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Preface

The aim of these notes is to provide an introduction to some classical and recent results and techniques in
projective algebraic geometry. We treat the geometrical properties of varieties embedded in projective space,
their secant and tangent lines, the behaviour of tangent linear spaces, the algebro-geometric and topological
obstructions to their embedding into smaller projective spaces, the classification in the extremal cases.

These are classical themes in algebraic geometry and the renewed interest at the beginning of the ’80 of the
last century came from some conjectures posed by Hartshorne, [H2], from an important connectedness theorem
of Fulton and Hansen, [FH], and from its new and deep applications to the geometry of algebraic varieties, as
shown by Fulton, Hansen, Deligne, Lazarsfeld and Zak, [FH], [FL], [D2], [Z2].

We shall try to illustrate these themes and results during the course and with more details through these
notes, also pointing out simple proofs of some important theorems and some new results via the theory of
deformations of rational curves on algebraic varieties (Mori’s Theory) and via the theory of degenerations, see
[CMR], [CR], [Ru2], [IR1], [IR2].

A standard reference on some topics treated here is [Z2], which influenced the presentation of some parts
of the book, altough the proofs and the general philosophy of important classification results differ substantially
from Zak’s original ones.
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Introduction

Let us quote excerpts from Hilbert presentation of projective geometry in [HCV]:

”..... we shall learn about geometrical facts that can be formulated and proved without any measurement
or comparison of distances or of angles. It might be imagined that no significant properties of a figure could
be found if we do without measurement of distances and angles and that only vague statements could be made.
And indeed research was confined to the metrical side of geometry for a long time, and questions of the kind
we shall discuss in this chapter arose only later, when the phenomena underlying perspective painting were
being studied scientifically. Thus, if a plane figure is projected from a point onto another plane, distances and
angles are changed, and in addition, parallel lines may be changed into lines that are not parallel; but certain
essential properties must nevertheless remain intact, since we could not otherwise recognize the projection
as being a true picture of the original figure. In this way, the process of projecting led to a new theory,
which was called projective geometry because of its origins. Since the 19th century, projective geometry
has occupied a central position in geometric research. With the introduction of homogeneous coordinates, it
became possible to reduce the theorems of projective geometry to algebraic equations in much the same way
that Cartesian coordinates allow this to be done for the theorems of metric geometry. But projective analytic
geometry is distinguished by the fact that it is far more symmetrical and general than metric analytic geometry,
and when one wishes, conversely, to interpret higher algebraic relations geometrically, one often transforms
the relations into homogeneous form and interprets the variables as homogeneous coordinates, because the
metric interpretation in Cartesian coordinates would be too unwieldy.”

Classical algebraic Geometers, antique and modern, taught and teach to us also to experiment the live
rapport with the objects one studies and showed us the concrete intuition, described by Hilbert in his preface
to the book Geometry and the Imagination, [HCV]:

”In mathematics, as in any scientific research, we find two tendencies present. On the one hand, the
tendency toward abstraction seeks to crystallize the logical relations inherent in the maze of material that
is being studied, and to correlate the material in a systematic and orderly manner. On the other hand, the
tendency toward intuitive understanding fosters a more immediate grasp of the objects one studies, a live
rapport with them, so to speak, which stresses the concrete meaning of their relations. As to geometry, in
particular, the abstract tendency has here led to the magnificent systematic theories of Algebraic Geometry, of
Riemannian Geometry, and of Topology; these theories make extensive use of abstract reasoning and symbolic
calculation in the sense of algebra. Notwithstanding this, it is still as true today as it ever was that intuitive
understanding plays a major role in geometry. And such concrete intuition is of great value not only far the
research worker, but also for anyone who wishes to study and appreciate the results of research in geometry.
In this book, it is our purpose to give a presentation of geometry, as it stands today, in its visual, intuitive
aspects. With the aid of visual imagination we can illuminate the manifold facts and problems of geometry,
and beyond this, it is possible in many cases to depict the geometric outline of the methods of investigation and
proof, without necessarily entering into the details connected with the strict definitions of concepts and with
the actual calculations.
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viii INTRODUCTION

In this manner, geometry being as many-faceted as it is and being related to the most diverse branches of
mathematics, we may even obtain a summarizing survey of mathematics as a whole, and a valid idea of the
variety of its problems and the wealth of ideas it contains.”

I wish to end this introduction by also quoting the beginning of the book of Georg R. Kempf, [Ke1]:

”Algebraic geometry is a mixture of the ideas of two Mediterrean cultures. It is the superposition of
the Arab science of the lightning calculation of the solutions of equations over the Greek art of position and
shape. This tapestry was originally woven by on European soil and is still being refined under the influence
of international fashion. Algebraic geometry studies the delicate balance between the geometrically plausible
and the algebraic possible. Whenever one side of this mathematical teeter–tooter outweighs the other, one
immediately loses interest and runs off in search of a more exciting amusement”.



CHAPTER 1

Tangent cones, tangent spaces, tangent stars; secant, tangent and
tangent star variety to an algebraic variety

1.1. Tangent cones to an algebraic variety and associated varieties

Let X be an algebraic variety, or more generally a scheme of finite type, over a fixed algebraically closed
field K. Let x ∈ X be a closed point. We briefly recall the definitions of tangent cone to X at x and of tangent
space to X at x. For more details one can consult [Mu] or [Sh].

1.1.1. DEFINITION. (Tangent cone at a point). Let U ⊂ X be an open affine neighbourhood of x, let
i : U → AN be a closed immersion and let U be defined by the ideal I ⊂ K[X1, . . . , XN ]. There is no loss
of generality in supposing i(x) = (0, . . . , 0) ∈ AN . Given f ∈ K[X1, . . . , XN ] with f(0, . . . , 0) = 0, we can
define the leading form of f , f∗, as the lower degree homogeneous polynomial in its expression as a sum of
homogenous polynomials in the variables Xi’s. Let

I∗ = {the ideal generated by the ”leading form”f∗, for all f ∈ I}.

Then
CxX := Spec(K[X1, . . . , XN ]/I∗),

is called the affine tangent cone to X at x.
It could seem that it depends on the choice of U ⊂ X and on the choice of i : U → AN . It is not the case

because if (Ox,mx) is the local ring of regular functions of X at x, then it is immediate to see that

(k[X1, . . . , XN ]/I∗) ' gr(Ox) :=
⊕
n≥0

mn
x

mn+1
x

.

This fact simply says that we can calculate CxX by choosing an arbitrary set of generators of I and
moreover that the definition is local. It should be noticed that CxX is a scheme, which can be neither irreducible
nor reduced as the examples of plane cubic curves with a node and with a cusp show. We now get a geometrical
interpretation of this cone and see some of its properties.

Since CxX is locally defined by homogeneous forms, it can be naturally projectivized and thought as a
subscheme of PN−1 = P(AN ). If we consider the blow-up of x ∈ U ⊂ AN , π : Blx U → U , then Blx U
is naturally a subscheme of U × PN−1 ⊂ AN × PN−1 and the exceptional divisor E := π−1(x) is naturally
a subscheme of x × PN−1. With these identifications one shows that E ' P(CxX) ⊂ PN−1 as schemes,
see [Mu, pg. 225]. In particular, if X is equidimensional at x, then CxX is an equidimensional scheme of
dimension dim(X). Moreover, we deduce the following geometrical definition:

CxX =
⋃
y∈U

lim
y→x

< y, x >.

The cone CxX can also be described geometrically in this way, see [Sh].
If X ⊂ PN is quasi-projective, we define the projective tangent cone to X at x, indicated by CxX , as the

closure of CxX ⊂ AN in PN , where x ∈ U = AN ∩X is a suitable chosen affine neighbourhood. The same
geometrical definition holds, remembering of the scheme structure,

1



2 1. TANGENT CONES, SECANT VARIETY AND TANGENT VARIETIES

CxX =
⋃
y∈U

lim
y→x

< y, x > ⊂ PN .

We now recall the definition of tangent space to X at x ∈ X .

1.1.2. DEFINITION. (Tangent space at a point; Tangent variety to a variety). Let notation be as in the
previous definition. Given f ∈ K[X1, . . . , XN ] with f(0, . . . , 0) = 0, we can define the linear term of f ,
f lin, as the degree one homogeneous polynomial in its expression as a sum of homogenous polynomials in the
variables Xi’s. In other words, f lin =

∑N
i=1

∂f
∂Xi

(0)Xi. Let

I lin = {the ideal generated by the linear termsf lin, for all f ∈ I}.
Then

TxX := Spec(K[X1, . . . , XN ]/I lin),
is called the affine tangent space to X at x.

Geometrically it is the locus of tangent lines to X at x, where a line through x is tangent to X at x if it is
tangent to the hypersurfaces V (f) = 0, f ∈ I , i.e. if the multiplicity of intersection of the line with V (f) at
(0, . . . , 0) is greater than one. In particular this locus is a linear subspace of AN being an intersection of linear
subspaces.

Since I lin ⊆ I∗, we deduce the inclusion of schemes

CxX ⊆ TxX;
and that TxX is the smallest linear subscheme of AN containing CxX as a subscheme (and not only as a set!).
In particular for every x ∈ X dim(TxX) ≥ dim(X) holds.

We recall that a point x ∈ X is non-singular if and only CxX = TxX . Since TxX is reduced and
irreducible and since CxX is of dimension dim(X), we have that x ∈ X is non-singular if and only if
dim(TxX) = dim(X).

Once again there is an intrinsic definition of TxX
(K[X1, . . . , XN ]/I lin) ' S(mx/m

2
x),

where S(mx/m
2
x) is the symmetric algebra of the K-vector space mx/m

2
x.

If X ⊂ PN is a quasi-projective variety, we define the projective tangent space to X at x, indicated by
TxX , as the closure of TxX ⊂ AN in PN , where x ∈ U = AN ∩X is a suitable chosen affine neighbourhood.
Then TxX is a linear projective space naturally attached to X and clearly CxX ⊆ TxX as schemes. We also
set, for a (quasi)-projective variety X ⊂ PN ,

TX =
⋃
x∈X

TxX,

the variety of tangents, or the tangent variety of X .

At a non-singular point x ∈ X ⊂ PN , the equality CxX = TxX says that every tangent line to X at x is
the limit of a secant line < x, y > with y ∈ X approaching x. For singular points this is not the case as one
sees in the simplest examples of singular points of a hypersurface.

An interesting question is to investigate what are the limits of secant lines < y1, y2 >, yi ∈ X , y1 6= y2,
when yi, i = 1, 2, approaches a fixed x ∈ X . As we will immediately see for a non-singular point x ∈ X ,
every tangent line toX at x arises in this way but for singular points this is not the case. These limits generate a
cone, the tangent star cone to X at x, which contains but does not usually coincide with CxX (or CxX). From
now on we restrict ourselves to the projective setting since we will not treat local questions related to tangent
star cones but the situation can be ”localized”. Firstly we introduce the notion of secant variety to a variety
X ⊂ PN .
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1.1.3. DEFINITION. (Secant varieties to a variety). For simplicity let us suppose thatX ⊂ PN is a closed
irreducible subvariety.

Let

S0
X := {((x1, x2), z) : z ∈< x1, x2 >} ⊂ ((X ×X) \∆X)× PN .

