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Abstract. An average interpolation is introduced for 3-rectangles and tetrahedra, and optimal order error estimates

in the H1 norm are proved. The constant in the estimate depends \weakly" (improving the results given in [8]) on

the uniformity of the mesh in each direction. For tetrahedra, the constant also depends on the maximum angle of

the element.

On the other hand, merging several known results [1, 8, 10, 12], we prove optimal order error for the P1-Lagrange

interpolation in W 1;p, p > 2, with a constant depending on p as well as the maximum angle of the element. Again,

under the maximum angle condition, optimal order error estimates are obtained in the H1 norm for higher degree

interpolations.

Keywords. Lagrange interpolation, average interpolation, anisotropic elements, maximum angle condition.

AMS Subject Classi�cation. 65N15, 65N30.

1 Introduction

The clasical error analysis (see for example [6, 5]) for several kinds of interpolation operators assumes the

so called regularity of the elements (i.e. bounded ratio between outer and inner diameter of the elements)

in order to ensure optimal order error estimates. This condition allows mesh re�nements for which the

quotient between outer and inner diameter of the elements remains bounded. However, anisotropic or

narrow elements, for which the regularity does not hold, arises naturally in order to approximate solutions

of problems with a strong directional dependent behavior. Several results allows to drop the regularity

condition for rectangular elements as well as for isoparametric quadrilaterals [2, 3, 11, 14, 15]. On the

other hand, for triangles, a well known result [4, 9] shows that the regularity can be replaced by the weaker

maximum angle condition (i.e. maximum angle bounded away from �). In [10], the author extend this

condition to tetrahedra requiring that both angles inside and between faces, remains away from �, and

proves optimal order error in the W 1;1 norm with a constant depending only on the maximum angle for

the linear Lagrange interpolation. However, interesting counterexamples are given in [3, 12], showing that

this result does not hold in the useful H1 norm, for functions belonging only to H2. A similar fact is

showed in [12] for trilinear interpolation over 3 � rectangles. Indeed, the constant in the error estimate

deteriorates as one compress the reference element in a direction given by one of its edges. Nonetheless,

again in [12], it is proved that more regular functions and higher degree interpolations are compatible with

some class of anisotropic elements. In particular with general 3 � rectangles as well as with tetrahedra

obtained by arbitrary scalings of the reference element followed by linear transformations de�ned by ma-

trices of a uniform bounded condition number. For this kinds of tetrahedra uniform error estimates in the

W
1;p norm, p > 2, for linear elements, are proved in a recent work [8]. The constant blows up as p! 2 in

accordance with the counterexamples mentioned above.

The connection between the class of tetrahedra de�ned in [12] and those de�ned by the maximum angle

condition was clari�ed in [1], in particular, the latter results greater than the former. The �rst section of
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this paper is devoted to show (generalizing [8, 10, 12]) that optimal order error hold for the P1-Lagrange

interpolation, in the W 1;p norm, p > 2, as well as in the H1 norm for higher degree interpolations, in both

cases under the maximum angle condition. This result was recently obtained (with a di�erent approach)

in [3]. However our version shows (following [8]), for linear elements, the behaviour of the constant given

in the estimate, when p! 2.

On the other hand, for singular solutions, Lagrange interpolation can not be used since pointwise values

becomes meaningless. To overcome this diÆcult average interpolation was introduced (see [7, 13]), and

again, optimal order error can be proven, under regularity assumptions on the elements. However, in the

above mentioned work [8], Dur�an constructs an average interpolation over non regular 3� rectangles and

shows that the error results independent of the relation between the length of the edges. Nonetheless his

technique made use of the quasi-uniformity of the mesh in each direction. Another interesting technique is

developed in [3], where the author modi�es the Scott-Zhang [13] average interpolation obtaining uniform

error estimates for some family of anisotropic elements. However, the meshes are of \tensor product type",

and in the three dimensional case, further restrictions on the elements are required. Indeed, the size of

the element is arbitrary only in one direction, since the error estimate depends on the relation between the

lengths of the edges in the remaining directions.

Results of this kind show that numerical approximations, by �nite elements, of singular solutions, behaves

better than Lagrange interpolation.

In Section 3.2 we de�ne an average interpolant operator over 3 � rectangles and tetrahedra and prove

optimal order error in the H1 norm. The average interpolation is de�ned interpolating an adequate reg-

ularization of the involved function. Since Lagrange interpolation has a \good" behaviour over regular

spaces, it seems very natural to regularize before interpolate. The most generalized way to regularize con-

sists in using the so called \molli�ers", and we will see that, by using this technique, anisotropic estimates

are easily obtained. However, this approach leads to the same kind of restrictions required in [8]. In order

to overcome this diÆcult we will introduce (see Section 3.1) some appropriate modi�cation of the clasical

\molli�ers" procedure. With this approach only a \weak" restriction on the mesh is required.

2 Lagrange interpolation

In this section we obtain results for the Lagrange interpolation over tetrahedra just merging several known

results [1, 8, 12]. We begin by recalling a characterization of the maximum angle condition for tetrahedra

given in [1]. Using this result, and following closely [8], we show, generalizing [10], that optimal order error

in W 1;p, p > 2, holds for the P1-Lagrange interpolation with a constant depending on p as well as on the

maximum angle. Next, for p = 2, but increasing the regularity of the interpolated function, and by means

of the characterization mentioned above, we get, using Theorem 1 of [12], optimal order error in H1 for the

P
k
, k � 2, Lagrange interpolation, also under the maximum angle condition.

