On Hilbert schemes of scrolls of genus g

Flaminio Flamini Università di Roma "Tor Vergata"

Algebraic Geometry, D-modules, Foliations and their interactions

21 - 26 July, 2008 - Buenos Aires

General problem

a. Given $S \subset \mathbb{P}^r$ smooth surface of degree d, sectional genus g, etc.. study properties of the Hilbert scheme Hilb(d, g, r) parametrizing such S's?

b. Existence of "particular" curves on S can influence the behaviour of the component(s) of Hilb(d, g, r) to which S belong?

c. Given S sufficiently general in a component of Hilb(d, g, r), what kind of "<u>limits</u>" S admits (**embedded degenerations**)?

d. Conversely, given a configuration $X = \bigcup_i V_i \subset \mathbb{P}^r$, is it <u>smoothable</u> to an element of Hilb(d, g, r)?

Namely, $\exists \quad \mathcal{X} \to \Delta \text{ s.t. } \mathcal{X}_0 = X \text{ and } \mathcal{X}_t = S$, for $t \neq 0$ and [S] general in a component of Hilb(d, g, r)?

e. If $\mathfrak{X} \to \Delta$ in d actually exists and if we know the combinatorial data of the configuration $\mathfrak{X}_0 = X$:

- (i) what kind of properties can we deduce for $S = X_t$, $t \neq 0$?
- (ii) what kind of properties can we deduce for Hilb(d, g, r) from the fact that $[X = X_0]$ is a Hilbert point?
- (iii) applications to other <u>parameter spaces</u> of some other "related" geometric objects?

Motivations and inspirations

Classical papers:

[C. Segre]

• Recherches générales sur les courbes et les surfaces réglées algébriques, Math. Ann. **34** (1889), 1–25).

[Severi]

• Sulla classificazione delle rigate algebriche. *Rend. Mat. e Appl.*, (5) **2**, (1941). 1–32.

[Zappa]

• Caratterizzazione delle curve di diramazione delle rigate e spezzamento di queste in sistemi di piani, *Rend. Sem. Mat. Univ. Padova*, **13** (1942), 41-56

• Sulla degenerazione delle superficie algebriche in sistemi di piani distinti, con applicazioni allo studio delle rigate, *Atti R. Accad. d'Italia*, **13** (2) (1943), 989-1021

More recent papers:

[Ghione]

• Quelques résultats de Corrado Segre sur les surfaces réglés, *Math. Ann.* **255** (1981), 77–95.

• Un problème du type Brill-Noether pour les fibrés vectoriels, Lecture Notes in Math., **997**, 197–209, Springer, Berlin, 1983.

[Oxbury]

• Varieties of maximal line bundles, *Math. Proc. Camb. Phil. Soc.* **129** (2000), 9–18.

[Fuentes-Garcia, Pedreira]

• Canonical geometrically ruled surfaces, *Math. Nachr.*, **278** (2005), no. 3, 240–257.

• The general special scroll of genus g in \mathbb{P}^N . Special scrolls in \mathbb{P}^3 ,

math.AG 0609548 (2006), pp. 13.

Main subject of this talk

Given d > 0 and $g \ge 0$ integers, we will give some answers to the previous questions in the case of **scrolls** of degree d, genus g, "sufficiently" general.

Our approach

• [C, C, -, M] "Degenerations of scrolls to union of planes", *Rend. Lincei Mat. Appl.*, **17** (2006), 95-123.

• [C, C, -, M] "Non special scrolls with general moduli", <u>Rend. Circ. Mat. Palermo</u>, **57** (2008), 1-31.

• [C, C, -, M] "Brill-Noether theory and non-special scrolls", to appear in <u>Geom. Dedicata</u> (2008), pp. 16.

• [C, C, -, M] "Special scrolls with general moduli", <u>Sub.</u> preprint (2008).

Notation and general assumptions

From now on:

(1) C smooth, irreducible projective curve of genus $g \ge 0$,

 $F \xrightarrow{\rho} C$ geometrically ruled surface, i.e.

$$F = \mathbb{P}(\mathcal{F}),$$

 ${\mathcal F}$ rank-two vector bundle (equiv. loc. free sheaf) on C

Assume further:

- $\deg(\mathcal{F}) := \deg(\det(\mathcal{F})) = d;$
- $h^0(C, \mathcal{F}) = r + 1$, with $r \ge 3$;

• $|\mathcal{O}_F(1)|$ is b.p.f. and the induced morphism $\Phi: F \to \mathbb{P}^r$ is birational to its image.

Then

$$\Phi(F) := S \subset \mathbb{P}^r$$

is a **scroll** of degree d (sectional) genus g (determined by (\mathcal{F}, C)).

Remark: S smooth $\Leftrightarrow \mathfrak{F}$ v.a.; otherwise F is its minimal desingularization.

For any $x \in C$, $f_x := \rho^{-1}(x) \cong \mathbb{P}^1$ and $l_x := \Phi(f_x)$ is a line of the **ruling** of S.

(2) For $A \in \text{Pic}(C)$, any $B_1 \in |\mathfrak{O}_F(1) \otimes \rho^*(A)| \neq \emptyset$ is a **unise-cant curve** of F.

An irreducible unisecant B is called a **section** of F.

1:1 correspondence

$$0 \to N \to \mathcal{F} \to L = L_B \to 0.$$

If $B = B_L \subset F$ section, $L \in Pic(C)$, let $\Gamma := \Phi(B) \subset S$.

