# Compactified Jacobians of curves with spine decompositions

Eduardo Esteves

Buenos Aires July 22, 2008

イロト イヨト イヨト イヨト

#### Outline

The Picard scheme Seshadri's compactification Another compactification The S-map Isomorphism

The Picard scheme

Seshadri's compactification

Another compactification

The S-map

Isomorphism

イロン イヨン イヨン イヨン



3

・ロト ・回ト ・ヨト ・ヨト

• *C* projective, reduced, connected curve over  $k = \overline{k}$  with arithmetic genus *g*.



3

イロン イヨン イヨン イヨン

- *C* projective, reduced, connected curve over  $k = \overline{k}$  with arithmetic genus *g*.
- $P = \{$ invertible sheaves on  $C \}$ , the Picard scheme of C



3

イロン イヨン イヨン イヨン

- *C* projective, reduced, connected curve over  $k = \overline{k}$  with arithmetic genus *g*.
- $P = \{$ invertible sheaves on  $C \}$ , the Picard scheme of C

• 
$$P = \coprod_{\chi} P^{\chi}$$
, where  $P^{\chi} := \{ [L] \in P \mid \chi(L) = \chi \}.$ 



3

<ロ> (日) (日) (日) (日) (日)

- *C* projective, reduced, connected curve over  $k = \overline{k}$  with arithmetic genus *g*.
- $P = \{$ invertible sheaves on  $C \}$ , the Picard scheme of C
- $P = \coprod_{\chi} P^{\chi}$ , where  $P^{\chi} := \{ [L] \in P \mid \chi(L) = \chi \}.$
- Riemann-Roch:  $\chi(L) = \deg(L) + 1 g$ .

#### Smooth case

4

If C is smooth, then P<sup>1−g</sup> is an Abelian variety, and the P<sup>χ</sup> are P<sup>1−g</sup>-torsors

<ロ> <部> <部> <き> <き> <

### Smooth case

4

- If C is smooth, then P<sup>1−g</sup> is an Abelian variety, and the P<sup>χ</sup> are P<sup>1−g</sup>-torsors
- Furthermore, there is a well-defined Abel map,

$$A\colon C\to P^{2-g},$$

sending N to  $\mathcal{O}_C(N)$ .

・ロト ・回ト ・ヨト ・ヨト

3

### Smooth case

4

- If C is smooth, then P<sup>1−g</sup> is an Abelian variety, and the P<sup>χ</sup> are P<sup>1−g</sup>-torsors
- Furthermore, there is a well-defined Abel map,

$$A\colon C\to P^{2-g},$$

sending N to  $\mathcal{O}_C(N)$ .

• The Abel map is an embedding if  $C \ncong \mathbb{P}^1_k$ .

・ロト ・回ト ・ヨト ・ヨト



5

#### • If C is not smooth, then $P^{\chi}$ is not projective.

Eduardo Esteves Compactified Jacobians

・ロン ・回 と ・ ヨ と ・ ヨ と



5

- If C is not smooth, then  $P^{\chi}$  is not projective.
- ► For instance, if C is an irreducible nodal cubic, then P<sup>\(\chi\)</sup> is isomorphic to C<sub>m</sub>, the multiplicative group of k.

イロト イヨト イヨト イヨト



5

- If C is not smooth, then  $P^{\chi}$  is not projective.
- ► For instance, if C is an irreducible nodal cubic, then P<sup>\(\chi\)</sup> is isomorphic to C<sub>m</sub>, the multiplicative group of k.
- If C is reducible, then  $P^{\chi}$  is not even of finite type over k.

イロト イヨト イヨト イヨト

### Torsion-free, rank-1 sheaves

6

イロト イヨト イヨト イヨト

Mayer and Mumford (1964) suggested the use of torsion-free, rank-1 sheaves to compactify P<sup>χ</sup>.

### Torsion-free, rank-1 sheaves

6

イロト イポト イヨト イヨト

- Mayer and Mumford (1964) suggested the use of torsion-free, rank-1 sheaves to compactify P<sup>χ</sup>.
- A coherent sheaf *I* on *C* is *torsion-free*, *rank-1* if *I* ≅ *I*<sub>Γ/C</sub> ⊗ *L*, where Γ ⊂ *C* is a finite subscheme and *L* is an invertible sheaf on *C*.

### Torsion-free, rank-1 sheaves

6

イロト イポト イヨト イヨト

- Mayer and Mumford (1964) suggested the use of torsion-free, rank-1 sheaves to compactify P<sup>χ</sup>.
- A coherent sheaf *I* on *C* is *torsion-free*, *rank-1* if *I* ≅ *I*<sub>Γ/C</sub> ⊗ *L*, where Γ ⊂ *C* is a finite subscheme and *L* is an invertible sheaf on *C*.
- Define a functor  $J^{\chi}$  parametrizing torsion-free, rank-1 sheaves I on C with  $\chi(I) = \chi$ .

