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The minimal model program has highlighted the
Importance, among the basic building blocks

In the study of birational equivalence classes of
algebraic varieties, of Mori fiber spaces, that Is

morphismsf : X — Y with connected fibers such
that X Is normal projective witlQ-factorial terminal
singularities,)Y is normal projectivedim Y < dim X,
—Kx f-ample anth(X) — p(Y) = 1 (herep(X) is
the rank of the Picard group o).

In dimension3 a lot of work has been dedicated to the
study of the case when Is a point,
that is whenX Is a Fano variety.
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Mori fiber spaces

Perhaps the next interesting case is wheis a curve.

In the present work we also study the latter case, but
from a different point of view:

Given a Moiri fiber spacg¢ : X — Y with Y a curve
and general fibef’,

IN many cases we can take a projective embedding
X C P" with hyperplaned = —Kx + hF', h >> 0.

Now a general hyperplane sectiSn= X N H
iInherits an elliptic fibration and will often have
p(S) = p(X) =2

(for example whenX is smooth and:?(Ox) = 0, by
a theorem of Moishezon).
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sections

Reversing this scenery it seems therefore interesting
to take a projective embedding

S c PV of an elliptic surfaceS, for example with
p(S) =2,
and study which threefold® c P¥*! can haveS as

hyperplane section.
We start with a

A subvarietyY C PV is calledextendable
if there existsX ¢ PV*! and a hyperplane

H =P c PNl suchthatt = X N H, X is not a
cone overY anddim X = dim Y + 1.

We will say thatY Is terminal extendable, |.c.l.
extendable, etaf, in addition, X has terminal, locally
complete intersection, etc. singularities.
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Results

Our first result, which can be considered a more
precise version of a result of Mor,
studies which embeddings can occur for some

extendable elliptic surfaces c PV with Picard rank
two:

TheoremLetS c PV be a smooth surface having an
elliptic fibrationn : S — B with general fiberf.
Denote byi(B) be the minimum degree of a very
ample line bundle ob.

Suppose thav!(S) = Z[C] @ Z][ f] for some divisor
C' and that

the hyperplane bundle ¢f iIs Hg = aC + bf,

Let X ¢ PV *! be any |.c.i. extension ¢f and
suppose furthermore that one of the following holds:
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(i) X has rational singularities ang(B) > 0; or

(i) X hasQ-factorial terminal singularitiesB = P!
andx(S) = 1; or

(i) xk(S) =1 and

H'(S,Ks+ Hg — fi — ... — fap)) = 0 for every set
of smooth distinct fiberg;’s.

Then(a,C.f) €

1(1,3), (1,4),(1,5),(1,6),(1,7),(1,8),(1,9),
(2,4),(3,3)}.

Moreover if, in addition,X is locally factorial, then

(a,C.f) & 1(1,7),(1,8), (1,9)}-
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many cases (for example when S — B is a
smooth Weierstrass fibration with < —1).

Moreover there are examples of smoothly extendable
smooth elliptic surfaces with

k(S) =1, NY(S) X Z|C]® Z[f], Hs = aC + bf and
(a,C.f) € {(L,3),(1,4),(1,5),(1,6),(2,4),(3,3)}
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Welerstrass fibrations

Our results can be made a lot more precise if we
assume a little bit more on the fibration:

A Welierstrass fibration : S — B is a flat
and proper map such that every geometric fiber has
arithmetic genus one
(so that it is either a smooth genus one curve, or a
rational curve with a node, or a rational curve with a
cusp), with general fiber smooth
and such that there Is given a sectionrafot passing
through the singular point of any fiber.
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ResSults 1or \Welerstrass T1ibra-
tions

Corollary LetS c PV be a smooth surface having a
Welierstrass fibratiomr : S — B with general fiberf
and sectionC'.

Setn = —C?, g = g(B) and suppose that(.S) = 2,
n>1and(g,n) # (0,1). Then

() If (g,n) # (0,2) thenS is not |.c.i. extendable.

(i) If (g,n) = (0,2) then any possible I.c.i. extension
X c PVt of S is an anticanonically embedded Fano
threefold withp(X) = 1 andh!'(Ox) = h*(Ox) = 0.

In the case (i), which turns out to be exactly the
K 3-Welerstrass case, we can be a little bit more
precise
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ResSults T1or \Welerstrass T1ibra-
tions

Corollary LetS c PV with a smooth Weierstrass
fibration : S — P! with general fiberf and section
C such thatC” = —2 andp(S) = 2.

Let Hg ~ aC' + bf. We have:
(1) S'Is not l.c.l.-terminal extendable.

(i) If (a,b) € 1(3,7),(3,8),(3,10),(3,11),(3,13),
(3,14), (4,9), (4, 11) (4,13), (5,11), (5,12)},
thensS Is not l.c.I. extendable.

(iii) If (a,0) € {(3,7),(3,8),(3,9),(3,10), (3,11),
(3.12), (3, 13), (3, 14), (3, 15), (4,9), (4, 10), (4, 11),

(4,12), (4,13), (5,11), (5, 12),
thenS is not normally extendable.
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Higher rank case

We also have a non extendability residardless of
the singularities of the extension and with no
assumption on the rank on the Picard group

TheoremLetS c P be a smooth surface having a
Welierstrass fibratiomr : S — B with general fiberf
and sectiorC'. Setn = —C? andg = g(B).
Suppose that the hyperplane bundleSas of type
Hs =aC + bf and thatn > 1.

