ON PRYM MODULI SPACES IN LOW GENUS, TALK AT DAGFO2008 IN BUENOS AIRES

ALESSANDRO VERRA

1. INTRODUCTION

The purpose of this talk is to discuss the unirationality problem of the Prym moduli space

 \mathcal{R}_q

for very low values of g. \mathcal{R}_g is the moduli space of connected étale double coverings

$$\pi: C \to C,$$

where C is a compact, connected Riemann surface of genus g. Let me recall that the datum of π is equivalent to the datum of a non trivial element of order two

$$\eta \in Pic^0(C).$$

I will always denote the induced fixed-point-free involution on \tilde{C} as

$$i: \tilde{C} \to \tilde{C}.$$

Therefore \mathcal{R}_g is also the moduli space of pairs (C, η) . More in general one can pose the question of what is the Kodaira dimension of \mathcal{R}_g and, for low values if g, whether \mathcal{R}_g has one of the following properties:

Kodaira dimension $-\infty$, uniruledness, rational connectedness, unirationality, rationality.

A completely analogous problem can be posed for

\mathcal{M}_{g}

and the most interesting case to be considered after \mathcal{M}_g is perhaps the case of \mathcal{R}_g . Both cases are still open and very much interesting for low values of g.

In the case of \mathcal{M}_{q} there is a classical result of Eisenbud-Harris-Mumford:

Theorem 1.1. \mathcal{M}_q is of general type for $g \geq 24$.

Recently this result has been ameliored by Farkas:

Theorem 1.2. \mathcal{M}_g is of general type also for g = 22, 23.

Version in progress of the paper *On Prym moduli space in low genus.* **GRAZIE** agli organizzatori di DAGFO2007 per l'ottimo convegno.

ALESSANDRO VERRA

Moreover there has been a lot of work, due to Farkas and Farkas-Popa, on the slope conjecture of Morrison-Harris, which has been disproved for infinitely many values of g.

A corollary to the slope conjecture was $kod(\mathcal{M}_q) = -\infty$ for $g \leq 22$.

For very low values of g there are classical and recent result proving that: - \mathcal{M}_q is unirational for $g \leq 10$

 $-\mathcal{M}_g$ is unirational for g = 11, 12, 13, 14 (Chamg-Ran, Sernesi, Chang-Ran, Verra)

 $-\mathcal{M}_{15}$ is rationally connected (Bruno-Verra)

 $-\mathcal{M}_{16}$ is uniruled (Chang-Ran $kod(\mathcal{M}_{16}) = -\infty$ + recent birational geometry).

The case of \mathcal{R}_g has a similar more recent story: of course, due to the previous results on \mathcal{M}_g , it follows that \mathcal{R}_g is of general type for $g \geq 22$. Indeed the natural forgetful map:

$$f: \mathcal{R}_g \to \mathcal{M}_g$$

sending the moduli point of (C, η) to the moduli point of C, is finite (of degree $2^{2g} - 1$. In particular one has $kod(\mathcal{R}_g) \geq kod(\mathcal{M}_g)$.

A very recent result of Farkas and Ludwig tells in addition that

Theorem 1.3. \mathcal{R}_g is of general type for g > 13, with the possible exception of g = 15.

Moreover, with the same methods, one has

Theorem 1.4. (1) \mathcal{R}_{15} has Kodaira dimension ≥ 1 . (2) \mathcal{R}_7 has Kodaira dimension $-\infty$.

In this talk I want to produce a somehow general geometric description of some universal Prym Brill-Noether locus

 \mathcal{R}^2_a

which dominates \mathcal{R}_g . Using some more geometry produced from this description I can show the following

Theorem 1.5. \mathcal{R}_{q}^{2} , and hence \mathcal{R}_{g} , is unirational for $g \leq 7$.

A further remark to be possibly eploited in the future is the following:

Theorem 1.6. \mathcal{R}_8^2 , and hence \mathcal{R}_8 , is uniruled.