The set is locally closed so that taken with the reduced scheme structure it is a quasi-projective irreducible
variety of dimension dim(S0

X) = 2 dim(X)+1. Recall that, by definition, it is a P1-bundle over (X×X)\∆X ,
which is irreducible. Let SX be its closure in X × X × PN . Then SX is an irreducible projective variety of
dimension 2 dim(X) + 1, called the abstract secant variety to X . Let us consider the projections of SX onto
the factors X ×X and PN ,

SX
p1

{{www
ww

ww
ww p2

!!D
DD

DD
DD

D

X ×X PN .
The secant variety to X , SX , is the scheme-theoretic image of SX in PN , i.e.

SX = p2(SX) =
⋃

x1 6=x2 , xi∈X

< x1, x2 > ⊆ PN ,

which is an irreducible algebraic variety of dimension s(X) ≤ min{2 dim(X) + 1, N}, the variety swept out
by the secant lines to X .

Let now k ≥ 1 be a fixed integer. We can generalize the construction to the case of (k + 1)-secant Pk, i.e.
to the variety swept out by the linear spaces generated by k + 1 independent points on X .

Define
(SkX)0 ⊂ X × . . .×X︸ ︷︷ ︸

k+1

×PN

as the locally closed irreducible set

(SkX)0 := {((x0, . . . , xk), z) : dim(< x0, . . . , xk >) = k , z ∈< x0, . . . , xk >}.
Let SkX , the abstract k-secant variety of X , be

(SkX)0 ⊂ X × . . .×X︸ ︷︷ ︸
k+1

×PN .

The closed set SkX is irreducible and of dimension (k + 1) dim(X) + k. Consider the projections of SkX onto
the factors X × . . .×X︸ ︷︷ ︸

k+1

and PN ,

SkX
p1

yysssssssssss
p2

!!C
CC

CC
CC

C

X × . . .×X PN .

The k-secant variety to X , SkX , is the scheme-theoretic image of SkX in PN , i.e.

SkX = p2(SkX) =
⋃

xi∈X , dim(<x0,...,xk>)=k

< x0, . . . , xk > ⊆ PN .

It is an irreducible algebraic variety of dimension sk(X) ≤ min{N, (k + 1) dim(X) + k}.



4 1. TANGENT CONES, SECANT VARIETY AND TANGENT VARIETIES

We are now in position to define the last cone attached to a point x ∈ X . This notion was introduced by
Johnson in [Jo] and further studied extensively by Zak. Algebraic properties of tangent star cones and of the
algebras related to them are investigated in [SUV].

1.1.4. DEFINITION. (Tangent star at a point; Variety of tangent stars, [Jo]). Let X ⊂ PN be an
irreducible projective variety.

The abstract variety of tangent stars to X , T ∗X , is defined by the following cartesian diagram

T ∗X

p

��

� � // SX

p2

��
∆X

� � // X ×X .

The tangent star to X at x, T ∗xX , is defined by

T ∗xX := p2(p−1((x, x))) ⊆ PN .
It is a scheme which can be described geometrically as follows:

T ∗xX =
⋃

(x1,x2)∈X×X\∆X

lim
xi→x

< x1, x2 > ⊂ PN .

The variety of tangent stars to X is by definition

T ∗X = p2(T ∗X) ⊆ PN ,
so that by construction

T ∗X ⊆ SX.
Moreover letting only one point varying we deduce

CxX ⊆ T ∗xX.
It is also clear that the limit of a secant line is a tangent line, i.e. that

T ∗xX ⊆ TxX.

By what we have defined and studied we deduce that for a point x ∈ X ⊂ PN , there is the following
relation between the cones we attached to X at x:

CxX ⊆ T ∗xX ⊆ TxX.
Moreover a point x ∈ X is non-singular if and only if CxX = T ∗xX = TxX . We immediately show in the
following class of examples that at singular points strict inequalities can hold, i.e. at singular points there could
exist tangent lines which are not limit of secant lines.

1.1.5. EXAMPLE. (Singular points for which CxX ( T ∗xX ( TxX). Let Y ⊂ PN ⊂ PN+1 be an
irreducible, non-degenerate variety in PN . Consider a point p ∈ PN+1 \ PN and let X := S(p, Y ) be the cone
over Y of vertex p, i.e.

S(p, Y ) =
⋃
y∈Y

< p, y > .

Then X is an irreducible, non-degenerate variety in PN+1. In fact, modulo a projective transformation, the
variety X is defined by the same equations of Y , now thought as homogeneous polynomials with one variable
more; in particular dim(X) = dim(Y ) + 1.

The line< p, y > is contained inX for every y ∈ Y , so thatX ⊂ TpX and therefore PN =< Y >⊂ TpX .
Since p ∈ TpX , we get

(1.1.1) TpX = PN+1.
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It follows from the definition of tangent cone to a variety that

CpS(p, Y ) = S(p, Y ).
We also have that

(1.1.2) S(p, SY ) = SX.

Indeed, by projecting from p onto PN , it is clear that a general secant line to X projects onto a secant line to Y ,
proving SX ⊆ S(p, SY ). On the contrary if we get a general point q ∈ S(p, SY ), by definition it projects onto
a general point q′ ∈ SY , which belongs to a secant line < p′1, p

′
2 >, p′i ∈ Y . The plane < p, p′1, p

′
2 > contains

the point q, while the lines < p, p′i >, i = 1, 2, are contained in X by definition of cone; hence through q there
pass infinitely many secant lines to X , yielding S(p, SY ) ⊆ SX . The claim is proved.

The above argument proves the following general fact:

T ∗p S(p, Y ) = S(p, SY ).

Indeed by definition T ∗pX ⊆ SX = S(p, SY ) as schemes. On the other hand, by fixing two general points
p1, p2 ∈ X , p1 6= p2, pi 6= p, the plane < p, p1, p2 > is contained in T ∗pX as it is easily seen by varying the
velocity of approaching p of two points qi ∈< p, pi >. By the generality of the points pi we get the inclusion
SX ⊆ T ∗pX as schemes and the proof of the claim.

As an immediate application one constructs example of irreducible singular varieties X with a point p ∈
Sing(X) for which

CpX ( T ∗pX ( TpX.

One can take as Y ⊂ P4 ⊂ P5 an irreducible, smooth, non-degenerate curve in P4 and consider the cone
X over Y of vertex p ∈ P5 \ P4. Then CpX = S(p, Y ) = X , T ∗pX = S(p, SY ) = SX is an hypersurface
in P5, because SY is an hypersurface in P4, while TpX = P5. Every variety Y such that SY ( PN (see the
exercises at the end of the chapter or take N > 2 dim(Y ) + 1) will produce analogous examples.

1.2. Join of varieties

We generalize to arbitrary irreducible varieties X,Y ⊂ PN the notion of ”cone” or of ”join” of linear
spaces.

Let us remember that if Li ' PNi ⊆ PN , i = 1, 2, is a linear subspace, then

< L1, L2 >:=
⋃

xi∈Li , x1 6=x2

< x1, x2 >,

is a linear space called the join of L1 and L2. It is the smallest linear subspace of PN containing L1 and L2.
By Grassmann formula we have

(1.2.1) dim(< L1, L2 >) = dim(L1) + dim(L2)− dim(L1 ∩ L2),

where as always dim(∅) = −1. This shows that the dimension of the join depends on the intersection of the
two linear spaces.

On the other hand, if X ⊂ PN ⊂ PN+1 is an irreducible subvariety and if p ∈ PN+1\PN is an arbitrary
point, if we define as before

S(p,X) =
⋃
x∈X

< p, x >,

the cone of vertex p over X , then for every z ∈< p, x >, z 6= p, we have by construction

(1.2.2) TzS(p,X) =< p, TxX >=< Tpp, TxX >,

i.e. the well known fact that the tangent space is constant along the ruling of a cone.
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As we shall see in the next section, once we have defined the join of two varieties as the union of lines
joining points of them, then we can linearize the problem looking at the tangent spaces and calculate the
dimension of the join by looking at the affine cones over the varieties, exactly as in the proof of the formula
(1.2.1). The dimension of the join of two varieties will depend on the intersection of a general tangent space of
the first one with a general tangent space of the other one, a result known as Terracini Lemma, [T1]. Moreover
a kind of property similar to the second tautological inequality in (1.2.2) will hold generically, at least in
characteristic zero, see Theorem 1.3.1.

1.2.1. DEFINITION. (Join of varieties; relative secant, tangent star and tangent varieties). LetX,Y ⊂
PN be closed irreducible subvarieties.

Let

S0
X,Y := {((x, y, z) , x 6= y : z ∈< x, y >} ⊂ X × Y × PN .

The set is locally closed so that taken with the reduced scheme structure it is a quasi-projective irreducible
variety of dimension dim(S0

X,Y ) = dim(X) + dim(Y ) + 1. Let SX,Y be its closure in X × Y × PN . Then
SX,Y is an irreducible projective variety of dimension dim(X) + dim(Y ) + 1, called the abstract join of X
and Y . Let us consider the projections of SX,Y onto the factors X × Y and PN ,

(1.2.3) SX,Y
p1

zzuuuuuuuuu
p2

""F
FFFFFFF

X × Y PN .
The join of X and Y , S(X,Y ), is the scheme-theoretic image of SX,Y in PN , i.e.

S(X,Y ) = p2(SX,Y ) =
⋃

x6=y, x∈X, y∈Y

< x, y > ⊆ PN ;

it is an irreducible algebraic variety of dimension s(X,Y ) ≤ dim(X)+dim(Y )+1, swept out by lines joining
points of X with points of Y .

With this notation S(X,X) = SX and S(X,Sk−1X) = SkX = S(SlX,ShX), if h ≥ 0, l ≥ 0, h+ l =
k − 1. Moreover, for arbitrary irreducible varieties X , Y and Z, we have S(X,S(Y, Z)) = S(S(X,Y ), Z).

When Y ⊆ X ⊂ PN is an irreducible closed subvariety, the variety S(Y,X) is usually the relative secant
variety of X with respect to Y . Analogously, T (Y,X) =

⋃
y∈Y TyX . In this case by taking ∆Y ⊂ Y ×X and

by looking at (1.2.3), we can define T ∗Y,X := p−1
1 (∆Y ) ⊆ SY,X to be the abstract relative tangent star variety

and finally

(1.2.4) T ∗(Y,X) := p2(T ∗Y,X) ⊆ S(X,Y )

to be the relative tangent star variety. If

T ∗y (Y,X) = p2(p−1
1 (y × y)) =

⋃
(y1,x1)∈Y×X\∆Y

lim
y1→y
x1→y

< y1, x1 > ⊂ PN ,

then T ∗(Y,X) =
⋃
y∈Y T

∗
y (Y,X). With this terminology, T ∗y (y,X) = CyX and T ∗y (X,X) = T ∗yX for every

y ∈ X . In particular CyX = T ∗y (y,X) ⊆ T ∗y (X,X) = T ∗yX .

We furnish some immediate applications of the definition of join to properties of SkX and to characteri-
zations of linear spaces. For a variety X ⊆ PN , the linear space < X >⊆ PN is the linear span of X in PN ,
i. e. the smallest linear subspace of PN containing X . The variety X ⊂ PN is said to be non-degenerated if
< X >= PN .