Let us start introducing some notation

With e
i
, 1 � i � 3, representing the canonical vectors, and for a given positive reals h1; h2; h3 we de�ne,

using c:h: as the convex hull, the tetrahedra (see Figure 1)

K1(h1; h2; h3) := c:h:f0; h1e1; h2e2; h3e3g; K2(h1; h2; h3) := c:h:f0; h1e1 + h2e2; h2e2; h3e3g

For a given vector v 2 IR3, and matrix B 2 IR3�3, kvk and kBk means the euclidean norm, and the norm

subordinated to the euclidean norm respectively. With �(B) we denote the condition number, once more

in the euclidean norm, i.e. �(B) = kBkkB
�1
k. We use the standard notation Wm;p(K) (also Hm(K) if

p = 2) for the Sobolev space of Lp(K) functions with Lp(K) distributional derivatives up to the order m,

and for u 2Wm;p(K) we write kuk
m;p;K

and juj
m;p;K

to denote its usual norm and seminorm respectively.
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Figure 1

2.1 The maximum angle condition

In [10], the author de�nes the maximum angle condition

De�nition 2.1 A tetrahedron K satis�es the \maximum angle condition" with a constant  < �, or
shortly MAC( ), if the angles between faces and the angles inside faces of K are bounded above by  .

Under this de�nition the author proves optimal order error estimates in W 1;1, with a constant depending

only on the maximum angle  , for the linear Lagrange interpolation. His argument depends strongly on

the fact that he is working in the in�nite norm. Indeed, for u 2 W 2;1(K) and calling ! = u��(u), with

� the P1 Lagrange interpolation, one has @!

@vi
(q) = 0 for certain q belonging to the edge parallel to the

direction given by v
i
. Then for any r 2 K one can write

@!

@v
i

(r) =
@!

@v
i

(r) �
@!

@v
i

(q) =

Z
r

q

@
2
!

@�@v
i

(s)ds (2.1)

where � de�nes the direction of the segment joining r and q. So

k

u��(u)

@v
i

k0;1;K
= k

@!

@v
i

k0;1;K
� hk

@!

@v
i

k1;1;K
� hjuj2;1;K

(2.2)

and the result given in [10], follows showing that the maximum angle condition ensures the existence of

three \uniformly linearly independent" edges. Indeed, the author proves that it is possible to choose three

edges such that the unitary vectors parallels to them, say t1; t2; t3, veri�es

jdet(M)j � m( )3 (2.3)

where M is the matrix made up with t
i
as columns and m( ) = minfsin(�� 

2
); sin( )g. Finally (2.3)

together with (2.2) allows to get bounds over the full seminorm jwj1;1(K).

The last argument does not longer applies to estimate the error in W 1;p(K) with p 6=1.

In [1] we study themaximum angle condition �nding an analytic, rather than geometric, characterization

of the class of elements de�ned by this property. The next lemma states, in a suitable form a result given

in [1].

Lemma 2.1 If a tetrahedrum K satis�es MAC( ) then there exist positive numbers h1; h2; h3, a constant
C = C( ), and a linear transformation F (x) = Bx + b, such that F (K1) = K or F (K2) = K and
kBk; kB

�1
k � C. Where K1 and K2 are as in Figure 1).

Proof. See the proof of Lemma 5.9 of [1].
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Remark 2.1 As kBk and kB�1
k are bounded by C( ) then, one can easily get,

1

C( )
diam(K) � diam(F�1(K)) � C( )diam(K) (2.4)

and so, Lemma 2.1, allows us to reduce the study of the Lagrange interpolation under the maximum angle

condition to the cases given in the Figure 1, just changing variables.

Now we give a de�nition and a simple result which will be useful in Section 3.2

De�nition 2.2 For a given tetrahedron K, the directions t
i
, 1 � i � 3 for which (2.3) hold, will be called

principal directions. We will also use principal edges (resp.: principal lenghts) to denote the edges (resp.:
lenghts of the edges) parallels to these directions.

Lemma 2.2 Let K be a tetrahedron under MAC( ), then calling h1; h2; h3 its principal lengths we have

vol(K) �
1

6
h1h2h3m( )3 (2.5)

Proof. Follows immediately from (2.3).

2.2 Error estimates for P1-Lagrange Interpolation

In [8] Theorem 2.1, the author proves optimal order error in W 1;p(K), p > 2, with a constant which blows-

up as p ! 2, for the P1-Lagrange interpolation and for the family of tetrahedra given in Figure 1 a). His

proof applies, step by step, for the family showed in Figure 1 b, and we do not repeat his argument.

Theorem 2.1 Let K = K1(h1; h2; h3), or K = K2(h1; h2; h3) for arbitrary h1; h2; h3 > 0, and p > 2, then
there exists C = C(p) such that

k

@(u��(u))

@x
i

k0;p;K � C(p)

3X
j=1

h
j
k

@
2
u

@x
j
@x

i

k0;p;K (2.6)

Remark 2.2 The constant C(p) depends strongly on the trace theorem (see [8]). In particular, for p � 2,
it holds C(p) � C

(p�2)
p
2
.

From this result, one obtains, in view of Remark 2.1

Theorem 2.2 Let K be a tetrahedron under MAC( ), h = diam(K), then there exists a constant C =

C( ; p), such that
ku��(u)k1;p;K � Chjuj2;p;K (2.7)

2.3 Error estimates for Pk Lagrange interpolation with k � 2.

A very general result for higher degree anisotropic elements can be found in [12]. It is straightforward to

check hypothesis II; :::; V III , given there ([12], p.107), when one takes as the reference element T0 = K1 :=

K1(1; 1; 1) or T0 = K2 := K2(1; 1; 1), as well as approximating spaces and degrees of freedom given by the

elements of type (k), k � 2 (we are using the notation of [6]). So, we can state, as a direct consequence of

Theorem 1 [12], and Lemma 2.1 the following theorem

Theorem 2.3 Let us consider the �nite element space of type (k), k � 2, over tetrahedra (see [6]). Let K
under MAC( ), and � be the corresponding Lagrange interpolation, then there exists C = C( ;K1;K2)

such that
ju��(u)j1;2;K � Ch

m�1
K

juj
m;2;K (2.8)

with m = k + 1.
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Proof. From Lemma 2.1 there exist h1; h2; h3 > 0, a constant C = C( ), and a linear transformation

F (x) = Bx + b, such that F (K1(h1; h2; h3)) = K or F (K2(h1; h2; h3)) = K, and kBk; kB
�1
k � C.