To conclude this introduction let me recall that the unirational of \mathcal{R}_g was known, by various independent methods, for $g \leq 6$:

- $g \leq 4$ the rationality is known (Dolgachev, Catanese $g \leq 3$), (Catanese g = 4).

-g = 5 (Clemens, Izadi-Lo Giudice-Sankaran, Verra).

- g = 6 (Donagi, Verra).

 $\mathbf{2}$

2. Basic reminds on Pryms

Before of continuing let me recall some well known facts on the Prym variety associated to an étale docuble cover

$$\pi: \tilde{C} \to C$$

defined by η . The Norm map

$$Nm: Pic^d(\tilde{C}) \to Pic^d(C)$$

is just the map sending $\mathcal{O}_{\tilde{C}}(\sum x_i)$ to $\mathcal{O}_C(\sum x_i)$. Nm is surjective and each of its fibres cosists of two disjoint copies of the same abelian variety

$$Prym(C,\eta)$$

of dimension g-1. This is known as the Prym variety of π or of (C, η) . The theory of Brill-Noether is available for curves \tilde{C} , even if they are not general in moduli. Putting

$$d = 2g - 2$$

we have

$$Nm^{-1}(\omega_C) = P^+ \cup P^-$$

where

$$P^+ = \{ \tilde{L} / Nm(\tilde{L}) \cong \omega_C , h^0(\tilde{L}) \text{ is even} \}$$

and

$$P^{-} = \{ \tilde{L} \in Pic^{2g-2}(\tilde{C}) / Nm(\tilde{L}) \cong \omega_{C} , h^{0}(\tilde{L}) \text{ is odd} \}.$$

Moreover let

$$P^{r} = \{ \tilde{L} \in P^{+} \cup P^{-} / h^{0}(\tilde{L}) = 0 \text{ mod } r + 1 \text{ and } h^{0}(\tilde{L}) \ge r + 1 \}.$$

 ${\cal P}^r$ has a natural structure of scheme and it is known as the r-th Prym Brill-Noether locus. One has

 $P^0 = P^+$, $P^1 = twice \ a \ principal \ polarization \ on \ P^+$ }.

Let $\tilde{L} \in P^r$ then $\tilde{L} \otimes i^* \tilde{L} \cong \omega_{\tilde{C}}$. The Petri map

$$\mu: H^0(\tilde{L}) \otimes H^0(i^*\tilde{L}) \to H^0(\omega_{\tilde{C}})$$

can be composed with the natural projection $h \to h - i^*h$ onto the -1 eigenspace of i^* . This composition is by definition the Prym-Petri map

$$\mu^-: H^0(\tilde{L}) \otimes H^0(i^*\tilde{L}) \to H^0(\omega_{\tilde{C}})^- = \pi^* H^0(\omega_C).$$

The main property is that

$$T_{P^+\cup P^-,\tilde{L}} = (Im \ \mu^-)^\perp.$$

Moreover

Theorem 2.1. For a general $\pi : \tilde{C} \to C$ the Prym-Petri map is always injective.

In particular it follows that

$$codim \ P^r = \binom{r+1}{2}$$

and also that P^r is smooth for a general C and connected if its dimension is non zero. The general $\tilde{L} \in P^r$ satisfies $h^0(\tilde{L}) = r + 1$.

Definition 2.1. The universal r-th Prym-Brill-Noether locus is the moduli space of triples

 (C, η, \tilde{L})

sub that (C,η) defines a point of \mathcal{R}_g and $\tilde{L} \in P^r$. it will be denoted as

 \mathcal{R}_{q}^{r} .

Note that P^2 is always a codimension three subscheme of P^- : I am specially interested to this Prym-Brill Noether locus. I want to show that

Theorem 2.2. The universal Prym Brill-Noether locus \mathcal{R}_g^r is univariational for r = 2 and $g \leq 7$.

