Degenerations and Applications to Interpolation Problems

Degenerations and Applications to Interpolation Problems

Rick Miranda

Colorado State University
Algebraic Geometry, D-Modules, Foliations and Their Interactions
Buenos Aires, Argentina
22 July 2008
all work joint with Ciro Ciliberto

Outline

Degenerations and
Applications to Interpolation
Problems
Rick Miranda

Interpolation Problems in \mathbb{P}^{2}
Conjectures
Interpolation
Problems in \mathbb{P}^{2}
Conjectures
Results
Results
Degenerations of
the Veronese
Other
Degenerations
Degenerations of the Veronese
Other Degenerations

Ten Points

Approaching Nagata

Notation

Fix general points p_{1}, \ldots, p_{n} in the plane,
Degenerations and
Applications to Interpolation and multiplicities m_{1}, \ldots, m_{n}.
Let

$$
\mathcal{L}=\mathcal{L}_{d}\left(m_{1}, \ldots, m_{n}\right)
$$

be the linear system of plane curves C of degree d having multiplicity at least m_{i} at p_{i} for each i :

$$
\operatorname{mult}_{p_{i}}(C) \geq m_{i}
$$

We write

$$
\mathcal{L}_{d}\left(m_{1}^{e_{1}}, \ldots, m_{r}^{e_{r}}\right)
$$

for repeated multiplicities.

Notation

Fix general points p_{1}, \ldots, p_{n} in the plane,

Degenerations and

 Applications to Interpolation and multiplicities m_{1}, \ldots, m_{n}.Let

$$
\mathcal{L}=\mathcal{L}_{d}\left(m_{1}, \ldots, m_{n}\right)
$$

be the linear system of plane curves C of degree d having multiplicity at least m_{i} at p_{i} for each i :

$$
\operatorname{mult}_{p_{i}}(C) \geq m_{i}
$$

We write

$$
\mathcal{L}_{d}\left(m_{1}^{e_{1}}, \ldots, m_{r}^{e_{r}}\right)
$$

for repeated multiplicities. So

$$
\mathcal{L}_{4}\left(2^{5}\right)
$$

is the (projective) space of quartics with 5 double points.

Virtual and Expected Dimensions

Degenerations and

The space of plane curves of degree d has dimension $d(d+3) / 2$. Imposing a point of multiplicity m is $m(m+1) / 2$ conditions. The virtual dimension of \mathcal{L} is

$$
v(\mathcal{L})=d(d+3) / 2-\sum_{i} m_{i}\left(m_{i}+1\right) / 2
$$

Interpolation
Problems in \mathbb{P}^{2}
Conjectures
Results
Degenerations of
the Veronese
Other
Degenerations
Ten Points
and the expected dimension is

$$
e(\mathcal{L})=\max \{-1, v\}
$$

(projective dimensions here;
-1 means an empty projective space, a zero vector space)

The Blowup of the Plane

Degenerations and
 Applications to
 Interpolation

One usually formulates this on the blowup of the plane at the n points:
This creates a surface X, with divisor classes H, E_{1}, \ldots, E_{n}. The relevant invertible sheaf is $L=\mathcal{O}_{X}\left(d H-\sum_{i} m_{i} E_{i}\right)$.

$$
v=\operatorname{dim} H^{0}(X, L)-\operatorname{dim} H^{1}(X, L)-1
$$

Having the expected dimension: either $H^{0}=0$ or $H^{1}=0$.

Interpolation

Problems in \mathbb{P}^{2}
Conjectures
Results
Degenerations of
the Veronese
Other
Degenerations
Ten Points

The Blowup of the Plane

Degenerations and

One usually formulates this on the blowup of the plane at the n points:
This creates a surface X, with divisor classes H, E_{1}, \ldots, E_{n}. The relevant invertible sheaf is $L=\mathcal{O}_{X}\left(d H-\sum_{i} m_{i} E_{i}\right)$.

$$
v=\operatorname{dim} H^{0}(X, L)-\operatorname{dim} H^{1}(X, L)-1
$$

Having the expected dimension: either $H^{0}=0$ or $H^{1}=0$.