Without loss of generality we can assume F (K2(h1; h2; h3)) = K, then, by means of the scaling given by

the diagonal matrix D, D
ii
= h

i
, we may write FD(K2) = K.

Now, in order to match our notation with that given in [12], we write B = h
K
S
t

K
, with S

t

K
:= 1

hk
B,

D = D
K
, and b = b

K
, then Fx := h

K
S
t

K
D
K
x+ b

K
, veri�es F (K2) = FD(K2) = K.

From equation (8) of [12] one easily gets

ju��(u)j1;2;K � C
�
K

�
K

h
m�1
K

juj
m;2;K (2.9)

where C depends on the reference element, K2 in this case, and �
K
; �
K

represent the greatest and the

smallest singular values of St
K
. Observing that

�
K

�
K

= �(St
K
) = �(B) = kBkkB

�1
k

the proof �nishes by means of Lemma 2.1 together with (2.9).

3 An average interpolation

In [8], Dur�an, constructs an average interpolation operator over anisotropic 3 � rectangles. However,

his technique can not handle meshes which are not quasi-uniform in each direction. In this section we

develop a straigthforward generalization of the clasical \molli�ers" which allows us to construct an average

interpolation with optimal order error in H
1, over anisotropic 3 � rectangle or tetrahedra, without the

restriction assumed in [8].

3.1 Regularization properties

We begin introducing some notation.

With B1 � IR3 we will denote the unitary ball. For a given scalar functions 0 < �
i
(x) 2 C2(IR), 1 � i �

3, we de�ne �(x) = �(x1; x2; x3) := (�1(x1); �2(x2); �3(x3)) dropping sometimes the x, in order to simplify the

notation. We use also B
�(x) = B

�
to denote the ellipsoid B

�
:= f(y1; y2; y3) 2 IR3

such that
P3

i=1(
yi

�i
)2 �

1g and for a given y 2 IR3 we will write y

�

:= (y1
�1
;
y2

�2
;
y3

�3
), and �y := (�1y1; �2y2; �3y3). If �(x1; x2; x3) 2 C

2,

�(x) � 0 supported on B1, veri�es
1

jB1j

R
IR3 �(x)dx = 1, we de�ne �

�(x)(y) =
1

jB�(x)j
�( y

�(x)
) which for a �xed x

will be supported on B
�(x). Given A;B � IR3 with A+B we denote the set A+B = fx+y; x 2 A; y 2 Bg,

and then for a given f de�ned over fxg+B
�(x) we write

�
�(x)�̂f(x) :=

Z
IR3

�
�(x)(y)f(x� y)dy (3.1)

Remark 3.1 If �1; �2; �3 are constants, we have that �
�
�̂f = �

�
� f works like the usual convolution,

moreover, taking in particular �1 = �2 = �3 we recover the clasical molli�ers.

Remark 3.2 For (y1; y2; y3) 2 B1 �xed, and �
i
constants, the mapping

�(x) = (x1 � �1y1; x2 � �2y2; x3 � �3y3)

can be seen as a rigid movement and, in particular, it results a \good" change of variables. This property is
not longer true if �

i
depends on x

i
, indeed, in this case � may be no longer one to one. In order to remedy

this fact, we require along this section the following hypothesis
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H0 j�
0
i
(x)j < 1=2

which, as we will see, represent only a weak restriction.
Under H0, as one can easily verify, not only the mapping �, but its components, becomes injective, and a
lower bound for its Jacobian is readily �nd, namely,

Jac(�) �
1

23

De�nition 3.1 For a given set K � IR3 we de�ne

�
M

K
:= sup

x2K�(x) := (sup
x2K�1(x1); supx2K�2(x2); supx2K�3(x3))

In the same way, we write

�
m

K
:= inf

x2K�(x) := (inf
x2K�1(x1); infx2K�2(x2); infx2K�3(x3))

Now we can prove the following

Lemma 3.1 Let K � IR3, f 2 Lp(K +B
�
M
K
), and let us assume H0, then

k�
�(x)�̂fk0;p;K � 23=pkfk0;p;K+B

�M
K

(3.2)

Proof. We show �rst the case p = 1.

j�
�(x)�̂f(x)j �

Z
IR3

1

jB
�(x)j

�(
y

�(x)
)jf(x� y)jdy (3.3)

changing variables y $ y

�(x)
and using that jB

�(x)j = �1(x1)�2(x2)�3(x3)jB1j, together with the fact that

�(y) is supported on B1 we have, writing �(x)y := (�(x1)y1; �(x2)y2; �(x3)y3)

j�
�(x)�̂f(x)j �

1

jB1j

Z
B1

�(y)jf(x� �(x)y)jdy (3.4)

then Z
K

j�
�(x)�̂f(x)jdx �

1

jB1j

Z
B1

�(y)

Z
K

jf(x� �(x)y)jdxdy (3.5)

using now the change of variables x$ x� �(x)y, and recalling that y 2 B1, we get for x 2 K, x� �(x)y 2

K +B
�
M
K
, and in view of H0 (see Remark 3.2) we obtain

Z
K

j�
�(x)�̂f(x)jdx � 23

1

jB1j

Z
B1

�(y)dy

Z
K+B

�M
K

jf(x)jdx (3.6)

but 1
jB1j

R
B1
�(y)dy = 1 and we �nally �nd (3.2) with p = 1.