ThensS' Is not extendable if any of the following
conditions Is satisfied:

(i) g = 0anda > 6 with (a,b,n) # (6,7,1), or

(i) g > 1anda = 0 (mod 3), a > 6, or

(i) g > 1, S Is linearly normal and eitheu > 7,
b>an+5g—10ra=2>5,b>06n+ 79— 3.
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be a very ample line bundle oXi and letS € |L| be a
smooth surface with an elliptic fibration: S — B.

The goal Is to give some sufficient conditions, both on
S and on the singularities of, to insure thatr

extends taX (this idea is already present in

adjunction theory).

First point: Suppose that the restriction map
Pic(X) — Pic(S) is an isomorphism.

Assume thatV'(S) = Z[C| @ Z[f] for some divisor
C suchthatC'.f > 1.

Now a little work using results of adjunction theory
Insures thatr extends to a morphism: X — B if
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(i) there exists a very ample line bundieon B such
that H'(S,7*L — tLs) = 0 for everyt > 1.

(the latter vanishing is achieved using the hypothesis
%(S) =1 andHl(S, Ke+Hg—f1—...— fd(B)) =0
for every set of smooth distinct fibefss.
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Let7 : X — B be the extended morphism with
general (smooth) fibef'.

Since alsaV!(X) — NY(S) is an isomorphism,
we can pick E] and[F] be the generators d¥f!(X),
restricting respectively ta”'] and|f] on .S, so that

L=aFE +blFandaC.f = Lig.f > 3,givinga > 1.

Now F' N.S = f Is a smooth elliptic curve, whence
' c PV*! embedded by, is either a Del Pezzo

surface or
(F, Lip) = (PG, £), whereG is a rank two vector

bundle on an elliptic curve angdis the tautological
line bundle.
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0=Kg.f=(Kx+L)g.f=w+1)C.f
thereforeu = —1, giving the contradiction
—2=Kpy=(Kx)py=—Epy=-E~v=-1
Thereforef' 1s a smooth Del Pezzo surface and
—Kp~ L =akp.

Now K% = L|2F — [°.F = Lig.f =aC.f
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and a little bit of work gives the possibilities farand
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It remains to prove thahe restriction map

rs : Pic(X) — Pic(S) is an isomorphism.

First of all, by Lefschetz;s Is injective with torsion
free cokernel.

Sincex(S) = 1 we have thaf.;s and Kx|g are
numerically independent.

and sincep(S) = 2, forany A € Pic(S) there are
c>1,de such thatA = dL|S =+ QKX‘S.
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is an integern > 1 such thatnD € Pic’(9).

Also Pic’(X) — Pic’(S) is an isomorphism, whence
mD € I'mrg. Therefore alsoncA € I'mrg, whence

A € Imrg, sinceCokerrg IS torsion free.

Now N1(X) — N1(S) is surjective. To see its
injectivity let M € Pic(X) such thatV/|g = 0.

As above there is:» > 1 andN € Pic’(X) such that
mMs = Nis, whencenM = N, thereforeM = 0
and we are done.

Incidentally
we have proved thai : X — B iIs a Mori fiber space!
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p(S) =2,n > 1land(g,n) # (0,1).

f (g,n) # (0,2) thenk(S) = 1 and the first theorem
nolds

nence, in particular, ib is I.c.1. extendable, then
C.f>3.

But C' Is a section, whence is not |.c.I. extendable.
If (9,n) = (0, 2) then, as we saidy is a K3 surface
and one sees that any possible |.&lis an
anticanonically embedded Fano threefold with
p(X) =1andh!(Ox) = h*(Ox) = 0.

Now let us see the possible valueq ofb).

SinceHs ~ aC + bf Is very ample we get > 3 and
b > 2a + 1 whence
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The K3 Welerstrass case
g(S)=sHi+1=—a*+ab+1>ala+1)+1 > 13.

But a result of Prokhorov implies that
13 < g(5) < 37
and this gives the desired values(afb).

The other cases are done using some adjunction
theory and the theorem of Namikawa that assures tha
If X Is terminal then it is smoothable. Then one can
use the classification of smooth Fano threefolds.
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Finally a few words in the Welerstrass case with
HS = aC + bf
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Finally a few words in the Welerstrass case with

HS = aC + bf

We use the following application of Zak’s theorem:
Proposition (Knutsen-L.-M.) LetY” C P" be a
smooth irreducible surface which is either linearly
normal or regular and leff be its hyperplane bundle.
Assume there Is a base-point free and big line bundle
Dy onY with H'(H — D) = 0 and such that the
general elemenb < |Dy| is not rational and satisfies
(1) the Gaussian magy,, .., IS surjective;

(1) the multiplication mapsuy,, .., anduy, ., (p,) are
surjective, where

Vp =Im{H"(Y,H — Dy) — H(D,(H — Dy);p)}.
ThenY Is nonextendable.

—n. 21/22



The higher rank case



The higher rank case

We now pickD, = 3C' + 3nf if g(B) = 0 and
Dy =2C + (2n+2g)f if g(B) > 1.



The higher rank case

We now pickD, = 3C' + 3nf if g(B) = 0 and
Dy =2C + (2n+2g)f if g(B) > 1.
and compute....
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