### Torsion-free, rank-1 sheaves

6

イロト イヨト イヨト イヨト

- Mayer and Mumford (1964) suggested the use of torsion-free, rank-1 sheaves to compactify P<sup>χ</sup>.
- A coherent sheaf *I* on *C* is *torsion-free*, *rank-1* if *I* ≅ *I*<sub>Γ/C</sub> ⊗ *L*, where Γ ⊂ *C* is a finite subscheme and *L* is an invertible sheaf on *C*.
- ▶ Define a functor  $J^{\chi}$  parametrizing torsion-free, rank-1 sheaves I on C with  $\chi(I) = \chi$ .
- More precisely, maps T → J<sup>χ</sup> correspond to equivalence classes of coherent sheaves I on C × T flat over T such that the fibers I<sub>t</sub> are torsion-free, rank-1 with χ(I<sub>t</sub>) = χ.

### Torsion-free, rank-1 sheaves

6

イロン イ部ン イヨン イヨン 三日

- Mayer and Mumford (1964) suggested the use of torsion-free, rank-1 sheaves to compactify P<sup>χ</sup>.
- A coherent sheaf *I* on *C* is *torsion-free*, *rank-1* if *I* ≅ *I*<sub>Γ/C</sub> ⊗ *L*, where Γ ⊂ *C* is a finite subscheme and *L* is an invertible sheaf on *C*.
- Define a functor  $J^{\chi}$  parametrizing torsion-free, rank-1 sheaves I on C with  $\chi(I) = \chi$ .
- More precisely, maps T → J<sup>χ</sup> correspond to equivalence classes of coherent sheaves I on C × T flat over T such that the fibers I<sub>t</sub> are torsion-free, rank-1 with χ(I<sub>t</sub>) = χ.
- ► Two sheaves I<sub>1</sub> and I<sub>2</sub> on C × T are equivalent if there is an invertible sheaf M on T such that I<sub>1</sub> ≅ I<sub>2</sub> ⊗ M.

### Torsion-free, rank-1 sheaves

6

(日) (同) (E) (E) (E)

- Mayer and Mumford (1964) suggested the use of torsion-free, rank-1 sheaves to compactify P<sup>χ</sup>.
- A coherent sheaf *I* on *C* is *torsion-free*, *rank-1* if *I* ≅ *I*<sub>Γ/C</sub> ⊗ *L*, where Γ ⊂ *C* is a finite subscheme and *L* is an invertible sheaf on *C*.
- ▶ Define a functor  $J^{\chi}$  parametrizing torsion-free, rank-1 sheaves I on C with  $\chi(I) = \chi$ .
- More precisely, maps T → J<sup>χ</sup> correspond to equivalence classes of coherent sheaves I on C × T flat over T such that the fibers I<sub>t</sub> are torsion-free, rank-1 with χ(I<sub>t</sub>) = χ.
- ► Two sheaves I<sub>1</sub> and I<sub>2</sub> on C × T are equivalent if there is an invertible sheaf M on T such that I<sub>1</sub> ≅ I<sub>2</sub> ⊗ M.
- ►  $P^{\chi} \subseteq J^{\chi}$  open.



7

► D'Souza (1973): If C is irreducible then J<sup>x</sup> is a projective scheme.

イロト イヨト イヨト イヨト

### Polarization

#### 7

- ▶ D'Souza (1973): If *C* is irreducible then *J*<sup>*\chi*</sup> is a projective scheme.
- Seshadri (1982): For C reducible, need semistability, depending on the choice of a polarization.

- 4 同 ト 4 臣 ト 4 臣 ト

### Polarization

7

- ▶ D'Souza (1973): If *C* is irreducible then *J*<sup>*\chi*</sup> is a projective scheme.
- Seshadri (1982): For C reducible, need semistability, depending on the choice of a polarization.
- $C = C_1 \cup \cdots \cup C_n$  irreducible components

イロト イヨト イヨト イヨト

### Polarization

7

- ▶ D'Souza (1973): If *C* is irreducible then *J*<sup>*\chi*</sup> is a projective scheme.
- Seshadri (1982): For C reducible, need semistability, depending on the choice of a polarization.
- $C = C_1 \cup \cdots \cup C_n$  irreducible components
- ▶ A polarization is a *n*-tuple  $\mathfrak{a} = (a_1, \ldots, a_n)$  with  $a_i \in \mathbb{Q}_+$  such that  $\sum a_i = 1$ .