3. Hypersurfaces with a quasi-étale double covering

Definition 3.1. A quasi-etale double covering $s : \tilde{D} \to D$ is a double covering of an integral variety D which is étale in codimension one.

We will be specially interested to the following case:

D is a hypersurface through a canonical curve C of genus g not intersecting the branch locus of s.

Actually there is no problem in replacing the canonical model of C by another projective model: this is also useful. Nevertheless I prefer to fix the ideas only to the case of a canonical (hence non hyperelliptic) curve. Another severe restriction is that I will only consider the case

$$deg D = 3.$$

However this is enough for my purposes. Actually I can simply start from a cubic

$$D = \{det(A) = 0\} \subset \mathbf{P}^{g-1},$$

where $A = (a_{ij})$ is a symmetric 3×3 matrix of linear forms. Of course we have the conic bundle fibration

 $\Gamma \subset \mathbf{P}^{g-1} \times \mathbf{P}^{2*}$ (dual for simplicity of further notations)

of equation $(z_0, z_1, z_2)A^t(z_0, z_1, z_2) = 0$. This is uniquely defined up to projective equivalence. We have a commutative diagram

where \tilde{D} is the fibre product of s and λ/D .

Proposition 3.1. Let $D \subset \mathbf{P}^{g-1}$ be defined by the determinant of a symmetric 3×3 matrix of linear forms $A = (a_{ij})$ as above. Assume that : (1) Sing $D = \{x \in D \mid rk \ A(x) \leq 1\},$ (2) The linear space Sing₃(D) has codimension ≥ 4 in \mathbf{P}^{g-1} .

Then there exist exactly one quasi-etale double covering of D and such a covering is reconstructed from D as in the previous diagram.

For g = 3 the étale double covering is not unique: they are prametrized by non trivial order two elements of $Pic^0(D)$. The same for cones over plane cubics: assumption (2) excludes this case.

So far we start with a canonical curve

 $C \subset \mathbf{P}^{g-1}$

and I am looking for cubic hypersurfaces as above containing C. Let η be a non trivial two torsion element of $Pic^0(C)$ and let $\pi : \tilde{C} \to C$ the induced étale double covering. Consider a general $\tilde{L} \in P^2$. Then $h^0(\tilde{L}) = 3$ and the Petri map

$$\mu: H^0(\tilde{L}) \otimes H^0(i^*\tilde{L}) \to H^0(\omega_{\tilde{C}})$$

defines an embedding (provided C and \tilde{L} are sufficiently general)

$$\tilde{C} \subset \mathbf{P}^2 \times \mathbf{P}^2 \subset \mathbf{P}^8.$$

The latter inclusion is the Segre embedding. The former one is defined by the product map $f \times f \cdot i$, where $f : \tilde{C} \to \mathbf{P}^2 = \mathbf{P}H^0(\tilde{L})^*$ is the morphism associated to \tilde{L} . We can arrange things so that

$$i = \iota/C,$$

where ι is the projectivized involution $a \otimes b \to b \otimes a$. For its projectivized eigenspaces we have

$$\mathbf{P}^{2-} = \mathbf{P}V^{-}$$
 and $\mathbf{P}^{5+} = \mathbf{P}V^{+}$.

where V^- , V^+ are the subspaces in $H^0(\omega_{\tilde{C}})$ of antisymmetric and symmetric tensors.

Let $s : \mathbf{P}^8 \to \mathbf{P}^-$ be the linear projection of center \mathbf{P}^{2-} , then s factors through ι . Moreover

$$D^+ = s(\mathbf{P}^2 \times \mathbf{P}^2)$$

is a cubic with equation $det(a_{ij})$, a symmetric determinant of order three of linear forms. The map

$$s: \mathbf{P}^2 \times \mathbf{P}^2 \to D^+$$

is a quasi étale double covering: its branch locus is the Veronese surface $SingD^+$.

