obtained using the BEST Theorem [17]:

22
m

2(m+1)
=

L

2H
. (1)

It is remarkable that the amount of eulerian paths (hence the amount of
different periodic sequences) can be written as a function of the size of the
set of strategies L and the size of the set of states H. This fact poses the
question whether there exists any deeper relation between the number of
eulerian paths in the De Bruijn graph and the relevant parameters of the
MG.

Previous results are mostly abstract in the sense that they extract con-
clusions from the SPTD and the periodicity of minority sides only. This
means that any infinite chain of minority sides generated by any method
(not necessarily the MG) must verify these facts. In particular, we have al-
ready observed by numerical simulations that the MGprior is periodic along
the first part of the symmetric phase. This fact has been shown in Section 2,
where we present the outcomes of minority sides for the MGprior model for
m = 2. These results are in accordance with the theorems stated in the
present section. In Section II we have shown two possible periodic sequences
of length L = 8 = 2H which occur in most of the realizations of the MGprior

in which the SPTD is met for even and odd occurrences of the states, in
accordance with Theorem (5). Furthermore, the fact that there are two of
these sequences for m = 2 agrees with Eq. (1). The other periodic sequences
appearing in the realizations consigned in Table 2 (i.e., realizations with pe-
riod length L > 2H) do not meet the SPTD for odd occurrences while they
do meet SPTD for even occurrences of the states. Note that the length of
these periodic sequences always has the form L = 2kH, with k an integer
value greater than 1 (hence L = 16 and L = 24 for these cases). These
results are in accordance with Theorems (4) and (5).

Similar arguments can be applied to different deterministic versions of
the MG. We briefly explore the cases emerging from the following choosing
rules in case of tied strategies:

• Rule 1: the agent uses the same strategy that she has used in the
previous step of the game.
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• Rule 2: the agent chooses the opposite side that she has chosen the
previous time that she was undecided.

• Rule 3: the agent plays the opposite strategy that she has played the
previous time that she was undecided.

In all these cases, the outcome obtained in simulations turns out to be
periodic for small values of α yielding periods of the size predicted by the
theory. SPTD is met for even occurrences in all the cases, as Figure 7 shows.
This fact and the deterministic rule in case of ties ensure that the outcome
of the game is periodic, as we shown in Section 3. Indeed, for m = 2,
sequences of period L = 16 are obtained for rule 1 and L = 8, 16 for both
rules 2 and 3. For m = 2, SPTD for odd occurrences of the states is met
the majority of the runs performed for the switching rules 2 and 3 (whose
outcome sequence results in the known 00011101 and 11100010), while SPTD
for odd occurrences of the states is never met in runs of repeating rule 1, whose
outcomes have period length L = 16. Figure 8 compares the values of σ2/N
for the MG and for the new rules:

• In panel a) we show the MG and the MGprior case, which shows all
values of α as we has just discussed.

• In panel b) we show results for rule 1, which are greater than those of
the MG case for values of α → 0.

• In panels c) and d) we show results for rule 2 and 3 respectively, which
concur with the MG case too.

This last fact and the similarity in the PTD for odd occurrences of the states
show that the MGprior and the MG with rules 2 or 3 are more adecuate to
shed light about the MG.

As another application, we briefly analize the case of the MGprior in
which an initial bias is introduced to the strategies scores. As made in [10]
with the MG case, the bias is introduced at the agents level, i.e., each agent
randomly chooses –with a bias probability pb– to assign “a priori” uo virtual
points to any of her strategies. For the sake of simplicity, we fix the bias
probability to be pb = 1/2. In [10] analytic results for the FSMG with
biased scores are presented, in particular showing that SPTD is met for the
FSMG model for all values of uo. In Figure 9 simulations for the MGprior

with biased scores are shown, reflecting values of σ2/N smaller than in the
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Figure 7: Probability PPTD for PTD to take place in even (circles) and odd (X) occurrences
of the states as a function of α, calculated as 1 minus the probability of breaking the PTD
for the first time in a given simulation of the game for different values of m (from 2 to
7) and N = 4001. Panel a) contains the MGprior and MG case (up triangle for odd
occurrences of MG); panel b) shows the MG with rule 1 (undecided agents use the same
strategy as the previous step); panel c) contains the MG with rule 2 (undecided agents
systematically switch the minority side in case of tie); and panel d) shows results for the
MG with rule 3 (undecided agents systematically switch the strategy to play in case of
tie). For each value of m, 100 runs have been performed, each one of T = 100000 time
steps discarding the first 50000 steps.

biased MGprior depending of the biased value uo, while the SPTD is broken
in even occurrences of the states. Indeed, for m = 2 we observed that in
simulations for different values of uo from 2 to 20, SPTD is valid for even
and odd occurrences of the states and the periodic sequences obtained are
the two known sequences associated with the eulerian cycles of the De Bruijn
graph of order 2, namely 00011101 and 11100010.