Interpolation

Problems in \mathbb{P}^{2}
Conjectures
Results
Degenerations of
the Veronese
Other
Degenerations
Ten Points

$$
\operatorname{dim}(\mathcal{L}) \geq \operatorname{expected} \geq \text { virtual }
$$

The Blowup of the Plane

Degenerations and

One usually formulates this
on the blowup of the plane at the n points:
This creates a surface X, with divisor classes H, E_{1}, \ldots, E_{n}.
The relevant invertible sheaf is $L=\mathcal{O}_{X}\left(d H-\sum_{i} m_{i} E_{i}\right)$.

$$
v=\operatorname{dim} H^{0}(X, L)-\operatorname{dim} H^{1}(X, L)-1
$$

Having the expected dimension: either $H^{0}=0$ or $H^{1}=0$.

$$
\operatorname{dim}(\mathcal{L}) \geq \operatorname{expected} \geq \text { virtual }
$$

Main Question: What is the actual dimension of \mathcal{L} ? This is equivalent to asking: what is $\operatorname{dim} H^{0}(X, L)$?

A Naive Conjecture

Degenerations and
Applications to Interpolation

Problems

Naive Conjecture:

$\mathcal{L}=\mathcal{L}_{d}\left(m_{1}^{e_{1}}, \ldots, m_{n}^{e_{n}}\right)$ has the expected dimension

Rick Miranda

Interpolation
Problems in \mathbb{P}^{2}
Conjectures
Results
Degenerations of
the Veronese
Other
Degenerations
Ten Points
Approaching
Nagata

A Naive Conjecture

Naive Conjecture:

Degenerations and

Applications to
Interpolation
Problems
$\mathcal{L}=\mathcal{L}_{d}\left(m_{1}^{e_{1}}, \ldots, m_{n}^{e_{n}}\right)$ has the expected dimension
This is wrong:

$$
\mathcal{L}_{2}\left(2^{2}\right)
$$

for example.

$$
v=5-2 \cdot 3=-1
$$

but the system consists of the double line through the two points.

Rick Miranda

Interpolation
Problems in \mathbb{P}^{2}
Conjectures
Results
Degenerations of
the Veronese
Other
Degenerations
Ten Points
Approaching
Nagata

A Naive Conjecture

Naive Conjecture:
$\mathcal{L}=\mathcal{L}_{d}\left(m_{1}^{e_{1}}, \ldots, m_{n}^{e_{n}}\right)$ has the expected dimension
This is wrong:

$$
\mathcal{L}_{2}\left(2^{2}\right)
$$

for example.

$$
v=5-2 \cdot 3=-1
$$

but the system consists of the double line through the two points. Another example:

$$
\mathcal{L}_{4}\left(2^{5}\right)
$$

Again

$$
v=14-5 \cdot 3=-1
$$

but the system consists of the double conic through the five points.

Segre's Conjecture

Degenerations and

Applications to Interpolation

Note that in the examples above, $\left(\mathcal{L}_{2}\left(2^{2}\right)\right.$ and $\left.\mathcal{L}_{4}\left(2^{5}\right)\right)$, the linear systems contained a base locus consisting of a multiple curve.

Conjectures
Results
Degenerations of
the Veronese
Other
Degenerations
Ten Points
Approaching
Nagata

Segre's Conjecture

Note that in the examples above, $\left(\mathcal{L}_{2}\left(2^{2}\right)\right.$ and $\left.\mathcal{L}_{4}\left(2^{5}\right)\right)$, the linear systems contained a base locus consisting of a multiple curve.

The Segre Conjecture: If \mathcal{L} contains a reduced member, then \mathcal{L} has the expected dimension.