 D^+ contains $s(\tilde{C})$ which is a copy of C. More precisely $s: \tilde{C} \to s(\tilde{C})$ is the map π .

Remark 3.1. Both the curves \tilde{C} and $s(\tilde{C})$ are embedded by a linear subsystem of the canonical system, respectively by

$$Im(\mu) \subset H^0(\omega_{\tilde{C}})$$
 and $Im(\mu^+) \subset H^0(\omega_{\rm C})$.

Here $H^0(\omega_C)$ is identified via π^* to $H^0(\omega_{\tilde{C}})^+$ and $\mu^+ = \mu/V^+$. Note that $\mathbf{P}^{5+} = \mathbf{P}V^{+*}$.

Dualizing μ and μ^+ we obtain two linear projections

$$\tilde{\lambda}: \mathbf{P}^{2g-2} \to \mathbf{P}^8 \text{ and } \lambda: \mathbf{P}^{g-1} \to \mathbf{P}^{5+}.$$

Let $\tilde{k}: \tilde{C} \to \mathbf{P}^{2g-2}$ and $k: C \to \mathbf{P}^{g-1}$ be the canonical embeddings of \tilde{C} and C. It is easy to deduce that the following diagram commutes

Note that the linear projection has an image which is the linear span

$$\Lambda = < s(\tilde{C} >$$

For a general $\pi : \tilde{C} \to C$ we expect that μ^+ has maximal rank and we assume this property. In particular $\Lambda = \mathbf{P}^{5+}$ for $g \ge 6$. The conclusion is as follows:

the pull-back of D^+ by λ is a cubic hypersurface

$$D \subset \mathbf{P}^{g-1}$$

containing the canonical model of C. D is a cone over $\lambda \cdot \mathbf{D}^+$ of equation $det(a_{ij}) = 0$. D is endowed with a unique quasi-étale double covering, under the assumptions of the previous proposition,

$$\tilde{s}: \tilde{D} \to D,$$

where \tilde{D} is a cone over $s^{-1}(\Lambda) \cdot \mathbf{P}^2 \times \mathbf{P}^2$.

Assume now that a canonical curve C of genus g is in D - Sing(D). Then (1) From the quasi étale double cover σ we can reconstruct a curve $\tilde{C} \subset \tilde{D}$. Projecting from C in D^+ from the vertex of C and taking its pull-back by s, we obtain a curve

$$\tilde{C} \subset \mathbf{P}^2 \times \mathbf{P}^2$$

and an étale double covering $\pi : \tilde{C} \to C$. (2) In addition we have a pair of line bundles $\tilde{L} = \mathcal{O}_{\tilde{C}(1,0)}$ and $i^*\tilde{L} = \mathcal{O}_{\tilde{C}}(0,1)$. Notice also that $\mathcal{O}_{\tilde{C}}(1,1) \cong \omega_{\tilde{C}}$ so that $Nm(\tilde{L}) = \omega_C$ and $deg\tilde{L} = 2g - 2$. In particular $h^0(\tilde{L}) \geq 3$. If the equality holds then

$$\tilde{L} \in P^2$$
,

where P^2 is the Prym Brill-Noether locus of order 2 associated to π . Roughly speaking the basic conclusion is the following

Theorem 3.2. Let $C \subset \mathbf{P}^{g-1}$ be a canonical curve. Fix a non trivial order two element η and consider the corresponding Prym Brill-Noether locus P^2 . Then

$$P^2/ < i^* > \cong \mathcal{D}_r$$

where \mathcal{D}_{η} is an irreducible component of the family of symmetric determinantal cubic hypersurfaces containing C.

The birational map is of course the map $D \to (\tilde{L}, i^*\tilde{L})$. Let us see two examples: we recall that P^2 has cohomology class $\Xi^3/3$ in P^- , where Ξ is a principal polarization.