 $\Phi|_B$ birational $\Rightarrow \Gamma$ section (or directrix) of S.

 $\Phi|_B n : 1 \Rightarrow \Gamma$ *n*-directrix of *S*.

(3) Riemann-Roch
$$r+1 := h^0(\mathcal{O}_F(1)) = h^0(\mathcal{F}) = d - 2g + 2 + h^1$$

 $h^1 := h^1(\mathcal{O}_F(1)) = h^1(\mathcal{F}) =$ speciality of the scroll.

S special scroll if $h^1 > 0$, non-special otherwise.

Since $r \ge 3 \Rightarrow d \ge 2g + 2 - h^1$.

From now on

$$d \ge 2g + 2$$

(necessary bound for linearly normal, non-special scrolls).

Bounds on speciality: Riemann-Roch thm. for \mathcal{F} on C:

 $0 \le h^1 \le g$

 $h^1 = g$ cones [Segre - Ghione],

 $h^1 = 0$ non-special scrolls.

Any intermediate value $1 \le h^1 \le g - 1$ can be realized.

Example. Let $g \ge 3$, $d \ge 4g - 1$, $1 \le h^1 \le g - 1$.

|L| b.p.f. with $h^{1}(L) = h^{1}$.

N general l.b. of degree d - deg(L).

 $deg(L) \leq 2g - 2$ and $d \geq 4g - 1 \Rightarrow deg(N) \geq 2g + 1$ i.e. |N| very ample.

Let $\mathcal{F} = L \oplus N$; then $\mathcal{O}_F(1)$ b.p.f. and $h^1(\mathcal{O}_F(1)) = h^1$.

Remark For large values of h^1 , $\mathcal{O}_F(1)$ in general not v.a.

• $h^1 = g - 1 \Rightarrow |L| = \mathfrak{g}_2^1 \Rightarrow S$ has a linear 2-directrix

• $h^1 = g - 2 \Rightarrow |L| = \mathfrak{g}_3^1$ or $|L| = 2\mathfrak{g}_2^1$ or $|L| = \mathfrak{g}_4^2$. S is smooth only if $|L| = \mathfrak{g}_4^2$ with g = 3.

Remark For any section Γ of S,

$$h^1(\mathcal{O}_{\Gamma}(1)) :=$$
 speciality of $\Gamma \leq h^1$.

Rational case:

Proposition 1 (Classical). Let $d \ge 2$ and r = d + 1.

The Hilbert scheme $\mathcal{H}_{d,0}$ parametrizing rational normal scrolls of degree d in \mathbb{P}^r is irreducible, generically smooth.

The general point of $\mathcal{H}_{d,0}$ represents a smooth, <u>balanced</u> scroll.

 $dim(\mathcal{H}_{d,0}) = (r+1)^2 - 7.$

Proof: $S \subset \mathbb{P}^r$ any smooth, rational normal scroll. Consider

$$0 o T_S o T_{\mathbb{P}^r}|_S o \mathfrak{N}_{S/\mathbb{P}^r} o 0.$$

Euler sequence restricted to S + S is a scroll

$$\psi$$

 $h^1(T_{\mathbb{P}^r}|_S) = h^1(\mathbb{N}_{S/\mathbb{P}^r}) = 0$

SO

$$h^{0}(\mathcal{N}_{S/\mathbb{P}^{r}}) = h^{0}(T_{\mathbb{P}^{r}}|_{S}) - \chi(T_{S}) = (r+1)^{2} - 1 - 6$$

 $h^1(\mathcal{N}_{S/\mathbb{P}^r})=0 \Rightarrow [S]$ smooth point of the Hilbert scheme of such scrolls. Therefore

$$h^0(\mathcal{N}_{S/\mathbb{P}^r}) = \dim_{[S]}(\mathcal{H}_{d,0}) = \dim(T_{[S]}(\mathcal{H}_{d,0})).$$

Finally, one uses the well-known fact: $S_{a,b}$ degenerates to $S_{h,f}$ $\Leftrightarrow a + b = h + f$ and |a - b| < |h - f|

Remark In particular, for $[S] \in \mathcal{H}_{d,0}$ general, there are ∞^6 projectivities of \mathbb{P}^r fixing S.

Irregular case, i.e. $g \ge 1$:

Theorem 1 [C, C, -, M] Let r = d - 2g + 1, where

- $d \ge 5$, if g = 1

- $d \ge 2g + 4$, if $g \ge 2$.

Then, there exists a unique irreducible component $\mathfrak{H}_{d,g}$ of Hilbert scheme of scrolls of degree d and genus g in \mathbb{P}^r , whose general point $[S] \in \mathfrak{H}_{d,g}$ is a smooth, linearly normal scroll $S \subset \mathbb{P}^r$ (equiv. $h^1(\mathfrak{O}_S(1)) = 0$).

Moreover,

(i) $\mathcal{H}_{d,g}$ contains suitable <u>reducible surfaces</u> [T] as smooth points of $\mathcal{H}_{d,g}$;

(ii) $\mathfrak{H}_{d,q}$ generically smooth,

$$dim(\mathcal{H}_{d,g}) = h^0(S, \mathcal{N}_{S/\mathbb{P}^r}) = (r+1)^2 + 7(g-1)$$

and

$$h^1(S, \mathbb{N}_{S/\mathbb{P}^r}) = h^2(S, \mathbb{N}_{S/\mathbb{P}^r}) = 0.$$

(iii) $\mathfrak{H}_{d,g}$ dominates \mathfrak{M}_g , i.e. S is with general moduli.