For any p it also follows in an standard way. In fact, for 1
p

+ 1
q

= 1 we have

j�
�(x)�̂f(x)j �

Z
IR3

f�
1=p

�(x)
jf(x� y)jgf�

1=q

�(x)
gdy (3.7)

and H�older's inequality yields

j�
�(x)�̂f(x)j � f

Z
IR3

f�
�(x)jf(x� y)jpdyg1=pf

Z
IR3

�
�(x)dyg

1=q = f

Z
IR3

f�
�(x)jf(x� y)jpdyg1=p (3.8)
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where we have used in the last identity
R
�
�(x)(y)dy = 1

jB1j

R
IR3 �(y)dy = 1. Observing now that jf jp 2

L
1(K +B

�
M
K
), and using the case p = 1, we get

Z
K

j�
�(x)�̂f(x)j

p

dx � 23
Z
K+B

�M
K

jf(y)jpdy (3.9)

and (3.2) follows.

The convolution between two functions can be bounded, in the in�nite norm, by the L2 norms of the

functions involved. In the following lemma we exploit a similar property of �
�
�̂f in order to obtain an

useful inequality.

Lemma 3.2 Let K � IR3, u 2 L2(K +B
�
M
K
) then

k�
�(x)�̂uk0;1;K

� C0;�

1

jB
�
m
K
j
1=2
kuk0;2;K+B

�M
K

(3.10)

where C0;� =
k�k0;2;B1

jB1j
1=2 .

Proof. Using Schwartz's inequality we get

j�
�(x)�̂u(x)j � f

Z
B�(x)

�
2
�(x)(y)dyg

1=2
f

Z
B�(x)

ju(x� y)j2dyg1=2 (3.11)

and to conclude, it will be enough to bound each one of the integrals on the right hand side.

For x 2 K, y 2 B
�(x) we have x� y 2 K +B

�(x) � K +B
�
M
K

and so

f

Z
B�(x)

ju(x� y)j2dyg1=2 � kuk0;2;K+B
�M
K

(3.12)

On the other hand the change of variables y $ y

�(x)
gives

f

Z
B�(x)

�
2
�(x)(y)dyg

1=2 =
�1(x1)

1=2
�2(x2)

1=2
�3(x3)

1=2

jB
�(x)j

k�k0;2;B1
=

1

jB1j
1=2
jB
�(x)j

1=2
k�k0;2;B1

(3.13)

but x 2 K implies jB
�
m
K
j � jB

�(x)j, and this fact together with equations (3.11), (3.12), gives (3.10).

In the following lemma the �rst approximation property for �
�
�̂u is obtained. It is worthwhile to remark

that the obtained estimate looks like the usual error estimate in average interpolant operators.

Lemma 3.3 Let K � IR3, u 2 H1(K +B
�
M
K
), then

ku� �
�(x)�̂uk0;2;K � 23=23

3X
i=1

�
i
k

@u

@x
i

k0;2;K+B
�M
K

(3.14)

where (�1; �2; �3) := �
M

K
.

Proof. For a �xed x we may write

j�
�(x) � u(x)� u(x)j �

Z
R
3

�
�(x)(y)ju(x� y)� u(x)jdy �

Z
R
3

�
�(x)(y)(

Z 1

0

jru(x� ty):yjdt)dy (3.15)
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where the dot means the scalar product. Now, as y = (y1; y2; y3) 2 sop(��), we have jyij � �
i
(x
i
) � �

i
, and

then from (3.15)

j�
�(x)�̂u(x)� u(x)j �

3X
i=1

�
i

Z
IR3

Z 1

0

j

@u(x� ty)

@x
i

j�
�(x)(y)dtdy (3.16)

changing variables y $ ty, and using that �
t�
(y) = 1

t
3 ��(

y

t

), it follows that

Z
IR3

Z 1

0

j

@u(x� ty)

@x
i

j�
�(x)(y)dtdy =

Z 1

0

Z
IR3

j

@u(x� y)

@x
i

j�
t�(x)(y)dydt (3.17)

and from (3.16), (3.17) we get

j�
�(x)�̂u(x)� u(x)j2 � 3

3X
i=1

�
2
i
(

Z 1

0

Z
IR3

j

@u(x� y)

@x
i

j�
t�(x)(y)dtdy)

2 (3.18)

Schwartz's inequality on the variable t gives

(

Z 1

0

Z
IR3

j

@u(x� y)

@x
i

j�
t�
(y)dydt)2 �

Z 1

0

(

Z
IR3

j

@u(x� y)

@x
i

j�
t�(x)(y)dy)

2
dt =

Z 1

0

(�
t�(x)�̂j

@u

@x
i

j)2dt (3.19)

and from (3.18), (3.19)

Z
K

j�
�(x)�̂u(x)� u(x)j2dx � 3

3X
i=1

�
2
i

Z 1

0

Z
K

(�
t�(x)�̂j

@u

@x
i

j)2dxdt (3.20)

taking now t�(x), instead of �(x), in Lemma 3.1, we have, using that 0 < t < 1

Z
K

(�
t�(x)�̂j

@u

@x
i

j)2dx � 23
Z
K+B

�M
K

j

@u

@x
i

j
2
dx (3.21)

noting that the last integral does not depends on t, we get from (3.20)

Z
K

j�
�(x)�̂u(x)� u(x)j2dx � 233

3X
i=1

�
2
i

Z
K+B

�M
K

j

@u

@x
i

j
2
dx (3.22)

and (3.14) follows. .