Example 3.1. g = 4 (Catanese). $\Xi^3/3$ is the class of two points. Hence there is exactly one pair \tilde{L} , $i^*\tilde{L}$ for each η . The linear space Λ is the canonical space of C. The construction yelds a 4-nodal Cayley cubic surface

$$D = \Lambda \cap D^+.$$

The linear system $| \mathcal{O}_D(2) |$ dominates \mathcal{R}_4 , the rationality of \mathcal{R}_4 can be shown: see Catanese.

g = 5 Fixing η the family \mathcal{D}_{η} is a curve: its elements are cubic threefolds singular along a rational normal quartic curve. This curves turns out to be a copy of C!

4. Application to genus 7

The most new application is in genus 7: we start with the moduli space

 \mathcal{R}^2_7

of pairs $(\pi : \tilde{C} \to C, \tilde{L})$ such that π is a connected étale double covering of a smooth, irreducible curve of genus 7. \tilde{L} si a line bundle of degree 12 on \tilde{C} such that $\dim |\tilde{L}|$ is even and at least 2. We will always assume that the previous triple is sufficiently general. Then, applying our basic construction, the multiplication

$$\mu: H^0(\tilde{L}) \otimes H^0(i^*\tilde{L}) \to H^0(\omega_{\tilde{C}})$$

induces an embedding

$$\tilde{C} \subset \mathbf{P}^2 \times \mathbf{P}^2 \subset \mathbf{P}^8$$

where the latter inclusion is the Segre embedding and $i = \iota / \tilde{C}$. μ is the Petri map:

Proposition 4.1. In genus $g \ge 6$, μ is injective for a general triple as above.

Let $s : \mathbf{P}^8 \to \mathbf{P}^5$ be the projection of center \mathbf{P}^- . Then $D = s(\mathbf{P}^2 \times \mathbf{P}^2)$ is the standard symmetric cubic determinant of \mathbf{P}^5 . Note that $s(\tilde{C}) \subset D$ is the canonical model of C projected from one point. For simplicity of notations we put

$$s(\tilde{C}) := C$$

Proposition 4.2. If C is general then:

(1) C is contained in a smooth complete intersection X of 3 quadrics: $X = Q_1 \cap Q_2 \cap Q_3$.

(2) X is not contained in D.

So far we have constructed a complete intersection

$$D \cap Q_1 \cap Q_2 \cap Q_3 = C \cup \overline{C}.$$

Proposition 4.3. For a general triple as above \overline{C} is a smooth, irreducible curve.

Now we want to analyse in detail the properties of X and \overline{C} .

Theorem 4.4. X contains two disjoint, smooth conics B_1 and B_2 , moreover

$$C \in |H + B_1 + B_2|$$
, $\overline{C} \in |2H - B_1 - B_2|$.

Proof. Note that C is not linearly normal by definition and that $h^1(\mathcal{I}_C(1)) = 1$. Then

$$0 \to \mathcal{I}_S(1) \to \mathcal{I}_C(1) \to \mathcal{O}_S(H-C) \to 0$$

yelds, via the associated long exact sequence, $h^1(\mathcal{O}_S(H-C)) = 1$. Since $(H-C)^2 = -4$, Riemann-Roch implies that $h^0(C-H) = 1$. It is easy to conclude, excluding $degB_i$ odd.

Theorem 4.5. The curve \overline{C} has degree 12, genus 7 and the following special properties:

(1) B_i is a 6-secant conic to \overline{C} ,

(2) the image of \overline{C} via the projection of center $\langle B_i \rangle$ is a plane sextic with 3 nodes.

(3) \overline{C} is not quadratically normal: $h^0(\mathcal{I}_{\overline{C}}(2)) = 4$.

