From \mathcal{D} -modules to deformation quantization modules

Pierre Schapira

Denote by \mathbf{k}_0 the ring $\mathbb{C}[[\hbar]]$ and by X a complex manifold. We shall show how the study of \mathcal{D} -modules on X, that is, modules over the ring \mathcal{D}_X of holomorphic differential operators, naturally leads to the notion of DQmodules (DQ: deformation quantization). A DQ-module on X is a module over an algebra (more generally, an algebroid stack) locally isomorphic to an algebra ($(\mathcal{O}_X[[\hbar]], \star)$ where the product \star is an associative and \mathbf{k}_0 -bilinear map given by bi-differential operators. Note that this product defines a Poisson structure on X.

In this course, we start by recalling the main constructions and properties of \mathcal{D} -modules, then we briefly discuss algebroid stacks and DQ-modules.

We will freely use the language of sheaves and derived categories. For a short introduction to derived categories and sheaves, see [2, Chapters 1,2], for a detailled exposition, see [3] or the original [4]. For \mathcal{D} -modules, see [1].

- M. Kashiwara *D*-modules and Microlocal Calculus, Translations of Mathematical Monographs, **217** American Math. Soc. (2003).
- [2] M. Kashiwara and P. Schapira, *Sheaves on Manifolds*, Grundlehren der Math. Wiss. **292** Springer-Verlag (1990).
- [3] _____, Categories and Sheaves, Grundlehren der Math. Wiss. **332** Springer-Verlag (2005).
- [4] S-G-A 4, Sém. Géom. Algébrique (1963-64) by M. Artin, A. Grothendieck and J-L. Verdier, *Théorie des topos et cohomologie étale des schémas*, Lecture Notes in Math. **269**, **270**, **305**, Springer-Verlag (1972/73).