Remark 3.3 If �1; �2; �3 are constant we have, as we said before, �
�
�̂f = �

�
� f , and so, from a well known

property of the convolution
@(u� �

�
� u)

@x
i

=
@u

@x
i

� �
�
�

@u

@x
i

(3.23)

and the result of Lemma 3.3, can be extended straightforward in the following sense:
If u 2 H2(K +B

�
M
K
) then

k

@(u� �
�
� u)

@x
i

k0;2;K � 23=23

3X
i=1

�
j
k

@
2
u

@x
j
@x

i

k0;2;K+B
�M
K

to obtain a similar result for �̂ we need, however, an analogous of (3.23). That is in fact which we are
looking for in the next lemma.
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Lemma 3.4 Let K � IR3, u 2 H1(K +B
�
M
K
), let us assume, once more, H0. If we de�ne

c(x
i
; y
i
) := 1�

�
0
i
(x
i
)

�
i
(x
i
)
y
i

d(x
i
; y
i
) :=

�
00
i
(x
i
)

�
i
(x
i
)
y
i

then
@�

�(x)�̂u(x)

@x
i

=

Z
IR3

c(x
i
; y
i
)�
�(x)(y)

@u

@x
i

(x� y)dy (3.24)

if moreover u 2 H2(K +B
�
M
K
) then for j 6= i

@
2
�
�(x)�̂u(x)

@x
j
@x

i

=

Z
IR3

c(x
j
; y
j
)c(x

i
; y
i
)�
�(x)(y)

@
2
u

@x
j
@x

i

(x� y)dy (3.25)

and if j = i

@
2
�
�(x)�̂u(x)

@2x
i

=

Z
IR3

c(x
i
; y
i
)2�

�(x)(y)
@
2
u

@2x
i

(x� y)dy �

Z
IR3

d(x
i
; y
i
)�
�(x)(y)

@u

@x
i

(x� y)dy (3.26)

Proof. A direct computation gives
@�

�(x)�̂u(x)

@x
i

= I1 + I2 + I3 (3.27)

where

I1 = �

Z
IR3

�
0

i
(x
i
)

�
i
(x
i
)

1

jB
�(x)j

�(
y

�(x)
)u(x� y)dy

I2 = �

Z
IR3

�
0

i
(x
i
)

�
2
i
(x
i
)
y
i

1

jB
�(x)j

D
i
�(

y

�(x)
)u(x� y)dy

I3 =

Z
IR3

1

jB
�(x)j

�(
y

�(x)
)
@u

@x
i

(x� y)dy

rewriting I2

I2 = �

Z
IR3

�
0

i
(x
i
)

�
i
(x
i
)
y
i

1

jB
�(x)j

@�( y

�(x)
)

@y
i

u(x� y)dy

and integrating by parts

I2 =

Z
IR3

�
0
i
(x
i
)

�
i
(x
i
)

1

jB
�(x)j

�(
y

�(x)
)u(x� y)dy �

Z
IR3

�
0
i
(x
i
)

�
i
(x
i
)
y
i

1

jB
�(x)j

�(
y

�(x)
)
@u

@x
i

(x� y)dy

adding up this expression to I1 and I3, we get (3.24) from (3.27).

The equation (3.25) follows in the same way just observing that c(x
i
; y
i
) behaves as a constant when we

derive (3.24) respect to x
j
(j 6= i).

We now check (3.26) taking the derivative in (3.24). We have

@
2
�
�(x)�̂u

@x
2
i

= I1 + I2 + I3 + I4 (3.28)

where now

I1 = �

Z
IR3

(
�
0

i
(x
i
)

�(x
i
)
)0y

i

1

jB
�(x)j

�(
y

�(x)
)
@u

@x
i

(x� y)dy

I2 = �

Z
IR3

c(x
i
; y
i
)
�
0

i
(x
i
)

�
i
(x
i
)

1

jB
�(x)j

�(
y

�(x)
)
@u

@x
i

(x� y)dy

I3 = �

Z
IR3

c(x
i
; y
i
)
�
0

i
(x
i
)

�
i
(x
i
)
y
i

1

jB
�(x)j

@�( y

�(x)
)

@y
i

@u

@x
i

(x� y)dy

9



I4 =

Z
IR3

c(x
i
; y
i
)

1

jB
�(x)j

�(
y

�(x)
)
@
2
u

@x
2
i

(x� y)dy

integrating by parts I3 yields

I3 = I31 + I32

with

I31 =

Z
IR3

�
0

i
(x
i
)

�
i
(x
i
)
(1� 2

�
0

i
(x
i
)

�
i
(x
i
)
y1)

1

jB
�(x)j

�(
y

�(x)
)
@u

@x
i

(x� y)dy

I32 = �

Z
IR3

c
i
(x
i
; y
i
)
�
0

i
(x
i
)

�
i
(x
i
)
y
i

1

jB
�(x)j

�(
y

�(x)
)
@
2
u

@x
2
i

(x� y)dy

from this expressions, together with I1, I2, I4, (3.28), we get (3.26).

Remark 3.4 Note that for �
i
= constant we have c

i
(x
i
; y
i
) � 1, d(x

i
; y
i
) � 0, and the expressions obtained

in the previous lemma coincide with the usual ones for the convolution.

For further use, we de�ne for 1 � i; j � 3

C1;�j := k

�
0

j
(x
j
)

�
j
(x
j
)
k0;1;K

C
j
:= (1 + C1;�j �j) (3.29)

C
i;j

:= C
i
C
j

(3.30)

We can now face the extension of Lema 3.3 to derivatives, as we did for the convolution in Remark 3.3.