イロン イヨン イヨン イヨン

### Polarization

7

- ▶ D'Souza (1973): If *C* is irreducible then *J*<sup>*\chi*</sup> is a projective scheme.
- Seshadri (1982): For C reducible, need semistability, depending on the choice of a polarization.
- $C = C_1 \cup \cdots \cup C_n$  irreducible components
- ▶ A polarization is a *n*-tuple  $\mathfrak{a} = (a_1, \ldots, a_n)$  with  $a_i \in \mathbb{Q}_+$  such that  $\sum a_i = 1$ .
- ▶ For instance, if C is Gorenstein, ω<sub>C</sub> is ample and g > 1, we have the canonical polarization w := (w<sub>1</sub>,..., w<sub>n</sub>), where

$$w_i := \frac{\deg(\omega_C|_{C_i})}{2g-2}.$$

ヘロン 人間 とくほど くほとう



#### 8

A torsion-free, rank-1 sheaf I on C is  $\mathfrak{a}$ -semistable ( $\mathfrak{a}$ -stable) if

 $\chi(I_Y) \ge (>) a_Y \chi(I)$ 

for every proper subcurve  $Y \subset C$ , where  $I_Y := I|_Y/(\text{torsion})$ and  $a_Y = \sum_{C_i \subseteq Y} a_i$ .

・ロン ・回と ・ヨン・

### Semistability

#### 8

► A torsion-free, rank-1 sheaf *I* on *C* is *a*-semistable (*a*-stable) if

 $\chi(I_Y) \ge (>) a_Y \chi(I)$ 

for every proper subcurve  $Y \subset C$ , where  $I_Y := I|_Y/(\text{torsion})$ and  $a_Y = \sum_{C_i \subseteq Y} a_i$ .  $J^s(\mathfrak{a}, \chi) = \{[I] \in J^{\chi} | I \text{ is } \mathfrak{a}\text{-stable}\}.$ 

・ロト ・回ト ・ヨト ・ヨト

### Semistability

#### 8

► A torsion-free, rank-1 sheaf *I* on *C* is *a*-semistable (*a*-stable) if

 $\chi(I_Y) \ge (>) a_Y \chi(I)$ 

for every proper subcurve  $Y \subset C$ , where  $I_Y := I|_Y/(\text{torsion})$ and  $a_Y = \sum_{C_i \subseteq Y} a_i$ .

► 
$$J^{s}(\mathfrak{a}, \chi) = \{ [I] \in J^{\chi} \mid I \text{ is } \mathfrak{a}\text{-stable} \}.$$

► 
$$J^{ss}(\mathfrak{a}, \chi) = \{ [I] \in J^{\chi} | I \text{ is } \mathfrak{a}\text{-semistable} \}.$$

・ロン ・回と ・ヨン・

### Semistability

#### 8

► A torsion-free, rank-1 sheaf *I* on *C* is *a*-semistable (*a*-stable) if

 $\chi(I_Y) \ge (>) a_Y \chi(I)$ 

for every proper subcurve  $Y \subset C$ , where  $I_Y := I|_Y/(\text{torsion})$ and  $a_Y = \sum_{C_i \subseteq Y} a_i$ .

• 
$$J^{s}(\mathfrak{a},\chi) = \{[I] \in J^{\chi} \mid I \text{ is } \mathfrak{a}\text{-stable}\}.$$

• 
$$J^{ss}(\mathfrak{a},\chi) = \{[I] \in J^{\chi} \mid I \text{ is } \mathfrak{a}\text{-semistable}\}.$$

• 
$$J^{s}(\mathfrak{a},\chi) \subseteq J^{ss}(\mathfrak{a},\chi) \subseteq J^{\chi}$$
 open

・ロン ・回と ・ヨン・

### Semistability

#### 8

► A torsion-free, rank-1 sheaf *I* on *C* is *a*-semistable (*a*-stable) if

 $\chi(I_Y) \ge (>) a_Y \chi(I)$ 

for every proper subcurve  $Y \subset C$ , where  $I_Y := I|_Y/(\text{torsion})$ and  $a_Y = \sum_{C_i \subseteq Y} a_i$ .

• 
$$J^{s}(\mathfrak{a},\chi) = \{[I] \in J^{\chi} \mid I \text{ is a-stable}\}.$$

• 
$$J^{ss}(\mathfrak{a},\chi) = \{[I] \in J^{\chi} \mid I \text{ is } \mathfrak{a}\text{-semistable}\}.$$

• 
$$J^{s}(\mathfrak{a},\chi) \subseteq J^{ss}(\mathfrak{a},\chi) \subseteq J^{\chi}$$
 open

Seshadri (1982): There is a projective scheme U(a, χ) corepresenting J<sup>ss</sup>(a, χ).

◆□ > ◆□ > ◆臣 > ◆臣 > ○

## Semistability

#### 8

► A torsion-free, rank-1 sheaf *I* on *C* is *a*-semistable (*a*-stable) if

 $\chi(I_Y) \ge (>) a_Y \chi(I)$ 

for every proper subcurve  $Y \subset C$ , where  $I_Y := I|_Y/(\text{torsion})$ and  $a_Y = \sum_{C_i \subseteq Y} a_i$ .