Proof. Note that $\overline{C}^2 = 12$ and $H\overline{C} = 12$. To see that B_i is 6-secant to \overline{C} just observe that $B_i\overline{C} = 6$. Projecting the plane $\langle B_i \rangle$ the image of \overline{C} is a plane sextic. Finally $h^0(\mathcal{I}_{\overline{C}}(2)) = 4$ because X is a complete intersection and $\overline{C} \sim 2H - B_1 - B_2$.

Let

B

be one of the two conics: B_1 or B_2 . Since $h^0(\mathcal{I}_{\overline{C}}(2)) = 4$ there exists exactly one net of quadrics

$$N \subset |\mathcal{I}_{\overline{C}}(2)|$$

whose base locus is

 $\Pi \cup Y$

where Π is the plane spanned by B. This follows because a quadric through \overline{C} also contains the 6-secant conic B. Hence the Kernel of the restriction $H^0(\mathcal{I}_{\overline{C}}(2)) \to H^0(\mathcal{O}_{\Pi}(2))$ is 3-dimensional.

Proposition 4.6. Y is a smooth, rational surface of degree seven. It is not contained in D and

 $D \cdot Y = \overline{C} + F$

where F is a smooth, irreducible curve of genus 4 and degree 9.

Theorem 4.7. (1) The scheme $F \cdot \Pi$ is an effective divisor f of degree 3 on F.

(2) < $f > is a line and \mathcal{O}_F(1) \cong \omega_F(f)$.

Proof. Recall that $E_Y := Y \cdot \langle B \rangle$ is a plane cubic. Of course it contains f and $b = \overline{C} \cdot \Pi$. On the other the cubic $E_D := D \cdot \langle B \rangle$ also contains f and b. Since b is in a conic it follows that f is in a line. Projecting from it we obtain the canonical model of F, hence $\mathcal{O}_F(1) \cong \omega_F(f)$.

The embedding in D endows F with an étale double covering

$$\pi_F: F \to F,$$

where

$$\tilde{F} = s^{-1}(F) \subset \mathbf{P}^2 \times \mathbf{P}^2 \subset \mathbf{P}^8$$

 \tilde{F} is a curve of genus 7 and degree 18. In the \mathbf{P}^2 of hyperplane sections P of D such that $s^*P = P_1 + P_2$, we can consider the irreducible curve parametrizing those P which contain $\langle f \rangle$. This family defines a decomposition

$$f = f_1 + f_2$$
, with $f_i = P_i \cdot F$

So we can define

$$\tilde{M}_i := \mathcal{O}_{\tilde{F}}(P_i - f_i) \ (i = 1, 2)$$

and, by the theorem,

$$Nm(M) \cong \omega_F.$$

So far we have reconstructed from the point $(\pi : \tilde{C} \to C, \tilde{L})$ of \mathcal{R}^2_7 the following data:

- an étale double covering: $\pi_F : \tilde{F} \to F$ of a genus 4 curve F,
- an effective divisor \tilde{f} of degree 3 on \tilde{F} ,
- a line bundle \tilde{M} such that $Nm \ \tilde{M} \cong \omega_F$,

- a plane Π containing the trisecant line $\langle f \rangle$ in the projective model defined by $\omega_F(f)$,

Theorem 4.8. The previous data are sufficient to reconstruct the curve \overline{C} .

After we have \overline{C} the curve C, as well as π and $\tilde{L}, i^*\tilde{L}$, are obtained from the complete interswection

$$D \cap Q_1 \cap Q_2 \cap Q_3 = C + \overline{C}$$

where Q_1, Q_2, Q_3 define a net of quadrics through \overline{C} that is a plane in the web $|\mathcal{I}_{\overline{C}}(2)| = 3$.

Theorem 4.9. Let \mathcal{R} be the moduli space of data: (1) $\pi_F : \tilde{F} \to F$, an étale double cover (2) $\tilde{M} \in \operatorname{Pic}^6(\tilde{F})$ such that $Nm\tilde{M}cong\omega_F$ and $h^0(\tilde{M}) = 1$, (3) \tilde{f} , an effective divisor of degree three, (4) a plane Π through the line $\langle f \rangle$ in the embedding of F by $\omega_F(f)$ where $\pi_{F*}\tilde{f} = f$, (5) a net of quadrics through \overline{C} , the curve constructed as above from data (1) - (4). Then \mathcal{R} dominates the moduli space \mathcal{R}_7^2 .