Remark. No gaps w.r.t. the initial condition $d \ge 2g + 2$. In other words, the bounds on d in Theorem 1 are sharp.

Indeed, no smooth, linearly normal scrolls in \mathbb{P}^r if either d = 2g + 2 and $g \ge 1$ or d = 2g + 3 and $g \ge 2$.

Proof: Induction on g + degeneration techniques.

Step 1: g = 0, ok from Proposition 1.

<u>Step 2</u>: Let $g \ge 1$. Construct suitable reducible (precisely **Zappatic**) surfaces in $\mathcal{H}_{d,g}$.

Let
$$[\widetilde{S}] \in \mathcal{H}_{d-2,g-1}$$
 general $\Rightarrow \widetilde{S} \subset \mathbb{P}^r$, $r = (d-2) - 2(g-1) + 1 = d - 2g + 1$.

Let l_1 and l_2 general lines of the ruling of \widetilde{S} .

 $\langle l_1, l_2 \rangle = \Lambda \cong \mathbb{P}^3$. Let $Q \subset \Lambda$ general quadric through l_1 and l_2

Fact Q is smooth and $\widetilde{S} \cap Q = l_1 \cup l_2$ transverse.

Let

$$T := \widetilde{S} \cup Q$$

reducible surface with g.n.c. \Rightarrow

$$\operatorname{Sing}(T) = l_1 \cup l_2 := R.$$

Step 3: Some invariants of T

Using e.g.

• [C, C, -, M] "On the geometric genus of reducible surfaces and degenerations of surfaces to unions of planes", *Proc. Fano Conference* (2004), 277 - 312.

$$g(T) = 0, \quad \chi(\mathcal{O}_T) = 1 - g, \quad p_{\omega}(T) := h^0(\omega_T) = 0.$$

Step 4: Some cohomological property of T.

(a) From

$$0 o \mathfrak{O}_T(1) o \mathfrak{O}_{\widetilde{S}}(1) \oplus \mathfrak{O}_Q(1) o \mathfrak{O}_R(1) o 0$$

one has

$$h^1(\mathcal{O}_T(1)) = 0$$

(b) \mathcal{N}_T and \mathcal{T}_T be the normal and "tangent" sheaf of T in \mathbb{P}^r . Then

(*)
$$0 \to \mathfrak{T}_T \to \mathfrak{T}_{\mathbb{P}^r}|_T \xrightarrow{\tau} \mathfrak{N}_T \to T^1 := Coker(\tau) \to 0.$$

[Friedman] T with g.n.c. $\Rightarrow T^1 \cong \mathcal{N}_{R/\widetilde{S}} \otimes \mathcal{N}_{R/Q} \cong \mathcal{O}_R$.

(c) From $T = \widetilde{S} \cup Q$ and $h^1(\mathcal{N}_{\widetilde{S}}) = 0$ by induction

$$\Downarrow$$

$$h^1(\mathcal{N}_T) = h^2(\mathcal{N}_T) = 0$$
 $h^0(\mathcal{N}_T) = \chi(\mathcal{N}_T) = (r+1)^2 + 7(g-1)$
and

$$H^0(\mathcal{N}_T) \xrightarrow{\alpha} H^0(T^1).$$

<u>Step 5</u>: $h^1(\mathcal{N}_T) = 0 \Rightarrow [T]$ smooth point of the Hilbert scheme of surfaces of degree d and genus g in \mathbb{P}^r .

∜

[T] belongs to a unique component $\mathcal{H}_{d,g}$ of this Hilbert scheme, of dimension $\chi(\mathcal{N}_T) = h^0(\mathcal{N}_T)$.

 α surjective \Rightarrow a general tangent vector to $\mathcal{H}_{d,g}$ at [T] represents an infinitesimal embedded deformation of T which smooths $\Gamma = Sing(T)$.

∜

The general point of $\mathcal{H}_{d,g}$ represents a smooth, irreducible surface S degenerating to T.

∜

From Step 3 and e.g.

• [C, C, -, M] "On the genus of reducible surfaces and degenerations of surfaces", <u>Annales Inst. Fourier</u>, **57** (2007), no. 2, 491-516 (or [Clemens-Schmid])

∜

S is necessarily ruled.

From Step 4 - (a) and semi-continuity, $h^1(\mathcal{O}_S(1)) = 0$, i.e. $S \subset \mathbb{P}^r$ is linearly normal.

Step 6: Using

• [C, C, -, M] "On the K^2 of degenerations of surfaces and the multiple point formula", <u>Annals of Mathematics</u>, **165** (2007), no. 2, 335-365.

S degenerates to
$$T \Rightarrow K_S^2 = 8(1-g)$$

then S is necessarily geometrically ruled.

Adjunction theory implies S is a scroll: otherwise, $0 < d \le 4(g-1) + K_S^2$, contradicting $K_S^2 = 8(1-g)$.

Step 7: From

$$0 \to \mathfrak{T}_S \to \mathfrak{T}_{\mathbb{P}^r|S} \to \mathfrak{N}_{S/\mathbb{P}^r} \to 0,$$

we get

$$H^0(\mathbb{N}_{S/\mathbb{P}^r}) \longrightarrow H^1(\mathbb{T}_S),$$

(Euler sequence gives $h^1(\mathbb{T}_{\mathbb{P}^r|S}) = 0$).