Conjectures
Results
Degenerations of
the Veronese
Other
Degenerations
Ten Points
Approaching
Nagata

Segre's Conjecture

Degenerations and

Note that in the examples above, $\left(\mathcal{L}_{2}\left(2^{2}\right)\right.$ and $\left.\mathcal{L}_{4}\left(2^{5}\right)\right)$, the linear systems contained a base locus consisting of a multiple curve.

The Segre Conjecture: If \mathcal{L} contains a reduced member, then \mathcal{L} has the expected dimension.

Conjectures
Results
Degenerations of
the Veronese
Other
Degenerations
Ten Points
Approaching
Nagata

This is open.

Gimigliano-Harbourne-Hirschowitz

Easy: If there exists a (-1)-curve C on the blowup X of the plane) (a smooth rational curve C with $C^{2}=-1$) such that

$$
\mathcal{L} \cdot C=-n \leq-2 \quad \text { and } \quad \operatorname{dim}(\mathcal{L}) \geq 0
$$

then \mathcal{L} does not have the expected dimension:

Degenerations and
 Applications to
 Interpolation
 Problems
 Rick Miranda

Interpolation
Problems in \mathbb{P}^{2}
Conjectures
Results
Degenerations of
the Veronese
Other
Degenerations
Ten Points
Approaching
Nagata

Gimigliano-Harbourne-Hirschowitz

Easy:
If there exists a (-1)-curve C on the blowup X of the plane) (a smooth rational curve C with $C^{2}=-1$) such that

$$
\mathcal{L} \cdot C=-n \leq-2 \quad \text { and } \quad \operatorname{dim}(\mathcal{L}) \geq 0
$$

then \mathcal{L} does not have the expected dimension:
The curve C will split at least twice from the system, and the virtual dimension of the residual goes up: $\mathcal{L}=n C+\mathcal{R}$, with $v(\mathcal{R})=v(\mathcal{L})+n(n-1) / 2$. So

Degenerations and

 Applications to Interpolation
Conjectures

Results

Degenerations of
the Veronese
Other
Degenerations
Ten Points

$$
\operatorname{dim}(\mathcal{L})=\operatorname{dim}(\mathcal{R}) \geq v(\mathcal{R})>v(\mathcal{L})
$$

Gimigliano-Harbourne-Hirschowitz

Easy:
If there exists a (-1)-curve C on the blowup X of the plane) (a smooth rational curve C with $C^{2}=-1$) such that

$$
\mathcal{L} \cdot C=-n \leq-2 \quad \text { and } \quad \operatorname{dim}(\mathcal{L}) \geq 0
$$

then \mathcal{L} does not have the expected dimension:
The curve C will split at least twice from the system, and the virtual dimension of the residual goes up: $\mathcal{L}=n C+\mathcal{R}$, with $v(\mathcal{R})=v(\mathcal{L})+n(n-1) / 2$. So

GHH Conjecture: This is if and only if:
If no such (-1)-curve exists, then \mathcal{L} has the expected dimension.

Nagata's Conjecture

Degenerations and

Applications to Interpolation

Nagata's Conjecture: (for $\mathcal{L}_{d}\left(m^{n}\right)$)
If $n>9$ and $d^{2}<n m^{2}$
(i.e., $d<\sqrt{n} m$)
then $\mathcal{L}_{d}\left(m^{n}\right)$ is empty.

Interpolation
Problems in \mathbb{P}^{2}
Conjectures
Results
Degenerations of
the Veronese
Other
Degenerations
Ten Points
Approaching
Nagata

Nagata's Conjecture

Nagata's Conjecture: (for $\mathcal{L}_{d}\left(m^{n}\right)$)
If $n>9$ and $d^{2}<n m^{2}$
(i.e., $d<\sqrt{n} m$)
then $\mathcal{L}_{d}\left(m^{n}\right)$ is empty.