Lemma 3.5 Assume H0, and let K � IR3, u 2 H2(K +B
�
M
K
). If we de�ne

�
i
:= (�M

K
)
i

then

k

@(u� �
�(x)�̂u)

@x
i

k0;2;K � 23=2f3

3X
j=1

�
j
k

@
2
u

@x
j
@x

i

k0;2;K+B
�M
K

+ C1;�i�ik
@u

@x
i

k0;2;Kg (3.31)

and

k

@(u� �
�(x)�̂u)

@x
i

k0;2;K � (1 + C
i
23=2)k

@u

@x
i

k0;2;K (3.32)

Proof. Rewriting (3.24) we have

@�
�(x)�̂u

@x
i

= �
�(x)�̂

@u

@x
i

�

Z
IR3

�
0

i
(x
i
)

�
i
(x
i
)
y
i
�
�(x)

@u

@x
i

(x� y)dy (3.33)

and since jy
i
j � �

i
,

j

@(u� �
�(x)�̂u)

@x
i

j � j

@u

@x
i

� �
�(x)�̂

@u

@x
i

j+ C1;�i�ij��(x)�̂j
@u

@x
i

jj (3.34)

taking L2 norm and applying the triangle inequality we get, by means of Lemmas 3.1 and 3.3, the estimate

stated in (3.31).

To prove (3.32) we observe that from (3.34)

k

@(u� �
�(x)�̂u)

@x
i

k0;2;K � k

@u

@x
i

k0;2;K + C
i
k�
�(x)�̂j

@u

@x
i

jk0;2;K (3.35)

and we conclude by using Lemma 3.1.
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Remark 3.5 Let us observe that (3.31) and (3.32) looks like an usual interpolation error estimate.

In the next lemma we bound the derivatives of �
�(x)�̂u in terms of appropiatre seminorms of u.

Lemma 3.6 Assume that H0 holds. Let K � IR3, u 2 H2(K +B
�
M
K
), and �

i
, C

i;j
as before.

If we de�ne

C2;�i := k

�
00

i
(x
i
)

�
i
(x
i
)
k0;1;K

then

k

@
2
�
�(x)�̂u

@x
j
@x

i

k0;2;K � C
i;j
k

@
2
u

@x
j
@x

i

k0;2;K+B
�M
K

(3.36)

if i 6= j, and

k

@
2
�
�(x)�̂u

@x2
i

k0;2;K � 23=2fC
i;i
k

@
2
u

@x2
i

k0;2;K+B
�M
K

+ �
i
C2;�ik

@u

@x
i

k0;2;K+B
�M
K

g (3.37)

Proof. Follows easily from Lemmas 3.1, 3.4. We show by example (3.37).

From (3.26) and using that jy
i
j � �

i
, one gets

j

@
2
�
�(x)�̂u(x)

@x
2
i

j � C
i;i

Z
IR3

�
�(x)(y)j

@
2
u

@x
2
i

(x � y)jdy + C2;�i�i

Z
IR3

�
�(x)(y)j

@u

@x
i

(x� y)jdy (3.38)

Taking the L2 norm in both sides we �nish the proof by means of Lemma 3.1.

In the following lemma we look for similar bounds as that of the previous one but in the in�nite norm.

Lemma 3.7 Assume H0, and let K � IR3, u 2 H
2(K + B

�
M
K
). Then, with the notation de�ned above it

holds

k

@
2
�
�(x)�̂u

@x
j
@x

i

k0;1;K
� C0;�

1

jB
�
m
K
j
1=2

C
i;j
k

@
2
u

@x
j
@x

i

k0;2;K+B
�M
K

(3.39)

for i 6= j,

k

@
2
�
�(x)�̂u

@x2
i

k0;1;K
� C0;�

1

jB
�
m
K
j
1=2
fC

i;i
k

@
2
u

@x2
i

k0;2;K+B
�M
K

+ �
i
C2;�ik

@u

@x
i

k0;2;K+B
�M
K

g (3.40)

and

k

@�
�(x)�̂u

@x
j

k0;1;K
� C0;�

1

jB
�
m
K
j
1=2

C
j
k

@u

@x
j

k0;2;K+B
�M
K

(3.41)

Proof. Follows arguing like in Lemma 3.6. In fact, to obtain, for example, (3.40), we proceed as before

until we get (3.38) using then Lema 3.2, instead of Lema 3.1. Inequality (3.39) follows analogously. Finally,

(3.41) follows similarly from (3.24) and Lemma 3.2.

The next section is devoted to construct an average interpolation which has optimal order error in H1

whenever the Lagrange interpolation veri�es this property over more regular spaces.

3.2 Construction of the average interpolation.

During this subsection we will use K to denote, either, a general tetrahedron or a 3 � rectangle. In the

latter case we suppose, for simplicity, that its edges are parallels to the coordinate axis (see Figure 2 a) and

we call h
i
as well as hK

i
its diameters in the x

i
direction. Also we use T1 to denote a triangulation made

up using 3� rectangles of the kind mentioned above, and T2 for a triangulation made up using tetrahedra

whit its principal directions (see De�nition 2.2) given by the canonical vectors. We call again h
i
, as well

as hK
i
, the respective principal lengths (see Figure 1). Let us mention that, for a given T1, it is possible to

obtain a T2 just splitting adequately each K 2 T1 into tetrahedra. In Figure 2 b we show one way to do

11



that, dividing a half of a 3 � rectangle by using 3 tetrahedra, in this case any of the involved tetrahedra

veri�es MAC(�=2). More general meshes of tetrahedra could be handled with the same technique (see

Theorem 3.2).

Our goal is to de�ne an average interpolation with uniform error independently of the quotients
h
K
i

h
K
j

, and

with a weak local restriction over
h
K
i

h
K0

i

when K and K 0 are neighbour elements.

6

�
�

��	

-

6

-
�
�
��	

h1

x1 x1

x3x3

x2 x2

h2

h3

a) b)

Figure 2

h1

h3

h3

Now, in order to de�ne the average interpolation, let us consider a given �(x) and an arbitrary u 2

H
2(K +B

�
M
K
).

We write

u = �
�(x)�̂u

with �̂ as in the preceding subsection, and de�ne

P (u) = �(u)

with �, either, the P1, or the trilinear, Lagrange interpolation, depending on the nature of K.