• 
$$J^{s}(\mathfrak{a},\chi) = \{[I] \in J^{\chi} \mid I \text{ is a-stable}\}.$$

• 
$$J^{ss}(\mathfrak{a},\chi) = \{[I] \in J^{\chi} \mid I \text{ is } \mathfrak{a}\text{-semistable}\}.$$

• 
$$J^{s}(\mathfrak{a},\chi) \subseteq J^{ss}(\mathfrak{a},\chi) \subseteq J^{\chi}$$
 open

- Seshadri (1982): There is a projective scheme U(a, χ) corepresenting J<sup>ss</sup>(a, χ).
- ► U(a, \chi) = {S-equivalence classes of a-semistable sheaves}, a coarse moduli space.

#### Simple sheaves

9

#### • A coherent sheaf I on C is simple if Hom(I, I) = k.

・ロト ・日本 ・ヨト ・ヨト

#### Simple sheaves

#### 9

- A coherent sheaf I on C is simple if Hom(I, I) = k.
- ▶  $\widetilde{J} = \{$ torsion-free, rank-1, simple sheaves $\} \subseteq J$  open.

イロン イヨン イヨン イヨン

#### Simple sheaves

#### 9

- A coherent sheaf I on C is simple if Hom(I, I) = k.
- ▶  $\widetilde{J} = \{$ torsion-free, rank-1, simple sheaves $\} \subseteq J$  open.
- Altman–Kleiman (1980):  $\tilde{J}$  is an algebraic space.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

### Simple sheaves

#### 9

- A coherent sheaf I on C is simple if Hom(I, I) = k.
- ▶  $\tilde{J} = \{$ torsion-free, rank-1, simple sheaves $\} \subseteq J$  open.
- Altman–Kleiman (1980):  $\tilde{J}$  is an algebraic space.
- E. (2001):  $\tilde{J}$  is a scheme, universally closed over k.

イロン イヨン イヨン イヨン

#### Quasistable sheaves

10

・ロン ・四 と ・ ヨ と ・ モ と

æ

•  $\widetilde{J}^{ss}(\mathfrak{a},\chi) := \widetilde{J} \cap J^{ss}(\mathfrak{a},\chi)$  is universally closed over k.

### Quasistable sheaves

#### 10

・ロン ・回 と ・ ヨ と ・ ヨ と

- $\widetilde{J}^{ss}(\mathfrak{a},\chi) := \widetilde{J} \cap J^{ss}(\mathfrak{a},\chi)$  is universally closed over k.
- $J^{s}(\mathfrak{a}, \chi)$  is separated (in fact, quasi-projective) over k.

#### Quasistable sheaves

#### 10

・ロン ・回と ・ヨン ・ヨン

- $\widetilde{J}^{ss}(\mathfrak{a},\chi) := \widetilde{J} \cap J^{ss}(\mathfrak{a},\chi)$  is universally closed over k.
- J<sup>s</sup>(a, χ) is separated (in fact, quasi-projective) over k.
  (J̃ = ∪J<sup>s</sup>(a, χ).)
### Quasistable sheaves

10

イロン イヨン イヨン イヨン

- $\widetilde{J}^{ss}(\mathfrak{a},\chi) := \widetilde{J} \cap J^{ss}(\mathfrak{a},\chi)$  is universally closed over k.
- J<sup>s</sup>(a, χ) is separated (in fact, quasi-projective) over k.
   (J̃ = ∪J<sup>s</sup>(a, χ).)
- Let Q ∈ X in the nonsingular locus. We say that a torsion-free, rank-1 sheaf I on C is α-quasistable w.r.t. Q if

$$\chi(I_Y) \geq a_Y \chi(I)$$

for every proper subcurve  $Y \subset C$ , with equality only if  $P \notin Y$ .

## Quasistable sheaves

10

< □ > < @ > < 注 > < 注 > ... 注

- $\widetilde{J}^{ss}(\mathfrak{a},\chi) := \widetilde{J} \cap J^{ss}(\mathfrak{a},\chi)$  is universally closed over k.
- J<sup>s</sup>(a, χ) is separated (in fact, quasi-projective) over k.
   (J̃ = ∪J<sup>s</sup>(a, χ).)
- Let Q ∈ X in the nonsingular locus. We say that a torsion-free, rank-1 sheaf I on C is α-quasistable w.r.t. Q if

$$\chi(I_Y) \geq a_Y \chi(I)$$

for every proper subcurve Y ⊂ C, with equality only if P ∉ Y.
J<sup>Q</sup>(a, χ) := {[I] ∈ J<sup>ss</sup>(a, χ) | I is a-quasistable w.r.t. Q} is open in J<sup>ss</sup>(a, χ) and proper over k.