1.2.2. PROPOSITION. ([P2]) Let X,Y ⊂ PN be closed irreducible subvarieties. The following holds:
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(1) for every x ∈ X ,
Y ⊆ S(x, Y ) ⊆ TxS(x, Y ) ⊆ TxS(X,Y )

and in partiucular < x,< Y >>⊆ TxS(x, Y ).
(2) if SkX = Sk+1X for some k ≥ 0, then SkX = Psk(X) ⊆ PN ;
(3) if dim(Sk+1X) = dim(SkX) + 1 for some k ≥ 0, then Sk+1X = Psk+1(X) so that SkX is a

hypersurface in Psk+1(X);
(4) if for some k ≥ 0 Sk+1X ⊂ PN is not a linear space, then SkX ⊆ Sing(Sk+1X).

PROOF. Exercise 1.6.2. �

To a non-degenerate irreducible closed subvariety X ⊂ PN we can associate an ascending filtration of
irreducible projective varieties, whose inclusion are strict by Proposition 1.2.2, and an integer k0 = k0(X) ≥ 1:

(1.2.5) X = S0X ( SX ( S2X ( . . . ( Sk0X = PN ,

where k0 is the least integer such that SkX = PN .

The above immediate consequences of the definitions give also the following result, which was classically
very well known, see for example [P1, footnote pg. 635], but considered as an open problem by Atiyah in [At,
pg. 424]. The next result, via an argument of Atiyah, yields a proof of C. Segre’s and Nagata’s Theorem about
the minimal section of a geometrically ruled surface, see [Ln].

1.2.3. COROLLARY. ([P1]) LetC ⊂ PN be an irreducible non-degenerate projective curve. Then sk(C) =
min{2k + 1, N}.

Let X ⊂ PN be an irreducible non-degenerate projective variety of dimension n ≥ 1. Let k < k0. Then
sk(X) ≥ n+ 2k for every k < k0. If sj(X) = n+ 2j for some j ≥ 1, j < k0, then sk(X) = n+ 2k for every
k ≤ j. In particular if sk(X) = n+ 2k for some k ≥ 1, k < k0, then s(X) = n+ 2 and SX ( PN .

PROOF. Exercise 1.6.2. �

We define and study linear projections with the terminology just introduced and generalize the dimension
formula (1.2.1) to the case of arbitrary cones, at least in characteristic zero. In the next section we shall deal
with the general case of join of two arbitrary varieties.

1.2.4. DEFINITION. (Linear projections and linear cones) Let L = Pl ⊂ PN be a fixed linear space,
l ≥ 0, and let M = PN−l−1 be a linear space skew to L, i.e. L ∩M = ∅ and < L,M >= PN . Let X ⊆ PN
be a closed irreducible variety not contained in L and let

πL : X 99K PN−l−1 = M,

be the rational map defined on X \ (L ∩X) by

πL(x) =< L, x > ∩M.

The map is well defined by Grassmann formula, see (1.2.1). Let X ′ = πL(X) ⊂ PN−l−1 be the closure of the
image of X by πL. The whole process can be described with the terminology of joins. Indeed we have

X ′ = S(L,X) ∩M,

i.e. X ′ is the intersection of M with the cone over X of vertex L and moreover S(L,X) = S(L,X ′). The
projective differential of πL is the projection of the tangent spaces from L, i.e. if x ∈ X \ (L ∩X), then

dπL(TxX) =< L, TxX > ∩M ⊆ TπL(x)X
′,

as it is easily seen eventually passing to (local) coordinates. Clearly S(L, TxX) =< L, TxX >.
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Suppose L ∩ X = ∅, then we claim that πL : X → X ′ is a finite morphism, which implies dim(X) =
dim(X ′). Being a morphism between projective varieties, it is sufficient to show that it has finite fibers by
Stein Factorization. By definition for x′ ∈ X ′,

π−1
L (x′) =< L, x′ > ∩X ⊂< L, x′ >= Pl+1.

If there exists an irreducible curve C ⊂< L, x′ > ∩X ⊂< L, x′ >, then ∅ 6= L ∩C ⊆ L ∩X , contrary to our
assumption.

In particular for an arbitrary L, the dimension of X ′ does not depend on the choice of the position of M ,
except for the requirement L ∩M = ∅.

The relation S(L,X) = S(L,X ′) allows us to calculate the dimension of the irreducible variety S(L,X)
for an arbitrary L. Exactly as in (1.2.2) for z ∈ S(L,X) \ L,

z ∈< L, x >=< L, πL(z) >=< L, x′ >,

with x ∈ X and πL(z) = πL(x) = x′ ∈ X ′. Since S(L,X ′) is, modulo a projective transformation, the
variety defined by the same homogeneous polynomials of X ′ now thought as polynomials in N + 1 variables,
we have

(1.2.6) TzS(L,X) =< L, TπL(z)X
′ >⊇< L, TxX > .

Taking z ∈ S(L,X) general and recalling that L ∩M = ∅ we deduce:

(1.2.7) dim(S(L,X)) = dim(< L, TπL(z)X
′ >) = dim(X ′) + l + 1.

Suppose till the end of the subsection char(K) = 0. By generic smoothness, the differential map is
surjective so that TπL(x)X

′ = πL(TxX) for x ∈ X general. In this case πL(x) = x′ ∈ X ′ will be general on
X ′ and finally

dim(X ′) = dim(Tx′X ′) = dim(πL(TxX)) = dim(X)− dim(L ∩ TxX)− 1,

which combined with (1.2.7) gives the following generalization of (1.2.1):

(1.2.8) dim(S(L,X)) = dim(L) + dim(X)− dim(L ∩ TxX),

x ∈ X general point.

Moreover, we get the following refinement of (1.2.6)

(1.2.9) TzS(L,X) =< L, TxX >,

x ∈ X , z ∈< L, x > general points.

We have generalized the notion of cone over a variety lying in a skew space with respect to the vertex by
taking S(L,X) and shown that by projecting the variety X from the vertex L, we can find the description of it
as an ”usual” cone, S(L,X ′).

Now we investigate under which condition a variety is a ”cone”, i.e. there exists a ”vertex” L ' Pl ⊆ X
such that X = S(L,X) = S(L,X ′), if X ′ is the section with a general PN−l−1 skew with the ”vertex” L.
Clearly the ”vertex” is not uniquely determined if we do not require some maximality condition. Let us begin
with the definitions.

1.2.5. DEFINITION. (Cone; vertex of a variety) Let X ⊂ PN be a closed (irreducible) subvariety. The
variety is a cone if there exists x ∈ X such that S(x,X) = X . Geometrically this means that given y ∈ X ,
y 6= x, the line < x, y > is contained in X . In particular x ∈

⋂
y∈X TyX .
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This motivates the definition of vertex of a variety. Given X ⊂ PN an irreducible closed subvariety, the
vertex of X , Vert(X), is the set

Vert(X) = {x ∈ X : S(x,X) = X }.

In particular a variety X is a cone if and only if Vert(X) 6= ∅; by definition S(X,Y ) = X if and only if
Y ⊆ Vert(X).

We list some obvious consequences and leave to the interested reader the pleasure of showing that the
hypothesis on the characteristic of the base field are necessary.

1.2.6. PROPOSITION. Let X ⊂ PN be a closed irreducible variety of dimension dim(X) = n. The
following holds:

(1)

Vert(X) = Pl ⊆
⋂
x∈X

TxX,

l ≥ −1;
(2) if codim(Vert(X), X) ≤ 1, then Vert(X) = X = Pn ⊂ PN ;
(3) if dim(S(X,Y )) = dim(X) + 1, then Y ⊆ Vert(S(X,Y ));
(4) if char(K) = 0,

Vert(X) =
⋂
x∈X

TxX = Pl,

l ≥ −1. In particular
⋂
x∈X TxX ⊆ X (a non-obvious fact, which is false in positive characteris-

tic!).
(5) suppose char(K) = 0 and ∅ 6= Vert(X) ( X , then X = S(Vert(X), X ′) is a cone, where X ′ is the

projection of X from Vert(X) onto a PN−l−1 skew to Vert(X) (dim(X ′) = n− l − 1).

PROOF. Exercise 1.6.3. �

We end this section by putting in relation the projections of a variety and the dimension of its secant or
tangent varieties.

If L = Pl ⊂ PN is a linear space and if πL : PN \L→ PN−l−1 is the projection onto a skew complemen-
tary linear space, then πL restricts to a finite morphism πL : X → PN−l−1, as soon as L ∩X = ∅. Assuming
in principle that studying varieties whose codimension is small with respect to the dimension is easier (this is
true from some points of view but not from others!), we can ask when this finite morphism is one-to-one, or a
closed embedding. Let us examine these conditions.

1.2.7. PROPOSITION. Let notation be as above. Then:

(1) the morphism πL : X → PN−l−1 is one-to-one if and only if L ∩ SX = ∅;
(2) the morphism πL : X → PN−l−1 is unramified if and only if L ∩ TX = ∅;
(3) the morphism πL : X → PN−l−1 is a closed embedding if and only if L ∩ SX = L ∩ TX = ∅.

PROOF. The morphism πL : X → X ′ ⊆ PN−l−1 is one-to-one if and only there exists no secant line to
X cutting the center of projection: < L, x >=< L, y > if and only if < x, y > ∩L 6= ∅. It is ramified at a
point x ∈ X if and only if TxX ∩L = ∅ by looking at the projective differential of πL. A morphism is a closed
embedding if and only if it is one-to-one and unramified. �

We must state the following well known result, which only takes into account that for smooth varieties the
equality TX = T ∗X yields TX ⊆ SX .
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1.2.8. COROLLARY. Let X ⊂ PN be a smooth irreducible closed subvariety. If N > dim(SX), then X
can be isomorphically projected into PN−1. In particular if N > 2 dim(X) + 1, then X can isomorphically
projected into PN−1.

One could ask what is the meaning of L ∩ T ∗X = ∅. This means that πL (or d(πL)) restricted to
T ∗xX is finite for every x ∈ X . This is the notion of J-unramified morphism, where J stands for Johnson
[Jo], and it can be expressed in terms of affine tangent stars, see [Z2]. We take the above condition as the
definition of J-unramified projection. In particular, if L ∩ SX = ∅, then πL is one-to-one and J-unramified
and it is said to be a J-embedding. If the projection πL : X → X ′ ⊂ PN−l−1 is a J-embedding, then
Sing(πL(X)) = πL(Sing(X)) so that X ′ does not acquire singularities from the projection.

It is clearly weaker than the usual notion of embedding and it is well behaved to study the projections of
singular varieties. For example take C ⊂ P4 ⊂ P5 a smooth non-degenerate curve in P4 and let p ∈ P5 \ P4.
If X = S(p, C) is the cone over C, then TpX = P5, see (1.1.1), and X cannot be projected isomorphically
in P4. Since SX = S(p, SC), see (1.1.2), is an hypersurface in P5, there exists a point q ∈ P5 \X such that
πq : X → X ′ is a J-embedding and X ′ = S(πq(p), C) is a cone over C of vertex πq(p) = p′. In this example
the morphism πq is one-to-one and unramified outside the vertex of the cones and maps the tangent star at p,
T ∗pX = S(p, SC), m-to-one onto P4, where m = deg(S(p, SC)) = deg(SC) =

(
d−1

2

)
− g, d = deg(C), g

the genus of C.
The conditions L ∩ S(Y,X) = ∅, respectively L ∩ T ∗(Y,X) = ∅ or L ∩ T (Y,X) = ∅, with Y ⊆ X ,

mean that πL is one-to-one in a neighbourhood of Y , respectively is J-unramified in a neighbourhood of Y or
unramified in a neighbourhood of Y .