The idea behind the de�nition of the operator P is quite simple. In fact, as the Lagrange interpolation

error, for regular functions, has a \good" behavior, even over narrow elements, it seems reasonable to

regularize before interpolate.

Indeed, we may write

k

@(u� P (u))

@x
j

k0;2;K � k

@(u� u)

@x
j

k0;2;K + k
@(u� P (u))

@x
j

k0;2;K (3.42)

and from Lema 3.5, we know that

k

@(u� u)

@x
j

k0;2;K � 23=2f3

3X
j=1

�
i
k

@
2
u

@x
j
@x

i

k0;2;K+B
�M
K

+ C1;�j �jk
@u

@x
j

k0;2;Kg (3.43)

on the other hand, for 3� rectangles, Lagrange interpolation has bounds of the type,

k

@(u��(u))

@x
j

k0;1;K
� C

L

3X
i=1

h
i
k

@
2
u

@x
i
@x

j

k0;1;K
(3.44)

with h
i
(see Figure 2 a) the diameter of K in the coordinates directions e

i
, as well as \no directional"

bounds for general tetrahedra

k

@(u��(u))

@x
j

k0;1;K
� C

L
hjuj2;1;K

(3.45)
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with h the diameter of K. Also, the constant C
L
, depends on the maximum angle for tetrahedra [10], and

is independent of the shape of K for 3� rectangles.

Remark 3.6 Bounds similar to (3.44) hold for tetrahedra with its principal directions parallel to the co-
ordinate axis and so for any K 2 T2. Also it is easy to see that this kind of elements verify MAC(�=2)

uniformly. However, for general tetrahedra we may use (3.45).

From (3.44) one gets,

k

@(u��(u))

@x
j

k0;2;K � jKj
1=2
k

@(u��(u))

@x
j

k0;1;K
� C

L
jKj

1=2(

3X
i=1

h
i
k

@
2
u

@x
i
@x

j

k0;1;K
) (3.46)

and recalling the de�nition of u we obtain, by means of Lemma 3.7 and the last equation

k

@(u��(u))

@x
j

k0;2;K � C
L
C0;�(

jKj

jB
�
m
K
j

)1=2f

3X
i=1

C
i;j
h
i
k

@
2
u

@x
i
@x

j

k0;2;K+B
�M
K

(3.47)

+ C2;�i�jhjk
@u

@x
j

k0;2;K+B
�M
K

g

Now, from equations (3.43), and (3.47), it is possible to get bounds for k
@(u�P (u))

@xj
k0;2;K , using (3.42).

However, we have to relate the magnitudes �
i
and h

i
. In order to do that, we need the following hypothesis

De�nition 3.2 Let us consider a triangulation T
i
, 1 � i � 2, of a polihedral domain 
, a function �(x)

de�ned as in the previous subsection, and a positive real number N . We say that T and �(x) veri�es H1

with a constant N , or shortly H1(N), if and only if, for any K 2 T , and any x 2 K, it hold

1

N
�
i
(x
i
) � h

i
� N�

i
(x
i
) 1 � i � 3 (3.48)

Remark 3.7 From (3.48) one easy gets

jKj �
N

3

jB1j
jB
�(x)j

for all K 2 T
i
, and any x 2 K. In particular

jKj

jB
�
m
K
j

�

N
3

jB1j
(3.49)

In order to simplify the notation, let us de�ne for 1 � i; j � 3

Ĉ
i
= (1 + C1;�iNhi)

Ĉ
i;j

= Ĉ
i
Ĉ
j

note that if (3.48) holds, we have (see (3.29), (3.30)) C
i
� Ĉ

i
and C

i;j
� Ĉ

i;j
.

We can now state the following Theorem. We emphasize the dependence of the constants in order to

examine further examples.

Theorem 3.1 Let us consider a triangulation T
s
, s = 1; 2, and � under H1(N). Let us assume H0 for �,

then, for any K 2 T
s
, we have

k

@u� P (u)

@x
j

k0;2;K �

3X
i=1

A
i
h
i
k

@
2
u

@x
i
@x

j

k0;2;K+B
�M
K

+B
j
h
j
k

@u

@x
j

k0;2;K+B
�M
K

(3.50)
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with A
i
= (3N23=2 + C

L
C0;�

N
3=2

jB1j
1=2 Ĉi;j), Bj = (N23=2C1;�j + C

L
C0;�

N
3=2

jB1j
1=2C2;�jNhj) and also

k

@u� P (u)

@x
j

k0;2;K � D
j
k

@u

@x
j

k0;2;K+B
�M
K

(3.51)

with D
j
= 1 + Ĉ

j
(23=2 + C

L
C0;�

N
3=2

jB1j
1=2 ).

Proof. From (3.43) and (3.47) we get, using the bounds (3.48), (3.49),

k

@(u� u)

@x
j

k0;2;K � N23=2f3

3X
i=1

h
i
k

@
2
u

@x
j
@x

i

k0;2;K+B
�M
K

+ C1;�jhjk
@u

@x
j

k0;2;Kg (3.52)

and

k

@(u��(u))

@x
j

k0;2;K � C
L
C0;�

N
3=2

jB1j
1=2
f

3X
i=1

Ĉ
i;j
h
i
k

@
2
u

@x
i
@x

j

k0;2;K+B
�M
K

(3.53)

+ C2;�jNh
2
j
k

@u

@x
j

k0;2;K+B
�M
K

g

adding up (3.52), and (3.53), (3.50) follow, by means of (3.42).

