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Denote byd(B) be the minimum degree of a very
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Then(a,C.f) ∈
{(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9),
(2, 4), (3, 3)}.
Moreover if, in addition,X is locally factorial, then
(a,C.f) 6∈ {(1, 7), (1, 8), (1, 9)}.
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Definition A Weierstrass fibrationπ : S → B is a flat
and proper map such that every geometric fiber has
arithmetic genus one
(so that it is either a smooth genus one curve, or a
rational curve with a node, or a rational curve with a
cusp), with general fiber smooth
and such that there is given a section ofπ not passing
through the singular point of any fiber.
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conditions is satisfied:
(i) g = 0 anda ≥ 6 with (a, b, n) 6= (6, 7, 1), or
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adjunction theory).

First point: Suppose that the restriction map
Pic(X) → Pic(S) is an isomorphism.

Assume thatN1(S) ∼= Z[C] ⊕ Z[f ] for some divisor
C such thatC.f ≥ 1.

Now a little work using results of adjunction theory
insures thatπ extends to a morphismπ : X → B if
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we can pick[E] and[F ] be the generators ofN1(X),
restricting respectively to[C] and[f ] onS, so that

L ≡ aE + bF andaC.f = L|S.f ≥ 3, giving a ≥ 1.

Now F ∩ S = f is a smooth elliptic curve, whence
F ⊂ PN+1 embedded byL|F is either a Del Pezzo
surface or
(F,L|F ) ∼= (PG, ξ), whereG is a rank two vector
bundle on an elliptic curve andξ is the tautological
line bundle.
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thereforeu = −1, giving the contradiction
−2 = KF .γ = (KX)|F .γ = −E|F .γ = −ξ.γ = −1.
ThereforeF is a smooth Del Pezzo surface and
−KF ∼ L|F ≡ aE|F .
Now K2

F = L2
|F = L2.F = L|S.f = aC.f
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It remains to prove thatthe restriction map
rS : Pic(X) → Pic(S) is an isomorphism.
First of all, by Lefschetz,rS is injective with torsion
free cokernel.
Sinceκ(S) = 1 we have thatL|S andKX |S are
numerically independent.
and sinceρ(S) = 2, for anyA ∈ Pic(S) there are
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is an integerm ≥ 1 such thatmD ∈ Pic0(S).
Also Pic0(X) → Pic0(S) is an isomorphism, whence
mD ∈ ImrS. Therefore alsomcA ∈ ImrS, whence
A ∈ ImrS, sinceCokerrS is torsion free.
Now N1(X) → N1(S) is surjective. To see its
injectivity let M ∈ Pic(X) such thatM|S ≡ 0.
As above there ism ≥ 1 andN ∈ Pic0(X) such that
mM|S

∼= N|S, whencemM ∼= N , thereforeM ≡ 0
and we are done.

Incidentally
we have proved thatπ : X → B is a Mori fiber space!
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holds
hence, in particular, ifS is l.c.i. extendable, then
C.f ≥ 3.
But C is a section, whenceS is not l.c.i. extendable.
If (g, n) = (0, 2) then, as we said,S is a K3 surface
and one sees that any possible l.c.i.X is an
anticanonically embedded Fano threefold with
ρ(X) = 1 andh1(OX) = h2(OX) = 0.
Now let us see the possible values of(a, b).
SinceHS ∼ aC + bf is very ample we geta ≥ 3 and
b ≥ 2a + 1 whence

– p. 19/22



The K3 Weierstrass case

– p. 20/22



The K3 Weierstrass case
g(S) = 1

2H
2
S +1 = −a2 +ab+1 ≥ a(a+1)+1 ≥ 13.
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The K3 Weierstrass case
g(S) = 1

2H
2
S +1 = −a2 +ab+1 ≥ a(a+1)+1 ≥ 13.

But a result of Prokhorov implies that
13 ≤ g(S) ≤ 37
and this gives the desired values of(a, b).

The other cases are done using some adjunction
theory and the theorem of Namikawa that assures that
if X is terminal then it is smoothable. Then one can
use the classification of smooth Fano threefolds.
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We use the following application of Zak’s theorem:
Proposition (Knutsen-L.-M.) LetY ⊂ Pr be a
smooth irreducible surface which is either linearly
normal or regular and letH be its hyperplane bundle.
Assume there is a base-point free and big line bundle
D0 onY with H1(H − D0) = 0 and such that the
general elementD ∈ |D0| is not rational and satisfies
(i) the Gaussian mapΦHD,ωD

is surjective;
(ii) the multiplication mapsµVD,ωD

andµVD,ωD(D0) are
surjective, where
VD = Im{H0(Y,H − D0) → H0(D, (H − D0)|D)}.
ThenY is nonextendable.
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The higher rank case
We now pickD0 = 3C + 3nf if g(B) = 0 and
D0 = 2C + (2n + 2g)f if g(B) ≥ 1.
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The higher rank case
We now pickD0 = 3C + 3nf if g(B) = 0 and
D0 = 2C + (2n + 2g)f if g(B) ≥ 1.
and compute....
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