From
$$S \xrightarrow{\rho} C$$
 one has $H^1(\mathfrak{T}_S) \longrightarrow H^1(\mathfrak{T}_C) \Rightarrow$
 $H^0(\mathfrak{N}_{S/\mathbb{P}^r}) \longrightarrow H^1(\mathfrak{T}_C),$

i.e. $\mathcal{H}_{d,q}$ dominates \mathcal{M}_{q} .

Step 8: Uniqueness of the component $\mathcal{H}_{d,g}$.

It follows from the previous steps and the Classical result:

For any smooth scroll S of degree d, there exists $\varphi : Y := C \times \mathbb{P}^1 \dashrightarrow S$ birational which is the composition of d elementary transformations at ddistinct points $\Theta := \{y_1, \ldots, y_d\} \subset Y$ lying on d distinct \mathbb{P}^1 -fibres of Y. **Remarks**. (1) Some previous results partially related: [Arrondo, Pedreira, Sols; 1988] projections of scrolls into \mathbb{P}^3 and then study curves in $\mathbb{G}(1,3)$.

(2) With a similar approach, one can reprove **Proposition 1** on $\mathcal{H}_{d,0}$.

(3) From the proof of **Theorem 1**

₩

 $[S] \in \mathcal{H}_{d,g}$ general degenerates to a reducible surface like T, which is a **Zappatic surface** with **g.n.c.** singularities

(4) Pushing further degeneration techniques and using once again the results in:

• [C, C, -, M] "On the K^2 of degenerations of surfaces and the multiple point formula", <u>Annals of Mathematics</u>, **165** (2007), no. 2, 335-365.

• [C, C, -, M] "On the genus of reducible surfaces and degenerations of surfaces", <u>Annales Inst. Fourier</u>, **57** (2007), no. 2, 491-516,

we prove that $\mathcal{H}_{d,g}$ contains reducible surfaces which are **union of planes**, with only double lines and further singular points (the so called R_3 - and S_4 -points, cf. [C, C, -, M] "On the K^2 of degenerations of surfaces and the multiple point formula", <u>Annals of Mathematics</u>, **165** (2007), no. 2, 335-365.)

These are examples of **planar Zappatic** surfaces (studied in the above 2 papers.)

Precisely, we prove:

Proposition 2 [C,C,-,M] $\mathcal{H}_{d,g}$ contains planar Zappatic surfaces $[X_{d,g}]$ such that

• if g = 0, $X_{d,0}$ has d - 1 double lines and d - 2 R_3 -points

• if $g \ge 1$, $X_{d,g}$ has d + 2g + 2 double lines, d - 2g + 2 R_3 -points and 2g - 2 S_4 -points.

In other words, for $g \ge 0$, the general $[S] \in \mathcal{H}_{d,g}$ degenerates to planar Zappatic surfaces $X_{d,g}$ as above.

This in particular answers (improving the expected bound) to Zappa's original questions (1940-50):

Zappa's questions: If $S \subset \mathbb{P}^r$ is a scroll of genus g, degree $d \ge 3g + 2$ and "sufficiently general"

• can S degenerate to a union of planes?

• If yes, is it possible to have in the limit surface only double lines and E_3 -, R_3 - and S_4 -points?

Remark. Zappa (1940-50) realized that **g.n.c.** singularities are not sufficient to study embedded degenerations of surfaces, even with general moduli.

Connections with vector bundles

For any $g \ge 1$, for any smooth C of genus g and for any d

 $U_C(d)$

the moduli space of degree d, rank-two **semistable** vector bundles on C.

Theorem 2 [C, C, -, M] Let $g \ge 1$ and num. assumptions as in **Thm1**.

Let $[S] \in \mathcal{H}_{d,q}$ be general. Then:

- (i) S is determined by (\mathcal{F}, C) , where $[C] \in \mathcal{M}_g$ general and $[\mathcal{F}] \in U_C(d)$ general.
- (ii) In particular, if $g \ge 2$, \mathfrak{F} is **stable** and, if $G_S := sgr.$ of projectivities of \mathbb{P}^r fixing S, then $G_S = \{Id\}$.

Sketch Proof.

Step 1: Small Lemma: $d \ge 2g$ and $[\mathcal{F}] \in U_C(d)$ general $\Rightarrow h^1(C, \mathcal{F}) = 0$.

Step 2: From Step 1, $[\mathcal{F}] \in U_C(d)$ general $\Rightarrow h^0(\mathcal{F}) = d - 2g + 2 = r + 1$.

We can costruct a morphism

$$\Psi : \begin{array}{ccc} \mathcal{U} & \longrightarrow & Hilb(d,g,r) \ & (C,\mathcal{F},\sigma) & \longrightarrow & \sigma(S) \end{array}$$

where

$$[C] \in \mathcal{M}_g, \ [\mathfrak{F}] \in U_C(d), \ \sigma \in PGL(r+1) \text{ and } S = \Phi(F).$$

S is smooth for ${\mathcal F}$ general.

Step 3: \mathcal{U} irriducible and, from **Theorem 1**, $\Psi(\mathcal{U}) \subseteq \mathcal{H}_{d,q}$.

Semistability is an open condition $\Rightarrow \Psi$ dominant on $\mathcal{H}_{d,q}$.

Step 4: any possible element $Id \neq \tau \in G_S$ induces a non-trivial automorphism of F, contradicting \mathcal{F} stable (so simple) and C with general moduli.

Remarks.