1.3. Terracini Lemma and its first applications

As we have seen the definition of secant variety is the ”join” of X with itself and it is not clear how to
calculate the dimension of SX , see exercise 1.6.1, or more generally the dimension of S(X,Y ). In fact, the
circle of ideas, which allowed Alessandro Terracini to solve the problem of calculating the dimension of SX ,
or more generally of SkX , originated exactly from the study of examples like the ones considered in exercise
1.6.1 and from the pioneering work of Gaetano Scorza, [S1] and [S4]. Let Terracini explain us this process, by
quoting the beginning of [T1]:

É noto, [dP], che la sola V2, non cono, di Sr, i cui S2 tangenti si incontrano a due a due, é, se r ≥ 5,
la superficie di VERONESE; e che questa superficie, [Sev], é pure caratterizzata dall’ essere, in un tale Sr, la
sola, non cono, le cui corde riempono una V4. Recentemente lo SCORZA, [S3, pg. 265], disse di aver ragione
di credere, sebbene non gli fosse venuto fatto di darne una dimostrazione, che le V3 di S7, o di uno spazio piú
ampio, le cui corde non riempiono una V7 << rientrino >> tra le V3 a spazi tangenti mutuamente secantisi.
Ora si puó dimostrare, piu’ precisamente, che queste categorie di V3 coincidono, anzi, piu’ in generale, che:
Se una Vk di Sr (r > 2k) gode di una delle due proprietá, che le corde riempiano una varietá di dimensione
2k − i (i ≥ 0), o che due qualsiansi Sk tangenti si seghino in uno Si, gode pure dell’ altra. Questo teorema,
a sua volta, non é se non un caso particolare di un teorema piú generale che ora dimostreremo, teorema che
pone in relazione l’ eventuale abbassamento di dimensione della varietá degli Sh (h + 1)-seganti di una Vk
immersa in uno spazio di dimensione r ≥ (h+ 1)k + h, coll’ esistenza di h+ 1 qualsiansi suoi Sk tangenti in
uno spazio minore dell’ ordinario.

To calculate the dimension of S(X,Y ) in a simple way and to determinate the relation between TzS(X,Y ),
TxX and TyY , where z ∈< x, y >, z 6= x, z 6= y, x 6= y, we recall the definition of affine cone over a projec-
tive variety X ⊂ PN .

Let π : AN+1 \ 0 → PN be the canonical projection. If X ⊂ PN is a closed subvariety, we indicate by
C0(X) the affine cone over X , i.e. C0(X) = π−1(X) ∪ 0 is the affine variety cut out by the homogeneous
polynomials in N + 1 variables defining X in PN . If x 6= 0 is a point such that π(x) = x ∈ X , then

π(TxC0(X)) = TxX.
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Moreover, if Li = π(Ui), i = 1, 2, Ui vector subspace of AN+1, then by definition < L1, L2 >=
π(U1 + U2), where + : AN+1 × AN+1 → AN+1 is the vector space operation. Therefore, thought as a
morphism of algebraic varieties, the differential of the sum coincides with the operation, i.e.

d(x,y) : T(x,y)(AN+1 × AN+1) = TxAN+1 × TyAN+1 → Tx+yAN+1

is the sum of the corresponding vectors.
With the above notation we have

(1.3.1) C0(X) + C0(Y ) = C0(S(X,Y )).

We are now in position to prove the so called Terracini Lemma. The original proof of Terracini relies
on the study of the differential of the second projection morphism p2 : SX,Y → S(X,Y ). Here we follow
Ådlandsvik, [Åd], to avoid the ”difficulty”, if any, of writing the tangent space at a point (x, y, z) ∈ S0

X,Y .
When writing z ∈< x, y >, we always suppose x 6= y.

1.3.1. THEOREM. (Terracini Lemma) Let X,Y ⊂ PN be irreducible subvarieties. Then:
(1) for every x ∈ X , for every y ∈ Y , x 6= y, and for every z ∈< x, y >,

< TxX,TyY >⊆ TzS(X,Y );

(2) if char(K) = 0, there exists an open subset U of S(X,Y ) such that

< TxX,TyY >= TzS(X,Y )

for every z ∈ U , x ∈ X , y ∈ Y , z ∈< x, y >. In particular

dim(S(X,Y )) = dim(X) + dim(Y )− dim(TxX ∩ TyY )

for x ∈ X and y ∈ Y general points.

PROOF. The first part follows from equation (1.3.1) and from the interpretation of the differential of the
affine sum. The second part from generic smoothness applied to the affine cones over X , Y and S(X,Y ). �

Since we have quoted the original form given by Terracini, let us state it as an obvious corollary.

1.3.2. COROLLARY. ([T1]) Let X ⊂ PN be an irreducible subvariety of PN . Then:
(1) for every x0, . . . , xk ∈ X and for every z ∈< x0, . . . , xk >,

< Tx0X, . . . , TxkX >⊆ TzSkX;

(2) if char(K) = 0, there exists an open subset U of SkX such that

< Tx0X, . . . , TxkX >= TzS
kX

for every z ∈ U , xi ∈ X , i = 0, . . . , k, z ∈< x0, . . . , xk >. In particular

dim(SX) = 2 dim(X)− dim(TxX ∩ TyX)

for x, y ∈ X general points.

The first application we give is the so called Trisecant Lemma. Let us recall that a line l ⊂ PN is said to
be a trisecant line to X ⊂ PN if length(l ∩X) ≥ 3.

1.3.3. PROPOSITION. (Trisecant Lemma) Let X ⊂ PN be a non-degenerate, irreducible closed subvari-
ety. Suppose char(K)=0 and codim(X) > k. Then a general (k + 1)-secant Pk, < x0, . . . , xk >= L = Pk,
is not (k + 2)-secant, i.e. L ∩X = {x0, . . . , xk} as schemes. In particular, if codim(X) > 1, the projection
of X from a general point on it, πx : X 99K X ′ ⊂ PN−1, is a birational map.
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PROOF. We claim that it is sufficient to prove the result for k = 1. Indeed X is not linear so that by
taking a general x ∈ X and projecting X from this point we get a non-degenerate, irreducible subvariety
X ′ = πx(X) ⊂ PN−1 with codim(X ′) = codim(X) − 1 > k − 1. If the general L =< x0, . . . , xk > as
above were k + 2-secant, by taking x = xk, the linear space < πx(x0), . . . , πx(xk−1) >= Pk−1 = L′ would
be a general k-secant Pk−1, which results to be (k + 1) = ((k − 1) + 2)-secant. So we can assume k = 1 and
we set n = dim(X).

Take x ∈ X \ Vert(X). Then a general secant line through x, l =< x, y >, is not tangent to X neither at
x nor at y. If l is a trisecant line then necessarily it exists u ∈ (l ∩X) \ {x, y}. Consider the projection of X
from x. Since x 6∈ Vert(X), if X ′ = πx(X) ⊂ PN−1, then dim(X ′) = dim(X) and πx(y) = πx(u) = x′ is
a general smooth point of X ′. By generic smoothness

< x, Tx′X
′ >=< x, TyX >=< x, TuX >

so that TyX and TuX are hyperplanes in < x, Tx′X
′ >= Pn+1, yielding

dim(TyX ∩ TuX) = n− 1.

Taking z ∈< x, y >=< y, u > general, we have a point in the set U specified in Corollary 1.3.2 so that
dim(SX) = dim(TzSX) = dim(< TyX,TuX >) = n+1. This implies codim(X) = 1 by Proposition 1.2.2
part 3). The last part follows from the fact that a generically one-to one morphism is birational if char(K)=0,
being generically étale. �

As a second application we reinterpret Terracini Lemma as tangency of tangent space to higher secant
varieties at a general point along the locus described on X by the secant spaces passing through the point. To
this aim we first define tangency along a subvariety and then the entry loci described above, studying their
dimension.

1.3.4. DEFINITION. (Tangencies along a subvariety) Let Y ⊂ X be a closed (irreducible) subvariety of
X and let L = Pl ⊂ PN , l ≥ dim(X), be a linear subspace.

The linear space L is said to be tangent to X along Y if for every y ∈ Y

TyX ⊆ L,

i.e. if and only if T (Y,X) ⊆ L.
The linear space L is said to be J-tangent to X along Y if for every y ∈ Y

T ∗yX ⊆ L.

The linear space L is said to be J-tangent to X with respect to Y if for every y ∈ Y

T ∗y (Y,X) ⊆ L,

i.e. if and only if T ∗(Y,X) ⊆ L.

Clearly if L is tangent to X along Y , it is also J-tangent to X along Y and if L is J-tangent to X along Y
it is also J-tangent to X with respect to Y .

In the case L = PN−1, the scheme-theoretic intersection L∩X = D is a divisor, i.e. a subscheme of pure
dimension dim(X) − 1. By definition, for every y ∈ D, we have TyD = TyX ∩ L so that, if X is a smooth
variety, L = PN−1 is tangent to X exactly along Sing(D) = {y ∈ D : dim(TyD) > dim(D)}.

We define the important notions of entry loci and k-secant defect and we study their first properties.

1.3.5. DEFINITION. (Entry loci and k-secant defect δk) Let X ⊂ PN be a closed irreducible non-
degenerate subvariety. Let us recall the diagram defining the higher secant varieties SkX as join of X with
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Sk−1X:
SkX

p1

yyssssssssss
p2

!!B
BB

BB
BB

B

X × Sk−1X PN .
Let us define φ : X × Sk−1X → X to be the projection onto the first factor of this product.

Then, for z ∈ SkX , the k-entry locus of X with respect to z is the scheme theoretic image

(1.3.2) Σkz = Σkz(X) := φ(p1(p−1
2 (z))).

Geometrically, the support of Σkz is the locus described on X by the (k + 1)-secant Pk of X passing
through z ∈ SkX . If z ∈ SkX is general, then through z there passes an ordinary (k+ 1)-secant Pk, i.e. given
by k + 1 distinct points on X and we can describe the support of Σkz in this way

(Σkz)red = {x ∈ X : ∃x1, . . . , xk distinct and z ∈< x, x1, . . . , xk >}.
Moreover, by the theorem of the dimension of the fibers for general z ∈ SkX , the support of Σkz is equidi-
mensional and every irreducible component contains ordinary Pk’s since necessarily codim(X) > k, see
Proposition 1.3.3. If char(K)=0, then for general z ∈ SkX the scheme p−1

1 (z) is smooth so that Σkz is reduced.
To recover the scheme structure of Σkz geometrically, one could define Πz as the locus of (k + 1)-secant

Pk’s through z and define Σkz = Πz ∩ X as schemes. For example if through z ∈ SX there passes a unique
tangent line l to X , then in this way we get Πz = l and Σz = l ∩ X the point of tangency with the double
structure.

Let us study the dimension of Σkz for z ∈ SkX general. Before let us remark that if x ∈ Σkz is a general
point in an irreducible component, z ∈ SkX general, then, as sets,

φ−1(x) = {y ∈ Sk−1X : z ∈< x, y >} =< z, x > ∩Sk−1X 6= ∅
and dim(φ−1(x)) = 0 because z ∈ SkX \ Sk−1X by the generality of z.

