Uniformization by radicals.

Pirola Rizzi Schlesinger

History

Let K be a field,

$$p(y) \in K[y]$$

an irreducible polynomial degree d.

Abel:
if $d > 4$ then there are polynomials p not solvable by radicals.

If $\lambda \in K$

$$p(\lambda) = 0$$
cannot be (for instance) written:

$$\lambda = \ldots \sqrt[n_i+1]{q_i(a)} + \sqrt[n_i\ldots]{\ldots}$$

where $q \in K(x_1, x_2, \ldots, x_{d+1})$, $a = (a_1, a_2, \ldots, a_{d+1})$ are the coeff. of p.

Galois:

The Galois group of the splitting field of p:

$$G(p)$$

is not solvable.
Riemann:

\[K = \mathbb{C}(x) \]

\[p(y) = P(x, y) = 0 \]

defines a plane complex algebraic curve and then a Riemann surface \(X \).

The ”roots” of \(p \) are the alg. functions,

\[G(p) \equiv M(y) \]

\(M(y) \) monodromy group of the map:

\[y : X \to \mathbb{CP}^1 \]

induced by the projection \((x, y) \to y\).

\(M(y) \) topological invariant of the covering can be computed by arcs lifting.
Definition
Let X be a Riemann surface of genus g,

$$R(X)$$

its rational functions field. We say that X is

rationally uniformized by radicals

if there is $y \in R(X)$ such that

$$R(X) = \mathbb{C}(x)(y), \quad X = \{p(x, y) = 0\} :$$

$$M(y) \equiv G(p)$$

is solvable.

Zariski :
Solution to a question posed by Enriques:

Theorem: If $g \geq 7$ and X has general moduli, X cannot be rationally uniformized by radicals.

If $g \leq 6$, X has gonality ≤ 5 and hence is rationally uniformized by radicals.
Proof of Zariski theorem (Sketch)
Assume $y \in R(X) : M(y)$ solvable, y indecomposable:

\[y \neq f \cdot g \text{ maps of degree } > 1 \quad f : X \to Z \quad g : Z \to \mathbb{CP}^1. \]

Fix $x \in \mathbb{CP}^1$ not a branch point, $A = p^{-1}(x)$.

From Galois theory:
1. $d = \deg y = \# A = p^r$, p prime;
2. A is an affine space over \mathbb{Z}_p;
3. Galois action $G \times A \to A$ is affine.

Hence:
1. $h \in M$ gives an affine map $h : A \to A$;
2. fixed points of h form affine subspace;
3. ramification index at any branch point is
 \[\geq \frac{p^r - p^{r-1}}{2} \]
 \text{ramifications are big: example } p \geq 5 \quad r = 1 \text{ the ram. index } \geq 2.

Count of moduli gives that X is not general if $g \geq 7$.
Generalization

Theorem (Friedland-Guralnick-Magaard-Neubauer....)

Let X be the general complex curve of genus $g > 3$,

$$ y \in R(X) $$

indecomposable (non constant). Then

$$ M(y) = A_d \text{ or } S_d $$

the symmetric or the alternating group.
Existence result: \(S_d \) is possible (for any algebraic variety);

\(A_d \) is possible:
Magaard Volklein: (general curves)
\[d \geq 2g + 1 \]
(admissible coverings)
Artebani-P: any curve \(d > 12g + 4 \) (uses an Algebraic De Rham)
(Brivio-P. for a surface \(S \), \(A_d \) is possible if \(d >> 0 \); open in higher dimension.)

Everything is open in higher dimension.

Problem
Are surfaces uniformized by radicals?
Consider the case of ruled surfaces.
Zariski conjecture

Definition

Let \(X \) be a genus \(g \), Riemann surface \(R(X) \) its rational functions field, \(X \) is

algebraically uniformized by radicals

if there is an algebraic field extension

\[
R(X) \subset S = R(Y)
\]

which corresponds to a dominant map \(\pi : Y \to X \):

\(Y \) is rationally uniformized by radicals.

Remark

Rationally uniformized means that there is a \(y : X \to \mathbb{CP}^1 \) : for the Galois closure \(L = \overline{R(X)^y} \) of \(\mathbb{C}(x) \subset R(X) = \mathbb{C}(x)(y) \) is solvable. Algebraic uniformization by radicals requires to embed

\[
R(X) \subset S
\]

such that some

\[
\mathbb{C}(x) \subset S
\]

is solvable.
Zariski wrote:

Si potrebbe dunque pensare che si possa invece fornire per ogni equazione \(f = 0 \) una risoluzione *multipla* per radicali \(x = x(t), \ y = y(t) \), in cui ad ogni punto \((x, y) \) della curva \(f = 0 \) corrispondano più valori di \(t \).

... È poco probabile che ciò accada effettivamente, ma in ogni modo si ha qui un nuovo problema, che noi non discutiamo in questa Nota e che potrà essere oggetto di una ulteriore ricerca.