## Projectivity

#### 11

**• Theorem.**  $J^Q(\mathfrak{a}, \chi)$  is projective over k.

◆□ > ◆□ > ◆臣 > ◆臣 >

# Projectivity

#### 11

- **• Theorem.**  $J^Q(\mathfrak{a}, \chi)$  is projective over k.
- ▶ **Proof.** Suppose  $Q \in C_1$ . Define a new polarization  $b = (b_1, \ldots, b_n)$  by setting

$$b_i := a_i - \epsilon \quad \text{for } i > 1,$$
  
$$b_1 := a_1 + (n-1)\epsilon.$$

・ロト ・回ト ・ヨト ・ヨト

# Projectivity

#### 11

- **Theorem.**  $J^Q(\mathfrak{a}, \chi)$  is projective over k.
- ▶ **Proof.** Suppose  $Q \in C_1$ . Define a new polarization  $b = (b_1, \ldots, b_n)$  by setting

$$b_i := a_i - \epsilon \quad \text{for } i > 1,$$
  
$$b_1 := a_1 + (n-1)\epsilon.$$

For  $\epsilon$  small,  $J^Q(\mathfrak{a},\chi) \subseteq J^s(\mathfrak{b},\chi)$ .

・ロン ・回 と ・ ヨ と ・ ヨ と

# Projectivity

#### 11

- **Theorem.**  $J^Q(\mathfrak{a}, \chi)$  is projective over k.
- ▶ **Proof.** Suppose  $Q \in C_1$ . Define a new polarization  $b = (b_1, \ldots, b_n)$  by setting

$$b_i := a_i - \epsilon \quad \text{for } i > 1,$$
  
$$b_1 := a_1 + (n-1)\epsilon.$$

・ロト ・回ト ・ヨト ・ヨト

### The S-map

#### 12

•  $J^Q(\mathfrak{a},\chi)$  is a fine moduli space.

・ロ・・ (日・・ (日・・ (日・)

## The S-map

#### 12

- $J^Q(\mathfrak{a},\chi)$  is a fine moduli space.
- ▶ So there is a map, the S-map,

$$\Phi \colon J^{Q}(\mathfrak{a},\chi) \to U(\mathfrak{a},\chi)$$

whose fibers are S-equivalence classes of  $\mathfrak{a}\text{-quasistable}$  sheaves w.r.t. Q.

・ロト ・日本 ・モート ・モート

## The S-map

#### 12

- $J^Q(\mathfrak{a},\chi)$  is a fine moduli space.
- So there is a map, the S-map,

$$\Phi \colon J^{Q}(\mathfrak{a},\chi) \to U(\mathfrak{a},\chi)$$

whose fibers are S-equivalence classes of  $\mathfrak{a}\text{-quasistable}$  sheaves w.r.t. Q.

Φ is surjective.

## The S-map

#### 12

- $J^Q(\mathfrak{a},\chi)$  is a fine moduli space.
- So there is a map, the S-map,

$$\Phi \colon J^{Q}(\mathfrak{a},\chi) \to U(\mathfrak{a},\chi)$$

whose fibers are S-equivalence classes of  $\mathfrak{a}$ -quasistable sheaves w.r.t. Q.

- Φ is surjective.
- Denoting by U<sup>s</sup>(𝔅, χ) ⊆ U(𝔅, χ) the open subscheme parametrizing 𝔅-stable sheaves, we have

$$\Phi^{-1}(U^{s}(\mathfrak{a},\chi))=J^{s}(\mathfrak{a},\chi)$$

and  $\Phi^{s}: J^{s}(\mathfrak{a}, \chi) \to U^{s}(\mathfrak{a}, \chi)$  is an isomorphism.

The Abel map

### 13

The rational map

$$\begin{array}{rcl} \mathcal{A}^d \colon \mathsf{Hilb}^d_{\mathcal{C}} \dashrightarrow \mathcal{J}^{\mathcal{Q}}(\mathfrak{a},\chi) \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & &$$

has for fibers open subschemes of projective spaces.

・ロト ・回ト ・ヨト ・ヨト

## The Abel map

### 13

The rational map

$$A^d : \operatorname{Hilb}^d_C \dashrightarrow J^Q(\mathfrak{a}, \chi)$$
  
 $[\Gamma] \mapsto \mathcal{I}_{\Gamma/C}$ 

has for fibers open subschemes of projective spaces.

▶ **Theorem.** (Caporaso, Coelho, –) Assume *C* is Gorenstein,  $\omega_C$  is ample, and  $C \not\cong \mathbb{P}^1_k$ . If *C* has no separating nodes then

$$A\colon C\to J^Q(\mathfrak{w},2-g),$$

taking N to  $\mathcal{I}^*_{N/C}$ , is well-defined and an embedding.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・



14

▶ Is the composition  $\Phi A$  an embedding as well?

・ロト ・回ト ・ヨト ・ヨト



#### 14

- ls the composition  $\Phi A$  an embedding as well?
- If we understood  $\Phi$  infinitesimally we could answer this.

イロン イヨン イヨン イヨン



#### 14

- Is the composition ΦA an embedding as well?
- If we understood  $\Phi$  infinitesimally we could answer this.
- When is  $\Phi$  an isomorphism?