Let us count parameters: 9 for étale double coverings π_F , 3 for the line bundles considered (if they have exactly one global section), 3 for the divisors f and \tilde{f} , 3 for a plane through the line $\langle f \rangle$, 3 for a net of quadrics in the web of quadrics containing \overline{C} . The total is

$$21 = dim \ \mathcal{R}_7^2!!$$

5. The unirationality of $\mathcal R$

We start with the easy rationality result for \mathcal{R}_4 : let

$$S \subset \mathbf{P}^3$$

be a symmetric cubic determinant of maximal rank, that is Cayley 4-nodal cubic surface. Then

$$\mid \mathcal{O}_S(2) \mid$$

naturally dominates \mathcal{R}_4 via our usual construction. Let

$$\tilde{S} \subset \mathbf{P}^2 \times \mathbf{P}^2 \subset \mathbf{P}^8$$

be the pull-back of S by s. Then

$$\tilde{S} = \Lambda \cdot \mathbf{P}^2 \times \mathbf{P}^2$$
,

where Λ is a general space of dimension 6 passing through \mathbf{P}^{2-} . \tilde{S} is a sextic Del Pezzo surface endowed with an involution with 4 fixed points: ι/\tilde{S} . On \tilde{S} we consider the linear system of curves

$$| \mathcal{O}_{\tilde{S}}(2) |^{+} = \pi^{*} | \mathcal{O}_{S}(2) |:= | \tilde{F} |.$$

These curves are just the pull-back by s of quadratic sections of S. The line bundles we want on a curve \tilde{F} of this linear system are of the type

$$M = \mathcal{O}_{\tilde{F}}(x_1 + \dots + x_6)$$

where

$$s(x_1) + \dots + s(x_6) = S \cap A$$

where A is a conic in \mathbf{P}^3 . In other words we are looking to 0-dimensional subschemes z of \tilde{S} having length 6 and such that

$$s_*z = S \cap Q \cap P$$

where Q is a quadric and P is a plane. In particular z is contained in a curve

$$\tilde{E} = s^* E \in \mathcal{O}_S(1) \mid .$$

As a divisor on \tilde{E} , z defines a line bundle of degree 6 $\mathcal{O}_{\tilde{E}}(z)$ such that

$$Nm\mathcal{O}_{\tilde{E}}(z)\otimes s^*\mathcal{O}_E(-1)\cong\mathcal{O}_E$$

Since the Kernel of

$$NmPic^0(\tilde{E}) \to Pic^0(E)$$

is \mathbf{Z}_2 , there is a unique such a line bundle $\mathcal{O}_{\tilde{E}}(z)$ different from $s^*\mathcal{O}_E(1)$. The conclusion is the following

Proposition 5.1. For each smooth $\tilde{E} \in |\mathcal{O}_{\tilde{S}}(1)|^+$ there exists exactly one linear system

|z|

if divisors of degree 6 such that s_*z is contained in a conic section of $E = s(\tilde{E})$ and z is not in $|s^*\mathcal{O}_E(1)|$.

Corollary 5.2. Let \mathcal{Z} be the family of 0-dimensional schemes z as above then \ddagger is a \mathbf{P}^5 -bundle over \mathbf{P}^3 .

Let

$$\tilde{S}[3]$$

be the Hilbert scheme of 3 points in \tilde{S} , for each pair

$$(z,t) \in \mathcal{Z} \times S[3]$$

we consider

$$|I_{z+t}(2)|^+ \subset |\tilde{F}| = |\mathcal{O}_{\tilde{S}}(2)|^+$$

This is a pencil: actually it is the pull-back of a pencil of quadrics passing through the conic c_z defined by the push-down s_*z and through s_*t .