(One may therefore think that for *every* equation \(f = 0 \) one can find a *multiple* solution by radicals \(x = x(t), \ y = y(t) \), in which several values of \(t \) correspond to every given point \((x, y) \) of the curve \(f = 0 \). ... It is unlikely that this could really happen, but in any case we have here a new problem, which we do not discuss in this Note, and which might be object of further research).

Zariski conjecture. *The general curve of genus \(g \geq 7 \) cannot be algebraically uniformized by radicals.*
The question is to embed $R(X) \subset S$ the rational field of X in S; S obtained by a series of abelian covering of $\mathbb{C}(x)$.

The Zariski conjecture/problem seems very difficult.

We consider a related problem:

Problem
Find a curve algebraic uniformized by radicals but not rationally uniformized by radicals.

Result: Two examples of curves alg. but not rat. uniformized by radicals:

1. P-Schlesinger: $g=7$ (Debarre-Fahlaoui) counterexample to a conjecture of Abramovich-Harris conjecture
2. P-Schlesinger-Rizzi $g=9$.

Remark: If $Y \to X$ is dominant and the gonality of Y is k the gonality of X is $\leq k$. Hence if $k < 5$ both Y and X are rationally uniformized by radicals.
Construction of curves algebraically uniformized by radicals

1. C smooth curve of genus p;
2. $C^{(k)} = k^{th}$-symmetric power of C;
3. H hyperplane of $C^{(k)}$:
 \[H \equiv \{ x + C^{(k-1)} \subset C^{(k)} \} \]
4. X curve, $f : X \to C^{(k)}$ birational onto its image.

Assume
1. C rationally uniform by rad.
2. $H \cdot f(X) \leq 4$;

Define the correspondence:
\[Y' \in C \times X = \{(p, y) : f(p) = y\} \]
Y normalization of Y'.
Second projection gives map
\[Y \to X; \]
First projection gives $g : Y \to C$ \deg $g \leq 4$

If $y : C \to \mathbb{CP}^1$ has solvable monodromy, $g \circ y$
has solvable monodromy.

Y is rat. uniform. and X is alg. uniform.
For \(k = 2 \) we find curves in \(S = C^{(2)} \) using Riemann Roch for divisor \(L; X \in |L| \).

1. Debarre Fahlaoui (\(\Delta = \) diagonal in \(S = C^{(2)} \))

\[
g(C) = 1, \quad L = 3H - K_S = 3H + \frac{\Delta}{2}
\]

2. P.R.S.

\[
g(C) = 2, \quad L = 3H + K_S = 5H - \frac{\Delta}{2}
\]

One proves that the general curve is not rat. unif. by radicals

step 1. \(y \in R(X) \ deg(y) \geq 5, \ M(y) \) not solvable.

step 2. The gonality of \(X \) > 4.

step 1. follows the proof of Zariski with some refinement on group theory.
Proof that the gonality of $X > 4$
(it is the geometric part).

Two methods:

1. Lazarsfeld: Vector bundle: used by Debarre. Some complications. The vector bundles are not numerically unstable. One cannot argue using Bogomolov theorem etc.

2. Mumford Tyurin: when $g(C) = 2$, $C^{(2)}$ is the blow up of the Jacobian $J(C)$ of C. $J(C)$ is symplectic.
Consider the second case $g(C) = 2$. Assume by contradiction that any curve $X \in |L|$ has gonality 4 (other cases are easier). Let

$$Z = \text{hilb}^4(C^{(2)})$$

for any $X \in |L|$, $X^{(4)} \subset Z$

$$M = \{ D \in Z : D \in X^{(4)}, h^0(X, \mathcal{O}_X(D) > 1\}.$$

One considers the albanese map:

$$alb : \text{hilb}^4(C^{(2)}) \to J(C)$$

Following Beauville (Mumford Tyurin) the fibres K^4 of alb outside the exceptional divisor of

$$C^{(2)} \to J(C)$$

are symplectic variety of dimension 6 with respect to a natural form Ω
One proves (part 2 needs some extra work)

1. $M \subset K^4$
2. M is Lagrangian with respect to Ω

Consequence $\dim M \leq 3$

Next translate into projective geometry:

$|L| = \mathbb{P}^5$

consider the map:

$\rho : S = C^{(2)} \rightarrow |L| = \mathbb{P}^5$

Look at the incidence correspondence

$\mathcal{I} \subset M \times \mathbb{P}^5 = \{(D, [X]) : D \subset X\}$.

The fibers of the projection

$\pi_2 : \mathcal{I} \rightarrow \mathbb{P}^5$

have dimension 1, hence

$\dim \mathcal{I} = 6$
The general fibre of

\[\pi_1 : \mathcal{I} \to M \]

is a linear space of dimension \(\geq 3 \):

The point \(D \) of \(M \) impose only 2 conditions on \(L \):

It follows that the 4 points of \(D \in M \) lie on a 4-secant line of \(\rho(S) \).

This is impossible by a standard argument.