Interpolation
Problems in \mathbb{P}^{2}
Conjectures
Results
Degenerations of
the Veronese
Other
Degenerations
Ten Points
Approaching
Nagata

Nagata's Conjecture

Nagata's Conjecture: (for $\mathcal{L}_{d}\left(m^{n}\right)$)
If $n>9$ and $d^{2}<n m^{2}$
(i.e., $d<\sqrt{n} m$) then $\mathcal{L}_{d}\left(m^{n}\right)$ is empty.

Interpolation
Problems in \mathbb{P}^{2}

Conjectures

Results

Degenerations of
the Veronese
There are higher-dimensional analogues of the problem i.e. in \mathbb{P}^{n}
but not very satisfactory higher-dimensional conjectures.
Other
Degenerations
Ten Points

Ciliberto-Miranda: Segre \Longleftrightarrow Harbourne-Hirschowitz
Either one imply Nagata.

Results - not comprehensive

- GHH is true for $n \leq 9$. (Castelnuovo, 1891; Nagata, 1960; Gimigliano, Harbourne, 1986)
- GHH is true for $m_{i} \leq 11$ (7: S. Yang 2004; Dumnicki 2005).
- GHH for $\mathcal{L}_{d}\left(m^{n}\right)$ is true for $m \leq 37$ (20:

Ciliberto-Cioffi-Miranda-Orecchia 2000; Dumnicki 2006)

- Nagata's Conjecture is true for $n=k^{2}$ points (Nagata 1960)
- GHH Conjecture is true for $n=k^{2}$ points (Evain 2005via Horace; Ciliberto-Miranda 2006; C-M-Dumitrescu 2007)
- If $d / m<3.1607$ then $\mathcal{L}_{d}\left(m^{10}\right)$ is empty (Harbourne-Roe' 2005; C-M computations) [There are many other such results...]

The Veronese

The Veronese embedding

$$
v_{d}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{d(d+3) / 2}, \quad \text { image }=V_{d} ; \quad \text { degree }\left(V_{d}\right)=d^{2}
$$

Hyperplane sections of V_{d} correspond to plane curves of degree d.

Degenerations and
Applications to Interpolation

Rick Miranda

Interpolation
Problems in \mathbb{P}^{2}
Conjectures
Results
Degenerations of the Veronese

Other
Degenerations
Ten Points
Approaching
Nagata

The Veronese

The Veronese embedding

$$
v_{d}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{d(d+3) / 2}, \quad \text { image }=V_{d} ; \text { degree }\left(V_{d}\right)=d^{2}
$$

Hyperplane sections of V_{d} correspond to plane curves of degree d.

Hyperplane sections of V_{d} tangent at p correspond to curves with a double point at p.

Degenerations and

Applications to

Results

Degenerations of the Veronese

Other
Degenerations
Ten Points
Approaching
Nagata

The Veronese

The Veronese embedding

$$
v_{d}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{d(d+3) / 2}, \quad \text { image }=V_{d} ; \quad \text { degree }\left(V_{d}\right)=d^{2}
$$

Hyperplane sections of V_{d} correspond to plane curves of degree d.

Hyperplane sections of V_{d} tangent at p correspond to curves with a double point at p.

Degenerations and

Strategy for analyzing $\mathcal{L}_{\boldsymbol{d}}\left(2^{n}\right)$
(in particular, for proving this is empty):
Degenerate the Veronese to a union of d^{2} planes, and show there are no n-tangent hyperplanes.

The Veronese

The Veronese embedding

Degenerations and

$$
v_{d}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{d(d+3) / 2}, \quad \text { image }=V_{d} ; \text { degree }\left(V_{d}\right)=d^{2}
$$

Hyperplane sections of V_{d} correspond to plane curves of degree d.

Hyperplane sections of V_{d} tangent at p correspond to curves with a double point at p.

Strategy for analyzing $\mathcal{L}_{d}\left(2^{n}\right)$
(in particular, for proving this is empty):
Degenerate the Veronese to a union of d^{2} planes, and show there are no n-tangent hyperplanes.

A hyperplane tangent to a plane must contain the plane. Show: there are no hyperplanes containing some n of the planes.