(1) For $g \ge 2$, \mathcal{U} depends on the following parameters:

- 3*g* 3 for *C*;
- dim $(U_C(d)) = 4g 3$ for \mathcal{F} ;
- $(r+1)^2 1 = \dim(PGL(r+1,\mathbb{C}))$, i.e.

$$\dim(\mathcal{U}) = \dim(\mathcal{H}_{d,g}) = 7g - 7 + (r+1)^2.$$

This gives a parametric representation of $\mathcal{H}_{d,g}$

From **Theorem 2** (ii), more precisely Ψ is **birational**.

(2) For g = 1, statement (ii) and behaviour of Ψ are more involved (depends on the parity of d).

(3) **Attention**: we are not saying that <u>all</u> smooth scrolls parametrized by $\mathcal{H}_{d,g}$ comes from semistable bundles.

Example. \mathcal{E} any **unstable** bundle on C of degree e. Let A be ample of degree a and consider

$$\mathcal{F} := \mathcal{E} \otimes A^{\otimes k}, \ k >> 0.$$

So \mathcal{F} v.a., $h^1(\mathcal{F}) = 0$, thus (\mathcal{F}, C) determines a scroll $[S_{\mathcal{F}}] \in \mathcal{H}_{e+2ka,g}$ coming from \mathcal{F} unstable.

Such scrolls fill up closed sub-loci of $\mathcal{H}_{e+2ka,g}$.

(4) Some previous results partially related: [Pedreira; 1988].

Applications and consequences

Using degeneration techniques as in **Theorem 1** and construction as in **Theorem 2**, we get also the following results:

(1) S is a general ruled surface [Ghione, 1981], i.e.

$$\mathsf{Div}^{1,m}_S$$

has the expected dimension e; it is smooth; it is irriducible when e > 0.

 \downarrow

effective existence results of general ruled surfaces (specifying bounds on d), whereas Ghione's existence results were only asymptotic.

(2) Sections of **minimal degree** on S: compute their degree and the dimension of the family.

(3) Enumerative results on $\text{Div}_{S}^{1,m}$: cardinality (when e = 0), index, genus computation, monodromy, etc....

(4) $M_n(\mathcal{F}) :=$ Scheme parametrizing sub-line bundles of degree n of \mathcal{F} .

Then:

$$M_n(\mathfrak{F}) \cong \mathsf{Div}_S^{1,m}$$

where m + n = d.

∜

• alternative proofs (via proj. geom.) of some results on sub-line bundles of **maximal degree** \overline{n} , e.g. [Maruyama], [Lange-Narashiman], [Oxbury].

• affirmative answer to a **Conjecture** of [Oxbury] (2005) in the rank 2 case: connectedness of $M_{\overline{n}}(\mathcal{F})$, on any C, when dim > 0.

(7) Study $W_n(\mathfrak{F}) := Im(M_n(\mathfrak{F})) \subset \operatorname{Pic}^n(C)$ and some questions on the **Brill-Noether theory** of the line-bundles in $W_n(\mathfrak{F})$.

Consequences: we can compute dim($|O_S(\Gamma)|$), for $[\Gamma] \in Div_S^{1,m}$ general and for any admissible m.

(8) We show that any irreducible component of $W_n^1(\mathcal{F})$ has the expected dimension.

First possible questions

(1) Is $\mathcal{H}_{d,g}$ the only component of the Hilbert scheme whose general point parametrizes a smooth scroll of degree d and genus g in \mathbb{P}^r ?

(2) If another such component $\ensuremath{\mathbb{Z}}$ actually exists,

- $\dim(2) = ?$
- $\ensuremath{\mathbb{Z}}$ generically smooth ?
- general point of $\ensuremath{\mathbb{Z}}$?
- \bullet rank-two vector bundle determining the general point of $\mathcal Z$?
- image of \mathcal{Z} via the natural map $\mathcal{Z} \to \mathcal{M}_g$?

All these questions naturally lead to the study of **special scrolls**

From now on

$S \subset \mathbb{P}^r$

smooth scroll of genus g, degree d and speciality h^1 , with

$$0 < h^1 < g$$
 and $r = d - 2g + 1 + h^1$.

Main Point: existence of a special section on S.

Proposition 3 [C. Segre, 1889. Revisited C, C, -, M, 2008] Let $g \ge 3$ and $d \ge 4g - 2$. Let $S \subset \mathbb{P}^r$ be a smooth, linearly normal, special scroll of degree d, genus g and speciality h^1 . Then:

(i) S contains a unique, special section $\Gamma \subset \mathbb{P}^h$ of degree m such that $m-h = g-h^1$. Furthermore:

- Γ is linearly normally embedded in \mathbb{P}^h , i.e. $H^0(\mathfrak{F}) \longrightarrow H^0(L_{\Gamma})$.
- $h^1(\Gamma, \mathcal{O}_{\Gamma}(H)) = h^1$
- Γ curve (different from a line) of minimal degree
- Γ unique section with non-positive self-intersection ($\Gamma^2 < 0$).

(ii) If moreover S has general moduli, then

- either $g \ge 4h^1$, $h \ge 3$, or
- $g = 3, h^1 = 1, h = 2.$

Remark (1) Existence results of special sections, with no assumptions on d and g, are given (via completely different techniques) by [Fuentes-Garcia, Pedreira, 2005-2006].

On the other hand, differently from Segre's approach, no information about its uniqueness and its speciality.

(2) Conditions in (ii) follow from Brill-Noether theory and smoothness. Namely

$$\rho(g,h,m) := g - (h+1)h^1 \ge 0.$$

Corollary 1 Suppose S determined by a pair (\mathcal{F}, C) . Let

$$(*) \quad 0 \to N \to \mathcal{F} \to L \to 0$$

where L corresponds to the special section Γ .