The reason for the periodicity of MGprior is its deterministic choosing
rule of the strategies D, in addition to the validity of the SPTD for even
occurrences of the states along the first part of the symmetric phase. Related
to these observations, in Appendix A we prove that the FSMGprior necessarily
meets the SPTD for even occurrences of the states.
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Figure 8: The X symbols show σ2/N as a function of α for the MG for different values of
m (from 2 to 7) and N = 4001, and the circular symbols contain the same measurements
for the MG with alternative choosing rules in case of tie. Panel a) shows the results for
the MGprior; panel b) shows results for the MG with rule 1 (undecided agents use the
same strategy as the previous step); panel c) contains results for the MG with rule 2
(undecided agents systematically switch the minority side in case of tie); and panel d)
reports the results for the MG with rule 3 (undecided agents systematically switch the
strategy to play in case of tie). For each value of m, 100 runs have been performed, each
one of T = 100000 time steps discarding the first 50000 steps. Online error bars of circle
symbols (deterministic models) are shown. Scales and labels are the same in the four
panels.
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Figure 9: The X symbols show σ2/N as a function of α for the MG for different values of
m and N = 4001, and the other symbols contain the same measurements for the MGprior.
White circles correspond to the MGprior; filled circles correspond to the biased case with
bias uo = 2; up triangles correspond to uo = 4; down triangles correspond to uo = 6; and
diamonds correspond to uo = 8. For each value of m, 100 runs have been performed, each
one of T = 100000 time steps discarding the first 50000 steps.
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5. Description of the quasi-periodicity of the MG for m = 2

It is known that the MG is not deterministic as the MGprior model. The
periods appearing in the MGprior turn out to be quasi-periods in the MG
realizations, as can be seen from the wide variety of graphs generated in this
case. For m = 2, the two periodic sequences of length L = 2H = 8 from
the MGprior are present in the graphs associated with the MG, although
additional nodes are present too, because the outcomes of the MG partially
travel these periodic sequences but also take other paths before returning to
one of the two periodic sequences. In this section we provide an empirical
description of these quasi-periods form = 2, based on a set of 100 realizations
of the MG for N = 1001 agents.

Consider the two eulerian cycles associated with the sequences 00011101
and 11100010 and the eight nodes of each one. When we observe the out-
comes of the MG, for each node of these eulerian cycles there are two possi-
bilities, according to the minority side of the outcome after the sequence of
size H: either to continue to the next node within the same eulerian cycle
or to frustrate the cycle towards an out-of-cycle node. The latter admits
two further possibilities: either frustration breaks towards an inner path,
which eventually returns to the same cycle, or frustration takes an outer
path, which ends up in the other eulerian cycle. In realizations when outer
paths are present, the two eulerian cycles are shown. We call E1 the cycle
in Figure 4.a (i.e., corresponding to the sequence 00011101), and we call E2
the cycle in Figure 4.b (i.e., corresponding to the sequence 11100010). Note
that each node of a cycle has a symmetric opposite in the other cycle, which
is obtained by swapping sides 0 and 1 (for example, the symmetric opposite
of the node 01110100 is the node 10001011). Moreover, each node has an
inverse node in the other cycle, which is obtained by reading the 8 bits in
reverse, from back to front (thus, the inverse of the node 01110100 is the
node 00101110). From numerical simulations we found that both inner and
outer paths are fixed, that is, for each eulerian cycle there are 4 inner paths
and 4 outer paths beginning in nodes from the cycle and ending in nodes
of the other cycle. We have empirically observed that inner paths show the
following features:

• The four inner paths of each eulerian cycle are grouped in two pairs.
In fact, they appear in pairs in MG simulations, each member of a
pair having a similar frequency of occurrence. In E1, the first pair
is composed by the two inner paths beginning in the nodes ending in
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11, namely 10100011 and 01000111 (e.g., in Figure 4.c only these two
inner paths appear). The second pair is given by the two inner paths
beginning in the nodes ending in 00, namely 01110100 and 11101000.
For example, in Figure 7.a the four inner paths of E1 are present,
although the second pair is less frequent than the first one. By the
symmetry between the two eulerian cycles, the same occurs for E2:
the first pair is given by the inner paths beginning in the nodes ending
in 11, namely 10001011 and 00010111 (as Figure 7.b shows), and the
second pair is given by the inner paths beginning in the nodes ending
in 00, namely 01011100 and 10111000 (as Figure 7.c shows). The graph
in Figure 7.d contains all four inner paths of E2.

• All the inner paths have length 6, so they traverse through 5 interme-
diate nodes.

In turn, outer paths connecting E1 and E2 show the following features:

• The frustrating node of a cycle is the inverse (reading backwards) of
the arriving node in the other eulerian cycle, and the path has the
minimum number of steps needed to go from the 8-bit starting node
to its inverse. For example, in Figure 8.a there are two outer paths
of length L = 5, the first one beginning in node 00111010 from E1
and ending in node 01011100 from E2, and the second one beginning
in node 11100010 from E2 and ending in node 01000111 from E1. In
Figure 4.d there are two outer paths of length L = 3, the first one
beginning in node 11010001 from E1 and ending in node 10001011
from E2, and the second one beginning in node 01110001 from E2
and ending in node 10001110 from E1. In Figure 8.b there are two
outer paths of length L = 3. Note that the path beginning in node
00101110 from E2 and ending in node 01110100 from E1 is the same
path appearing in Figure 4.c but traversed in the opposite direction.

• Two outer paths of length 5 leave each eulerian cycle, and two outer
paths of the same length arrive the cycle. Two further outer paths of
length 3 leave the cycle, and two outer paths of the same length arrive
the cycle.

• The outer paths frustrate the cycles in nodes ending in 01 and 10.
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Figure 10: Eulerian paths and different inner paths in four MG realizations. In all cases
there are N = 1001 agents, we set m = 2, and we perform 2000 steps of the game in the
MG case.
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Figure 11: Eulerian paths and different outer paths in two MG realizations. In all cases
there are N = 1001 agents, we set m = 2, and we perform 2000 steps of the game in the
MG case.

6. Conclusions

In this work we proposed the MGprior, which clarifies the quasi-periods
observed in the sequence of minority sides of the MG. In this new model,
agents use their favourite strategy in case of tie, thus generating a determin-
istic execution. We have shown that in the SPTD regime for even occur-
rences of the states, the outcomes of the MGprior are a periodic sequence
and, moreover, the decisions of the agents are also periodic (strong period-
icity). Furthermore, we have proposed the FSMGprior, a maximal instance
of the MGprior in which all the potential agents are present (in the same
way that the FSMG was defined in [10]). By exploiting the symmetry of the
FSMGprior, we showed that the FSMGprior necessarily verifies the SPTD.
In Appendices A and B we prove the equivalence between the FSMGprior

rand

and the MGprior
rand in terms of σ2/N .

We have proved some general theorems applicable for sequences which
meet periodicity and SPTD for even and/or odd occurrences of the states
(i.e., not necessarily coming from a minority game). These theorems imply
that in the regime in which SPTD is met for even occurences of the states, the
sequence of minority sides of the MGprior results periodic with length L =
2kH, and k = 1 when the SPTD is met for both even and odd occurrences.
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In these cases, we showed that the periodic sequences for the MGprior with
parameter m are obtained as the eulerian cycles in the De Bruijn graph of
order m. For example, when m = 2 there are two eulerian cycles associated
with the periodic sequences 11100010 and 00011101. We have characterized
the quasi-periods of the MG for m = 2 as deviations from these eulerian
cycles. These deviations sometimes generate inner paths which end in the
same eulerian cycle, and sometimes generate outer paths which end in the
other eulerian cycle.