A Degeneration of the Veronese

V_{d} degenerates to a union of d planes and $\binom{d}{2}$ quadrics:

The "vertices" are the coordinate points of the ambient $\mathbb{P}^{d(d+3) / 2}$.

This gives a degeneration of V_{d} to d^{2} planes.

$\mathcal{L}_{5}\left(2^{7}\right)$ is empty

Degenerations and

Applications to Interpolation

Rick Miranda

$$
v=20-7 \cdot 3=-1
$$

Interpolation
Problems in \mathbb{P}^{2}
Conjectures

Results

Degenerations of
the Veronese
Other
Degenerations
Ten Points
Approaching
Nagata

Double Points

Theorem
$\mathcal{L}_{d}\left(2^{n}\right)$ has the expected dimension whenever $d \geq 5$.

Proof by Olivia Dumitrescu and RM, using the Veronese degeneration techniques (and induction).

Interpolation
Problems in \mathbb{P}^{2}
Conjectures
Results
Degenerations of
(Earlier proofs in 1980s by Arbarello-Cornalba (Severi, Castelnuovo; deformation theory) and by Hirschowitz (Horace Method).)

Ten Points

The induction: if the theorem is true for d, then it is true for $d+6$.

This is related to recent tropical constructions by Jan Draisma.

The Induction

Degenerations and
Applications to
Interpolation
Problems
Rick Miranda

Interpolation
Problems in \mathbb{P}^{2}
Conjectures

Results

Degenerations of
the Veronese
Other
Degenerations
Top triangle is handled by induction.
Bottom strip is easy:

Higher Multiplicities

Theorem
The system $\mathcal{L}_{k m}\left(m^{k^{2}}\right)$ has the expected dimension; in particular it is empty for $k \geq 4$.

Stronger than Nagata, but weaker than GHH.
Exploits a degeneration of $V_{k m}$ into $k^{2} V_{m}$'s:

Degenerations and
Applications to
Interpolation
degree m on each plane
Ten Points
k^{2} multiplicity m points, one in each plane

Other Degenerations

\mathbb{F}_{1} is a ruled surface, isomorphic to \mathbb{P}^{2} blown up once.
S and B are sections, F is the fiber
This is a degeneration of \mathbb{P}^{2}, with $\mathcal{L}_{d}\left(m^{n}\right)$.
a and k can be chosen as parameters.

Degenerations and
Applications to Interpolation

Problems
Rick Miranda

Interpolation
Problems in \mathbb{P}^{2}
Conjectures
Results

Degenerations of
the Veronese
Other
Degenerations
Ten Points
Approaching
Nagata

Degenerations and
Applications to Interpolation

Problems
Rick Miranda

Interpolation
Problems in \mathbb{P}^{2}
Conjectures
Results
Degenerations of
the Veronese
Other
Degenerations
Ten Points

Approaching
Nagata

Fiber Product Analysis

Degenerations and
Applications to
Interpolation
Problems
Rick Miranda

Interpolation Problems in \mathbb{P}^{2}

Conjectures
Results
Degenerations of
the Veronese
Other
Degenerations
Ten Points

A transversality result (for the restrictions of the linear systems to the curve) makes the computation straightforward: If the systems on the two surfaces have the expected dimension, then so will the fiber product. Hence by semi-continuity, so will the general system.

Blow up the offending (-1)-curve

Degenerations and

If one of the linear systems on the two surfaces does not have the expected dimension, then (by GHH/induction) we should locate a (-1)-curve that is a base curve for the system.

Blow it up to get another ruled surface component R to the degeneration. Pull back the line bundle, and twist appropriately by R.

Iterate, creating more components, until all linear systems have the expected dimension.

Results

Degenerations of
the Veronese

Make the (now more complicated) fiber product computation, and hope that the dimension of the system on the degeneration is the expected dimension of the system on \mathbb{P}^{2}.