Then we define the k-secant defect of X , 1 ≤ k ≤ k0(X), δk(X), as the integer

(1.3.3) δk(X) = dim(Σkz) = dim(p1(p−1
2 (z))) = sk−1(X) + dim(X) + 1− sk(X),

where z ∈ SkX is a general point.
For k = 1, we usually put Σz = Σ1

z , z ∈ SX , and δ(X) = δ1(X) = 2 dim(X) + 1 − dim(SX); for
k = 0, δ0(X) = 0.

Let us reinterpret Terracini Lemma with these new definitions.

1.3.6. COROLLARY. (Tangency along the entry loci) Let X be an irreducible non-degenerate closed
subvariety. Let k < k0(X), i.e. SkX ( PN , and let z ∈ SkX be a general point. Then:

(1) the linear space TzSkX is tangent to X along (Σkz)red \ Sing(X);
(2) δk(X) < dim(X);
(3) δk0(X) = dim(X) if and only if sk0−1(X) = N − 1, i. e. if and only if Sk0−1X is a hypersurface;
(4)

sk(X) = (k + 1)(n+ 1)− 1−
k∑
i=1

δi(X) =
k∑
i=0

(dim(X)− δi(X) + 1);

(5) (cfr. 1.2.3) if X is a curve, sk(X) = 2k + 1.

PROOF. Part 1) is clearly a restatement of part 1) of Corollary 1.3.2 when we take into account the geo-
metrical properties of Σkz , z ∈ SkX general, described in the definition of entry loci and the fact that the locus
of tangency of a linear space is closed in X \ Sing(X), see also Definition 1.4.7. Recall that if char(K)=0, the
scheme Σkz is reduced.
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If dim(Σkz) = δk(X) = dim(X), then a general tangent space to SkX would be tangent along X and X
would be degenerated.

With regard to 3), we remark that δk0(X) = sk0−1(X) + dim(X) + 1−N so that dim(X)− δk0(X) =
N − 1− sk0−1(X).

Part 4) is an easy computation by induction, while part 5) follows from part 4) since for a curve δk(X) <
dim(X) yields δk(X) = 0. �

1.3.7. REMARK. The statement of part 1) cannot be improved. Take for example a cone X ⊂ P5 of vertex
a point p ∈ P5 \ P4 over a smooth non-degenerate projective curve C ⊂ P4. If z ∈ S(p, SC) = SX is general
and if z ∈< x, y >, x, y ∈ X , it is not difficult to see that Σz(X) =< p, x > ∪ < p, y >. The hyperplane
TzSX is tangent to X at x and y by Terracini Lemma, so that it is tangent to X along the rulings < p, x > and
< p, y >minus the point p. Since TpX = P5, the hyperplane TzSX is not tangent toX at p (neither J-tangent
to X at p).

A phenomenon studied classically firstly by Scorza, [S1], [S2], [S4], and then by Terracini, [T3] is the
case in which imposing tangency of a hyperplane at k + 1 general points, k ≥ 0, of a variety X ⊂ PN
forces tangency along a positive dimensional variety, even if δk(X) = 0. Indeed, Terracini Lemma says that if
δk(X) > 0, k < k0(X), than a hyperplane tangent at k + 1 points, becomes tangent along the corresponding
entry locus. The interesting and exceptional behaviour occurs for varieties with δk(X) = 0. The first examples
are the tangent developable to a non-degenerate curve or cones of arbitrary dimension. Indeed they have δ0 = 0
as every variety but by imposing tangency at a general point, we get tangency along the ruling passing through
the point.

Varieties for which a hyperplane tangent at k + 1, k ≥ 0, general points is tangent along a positive
dimensional subvariety are called k-weakly defective varieties, according to Chiantini and Ciliberto, [CC1].
In [CC1] many interesting properties of these varieties are investigated and a refined Terracini Lemma is
proved, also putting in modern terms the classification of k-weakly defective irreducible surfaces obtained
classically by Scorza, [S2], and Terracini, [T3]. Let us remark that, as shown in [CC1], for every k ≥ 1 there
exist smooth varieties of dimension greater than one which are k-weakly defective but have δk(X) = 0 or
sk(X) = min{N, (k + 1)n+ k}. We shall come back to these definitions and phenomena in subsection 1.5.2
and in section 2.3.

As another application, we study the dimension of the projection of a variety from linear subspaces gener-
ated by general tangent spaces. Terracini Lemma says that we are projecting from a general tangent space to
the related higher secant variety. As we have seen when the center of projection L cuts the variety it is difficult
to control the dimension of the image of X under projection because we do not know a priori how a general
tangent space intersects L. In the case of L = TzS

k−1X this information is encoded in the dimension of SkX
and of the defect δk(X) as we immediately see. In section 4.1 of chapter 4 we shall see how the degree of the
projections from TzS

kX is related to the number of (k + 2)-secant Pk+1 passing through a general point of
Sk+1X , a problem dubbed as Bronowski’s conjecture, see [B1] and loc. cit., and partially solved in [CMR] for
k = 1 and in [CR] for arbitrary k ≥ 1. Projections from tangent spaces, or more generally from TzS

kX , were
a classical tool of investigation, [Ca], [En], [S1], [S4], [B1], [B2], and were recently used to study classical
and modern problems, see [CC1], [CMR], [CR], [IR1] and the presentation in §4.2 below.

1.3.8. PROPOSITION. (Projections from tangent spaces) Let X ⊂ PN be an irreducible, non-degenerate
closed subvariety. Let n = dim(X) and suppose char(K)=0 and N ≥ sk, k ≥ 1, where sk = sk(X). Set
δk = δk(X).

Let x1, . . . , xk ∈ X be k general points, let L =< Tx1 , . . . , Txk > and let πk = πL : X → X ′ ⊂
PN−sk−1(X)−1. Then dim(L) = sk−1(X) = sk−1 and, if X ′k = πk(X) ⊂ PN−sk−1−1, then

(1) dim(X ′k) = sk − sk−1 − 1 = n− δk;
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(2) suppose N ≥ (k+ 1)n+ k and and sk−1 = kn+ k− 1, i.e. that δk−1 = 0. Then sk = (k+ 1)n+ k
(or equivalently δk = 0) if and only if dim(X ′k) = n. In particular if N = (k + 1)n + k and if
sk−1 = kn+ k − 1, then SkX = P(k+1)n+k if and only if πk : X 99K Pn is dominant.

PROOF. If z ∈< x1, . . . , xk > is a general point, then z is a general point of Sk−1X and by Terracini
lemma sk−1 = dim(TxSk−1X) = dim(< Tx1 , . . . , Txk >). By (1.2.7) we get

dim(X ′k) = dim(S(TzSk−1X,X))− sk−1 − 1 = sk − sk−1 − 1 = n− δk.
The other claims are only reformulations of part 1). �

1.4. Dual varieties and contact loci of general tangent linear spaces

Let X ⊂ PN be a projective, irreducible non-degenerate variety of dimension n; let Sm(X) := X \
Sing(X) be the locus of non-singular points of X . By definition Sm(X) = {x ∈ X : dim(TxX) = n}.

If we take an hyperplane section of X , Y = X ∩ H , where H = PN−1 is an arbitrary hyperplane, then
for every y ∈ Y we get

(1.4.1) TyY = TyX ∩H.
Since Y is a pure dimensional scheme of dimension n− 1, we see that Sing(Y ) \ (Sing(X)∩H) = {y ∈

Y \ Sing(X) ∩ Y : TyX ⊆ H}, which is an open subset in the locus of points of X at which H is tangent.
In particular to show that an hyperplane section has non-singular points, we have to exhibit an hyperplane H
which is not tangent at all the points in which it intersectsX . It naturally arises the need of patching together all
the ”bad” hyperplanes and eventually show that there always exists an hyperplane section of X , non-singular
at least outside Sing(X). Since hyperplane can be naturally thought as points in the dual projective space PN∗ ,
we can define a subvariety of PN∗ parametrizing hyperplane sections which are singular also outside Sing(X).
This locus is the so-called dual variety.

1.4.1. DEFINITION. (Dual variety) Let X ⊂ PN be as above and let

PX := {(x,H) : x ∈ Sm(X), TxX ⊆ H} ⊂ X × PN
∗
,

the so called conormal variety of X .
Let us consider the projections of PX onto the factors X and PN∗ ,

PX
p1

~~}}
}}

}}
}} p2

""E
EE

EE
EE

E

X PN∗ .

The dual variety to X , X∗, is the scheme-theoretic image of PX in PN∗ , i.e. the algebraic variety

X∗ := p2(PX) ⊆ PN
∗
.

The setPX is easily seen to be a closed subset. For x ∈ Sm(X), we have p−1
1 (x) ' (TxX)∗ = PN−n−1 ⊂

PN∗. Then the set PX is irreducible since

p−1
1 (Sm(X))→ Sm(X)

is a PN−n−1-bundle and clearly dim(PX) = N − 1. Then dim(X∗) ≤ N − 1 and the dual defect of X ,
def(X), is defined as

def(X) = N − 1− dim(X∗) ≥ 0.

A variety is said to be reflexive if the natural isomorphism between PN and (PN∗)∗ induces an isomorphism
between PX and PX∗ . This clearly implies that the natural identification between PN and PN∗∗ induces an
isomorphism X ' X∗∗ = (X∗)∗.
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Let us take H ∈ X∗. By definition

CH := CH(X) = p−1
2 (H) = {x ∈ Sm(X) : TxX ⊆ H}

is exactly the closure of non-singular points of X where H is tangent to X , it is not empty so that H ∩X is
singular outside Sing(X). On the contrary if H 6∈ X∗, the hyperplane section H ∩ X can be singular only
along Sing(X). This is the classical Bertini Theorem.

In particular we proved the following result.

1.4.2. THEOREM. Let X ⊂ PN be a projective, irreducible non-degenerate variety of dimension n =
dim(X). Then for every H ∈ (PN )∗ \X∗ the divisor H ∩X is non-singular outside Sing(X).

In particular if X has at most a finite number of singular points p1, . . . , pm, then for every H 6∈ X∗ ∪
(p1)∗ ∪ . . . ∪ (pm)∗, the hyperplane section H ∩X is a non-singular subscheme of pure codimension 1.

Later we shall see that if n ≥ 2, then every hyperplane section is connected. For non-singular varieties
with dim(X) ≥ 2, the hyperplane sections with hyperplanes H 6∈ X∗, being connected and non-singular are
also irreducible so that are irreducible non-singular algebraic varieties.

To justify the name of conormal variety for PX and to get some practice with the definitions, we refer to
Exercise 1.6.6.

As we have seen the dual varieties encode informations about the tangency of hyperplanes. Terracini
Lemma says that linear spaces containing tangent spaces to higher secant varieties are tangent along (Σkz)red \
Sing(X), see Corollary 1.3.6. Thus the maximal dimension of the fibers of p2 : PX → X∗ ⊂ PN∗ is an
upper bound for δk(X) as soon as SkX ( PN , as we shall immediately see. More refined versions with the
higher Gauss maps γm, see below, can be formulated but in those cases the condition expressed by the numbers
εm(X), which can be defined as below, is harder to control.