It is known that PPTD ∼ 1 for even occurrences of the states of the MG
in the symmetric phase. However, we showed that PPTD is much greater
than 0.5 (approx. 0.8) for odd occurrences of the states in the same phase
for the MG. Remarkably in both cases (i.e., the periods in the MGprior and
the quasi-periods in the MG) the PTD of odd occurrences of a states is not
accompanied by crowd effects.

Finally, we conclude that the fact that the sequence of outcomes is not
periodic in the MG is generated by the random breaking of tied strategies,
following the original choosing rule of strategies of the MG.

Appendix A. SPTD and FSMG
prior

As defined in the main text and according to the notation in [10], SH and
SL denote the set of states and strategies respectively, which coincide with
the Full Strategy Space. Symbol ♯ stands for the cardinality of a set, hence
♯SH = H, and ♯SL = L.

For an arbitrary outcome õ ∈ {0, 1}, we will denote the opposite side by
∼ õ. For a given state µ ∈ SH, the subset of strategies in SL which predict
a certain outcome õ for the state µ is denoted by SL,µ→õ. It is clear that
SL,µ→õ ∪ SL,µ→∼õ = SL, and that ♯SL,µ→õ = ♯SL,µ→∼õ = L/2.

The main idea in [10] consists in defining an ensemble of states of the
FSMG for which it is possible to analytically compute the distribution of
virtual points accumulated for all the strategies of SL. In particular, SL,l de-
notes the set of strategies with l virtual points, and SL,µ→õ,l (resp. SL,µ→∼õ,l)
denotes the set of strategies with l virtual points that predict õ (resp. ∼ õ)
for µ. For each step t, the parity array P t

E is an array of elements from a
categorical variable which take two possible values: O and E (odd or even),
recording the parity of the number of appearences of each state in the first
t − 1 steps. More precisely, P t

E ∈ {O,E}H. When we identify any state µ
with the integer number given by the binary expansion of µ plus 1 (so that µ
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can be thought of as an integer ranging from 1 to H), P t
E(µ) = O (resp. E)

if µ has appeared an odd (resp. even) number of times in the first t− 1 steps
of the game (see [10] for details). In [10] we had shown that the state is
characterized by P(µp) (the parity of the present state) and n0 (the number
of states for which P(µ) = O).

In [10] it is shown that

♯SL,l =

(

no

l

)

L/2no. (A.1)

and, if µ is in an even state (i.e., P(µ) = E), then

♯SL,µ→õ,l = ♯SL,µ→∼õ,l = ♯SL,l/2 =

(

no

l

)

L/2no+1. (A.2)

If state µ is in an odd state (P(µ) = O), then

♯SL,µ→∼õ,l =

(

no − 1

l

)

L/2no, (A.3)

♯SL,µ→õ,l =

(

no − 1

l − 1

)

L/2no. (A.4)

All the calculations in [10] with respect to the set of strategies are appli-
cable here, but not the calculations involving the set of agents, which must
be recalculated (for example, according to the definition of the FSMGprior,
Nu = 0, because there are no undecided agents in the MGprior). Nõ and
N∼õ represent the number of agents choosing the option õ and the opposite
option ∼ õ, so that Nõ +N∼õ = N . For a particular state of the ensemble,
for which the present system state is µp, Nõ can be written as

Nõ = 2
no
∑

l=1

♯SL,µp→õ,l

(

l−1
∑

j=0

♯SL,µp→∼õ,j

)

+

no
∑

l=0

♯SL,µp→õ,l♯SL,µp→∼õ,l + (♯SL,µp→õ)
2

(A.5)

The first term in the previous expression computes all the pairs in which
the most successful strategy predicts õ and the least successful predicts ∼ õ,
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regardeless of the order of the strategies in the ordered pair. The second term
computes the pairs of strategies which, having accumulated equal numbers
of points and predicting different sides, are ordered in such a way that the
first (favorite) strategy of the pair is the one predicting õ, and the second
strategy is the one predicting ∼ õ. This means that it is the a priori choice
which leads these agents to play side õ. The last term computes all the pairs
of strategies in which both strategies predict side õ. By symmetry, there will
be an equal term for the agents who will play side ∼ õ:

N∼õ = 2

no
∑

l=1

♯SL,µp→∼õ,l

(

l−1
∑

j=0

♯SL,µp→õ,j

)

+

no
∑

l=0

♯SL,µp→õ,l♯SL,µp→∼õ,l + (♯SL,µp→∼õ)
2

(A.6)

It is easy to check, using Eq. (A.2), that Nõ = N∼õ when the present
state µp is such that P t

E(µp) = E. Thus, this new appearance of the state
corresponds to an odd occurence of the state (i.e., up to the step t− 1 it has
appeared an even number of times).