Then \mathfrak{F} is unstable. If, moreover, $d \geq 6g - 5$ then $\mathfrak{F} = L \oplus N$.

Proof $\Gamma^2 = 2m - d < 0 \Rightarrow \deg(N) = d - m > \mu(\mathcal{F}) = \frac{d}{2} \Rightarrow \mathcal{F}$ is unstable.

From (*), $[\mathcal{F}] \in \mathsf{Ext}^1(L, N) \cong H^1(C, N \otimes L^{\vee}).$

L special and $d \ge 6g - 5 \Rightarrow \deg(N \otimes L^{\vee}) = d - 2m \ge 2g - 1 \Rightarrow N \otimes L^{\vee}$ is non-special \Rightarrow (*) splits.

Lemma 1 Assume $Aut(C) = \{Id\}$ (in particular, when C has general moduli).

If $G_S \subset \mathsf{PGL}(r+1,\mathbb{C})$ sub-group of projectivities of \mathbb{P}^r fixing S, then $G_S \cong \mathsf{Aut}(S)$ and

$$\dim(G_S) = \begin{cases} h^0(N \otimes L^{\vee}) & \text{if } \mathcal{F} \text{ indecomposable} \\ h^0(N \otimes L^{\vee}) + 1 & \text{if } \mathcal{F} \text{ decomposable} \end{cases}$$

Proof We want to show the obvious inclusion $G_S \hookrightarrow Aut(S)$ is an isomorphism.

Let $\sigma \in Aut(S)$. By **Theorem 3**, $\sigma(\Gamma) = \Gamma$ and since $Aut(C) = \{Id\}$, σ fixes Γ pointwise.

Now $H \sim \Gamma + \rho^*(N) \Rightarrow \sigma^*(H) = \sigma^*(\Gamma) + \sigma^*(\rho^*(N)) = \Gamma + \rho^*(N) \sim H \Rightarrow \sigma$ is induced by a projective trasformation.

The rest of the claim directly follows from [Maruyama, 1970].

Remark Different behaviour from $[S] \in \mathcal{H}_{d,g}$. Indeed, from **Theorem 2** we know that for *S* general non-special, \mathcal{F} is stable and $G_S = \{Id\}$.

Let

 $\mathsf{Hilb}(d, g, h^1)$

the open subset of the Hilbert scheme parametrizing smooth scrolls $S \subset \mathbb{P}^r$ of genus g, degree d and speciality h^1 .

Theorem 3 [C, C, -, M] Let $g \ge 3$ and $d \ge 4g-2$. Let m be any integer such that either

•
$$m = 4$$
, if $g = 3$, $h^1 = 1$, or

• $g + 3 - h^1 \le m \le \overline{m} := \lfloor \frac{g}{h^1} - 1 \rfloor + g - h^1$, otherwise.

(i) If $h^1 = 1$, Hilb(d, g, 1) consists of a unique component $\mathcal{H}^{2g-2}_{d,g,1}$ whose general point parametrizes a smooth, linearly normal scroll $S \subset \mathbb{P}^r$ with a <u>canonical curve</u> as the unique special section.

Furthermore,

(1) $dim(\mathcal{H}_{d,g,1}^{2g-2}) = 7(g-1) + r(r+1),$

(2) $\mathcal{H}_{d,g,1}^{2g-2}$ is generically smooth and dominates \mathcal{M}_g .

Moreover, scrolls with $h^1 = 1$, containing a special section of degree m < 2g-2 fill up an irreducible subscheme of $\mathcal{H}_{d,g,1}^{2g-2}$ which also dominates \mathcal{M}_g and whose codimension is 2g-2-m.

(ii) If $h^1 \ge 2$ then, for any $g \ge 4h^1$, $d \ge 4g - 2$ and for any m as above, Hilb (d, g, h^1) contains a unique component \mathcal{H}^m_{d,g,h^1} whose general point parametrizes a smooth, linearly normal scroll $S \subset \mathbb{P}^r$, having general moduli whose special section Γ has degree m and speciality h^1 .

Furthermore,

- (1) $dim(\mathcal{H}^m_{d,g,h^1}) = 7(g-1) + (r+1)(r+1-h^1) + (d-m-g+1)h^1 (d-2m+g-1),$
- (2) \mathcal{H}^m_{d,g,h^1} is generically smooth.

Remarks (1) <u>Bounds on m</u>: Since $d \ge 4g - 2$, from **Proposition 3**, S contains a unique, special section Γ of speciality h^1 .

 Γ is the image of C via $|L| = \mathfrak{g}_m^h$.

In order to have C with general moduli, $\rho(g,h,m)=g-(h+1)h^1\geq 0$

₩

 $m \le \overline{m} = \lfloor \frac{g}{h^1} - 1 \rfloor + g - h^1.$

On the other hand, S smooth $\Rightarrow h = m - g + h^1 \ge 2$.

If $h^1 \ge 2$ and the scroll has general moduli, then $h \ge 3$.

If $h^1 = 1$ and h = 2, then m = 4 and g = 3.

(2) Reducibility: Hilb (d, g, h^1) is reducible as soon as $h^1 \ge 2$,

If moreover $h^1 \ge 3$, it is also not equidimensional.

The component of maximal dimension is

$$\mathfrak{H}^{g+3-h^1}_{d,g,h^1}$$

whereas the component of minimal dimension is

$$\mathcal{H}^{\overline{m}}_{d,g,h^1}$$

with \overline{m} as above.