1.4.3. THEOREM. (Dual variety and higher secant varieties) Let X ⊂ PN be an irreducible non-
degenerate projective variety. Let p2 : PX → X∗ ⊂ PN∗ be as above and let ε(X) = max{dim(p−1

2 (H)) , H ∈
X∗}. If SkX ( PN , then δk(X) ≤ ε(X). In particular if p2 : PX → X∗ is a finite morphism, then
dim(SkX) = min{(k + 1)n+ k,N}.

PROOF. Let z ∈ SkX be a general point. There exists x ∈ Σkz(X) ∩ Sm(X) and moreover TzSkX is
contained in a hyperplane H . Then

p1(p−1
2 (H)) ⊇ Sing(X ∩H) \ (Sing(X) ∩H)

(and more precisely Sing(X∩H)\(Sing(X)∩H)) contains the irreducible component of Σkz(X)\(Sing(X)∩
Σkz(X)) passing through x by Corollary 1.3.6. Then p1(p−1

2 (H)) has dimension at least δk(X) = dim(Σkz(X))
and the conclusion follows. �

1.4.4. COROLLARY. (cfr. Corollaries 1.2.3 and 1.3.6).
Let X ⊂ PN be either an irreducible non-degenerate curve or a smooth non-degenerate complete inter-

section. Then
dim(SkX) = min{(k + 1)n+ k,N}.

PROOF. By Exercise 1.6.6, we know that in both cases p2 : PX → X∗ is a finite morphism. �

More generally one would study the locus of points at which a general hyperplane is tangent, the so called
contact locus. For reflexive varieties it is a linear space of dimension def(X). This is an interpretation of the
isomorphism X ' (X∗)∗. One should be careful in the interpretation of the result: it does not mean that the
hyperplane remains tangent along the whole ”contact locus”, see remark 1.3.7 and adapt it to the more general
situation of a ruling of a cone. This is true only for non-singular varieties. In particulat reflexive varieties of
positive dual defect contain positive dimensional families of linear spaces.
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1.4.5. PROPOSITION. Let X ⊂ PN be a reflexive variety. Then for H ∈ Sm(X∗),

p−1
2 (H) = {x ∈ Sm(X) : TxX ⊂ H} = (THX∗)∗ = Pdef(X).

The following result will not be proved here but the reader can consult [Ha, pg. 208] for an elementary
and direct proof. It is considered a classical theorem, know at least to C. Segre.

1.4.6. THEOREM. (Reflexivity Theorem) Let X ⊂ PN be an irreducible variety. Suppose char(K)=0.
Then X is reflexive.

Another natural and similar problem is to know if a general tangent space to a variety X is tangent at more
than one point. During the discussion we will always suppose char(K)=0 to avoid artificial problems, since the
natural ones are enough interesting.

We have seen in exercise 1.6.6 that for irreducible curves a general tangent space is tangent only at one
point. On the other hand if X is a cone over a curve, we know that a a general tangent space is tangent exactly
along the ruling passing through the point. The unique common feature of irreducible algebraic varieties from
this point of view seems to be the linearity of the locus of points at which a general linear space is tangent.

1.4.7. DEFINITION. (Gauss maps) Let X ⊂ PN be an irreducible projective variety of dimension n =
dim(X) ≥ 1, let m ≥ n and let G(m,N) be the Grassmanian parametrizing linear subspaces of dimension m
in PN . Let

PmX := {((x, [L]) : x ∈ Sm(X), TxX ⊆ L} ⊂ X ×G(m,N).

Let us consider the projections of PmX onto the factors X and G(m,N),

PmX
p1

~~}}
}}

}}
}} γm

$$I
IIIIIIII

X G(m,N).

The variety of m-dimensional tangent subspaces to X , X∗m, is the scheme-theoretic image of PmX in G(m,N),
i.e. the algebraic variety

X∗m := γm(PmX ) ⊂ G(m,N).

For m = N − 1, we recover the dual variety and its definition, while for m = n, we get the usual
Gauss map GX : X 99K G(n,N) which associates to a point x ∈ Sm(X) its tangent space TxX . For such
x ∈ Sm(X) GX(x) := γn(x) = [TxX].

If X ⊂ PN is an hypersurface, then n = N − 1 and clearly the Gauss map GX : X 99K PN∗ =
G(N − 1, N) associates to a smooth point p of X its tangent hyperplane. Thus in coordinates the Gauss map
is given by the formula

GX(p) = (
∂f

∂X0
(p) : . . . :

∂f

∂XN
(p)).

The following result is once again a consequence of reflexivity and it is a generalization of Proposition
1.4.5 and of the properties of cones. One can consult [Z2, pg. 21] for a proof.

1.4.8. THEOREM. (Linearity of general contact loci) Let X ⊂ PN be an irreducible projective non-
degenerate variety. Assume char(K)=0. The general fiber of the morphism γm : PmX → X∗m is a linear space
of dimension dim(PmX )−dim(X∗m). In particular the closure of a general fiber of GX : X 99K X∗n ⊂ G(n,N)
is a linear space of dimension n − dim(GX(X)) so that a general linear tangent space is tangent along an
open subset of a linear space of dimension n− dim(GX(X)).
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We now prove via Terracini Lemma a relation between X∗ and (SkX)∗ for every k < k0(X), assuming
as always in this kind of problems that the condition char(K)=0 holds.

1.4.9. PROPOSITION. LetX ⊂ PN be an irreducible non-degenerate projective variety. Assume char(K)=0
and SX ( PN . Then (SX)∗ ⊆ Sing(X∗) ( X∗, i.e. a general bitangent hyperplane represents a singular
point of X∗. More generally for a given k ≥ 2 such that k < k0(X), we have (SkX)∗ ⊆ Sing((Sk−1X)∗) (
(Sk−1X)∗, i.e. a general (k + 1)-tangent hyperplane represents a singular point of (Sk−1X)∗.

PROOF. Exercise 1.6.7. �

Recall that to a non-degenerate irreducible closed subvarietyX ⊂ PN we associated an ascending filtration
of irreducible projective varieties, see (1.2.5),

X = S0X ( SX ( S2X ( . . . ( Sk0X = PN .

The above proposition says that at least over a filed of characteristic zero, there exists also a strictly
descending dual filtration:

X∗ ) Sing(X∗) ⊇ (SX)∗ ) . . . ⊇ (Sk0−2X)∗ ) Sing((Sk0−2X)∗) ⊇ (Sk0−1X)∗.

1.5. Tangent cones to k-secant varieties, degree of k-secant varieties and varieties of minimal k-secant
degree

1.5.1. Notation and definitions. Let k be a non–negative integer and let SkX be the k–secant variety of
X ⊂ PN defined above.

Let Symh(X) be the h–th symmetric product of X . One can consider the abstract k–th secant variety
SkX of X , i.e. SkX ⊆ Symk(X) × PN is the Zariski closure of the set of all pairs ([p0, ..., pk], x) such that
p0, ..., pk ∈ X are linearly independent points and x ∈< p0, ..., pk >. One has the surjective map

pkX : SkX → SkX ⊆ PN

i.e. the projection to the second factor. Recall that:

(1.5.1) sk(X) := dim(SkX) ≤ min{N, dim(SkX)} = min{N,n(k + 1) + k}.

We will denote by h(k)(X) the codimension of SkX in PN , i.e. h(k)(X) := N − s(k)(X).
The right hand side of (1.5.1) is called the expected dimension of Sk(X) and will be denoted by σ(k)(X).
Notice that the general fibre of pkX is pure of dimension fk(X) = (k + 1)n+ k − s(k)(X) ≥ δk(X) and

moreover fk(X) = δk(X) if and only if δj(X) = 0 for every j < k, see Corollary 1.3.6. We will denote by
µk(X) the number of irreducible components of the general fibre of pkX . In particular, if s(k)(X) = (k+1)n+k,
then pkX is generically finite and µk(X) is the degree of pkX , i.e. it is the number of (k + 1)–secant Pk’s to X
passing through the general point of Sk(X).

If sk(X) = (k + 1)n+ k, we will denote by νk(X) the number of (k + 1)–secant Pk’s to X meeting the
general Ph(k)(X) in PN . Of course one has:

(1.5.2) νk(X) = µk(X) · deg(SkX)

and therefore:

(1.5.3) νk(X) = µk(X) if N = sk(X) = (k + 1)n+ k.

Let X ⊂ PN be an irreducible, projective variety. Let k be a positive integer and let p1, ..., pk be general
points of X . We denote by TX,p1,...,pk the span of TpiX, i = 1, ..., k.
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Thus with this notation, we can reinterpret Terracini Lemma in the following way: if p0, ..., pk ∈ X are
general points and z ∈< p0, ..., pk > is a general point, then:

TzS
kX = TX,p0,...,pk .

Consider the projection of X with centre TX,p1,...,pk . We call this a general k–tangential projection of X ,
and we will denote it by πX,p1,...,pk or simply by πk. We will denote by Xk its image. By Terracini’s lemma,
the map πk is generically finite to its image if and only if sk(X) = (k + 1)n + k. In this case we will denote
by dX,k its degree.

In the same situation, the projection of X with centre the space < p1, ..., pk > is called a general k–
internal projection of X , and we will denote it by tX,p1,...,pk or simply by tk. We denote by Xk its image. We
set X0 = X0 = X . Notice that the maps tk are birational to their images as soon as k < N − n = codim(X).

Sometimes we will use the symbols Xk [resp. Xk] for k–tangential projections [resp. k–internal projec-
tions] relative to specific, rather than general, points. In this case we will explicitly specify this, thus we hope
no confusion will arise for this reason.

We record the following:

1.5.1. LEMMA. Let X,Y ⊂ PN be closed, irreducible, subvarieties and let L be a linear subspace of
dimension n which does not contain either X or Y . Let

π = πL : PN 99K PN−n−1

be the projection from L and let X ′, Y ′ be the images of X,Y via π. Then:

π(S(X,Y )) = S(X ′, Y ′).

In particular, if L does not contain X , then for any non–negative integer k one has:

π(SkX) = SkX ′.

PROOF. Exercise 1.6.8. �

The following lemma is an application of Terracini’s lemma:

1.5.2. LEMMA. Let X ⊂ PN be an irreducible, projective variety. For all i = 1, ..., k one has:

h(k−i)(Xi) = h(k)(X)

whereas for all i ≥ 1 one has:
h(k)(Xi) = max{0, h(k)(X)− i}.

PROOF. Exercise 1.6.9. �

As an application of tangential projections, one could prove the foloowing result. See Exercise 1.5.3 for
the notation on rational normal scrolls.

1.5.3. PROPOSITION. Let X = S(a1, . . . , an) ⊂ PN be a rational normal scroll of dimension n. Then:

dim(SkX) = min{N,N + k + 1−
∑

1≤j≤n; k≤aj

(aj − k)}.

In particular, if N ≥ (k + 1)n+ k, then sk(X) = (k + 1)n+ k if and only if a1 ≥ k.

PROOF. It follows by induction using (1.6.3) and Terracini’s lemma. We leave the details to the reader,
see Exercise 1.6.10. �
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For analogous results on the dimension of secant varieties to the Segre embedding of two projective spaces
see Exercise 1.6.11.

Given positive integers n, d, we will denote by Vn,d the image of Pn under the d–Veronese embedding of
Pn in P(n+d

d )−1.
If X is a variety of dimension n and Y a subvariety of X , we will denote by BlY (X) the blow–up of X

along Y . If Y is a finite set {x1, ..., , xn} we denote the blow–up by Blx1,...,xn(X).