イロト イヨト イヨト イヨト



14

- Is the composition ΦA an embedding as well?
- If we understood  $\Phi$  infinitesimally we could answer this.
- When is  $\Phi$  an isomorphism?
- If Φ is an isomorphism, we get a "universal" sheaf over U(a, χ), more precisely a family of a-semistable sheaves over U(a, χ) whose fibers are representatives of the corresponding S-equivalence classes.



14

- Is the composition ΦA an embedding as well?
- If we understood  $\Phi$  infinitesimally we could answer this.
- When is Φ an isomorphism?
- If Φ is an isomorphism, we get a "universal" sheaf over U(a, χ), more precisely a family of a-semistable sheaves over U(a, χ) whose fibers are representatives of the corresponding S-equivalence classes.
- When do "universal" sheaves over  $U(\mathfrak{a}, \chi)$  exist?

<ロ> (日) (日) (日) (日) (日)

### Theta divisors

#### 15

There are canonical "divisors" (zero schemes of sections of invertible sheaves) on U(a, χ), called "theta divisors."

イロト イヨト イヨト イヨト

## Theta divisors

#### 15

- There are canonical "divisors" (zero schemes of sections of invertible sheaves) on U(a, χ), called "theta divisors."
- Given a locally free sheaf *E* on *C* with  $\mu(E) = -\chi$ , define

$$\Theta_E := \{ [I] \in U(\mathfrak{a}, \chi) \mid h^0(I \otimes E) > 0 \} \subseteq U(\mathfrak{a}, \chi).$$

## Theta divisors

#### 15

- There are canonical "divisors" (zero schemes of sections of invertible sheaves) on U(a, χ), called "theta divisors."
- Given a locally free sheaf *E* on *C* with  $\mu(E) = -\chi$ , define

$$\Theta_E := \{ [I] \in U(\mathfrak{a}, \chi) \mid h^0(I \otimes E) > 0 \} \subseteq U(\mathfrak{a}, \chi).$$

 Álvaréz–King (2007): These "divisors" are enough to understand U(α, χ), at least in characteristic zero.

## Main result

#### 16

A spine is a connected subcurve  $Y \subseteq C$  such that  $Y \cap \overline{C - Y}$  consists of separating nodes of C.

・ロト ・回ト ・ヨト ・ヨト

## Main result

#### 16

- A spine is a connected subcurve  $Y \subseteq C$  such that  $Y \cap \overline{C Y}$  consists of separating nodes of C.
- Theorem. Assume that every subcurve Y ⊆ C for which a<sub>Y</sub> χ ∈ Z is a spine or contains Q. Then the S-map Φ: J<sup>Q</sup>(a, χ) → U(a, χ) is a bijective closed embedding. Moreover, if C is locally planar, then Φ is an isomorphism.

|       | Outline<br>The Picard scheme<br>Seshadri's compactification<br>Another compactification<br>The S-map<br>Isomorphism |    |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------|----|--|--|
| Proof |                                                                                                                     | 17 |  |  |
|       |                                                                                                                     |    |  |  |

**Proof.** We prove first that  $\Phi$  is bijective.

Eduardo Esteves Compactified Jacobians

- 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □

## Proof

### 17

- **Proof.** We prove first that  $\Phi$  is bijective.
- ▶ Then, let *I* be an  $\mathfrak{a}$ -quasistable sheaf w.r.t. *Q*.

・ロト ・回ト ・ヨト ・ヨト

## Proof

### 17

- **Proof.** We prove first that Φ is bijective.
- ► Then, let *I* be an *a*-quasistable sheaf w.r.t. *Q*.
- ► It induces a decomposition X = Z<sub>1</sub> ∪ · · · ∪ Z<sub>q</sub> in subcurves with finite pairwise intersection and a filtration

$$0 = I_0 \subset I_1 \subset \cdots \subset I_q = I$$

such that  $I_j/I_{j-1}$  is a torsion-free, rank-1 sheaf on  $Z_j$  with  $\chi(I_j/I_{j-1}) = a_{Z_j}\chi$  for each j = 1, ..., q.

・ロン ・回と ・ヨン ・ヨン

## Proof

### 17

- Proof. We prove first that Φ is bijective.
- ► Then, let *I* be an *a*-quasistable sheaf w.r.t. *Q*.
- ► It induces a decomposition X = Z<sub>1</sub> ∪ · · · ∪ Z<sub>q</sub> in subcurves with finite pairwise intersection and a filtration

$$0 = I_0 \subset I_1 \subset \cdots \subset I_q = I$$

such that  $I_j/I_{j-1}$  is a torsion-free, rank-1 sheaf on  $Z_j$  with  $\chi(I_j/I_{j-1}) = a_{Z_j}\chi$  for each j = 1, ..., q.