(3) By **Corollary 1**, all smooth scrolls in \mathcal{H}_{d,g,h^1}^m , for any $h^1 \ge 1$, correspond to unstable bundles.

To prove **Theorem 3**, no degeneration techniques.

Steps of the Proof:

Step 1: For any m and h, we costruct a morphism

$$\Psi_{h,m}: \begin{array}{ccc} \mathfrak{U}_{h,m} & \longrightarrow & Hilb(d,g,h^1) \ (C,L,N,\xi,\sigma) & \longrightarrow & \sigma(S) \end{array}$$

where

 $[C] \in \mathcal{M}_g, \quad L \in W^h_m(C), \quad N \in \mathsf{Pic}^{d-m}(C), \quad \sigma \in PGL(r+1),$

whereas

$$\xi = \begin{cases} 0 & \text{if } \mathsf{Ext}^1(L,N) = 0\\ \in \mathbb{P}(\mathsf{Ext}^1(L,N)) & \text{if } \mathsf{Ext}^1(L,N) \neq 0 \end{cases},$$

$$\mathcal{F} = \begin{cases} L \oplus N & \text{if } \xi = 0\\ \mathcal{F}_{\xi} & \text{corresponding to } \xi \end{cases}$$

and

$$S = \Phi(F).$$

 \mathcal{H}^m_{d,g,h^1} is defined as the closure of the image of $\Psi_{h,m}$.

<u>Step 2</u>: Given $[S] \in \mathcal{H}^m_{d,g,h^1}$ general, C, L and N are uniquely determined. From Step 2, dim $\Psi_{h,m}^{-1}([S]) = \dim(G_S)$.

<u>Step 3</u>: From Lemma 1, we know dim(G_S) \Rightarrow we know dim(\mathcal{H}_{d,g,h^1}^m).

Step 4: Compute cohomology of $\mathcal{N}_{S/\mathbb{P}^r}$.

C is with general moduli and *Castelnuovo's Lemma* for surjectivity of multiplication maps of sections of suitable H^0 's

 \downarrow

(i) $h^0(S, \mathcal{N}_{S/\mathbb{P}^r}) = 7(g-1) + (r+1)(r+1-h^1) + (d-m-g+1)h^1 - (d-2m+g-1);$

(ii)
$$h^1(S, \mathbb{N}_{S/\mathbb{P}^r}) = h^1(d - m - g + 1) - (d - 2m + g - 1);$$

(iii) $h^2(S, \mathcal{N}_{S/\mathbb{P}^r}) = 0.$

<u>Step 5</u>: By comparing dim $(\mathcal{H}^m_{d,q,h^1})$ in Step 3 and Step 4 (i)

∜

$$\dim_{[S]}(\mathfrak{H}^m_{d,g,h^1}) = h^0(S, \mathfrak{N}_{S/\mathbb{P}^r})$$

$$\Downarrow$$

 \mathcal{H}^m_{d,a,h^1} generically smooth.

Step 6: $h^1 = 1$: suppose $L \neq \omega_C$. In particular, $g \ge 4$ and m < 2g - 2. $|\omega_C \otimes L^{\vee}| = \mathfrak{g}_{2g-2-m}^0$, i.e.

 $\omega_C \otimes L^{\vee} \cong \mathfrak{O}_C(p_1 + \cdots + p_{2g-2-m}),$

where p_j general points on C, $1 \le j \le 2g - 2 - m$, hence

 $L \cong \omega_C(-p_1 - \dots - p_{2g-2-m}).$ Fact Any bundle \mathfrak{G} on C such that $0 \to N \to \mathfrak{G} \to \omega_C(-p_1 - \dots - p_{2g-2-m}) \to 0$ is a degeneration of a vector bundle \mathfrak{F} fitting in $0 \to N(p_1 + \dots + p_{2g-2-m}) \to \mathfrak{F} \to \omega_C \to 0.$

 $\mathfrak{H}^m_{d,g,1}$, with m < 2g-2, sits in the closure of $\mathfrak{H}^{2g-2}_{d,g,h^1}$.

Step 7: $h^1 \ge 2$. From the dimension count in Step 3 and Step 4 (i)

 \Downarrow \mathcal{H}^m_{d,a,h^1} generically smooth component of $\mathrm{Hilb}(d,g,h^1)$.

Remarks (1) Different construction of $\mathcal{H}_{d,g,1}^{2g-2}$ is given by [Fuentes-Garcia, Pedreira, 2006]: they use internal projections from decomposable scrolls.

(2) With similar approach Theorem 3 holds also for

$$\frac{7}{2}g - h^1 + 1 \le d \le 4g - 3$$
 and $h^1 \ge 2$.

• Existence of a special section Γ: use [Fuentes-Garcia, Pedreira, 2005-06] istead of [C. Segre];

• Γ is the unique special section, $\Gamma^2 < 0$ and it is the curve (different from a line) of minimal degree: use assumptions on d and some projective geometry arguments;

• computation of $h^i(S, \mathcal{N}_{S/\mathbb{P}^r})$: same approach as in **Theorem 3**; use surjectivity results of suitable multiplication maps of H^0 's of [Green] and [Butler], instead of Castelnuovo's lemma.

• the related vector bundles are still **unstable**, as in the Segre's case $d \ge 4g - 2$.

Other components of the Hilbert scheme

Other components with general moduli.

Let s = d - 2g + 1 + k, with $0 \le k < h^1$.