1.5.2. Further remarks on weakly-defective varieties. The two next results are consequences of [CC1,
Theorem 1.4] that we partially recall here.

1.5.4. THEOREM. ([CC1, Theorem 1.4]) Let X ⊂ PN be an irreducible, projective, non–degenerate
variety of dimension n. AssumeX is not k–weakly defective for a given k such that N ≥ (n+1)(k+1). Then,
given p0, . . . , pk general points on X , the general hyperplane H containing TX,p0,...,pk is tangent to X only at
p0, . . . , pk. Moreover such a hyperplane H cuts on X a divisor with ordinary double points at p0, . . . , pk.

The first consequence we are interested in is the following:

1.5.5. LEMMA. Let X ⊂ PN be an irreducible, projective, non–degenerate variety of dimension n, which
is not k–weakly defective for a fixed k ≥ 1 such that N ≥ (k + 1)(n + 1). Then a general k–tangential
projection of X is birational to its image, i.e. dX,k = 1. In particular, if N ≥ 2n + 2 and X ⊂ PN is not
1-weakly defective general tangential projection of X is birational to its image.

PROOF. Since X is not k-weakly defective, it is not l–defective for all l ≤ k. Thus we have s(l)(X) =
(l + 1)n+ l for all l ≤ k, so that by Terracini’s lemma τX,p1,...,pl is generically finite onto Xl for every l ≤ k
and p1, ..., pl general points on X . In particular this is true for l = k.

Suppose now that dX,k > 1. Then, given a general point p0 ∈ X there is a point q ∈ X \(TX,p1,...,pk∩X),
q 6= p0, such that τX,p1,...,pk(p0) = τX,p1,...,pk(q) := x ∈ Xk. This would imply that TX,p0,p1,...,pk and
TX,q,p1,...,pk coincide, since both these spaces project via τX,p1,...,pk onto TXk,x. In particular, the general
hyperplane tangent to X at p0, p1, . . . , pk is also tangent at q. This contradicts Theorem 1.5.4. �

We also note that Terracini’s lemma and Theorem 1.5.4 imply that:

1.5.6. PROPOSITION. Let X ⊂ PN be an irreducible, projective variety which is not k–weakly defective.
IfN ≥ (n+1)(k+1), then µk(X) = 1. Equivalently, ifN ≥ (k+1)(n+1) and if µk(X) > 1, thenX ⊂ PN
is k-weakly defective.

1.5.3. Tangent cones to higher secant varieties. In this section we describe the tangent cone to the
variety SkX , at a general point of SlX , where 0 ≤ l < k, and X ⊂ PN is an irreducible, projective variety of
dimension n. Our result can be seen as a generalization of Terracini’s Lemma:

1.5.7. THEOREM. ([CR, Theorem 3.1]) LetX ⊂ PN be an irreducible, non–degenerate, projective variety
and let l,m ∈ N be such that l+m = k− 1. If z ∈ SlX is a general point, then the cone S(TzSlX,SmX) is
an irreducible component of (CzSkX)red. Furthermore one has:

multz(SkX) ≥ deg(S(TzSlX,SmX)) ≥ deg(SmXl+1).

PROOF. We assume that SlX 6= Pr, otherwise the assertion is trivially true.
The scheme CzSkX is of pure dimension sk(X). Let now w ∈ SmX be a general point. By Terracini’s

lemma and by the generality of z ∈ SlX , we get:

dim(S(TzSlX,SmX)) = dim(S(TzSlX,TwSmX)) =
= dim(S(SlX,SmX)) = dim(SkX) = sk(X)
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Thus, since S(TzSlX,SmX) is irreducible and reduced, it suffices to prove the inclusion S(TzSlX,SmX) ⊆
(CzSkX)red.

Let again w ∈ SmX be a general point. We claim that w 6∈ TzSlX . Indeed SlX 6= Pr and by (1.2.2):

Vert(SlX) :=
⋂

y∈SlX

TyS
lX

is a proper linear subspace of Pr. If the general point of SmX were contained in Vert(SlX), then X ⊆
SmX ⊆ Vert(SlX) and X ⊂ PN would be degenerate, contrary to our assumption.

Since w 6∈ TzSlX , then z is a smooth point of the cone S(w, SlX). We deduce that:

< w, TzS
lX >= TzS(w, SlX) = CzS(w, SlX ⊆ CzS(SmX,SlX) = CzS

kX.

By the generality of w ∈ SmX we finally have S(TzSlX,SmX) ⊆ CzS
kX . This proves the first part of the

theorem.
To prove the second part, we remark that:

multz(SkX) = deg(CzSkX) ≥ deg(S(TzSlX,SmX)).
Now, if p0, ..., pl ∈ X are general points, then S(TzSlX,SmX) is the cone with vertex TzSlX over
τX,p0,...,pl(S

mX), and, by Lemma 1.5.1 we have that τX,p0,...,pl(S
mX) = SmXl+1. Thus

deg(S(TzSlX,SmX)) ≥ deg(SmXl+1),

proving the assertion. �

1.5.4. A lower bound on the degree of secant varieties. The degree d of an irreducible non–degenerate
variety X ⊂ Pr verifies the lower bound

(1.5.4) d ≥ codim(X) + 1.

Varieties whose degree is equal to this lower bound are called varieties of minimal degree. As well known,
they have nice geometric properties, e.g. they are rational (see [EH]). In the present section we will prove
a lower bound on the degree of the k–secant variety to a variety X . This bound generalizes (1.5.4) and we
will see that varieties X attaining it have interesting features which resemble the properties of minimal degree
varieties.

Before proving the main result of this section, we need a useful lemma. For an irreducible variety Z ⊆ PN
we defined tZ,p as the projection from the the general point p ∈ Z restricted to Z, i.e. tZ,p : Z 99K tZ,p(Z) =
Z1. In this section we shall sometimes abuse notation by considering an arbitrary p ∈ Z and also in this case
we shall indicate by Z1 the projection from p.

1.5.8. LEMMA. LetX ⊂ PN be an irreducible, non–degenerate, projective variety, let k ≥ 0 be an integer
such that SkX 6= PN and let p ∈ X be an arbitrary point. Then one has:

(i) tSkX,p(SkX) = SkX1;
(ii) the general point in X does not belong to Vert(SkX);

(iii) if p ∈ X \ (X ∩ Vert(SkX), in particular if p ∈ X is a general point, then tSk(X),p is generically
finite to its image SkX1 and sk(X) = sk(X1);

(iv) if δk(X) = 0 and p ∈ X \ (X ∩Vert(SkX), then δ(X1) = 0;
(v) if p ∈ X \ (X ∩Vert(SkX) and if θk(X) denotes the degree of tSk(X),p, then:

deg(SkX) = θk(X) · deg(SkX1) + multp(SkX) ≥ deg(SkX1) + multp(SkX)

and
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µk(X1) = θk(X) · µk(X).

In particular:

(vi) if p ∈ X \ (X ∩Vert(SkX) and if

deg(SkX) = deg(SkX1) + multp(SkX)
then θk(X) = 1, i.e. tSk(X),p : SkX 99K SkX1 is birational and then µk(X1) = µk(X);

(vii) if, in addition, µk(X1) = 1 then also µk(X) = 1 and θk(X) = 1.

PROOF. Part (i) follows by Lemma 1.5.1.
Since SkX is a proper subvariety in PN , then Vert(SkX) is a proper linear subspace of PN . This implies

part (ii). Part (iii) is immediate.
Since SkX 6= PN , if X is not k–defective, we have sk(X) = (k+ 1)n+ k < r. By part (iii) we have also

s(X
1) = (k + 1)n+ k ≤ r − 1, i.e. X1 is also not k–defective. This proves (iv).
The first assertion of part (v) is immediate. Furthermore we have a commutative diagram of rational maps:

SkX
t
99K SkX1

pkX ↓ ↓ pkX1

Sk(X)
t
Sk(X),p
99K Sk(X1)

where t is determined, in an obvious way, by tSk(X),p. By the hypothesis, tSk(X) has degree θk(X), whereas t
is easily seen to be birational. Hence the conclusion follows. Parts (vi) and (vii) are now obvious. �

Now we come to the main result of this section:

1.5.9. THEOREM. ([CR, Theorem 4.2]) LetX ⊂ PN be an irreducible, non–degenerate, projective variety
and let h := codim(SkX) > 0. Then:

(1.5.5) deg(SkX) ≥
(
h+ k + 1
k + 1

)
and, if l = 0, ..., k and x ∈ SlX is any point, then:

(1.5.6) multx(SkX) ≥
(
h+ k − l
k − l

)
.

Suppose equality holds in (1.5.5) and h ≥ 1. Then:
(i) if x ∈ X is a general point, one has:

CxS
kX = S(TxX,Sk−1X), multx(Sk(X)) =

(
k + h

k

)
;

(ii) for every m such that 1 ≤ m ≤ h, one has:

deg(SkXm) =
(
h−m+ k + 1

k + 1

)
;

(iii) for every m such that 1 ≤ m ≤ h, the projection from a general point x ∈ Xm−1:

tSkXm−1,x : SkXm−1 99K SkXm

is birational;
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(iv) for every m such that 1 ≤ m ≤ k one has:

deg(Sk−mXm) =
(
h+ k −m+ 1
k −m+ 1

)
;

in particular Xk is a variety of minimal degree;
(v) if X is not k–defective, then, for every m such that 1 ≤ m ≤ h, also Xm is not k–defective and

µk(X) = µk(Xm);
(vi) if X is not k–defective then:

dX,k ≤ µk(X).

PROOF. We make induction on both k and h. For k = 0 we have the bound 1.5.4 for the minimal degree
of an algebraic variety, while for h = 0 the assertion is obvious for every k. Let us project X and SkX from a
general point x ∈ X . By Lemma 1.5.8, Theorem 1.5.7, Lemma 1.5.2 and by induction we get:

deg(SkX) ≥ deg(SkX1) + multx(SkX) ≥

≥ deg(SkX1) + deg(Sk−1X1) ≥
(
k + h

k + 1

)
+
(
k + h

k

)
=
(
k + h+ 1
k + 1

)
whence (1.5.5) follows. Let now x ∈ Sl(X) be a general point, then by Theorem 1.5.7, Lemma 1.5.2 and by
(1.5.5) one has:

multx(SkX) ≥ deg(Sk−l−1Xl+1) ≥
(
k + h− l
k − l

)
proving (1.5.6) in this case. Of course (1.5.6) also holds if x ∈ Sl(X) is any point.

If equality holds in (1.5.5), one immediately obtains assertions (i)–(iv) for m = 1. By an easy induction
one sees that (i)–(iv) hold in general.

Assertion (v) follows by Lemma 1.5.8. As for (vi), consider the following commutative diagram:

X
τX,k
99K Xk

tX,h ↓ ↓ tXk,h
Xh

τ
Xh,k

99K Pn.

Notice that the vertical maps tX,h, tXk,h are birational being projections from h general points on a variety of
codimension bigger than h. Thus one has:

dX,k = dXh,k.