▶ It follows that each  $I_j/I_{j-1}$  is a  $\mathfrak{a}|_{Z_j}$ -stable sheaf on  $Z_j$ , and that  $Gr(I) := \bigoplus_j I_j/I_{j-1}$  is  $\mathfrak{a}$ -semistable.

・ロン ・回 と ・ ヨ と ・ ヨ と

## Proof

### 17

- Proof. We prove first that Φ is bijective.
- Then, let I be an α-quasistable sheaf w.r.t. Q.
- ► It induces a decomposition X = Z<sub>1</sub> ∪ · · · ∪ Z<sub>q</sub> in subcurves with finite pairwise intersection and a filtration

$$0 = I_0 \subset I_1 \subset \cdots \subset I_q = I$$

such that  $I_j/I_{j-1}$  is a torsion-free, rank-1 sheaf on  $Z_j$  with  $\chi(I_j/I_{j-1}) = a_{Z_j}\chi$  for each j = 1, ..., q.

- ▶ It follows that each  $I_j/I_{j-1}$  is a  $\mathfrak{a}|_{Z_j}$ -stable sheaf on  $Z_j$ , and that  $\operatorname{Gr}(I) := \bigoplus_j I_j/I_{j-1}$  is  $\mathfrak{a}$ -semistable.
- $\mathfrak{a}|_{Z_j}$  is the collection of  $a_i/a_{Z_j}$  for all  $C_i \subseteq Z_j$ .

・ロン ・回 と ・ ヨ と ・ ヨ と

# Proof

### 17

- **Proof.** We prove first that Φ is bijective.
- Then, let I be an α-quasistable sheaf w.r.t. Q.
- ► It induces a decomposition X = Z<sub>1</sub> ∪ · · · ∪ Z<sub>q</sub> in subcurves with finite pairwise intersection and a filtration

$$0 = I_0 \subset I_1 \subset \cdots \subset I_q = I$$

such that  $I_j/I_{j-1}$  is a torsion-free, rank-1 sheaf on  $Z_j$  with  $\chi(I_j/I_{j-1}) = a_{Z_j}\chi$  for each j = 1, ..., q.

- ▶ It follows that each  $I_j/I_{j-1}$  is a  $\mathfrak{a}|_{Z_j}$ -stable sheaf on  $Z_j$ , and that  $Gr(I) := \bigoplus_j I_j/I_{j-1}$  is  $\mathfrak{a}$ -semistable.
- $\mathfrak{a}|_{Z_i}$  is the collection of  $a_i/a_{Z_i}$  for all  $C_i \subseteq Z_j$ .
- (Two sheaves are S-equivalent if their associated graded sheaves are isomorphic.)

# Proof, part II

#### 18

Anyway, since a<sub>Z<sub>j</sub></sub>χ is an integer χ<sub>j</sub>, all the subcurves Z<sub>j</sub>, but that containing Q, are spines.

# Proof, part II

#### 18

- Anyway, since a<sub>Z<sub>j</sub></sub>χ is an integer χ<sub>j</sub>, all the subcurves Z<sub>j</sub>, but that containing Q, are spines.
- But then that Z<sub>j</sub> containing Q is a spine as well.

# Proof, part II

1

#### 18

- Anyway, since a<sub>Zj</sub> χ is an integer χ<sub>j</sub>, all the subcurves Z<sub>j</sub>, but that containing Q, are spines.
- But then that  $Z_i$  containing Q is a spine as well.
- Since all the  $Z_i$  are spines, there is an isomorphism

$$\begin{split} &: \widetilde{J}_{\mathcal{C}}^{\chi} \longrightarrow \coprod_{m_1 + \dots + m_q = \chi} \widetilde{J}_{Z_1}^{m_1} \times \dots \times \widetilde{J}_{Z_q}^{m_q} \\ & [\mathcal{K}] \mapsto (\dots, [\mathcal{K}|_{Z_j} \otimes \mathcal{O}_{Z_j} \bigg( -\sum_{\ell > j} Z_\ell \cap Z_j \bigg)], \dots). \end{split}$$

# Proof, part II

#### 18

- Anyway, since a<sub>Zj</sub> χ is an integer χ<sub>j</sub>, all the subcurves Z<sub>j</sub>, but that containing Q, are spines.
- But then that Z<sub>i</sub> containing Q is a spine as well.
- Since all the  $Z_j$  are spines, there is an isomorphism

$$\Lambda \colon \widetilde{J}_{\mathcal{C}}^{\chi} \longrightarrow \coprod_{m_1 + \dots + m_q = \chi} \widetilde{J}_{Z_1}^{m_1} \times \dots \times \widetilde{J}_{Z_q}^{m_q}$$
$$[\mathcal{K}] \mapsto (\dots, [\mathcal{K}|_{Z_j} \otimes \mathcal{O}_{Z_j} \left( -\sum_{\ell > j} Z_{\ell} \cap Z_j \right)], \dots).$$

▶ In our case [*I*] is taken to  $(..., [I_j/I_{j-1}], ...)$ , so inside

$$\prod_j J^{s}(\mathfrak{a}|_{Z_j},\chi_j).$$

## Proof, part III

#### 19

▶ So, given  $v \in T_{J_{C_i}^{\chi}[I]}$ , it corresponds to  $v_1 + \cdots + v_q$ , where each  $v_j \in T_{J_{Z_i}^{\chi_j},[I_j/I_{j-1}]}$ .