Throwing a (-1)-curve

Degenerations and
 Applications to

Interpolation
Problems
Rick Miranda
Actually, it is often more efficient to blow up an offending (-1)-curve, and if the result is the ruled surface $\mathbb{P}^{1} \times \mathbb{P}^{1}$, we may be able to blow it down the other way:

Interpolation
Problems in \mathbb{P}^{2}
Conjectures
Results
Degenerations of
the Veronese
Other
Degenerations
Ten Points
Approaching
Nagata

Degenerations and Applications to Interpolation Problems

Rick Miranda
If the (-1)-curve hits the double curve twice, we blow up twice, and blow down the second exceptional surface the other way:

Degenerations of
the Veronese

Other
Degenerations
Ten Points

Approaching
Nagata

Ten Points: The Hardest Cases

Degenerations and
Applications to

$$
v=d(d+3) / 2-10 m(m+1) / 2 .
$$

When is this equal to -1 ?

Interpolation
Problems in \mathbb{P}^{2}
Conjectures
Results
Degenerations of
the Veronese
Other
Degenerations
Ten Points
Approaching
Nagata

Ten Points: The Hardest Cases

The virtual dimension of $\mathcal{L}_{d}\left(m^{10}\right)$ is

$$
v=d(d+3) / 2-10 m(m+1) / 2
$$

When is this equal to -1 ?

Degenerations and

 Applications to InterpolationFor these linear systems, one expects there to be no such curves ($H^{0}=0$) and because $v=-1$, this is equivalent to having $H^{1}=0$ (for the line bundle on the ten-fold blowup of \mathbb{P}^{2})

Degree 174, Multiplicity 55

Degenerations and

Applications to Interpolation

Theorem
(Ciliberto-RM)
$\mathcal{L}_{174}\left(55^{10}\right)$ is empty.
Degenerations of
the Veronese
Proof: via a degeneration of the plane.

Other
Degenerations
Ten Points
Approaching
Nagata

Degree 174, Multiplicity 55

 Applications to Interpolation
Theorem

Conjectures
(Ciliberto-RM)
$\mathcal{L}_{174}\left(55^{10}\right)$ is empty.
Degenerations of
the Veronese
Proof: via a degeneration of the plane.
The analysis in fact gives more:
Other
Degenerations
Ten Points
Approaching
Nagata

Theorem
$\mathcal{L}_{d}\left(m^{10}\right)$ has the expected dimension if $d \geq(174 / 55) m$.

Strategy:

- 1. Start with a simple degeneration (like the one with two surfaces).
- 2. Consider all possible limits of the line bundle on the degeneration.
- 3. If there exists a limit such that all linear systems on all component surfaces have the expected dimension, CONCLUDE that the enter limit has the expected dimension.
- 4. If not, there are special linear systems on

Degenerations and Applications to Interpolation components no matter what line bundle limit you have. FIND the offending (-1)-curve.

- 5. Blow it up (and contract a surface the other way if possible).
- 6. Go to step 2.

Degenerations and

Applications to

Interpolation

Problems in \mathbb{P}^{2}
Conjectures
Results
Degenerations of
the Veronese
Other
Degenerations
Ten Points
Approaching
Nagata

Applications to Interpolation Problems

Rick Miranda

Interpolation
Problems in \mathbb{P}^{2}
Conjectures

Results

Degenerations of
the Veronese
Other
Degenerations
Ten Points
Approaching
Nagata
$U_{14}, U_{24}, W_{14}, W_{24}, W_{34}, W_{44}$ are planes
Z_{4} is the plane blown up 7 times, plus two additional double blowups
T_{4} is the plane with two double blowups
V_{4} is the plane blown up 4 times, plus ten double blowups

Start with the $\mathbb{P}^{2} \cup \mathbb{F}_{1}$ degeneration:

Degenerations and
Applications to Interpolation

Interpolation
Problems in \mathbb{P}^{2}
Conjectures

Results

Degenerations of
the Veronese
Other
Degenerations
Ten Points
Approaching
Nagata

The cubic C in $\mathcal{L}_{3}\left(2,1^{6}\right)$ is a (-1)-curve on the $B_{6}\left(\mathbb{F}_{1}\right)$. Blow it up, twice, and contract the second surface:

Degenerations and

Applications to Interpolation

Problems
Rick Miranda

Interpolation
Problems in \mathbb{P}^{2}
Conjectures

Results

Degenerations of
the Veronese
Other

Degenerations
Ten Points

Approaching
Nagata

Now on this degeneration, there are two conics on the \mathbb{P}^{2} passing through the four points, and one each through the two points just blown up.
These are (-1)-curves now: blow them up (twice!).
There are also four quartics: each double at 3 of the 4 blown up points, and each tangent to the line L at the two points where the cubic on the other surface hits.
C_{1} : in $\mathcal{L}_{2}(1,1,1,1,[1,0],[0,0])$
C_{2} : in $\mathcal{L}_{2}(1,1,1,1,[0,0],[1,0])$
Q_{1} : in $\mathcal{L}_{4}(1,2,2,2,[1,1],[1,1])$

Interpolation
Problems in \mathbb{P}^{2}
Conjectures

Results

Degenerations of
the Veronese
Other
Degenerations
Ten Points
$Q_{2}:$ in $\mathcal{L}_{4}(2,1,2,2,[1,1],[1,1])$
$Q_{3}:$ in $\mathcal{L}_{4}(2,2,1,2,[1,1],[1,1])$
$Q_{4}:$ in $\mathcal{L}_{4}(2,2,2,1,[1,1],[1,1])$
These are six disjoint (-1)-curves!

Degenerations and
Applications to Interpolation

Problems
Rick Miranda

Interpolation
Problems in \mathbb{P}^{2}
Conjectures
Results
Degenerations of
the Veronese
Other
Degenerations
Ten Points

Approaching
Nagata

Blow them all up (twice, and blow surfaces down). One gets:

Rick Miranda

Interpolation
Problems in \mathbb{P}^{2}
Conjectures
Results

Degenerations of
the Veronese
Other
Degenerations
Ten Points

Approaching
Nagata

Degenerations and
 Applications to Interpolation

 Interpolation

 Interpolation
 Problems in \mathbb{P}^{2}
 Conjectures
 Results
 Degenerations of
 the Veronese
 Other
 Degenerations
 Ten Points

Approaching
Nagata

Recall Nagata's Conjecture (for ten points):
If $d / m<\sqrt{10}=3.16227766 \ldots$, then $\mathcal{L}_{d}\left(m^{10}\right)$ is empty.
Degenerations and

Strategy for approaching this: Fix a ratio $r<\sqrt{10}$.
Find a degeneration such that, if $d / m<r$, for every limit line bundle, at least one of the surfaces has an empty linear system.
CONCLUDE: the general system is also empty.
Why: If the general system is non-empty, there will be limit curves in the degeneration, and these limit curves will consist of a curve in each surface. So the limit line bundle containing this limit curve will have the property that each surface has a non-empty linear system.

Recall Nagata's Conjecture (for ten points):
If $d / m<\sqrt{10}=3.16227766 \ldots$, then $\mathcal{L}_{d}\left(m^{10}\right)$ is empty.
Strategy for approaching this: Fix a ratio $r<\sqrt{10}$.
Find a degeneration such that, if $d / m<r$, for every limit line bundle, at least one of the surfaces has an empty linear system.
CONCLUDE: the general system is also empty.
Why: If the general system is non-empty, there will be limit curves in the degeneration, and these limit curves will consist of a curve in each surface. So the limit line bundle containing this limit curve will have the property that each surface has a non-empty linear system.

Theorem
(Olivia Dumitrescu)
If $d / m<411 / 130=3.16153846 \ldots$, then $\mathcal{L}_{d}\left(m^{10}\right)$ is empty.
I believe this is the world's record now for ten points!