Consider the family \mathcal{Y}_{k,h^1}^m whose general element is a general projection to \mathbb{P}^s of the general scroll in \mathcal{H}_{d,a,h^1}^m .

Questions With assumptions as above:

- is \mathcal{Y}_{k,h^1}^m contained in $\mathcal{H}_{d,g,k}^n$ for some n, if k > 0?
- is \mathcal{Y}_{k,h^1}^m contained in $\mathcal{H}_{d,g}$, if k = 0?

Proposition 4 [CCFM] In the above setting:

- (i) if k > 0, \mathcal{Y}_{k,h^1}^m sits in an irreducible component of the Hilbert scheme different from $\mathcal{H}_{d,q,k}^n$, for any n;
- (ii) if $h^1 > 1$, \mathcal{Y}_{0,h^1}^m sits in an irreducible component of the Hilbert scheme different from $\mathcal{H}_{d,g}$, for any m;
- (iii) $\mathcal{Y}_{0,1}^{2g-2}$ is a divisor inside $\mathcal{H}_{d,g}$, whose general point is a smooth point for $\mathcal{H}_{d,g}$.

Remark In cases (i) and (ii), by construction, we find other components of Hilb(d, g, s) which always dominates \mathcal{M}_g .

Components with special moduli

 $[C] \in \mathcal{M}_g \Rightarrow$ gonality of C

$$\gamma := \begin{cases} \frac{g+2}{2} & \text{if } g \text{ even,} \\ \frac{g+3}{2} & \text{se } g \text{ odd,} \end{cases}$$

For any $2 \leq k \leq \gamma$, stratification of \mathcal{M}_g

$$\mathfrak{M}_{g,2}^1 \subset \mathfrak{M}_{g,3}^1 \subset \ldots \subset \mathfrak{M}_{g,k}^1 \subset \ldots \subset \mathfrak{M}_g,$$

where

$$\mathfrak{M}_{g,k}^1 := \{ [C] \in \mathfrak{M}_g | \ C \text{ has a } \mathfrak{g}_k^1 \}$$

is the k-gonal locus.

[Arbarello-Cornalba, 1981] $\mathcal{M}_{g,k}^1$ irriducible of dimension 2g + 2k - 5, if $k < \gamma$. Moreover, $[C] \in \mathcal{M}_{g,k}^1$ general has a unique \mathfrak{g}_k^1 .

Fact $[C] \in \mathcal{M}^1_{a,k}$ general is such that $Aut(C) = \{Id\}$.

Example Let
$$g \ge 3$$
, $d \ge 6g - 5$ and $[C] \in \mathcal{M}_{g,k}^1$ general, with $3 \le k < \gamma$.

 $|A| = \mathfrak{g}_k^1$ on C and $L := \omega_C \otimes A^{\vee} \Rightarrow m := \deg(L) = 2g - 2 - k$ and $h^1(L) = 2$. [Kim,Kim, 2004] if $3k(k-1) \leq 2g - 1$, then L very ample $N \in Pic^{d-m}(C) \Rightarrow \deg(N) = d + k - 2g + 2 \geq 4g - 4 + k \Rightarrow N$ very-ample and non-special.

 $\mathfrak{F} := N \oplus L; \text{ not restrictive, since } d \ge 6g - 5 \text{ (Corollary 1)} \\ \Downarrow$

 \mathfrak{F} very-ample, unstable with $h^1(\mathfrak{F}) = 2 \Rightarrow S = \Phi(F) \subset \mathbb{P}^{d-2g+3}$. Aut $(C) = \{Id\} \Rightarrow$ Lemma 1 still holds $\Rightarrow \dim(G_S) = \dim(\operatorname{Aut}(S))$ known.

We get components \mathcal{H}_k of Hilb(d, g, 2) such that

- dim (\mathcal{H}_k) > dim $(\mathcal{H}_{d,g})$, so different from $\mathcal{H}_{d,g}$,
- \mathcal{H}_k with special moduli. **4**

Remark Other examples with higher speciality: take $|A^{\otimes r}|$ instead of |A|. Thus, $L_r := \omega_C \otimes (A^{\otimes r})^{\vee}$ is of speciality r + 1.

Open questions

(1) Classify all the components of the Hilbert scheme of non-special and special scrolls.

(2) What are their images in \mathcal{M}_g ?

(3) Singular loci ? (we have yet descriptions of some singular points of both $\mathcal{H}_{d,g}$ and \mathcal{H}_{d,g,h^1}^m)

(4) Non-special scrolls

- (i) Brill-Noether loci $W_n^p(\mathfrak{F}) \subset \operatorname{Pic}^n(C)$, for $p \geq 1$:
- existence?
- dimension?
- structure?
- Petri's type conjectures?

(ii) Torelli's type results: when dim $(M_{\overline{n}}(\mathcal{F})) = 0$ we have 2^g sub-line bundles of maximal degree. Therefore, we have

$$U_C(d) \dashrightarrow Sym^{2^g}(\mathsf{Pic}^{\overline{n}}(C)).$$

Can we reconstruct \mathcal{F} ?

(5) Special scrolls

- (i) Degenerations ?
- (ii) Families of unisecants ?
- (iii) Brill-Noether theory ?

(iv) If $d < \frac{7}{2}g - h^1 + 1$, \mathcal{F} can be **stable** even if special ?

Remark (iv) would give existence results of <u>Brill-Noether loci</u> in $U_C(d)$, for C with general moduli, not covered by the results of [Teixidor I Bigas, 2005].