・ロト ・回 ト ・ヨト ・ヨト

# Proof, part III

#### 19

- ▶ So, given  $v \in T_{J_{C_i}^{\chi},[I]}$ , it corresponds to  $v_1 + \cdots + v_q$ , where each  $v_j \in T_{J_{Z_i}^{\chi_j},[I_j/I_{j-1}]}$ .
- If v ≠ 0 then v<sub>i</sub> ≠ 0 for some i. For that i, there is a "theta divisor" separating v<sub>i</sub>.

イロン イヨン イヨン イヨン

# Proof, part III

#### 19

- ▶ So, given  $v \in T_{J_{C_i}^{\chi}[I]}$ , it corresponds to  $v_1 + \cdots + v_q$ , where each  $v_j \in T_{J_{Z_i}^{\chi_j},[I_j/I_{j-1}]}$ .
- If v ≠ 0 then v<sub>i</sub> ≠ 0 for some i. For that i, there is a "theta divisor" separating v<sub>i</sub>.
- That "theta divisor" is associated to a locally free sheaf on Z<sub>j</sub>. We lift it carefully to a locally free sheaf E on C in such a way that Θ<sub>E|Z<sub>j</sub></sub> is also defined for j ≠ i and [I<sub>j</sub>/I<sub>j-1</sub>] ∉ Θ<sub>EZ<sub>j</sub></sub>.

・ロト ・回ト ・ヨト ・ヨト

# Proof, part III

#### 19

- ▶ So, given  $v \in T_{J_{C_i}^{\chi}[I]}$ , it corresponds to  $v_1 + \cdots + v_q$ , where each  $v_j \in T_{J_{Z_i}^{\chi_j},[I_j/I_{j-1}]}$ .
- If v ≠ 0 then v<sub>i</sub> ≠ 0 for some i. For that i, there is a "theta divisor" separating v<sub>i</sub>.
- ► That "theta divisor" is associated to a locally free sheaf on Z<sub>j</sub>. We lift it carefully to a locally free sheaf E on C in such a way that Θ<sub>E|Z<sub>j</sub></sub> is also defined for j ≠ i and [I<sub>j</sub>/I<sub>j-1</sub>] ∉ Θ<sub>EZ<sub>j</sub></sub>.
- Then it is a matter of showing that

$$(\Lambda_{\chi_1,\ldots,\chi_q}^{-1})^*\Theta_E = \sum_{i=1}^q J_{Z_1}^{\chi_1} \times \cdots \times \Theta_{E|_{Z_j}} \times \cdots \times J_{Z_q}^{\chi_q}.$$

・ロン ・回と ・ヨン・
Outline The Picard scheme Seshadri's compactification Another compactification The S-map Isomorphism

# Abel map, part II

### 20

<ロ> (日) (日) (日) (日) (日)

▶ There is a hidden lemma in the proof above: that if an a-quasistable sheaf *I* induces a decomposition  $X = Z_1 \cup \cdots \cup Z_q$  where the  $Z_j$  are spines, then  $d\Phi_{[I]}$  is injective. Outline The Picard scheme Seshadri's compactification Another compactification The S-map Isomorphism

# Abel map, part II

#### 20

イロト イヨト イヨト イヨト

- ▶ There is a hidden lemma in the proof above: that if an a-quasistable sheaf *I* induces a decomposition  $X = Z_1 \cup \cdots \cup Z_q$  where the  $Z_j$  are spines, then  $d\Phi_{[I]}$  is injective.
- Theorem. (CC-) Under the same conditions as before, the composition

$$C \xrightarrow{A} J^Q(\mathfrak{w}, 2-g) \xrightarrow{\Phi} U(\mathfrak{w}, 2-g)$$

is an embedding.

Outline The Picard scheme Seshadri's compactification Another compactification The S-map Isomorphism

# Abel map, part II

### 20

イロン イヨン イヨン イヨン

- ▶ There is a hidden lemma in the proof above: that if an a-quasistable sheaf *I* induces a decomposition  $X = Z_1 \cup \cdots \cup Z_q$  where the  $Z_j$  are spines, then  $d\Phi_{[I]}$  is injective.
- Theorem. (CC-) Under the same conditions as before, the composition

$$C \xrightarrow{A} J^Q(\mathfrak{w}, 2-g) \xrightarrow{\Phi} U(\mathfrak{w}, 2-g)$$

is an embedding.

▶ **Proof.** It is enough to show that all sheaves in the image of *A* induce a decomposition of *C* in spines.