Assume now that P t
E(µp) = O and suppose that õ was the outcome of the

game after the last (hence even) appearance of µp. In this case, we use (A.4)
and (A.3) to obtain Nõ and N∼õ:

Nõ = L2/22no−1

(

no
∑

l=1

(

no − 1

l − 1

)

(

l−1
∑

j=0

(

no − 1

j

)

))

+

L2/22no

no−1
∑

l=1

(

no − 1

l − 1

)(

no − 1

l

)

+

(

L

2

)

,

(A.7)

N∼õ = L2/22no−1

(

no−1
∑

l=1

(

no − 1

l

)

(

l−1
∑

j=1

(

no − 1

j − 1

)

))

+

L2/22no

no−1
∑

l=1

(

no − 1

l − 1

)(

no − 1

l

)

+

(

L

2

)

.

(A.8)
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In short, if agents process a state in an even appearance, then

Nõ −N∼õ = L2/22no−1

(

2no − 1

no

)

> 0,

(A.9)

which shows that FSMGprior necessarily verifies the SPTD when the present
state is in an even occurence (i.e., the parity function up to time step t−1 is
O and for this reason, the present state is occurring in an even appearance).
Indeed, (A.9) has been obtained under the assumption that õ was the out-
come of the game after the previous appearance of µp, and shows that the
minority side will be ∼ õ after the agents have processed the new appearance
of µp. By symmetry, the same holds by changing õ by ∼ õ.

Appendix B. MGrand and MG
prior

rand : the same analytical results

Once the FSMGprior is solved, we can consider an instance I of the
MGprior as a random sample of size N from the N agents of the FSMGprior.
To this end and according to the ideas of [10], let us consider an experiment
consisting in the random extraction of a sample size N (with repetition) from
a box containing N agents of two different types, namely Nõ agents of type
1 and N∼õ agents of type 2. Suppose that after extracting the sample, we
obtain Nõ agents of type 1 and N∼õ agents of type 2, so that Nõ +N∼õ = N .
The probability distribution of obtaining the variable Nõ is a binomial dis-
tribution of parameters p = Nõ/N and N ,

Nõ ∼ Bi(N, p). (B.1)

Using Eq. (A.7) and Nõ +N∼õ = N , we obtain

Nõ = L2/2 + L2/22no

(

2no − 1

no

)

. (B.2)

Then, the probability p is

p = 1/2 + 1/22no

(

2no − 1

no

)

(B.3)

in the case of even appearance of the state, and p = 1/2 in case of odd
appearance.
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We can obtain an expression for the expected value of σ2 for a fixed side
õ,

σ2 = < (Nõ −N/2)2 > . (B.4)

Previous calculations allow us to compute the expected values in odd σ2
o =

< (Nõ − N/2)2 >o and in even σ2
e = < (Nõ − N/2)2 >e occurrences of the

present state µp, in order to find a closed expression for (B.4). From Eq.
(B.1), the expected value and variance of the variable Nõ are known. By
replacing them in σ2 =< (Nõ−N/2)2 >= V ar(Nõ −N/2)+ (Nõ−n/2)2, we
obtain

σ2 = N((p2 − p)(N − 1) +N/4), (B.5)

and, by replacing the value of p given by (B.3) in (B.5), we obtain

σ2
e = N/4 +

N

4

1

2(4no)

(

2no

no

)2

−
1

2(4no+2)

(

2no

no

)2

(B.6)

and σ2
o = 1/4. By discarding the third term in (B.6), and by assuming that

n0 = H/2, which is valid in the case of MGprior
rand , we obtain the same result

as in the MGrand case (see [10]):

σ2 = N/4 +
N

4Hπ
. (B.7)

Finally, the results for the symmetric phase in both MGrand and MGprior
rand

coincide. Indeed, numerical simulations of the MG and MGprior show that
this holds during all phases of both games, and the only difference appears
in the dispersion of the reduced variance σ2/N in the first region of the
symmetric phase, as we could see in Figure 1.
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