In order to obtain (3.51) we use the same idea bounding the rigth hand side terms of (3.42). This can be

done for the �rst term by means of equation (3.32), and (3.48), getting

k

@(u� u)

@x
j

k0;2;K � (1 + Ĉ
j
23=2)k

@u

@x
j

k0;2;K (3.54)

For the second term we write again, using the Lagrange interpolation estimate,

k

@u��(u)

@x
j

k0;2;K � jKj
1=2
k

@u��(u)

@x
j

k0;1;K
� C

L
jKj

1=2
k

@u

@x
j

k0;1;K
(3.55)

And now by means of (3.41), (3.48) and (3.49), we obtain

k

@u��(u)

@x
j

k0;2;K � C
L
C0;�

N
3=2

jB1j
1=2

Ĉ
j
k

@u

@x
j

k0;2;K+B
�M
K

(3.56)

and (3.51) follows from (3.54), (3.56) and (3.42).

In the following Remarks we examine the scope of the preceding result.

Remark 3.8 When one looks for \global" estimates, the following terms have to be bounded

X
K2T

juj2;2;K+B
�M
K

and
X
K2T

juj1;2;K+B
�M
K

: (3.57)

Then K + B
�
M
K

should not intersect a \big" number of elements. From H0 and (3.48), we can easily see

that this number can be bounded in terms of N (independently of K).

Remark 3.9 From Theorem 3.1 we easily get uniform error estimates for meshes which are quasi-uniform

in each direction. In fact, for a given triangulation T
l
, l = 1; 2, let us call s

j
:= sup

K;K
02Tl

h
K
j

h
K0

j

, for

1 � j � 3, then, for any �xed K, the choice �
j
(x) = h

K

j
= constant, gives C1;�j = C2;�j � 0, and taking
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N = maxfs
j
g1�j�3 � 1, we get B

j
� 0 and A

i
� (maxfs

j
g1�j�3)

3=2(9 +
CLC0;�

jB1j
) and by means of (3.50)

one gets

k

@u� P (u)

@x
j

k0;2;K � (maxfs
j
g1�j�3)

3=2(9 +
C
L
C0;�

jB1j
)f

3X
i=1

h
i
k

@
2
u

@x
i
@x

j

k0;2;K+B
�M
K

g (3.58)

which results uniform whenever s
i
remains bounded, and without any restriction over

h
K
i

h
K
j

.

Remark 3.10 The result shown in the last remark is similar to that obtained in [8]. However, our technique
essentially replace the restrictions required by the boundedness of the numbers s

j
, 1 � j � 3, by the local

ones
H1 and C1;�i ; C2;�i � C (3.59)

allowing the use of several non uniform meshes. Indeed, let us consider, for example, a domain 
 � IR3

such that 0 � x1 � 10 whenever x = (x1; x2; x3) 2 
 and the \non uniform" mesh T
l
made up in such a

way that K 2 T
l
and x 2 K implies h1

K
� ( 1

2
)x1 . De�ning �1(x1) := ( 1

2
)x1 we �nd C1;�1 = jln( 1

2
)j and

C2;�1 = ln( 1
2
)2, showing that the estimate (3.50) does not deteriorates, however max

K;K
02T

h
1
K

h
1

K0

� 210.

Another interesting remark, is that the constant D
j
in the estimate (3.51) remains bounded under the

weaker assumption
H1 and j�

0

j
j � C

allowing uniform bounds for more general meshes.

Remark 3.11 Let us note that (3.59) implies H0 for practical purposes. In fact, as h
i
! 0 one gets

j�
0

i
(x
i
)j � C�

i
(x
i
) � CNh

i
<<

1

2

The argument shown for T2 applies also for more general meshes of tetrahedra, just changing the estimates

of the Lagrange interpolation, and taking care of certain aspects which relates the geometry of the ellipsoids

de�ned in the preceding subsection with the geometry of the elements.

For example, for a given triangulation T we could not require the same principal directions for everyK 2 T

nor the orthogonality between t
i
and t

j
. In the latter case we have to use (3.45) instead of (3.44) for the

Lagrange interpolation error. On the other hand, for general meshes, hypothesis H1(N) does not relate

any more the shape of K and B
�
, therefore we restrict ourselves to the meshes de�ned in the following

De�nition 3.3 We say that a triangulation T made of tetrahedra is a perturbation of T2, and we note it
by T

p
if and only if for any K 2 T and any coordinate axis x

j
, 1 � j � 3, there exist a unique principal

direction, say t
j
(K) (renumbering if is needed), such that the angle between them is less than or equal to

�=4. For any K 2 T
p
we call again h

i
as well as hK

i
the respective lenghts of the edge associated with t

i
(K),

moreover we say that T
p
veri�es H1(N) whenever (3.48) holds.

And now a similar result to that given in Theorem 3.1 can be proven. We just state it without proof.

Theorem 3.2 Let us consider a triangulation T
p
, and � under H1(N). Let us assume H0 for �, then, for

any K 2 T
p
, we have

ju� P (u)j1;2;K � Ah(juj2;2;K+B
�M
K

+ juj1;2;K+B
�M
K

) (3.60)

with A = A(N;C
L
( ); C0;�; C1;�j ; C2;�j ) and also

ju� P (u)j1;2;K � Cjuj1;2;K+B
�M
K

(3.61)

with C = C(N;C
L
( ); C0;�; C1;�j ).
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Remark 3.12 One is tempted to replace H1 by the weaker couple

1

N
�
M

K
� h

K
� N�

M

K
and

jKj

jB
�
m
K
j

�

N
3

jB1j
: (3.62)

Indeed, these are the unique bounds we need in order to obtain the result given in the last Theorem. However,
under this assumption, the result may have not a �nite element value, since terms like (3.57) could not be
properly bounded due to the fact that K+B

�
M
K

may intersect an increasing number of neighboring elements
when anisotropic elements are allowed.

Acknowledgement: The author thanks to Ricardo Dur�an for several valuable suggestions and comments.
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