Proposition 5.3. The incidence correspondence parametrizing triples

$$(z,t,\tilde{F}') \in \mathcal{Z} \times \tilde{S}[3] \times |\tilde{F}| / z + t \subset \tilde{F}'\}$$

is a \mathbf{P}^1 -bundle on $\mathcal{Z} \times S[3]$.

We denote such a rational 15-dimensional variety as

 $\mathbb{F}.$

Since a general $\pi: \tilde{F} \to F$ is represented by an embedding

 $\tilde{F}\in\tilde{S}$

as a quadratic secton which is a +1 eigenvector of ι/\tilde{S} , it is clear that **P** dominates the family of triples

$$(\pi: \tilde{F} \to F, \tilde{M}, \tilde{f})$$

such that $Nm\tilde{M} \cong \omega_F$, $h^0(\tilde{M}) = 1$, $\tilde{f} \in \tilde{F}[3]$. On \mathbb{F} we construct a \mathbb{P}^3 bundle as follows: let

 \mathcal{V}

be the vector bundle on \mathbb{F} with fibre

$$H^0(\omega_F(s_{*t})^*)$$

at (z, t, \tilde{F}) . We can consider the universal family

 $\mathcal{U} \subset \mathbb{F} \times S$

and its natural embedding

$$\mathcal{U} \subset \mathcal{V}.$$

For each (z, t, \tilde{F}) the divisor t spans a line in the embedding $F \subset \mathbf{P}\mathcal{V}_{(z,t,\tilde{F})}$. The \mathbf{P}^3 -bundle we consider is the family of planes

$$\Pi \supset .$$

We denote such a projective bundle as

 $\mathbb{P}.$

It parametrizes 4-tuples

$$(z,t,\tilde{F},\Pi)$$

as above. We know that \mathbb{P} is also the parameter space for a family of curves $\overline{C} \subset \mathbf{P}^5$

of degree 12 birational to plane sextics with three nodes. For each (z,t,\tilde{F},Π) we have indeed a cubic

$$D \subset \mathbf{P}H^0(\omega_F(s_*t))^*$$

defined by the pair of line bundles

$$\mathcal{O}_{\tilde{F}}(z+t) , \ \mathcal{O}_{\tilde{F}}(\iota^* z + \iota^* t).$$

Moreover there is a unique net of quadrics N passing through F and such that the base locus is

 $\Pi \cup Y.$

Finally

$$D \cdot Y = \overline{C} + F,$$

where \overline{C} is the required curve. Let

$$\overline{\mathcal{C}} \subset \mathbf{P}\mathcal{V}$$

be the corresponding universal family of curves. These curves are not quadratically normal and $h^0(\mathcal{I}_{\overline{C}}(2)) = 4$. Let

$$\mathbb{C}$$

be the projective bundle with fibre $\mid \mathcal{I}_{\overline{C}}(2) \mid \text{at } \overline{C}$. Then \mathbb{C} maps onto the moduli space

$$\mathcal{R}^2_7$$
.

Indeed a point of \mathbb{C} uniquely defines, in particular, the symmetric determinantal cubic D and a net of quadrics through \overline{C} generated say by Q_1, Q_2, Q_3 . Then

$$D \cap Q_1 \cap Q_2 \cap Q_3 = \overline{C} + C$$

and C is a curve of genus 7 and degree 12 which is the linear projection from one point of the canonical space. D, using also z, defines $\pi : \tilde{C} \to C$ and \tilde{L} . The map is dominant because we started with this construction. Conclusion

Theorem 5.4. \mathcal{R}^2_7 is unirational.

Universita' di Roma III, Dipartimento di Matematica, L.go S. Leonardo Murialdo, 1 00146 Roma; email: verra@mat.uniroma3.it