On the other hand, by Theorem 4.1.6 and Lemma 1.5.8 one has:

dXh,k ≤ µk(Xh) = µk(X)

which proves the assertion. �

1.5.10. REMARK. It is possible to improve the previous result. For example, using Lemma 1.5.8, one sees
that (i) holds not only if x ∈ X is general, but also if x is any smooth point of X not lying on Vert(Sk(X)).
Similar improvements can be found for (ii)–(v). We leave this to the reader, since we are not going to use it
later.
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1.5.11. DEFINITION. Let X ⊂ Pr be an irreducible, non–degenerate, projective variety of dimension n.
Let k be a positive integer.

Let k ≥ 2 be an integer. One says that X is k–regular if it is smooth and if there is no subspace Π ⊂ Pr
of dimension k − 1 such that the scheme cut out by Π on X contains a finite subscheme of length ` ≥ k + 1.
By definition 1–regularity coincides with smoothness.

We say that X has minimal k–secant degree, briefly X is an Mk–variety, if r = s(k)(X) + h, h :=
codim(Sk(X)) > 0, and deg(Sk(X)) =

(
h+k+1
k+1

)
(compare with Theorem 1.5.9).

We say that X is a variety with the minimal number of apparent (k + 1)–secant Pk−1’s, briefly X is
an MAk+1

k−1–variety, if s(k)(X) = (k + 1)n + k, r = s(k)(X) + h, h := codim(Sk(X)) > 0, and if
νk(X) =

(
h+k+1
k+1

)
(compare with Theorem 1.5.9 and 1.5.2). In other words X is anMAk+1

k−1–variety if and
only if it is not k–defective, is an Mk–variety and µk(X) = 1. For example, an Mk–variety which is not
k–weakly defective is anMAk+1

k−1–variety.
We say that X is a variety with one apparent (k + 1)–secant Pk−1, briefly X is an OAk+1

k−1–variety, if
r = s(k)(X) = (k + 1)n+ k and µk(X) = 1.

The terminology introduced in the previous definition is motivated by the fact that, for example, OAk+1
k−1–

varieties are an extension of varieties with one apparent double point or OADP–varieties, classically studied
by Severi [Sev] (for a modern reference see [CMR]).

1.6. Exercises

1.6.1. EXERCISE. Let K be a(n algebraically closed) field. Recall that the linear combination of two
(symmetric) matrixes of rank 1 has rank at most 2 and that every (symmetric) matrix of rank 2 can be written
as the linear combination of two (symmetric) matrixes of rank 1.

Deduce the following geometrical consequences for the secant varieties of the varieties described below.
(1) Let X = ν2(P2) ⊂ P5 be the 2-Veronese surface in P5. Identify P5 with

P({A ∈M(3;K) : A = At}),
and show that X = {[A] : rk(A) = 1}. Prove that SX = TX = V (det(A)) ⊂ P5 is the cubic
hypersurface given by the cubic polynomial det(A). Show that if x1, x2 ∈ X , then Tx1X∩Tx2X 6= ∅
(Try to prove that if the points are general, then the intersection consists of a point). Prove that
Sing(SX) = X .

(2) Let X = P2 × P2 ⊂ P8 be the Segre embedding of P2 × P2 in P8. Identify P8 with

P({A ∈M(3;K)}),
and show that X = {[A] : rk(A) = 1}. Prove that SX = TX = V (det(A)) ⊂ P8 is the
cubic hypersurface given by the cubic polynomial det(A). Show that if x1, x2 ∈ X , then Tx1X
and Tx2X intersect at least along a line (prove that if the points are general, then the intersection
consists of a line). Take H be a general hyperplane in P8 and let Y := X ∩H . Then Y is a smooth,
irreducible, non-degenerate 3-fold Y ⊂ P7 such that SY ⊆ SX ∩H so that dim(SY ) ≤ 6 (in fact
one can prove that SY = SX ∩H and hence that dim(SY ) = 6). Prove that given y1, y2 ∈ Y , then
Ty1Y ∩ Ty2Y 6= ∅ (consists of a point if the points are general). Prove that Sing(SX) = X .

Let p ∈ P9\P8, let Z = S(p,X) ⊂ P9 and let X ′ = X ∩ W , with W ⊂ P9 a general
hypersurface, not an hyperplane, not passing through p. Then X ′ is a smooth, irreducible, non-
degenerate 4-fold such that SX ′ = SZ = S(p, SX). Conclude that dim(SX ′) = 8 and use the fact
that Z is a cone over X to deduce that two general tangent spaces to X ′ intersect.

(3) Generalize the previous exercise and find the relation between SX ⊂ PN and SX ′ ⊂ PN+1 for
X ′ ⊂ PN+1 a general intersection of Z = S(p,X) ⊂ PN+1 with a general hypersurface W ⊂
PN+1, not passing through p ∈ PN+1\PN .
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1.6.2. EXERCISE. Let X,Y ⊂ PN be closed irreducible subvarieties. The following holds:

(1) for every x ∈ X ,
Y ⊆ S(x, Y ) ⊆ TxS(x, Y ) ⊆ TxS(X,Y )

and in partiucular < x,< Y >>⊆ TxS(x, Y ).
(Hint: By definition of join we get the inclusion S(x, Y ) ⊆ S(X,Y ) and hence TxS(x, Y ) ⊆

TxS(X,Y ). Moreover for every y ∈ Y , y 6= x, the line < x, y > is contained in S(x, Y ) and passes
through x so that it is contained in TxS(x, Y ) and part 1) easily follows.)

(2) if SkX = Sk+1X for some k ≥ 0, then SkX = Psk(X) ⊆ PN ; (Hint: Let z ∈ SkX be a smooth
point of SkX . From part 1) we get

X ⊆ TzS(SkX,X) = TzS
k+1X = TzS

kX = Psk(X).

Thus SkX ⊆< X >⊆ TzS
kX = Psk(X) so that SkX =< X >= Psk(X) since SkX and TzSkX

are both irreducible varieties of dimension sk(X).)

(3) if dim(Sk+1X) = dim(SkX) + 1 for some k ≥ 0, then Sk+1X = Psk+1(X) so that SkX is a
hypersurface in Psk+1(X); (Hint: To prove part 3), take a general point z ∈ Sk+1X \ SkX . For
general x ∈ X we get SkX ( S(x, SkX) ⊆ S(X,SkX) = Sk+1X . Thus for general x ∈ X we
get S(x, SkX) = Sk+1X since sk+1(X) = sk(X) + 1. In particular z ∈ S(x, SkX) for x ∈ X
general, i.e. there exists y ∈ SkX such that z ∈< x, y >⊂ Sk+1X . Thus a general point x ∈ X is
contained in TzSk+1X so that

Sk+1X ⊆< X >⊆ TzSk+1X

yields Sk+1X =< X >= Psk+1(X) since dim(TzSk+1X) = sk+1(X) by the generality of z ∈
Sk+1X .)

(4) if Sk+1X , k ≥ 0, is not a linear space, then SkX ⊆ Sing(Sk+1X). (Hint: Remark that TzSk+1X ⊆<
Sk+1X >=< SkX >. Take z ∈ SkX and observe that, via part 1)

< Sk+1X >=< SkX >= S(z,< Sk >) ⊆ TzSk+1X ⊆< Sk+1X >,

so that TzSk+1X =< Sk+1X >⊇ SkX . By hypothesis the last inclusion is strict, yielding
dim(TzSk+1X) > dim(Sk+1X). Thus z is a singular point of Sk+1X and part 4) follows.)

(5) Let C ⊂ PN be an irreducible non-degenerate projective curve. Then sk(C) = min{2k + 1, N}.
(Hint: For k = 0 it is true and we argue by induction. Suppose SkC $ PN . By proposition 1.2.2

sk(C) ≥ sk−1(C) + 2 and the description Sk(C) = S(C, Sk−1C) yields sk(C) ≤ sk−1(C) + 2 so
that sk(C) = 2(k − 1) + 1 + 2 = 2k + 1 as claimed.)

(6) Let X ⊂ PN be an irreducible non-degenerate projective of dimension n ≥ 1. Let k < k0. Prove
that sk(X) ≥ n + 2k for every k < k0 and that sj(X) = n + 2j yields sk(X) = n + 2k for every
k ≤ j. In particular if sk(X) = n+ 2k for some k ≥ 1, then s(X) = n+ 2 and SX ⊆ PN .

1.6.3. EXERCISE. Let X ⊂ PN be a closed irreducible variety of dimension dim(X) = n. The following
holds:

(1)

Vert(X) = Pl ⊆
⋂
x∈X

TxX,

l ≥ −1;
(2) if codim(Vert(X), X) ≤ 1, then Vert(X) = X = Pn ⊂ PN ;
(3) if dim(S(X,Y )) = dim(X) + 1, then Y ⊆ Vert(S(X,Y ));
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(4) if char(K) = 0,
Vert(X) =

⋂
x∈X

TxX = Pl ⊆ X,

l ≥ −1;
(5) suppose char(K) = 0 and ∅ 6= Vert(X) ( X , then X = S(Vert(X), X ′) is a cone, where X ′ is the

projection of X from Vert(X) onto a PN−l−1 skew to Vert(X) (dim(X ′) = n− l − 1).
(Hint:

To prove 1) it is sufficient to show that, given two points x1, x2 ∈ Vert(X), the line < x1, x2 > is
contained in Vert(X), forcing Vert(X) irreducible and linear by proposition 1.2.2 part 2). Taken y ∈<
x1, x2 > \{x1, x2} and x ∈ X \ Vert(X), it is sufficient to prove that < y, x >⊂ X . By definition the lines
< xi, x > are contained in X and by varying the point q ∈< x2, x >⊂ X and by joining it with x1 we see
that the line < x1, q > is contained in X for every such q, i.e. the plane Πx =< x1, x2, x > is contained in X .
Since y and x belong to Πx, the claim follows.

If Vert(X) = X , then X = Pn by part 1). If there exists W = Pn−1 ⊆ Vert(X) = Pl ⊆ X , i.e. if
l ≥ n− 1, we can take x ∈ X \W . Therefore S(x,W ) = Pn and S(W,x) ⊆ X forces X = Pn.

To prove 3) take y ∈ Y \ Vert(X) and observe that for dimension reasons S(y,X) = S(Y,X) and
S(y, S(X,Y )) = S(y, S(y,X)) = S(y,X) = S(Y,X) gives the desired conclusion.

Set L =
⋂
x∈X TxX and assume char(K)=0. By 1.2.8 dim(S(L,X)) = dim(X), yielding X = S(L,X)

and L ⊆ Vert(X), which proves part 4). Part 5) follows in a straightforward way.)

1.6.4. EXERCISE. Let X ⊂ PN be an irreducible non-degenerate variety of dimension n = dim(X).
Assume char(K)=0, N ≥ n+ 3 and dim(SX) = n+ 2. If through the general point x ∈ X there passes a line
lx contained in X , then X ⊂ PN is a cone.

(Hint: Let x ∈ X be a general point. Then x 6∈ Vert(X) and x 6∈ Vert(SX) since X is non-degenerate,
so that X ( S(lx, X) ⊆ SX . If dim(S(lx, X)) = n + 2, then S(lx, X) = SX . Since S(lx, SX) =
S(lx, S(lx, X)) = S(lx, X) = SX , we would deduce x ∈ lx ⊆ Vert(SX). In conclusion lx is not contained
in Vert(SX) and dim(S(lx, X)) = n + 1. Then the general tangent space to X , TyX , will cut lx in a point
px,y := lx ∩ TyX . If this point varies with y, then two general tangent spaces Ty1X and Ty2X would contain
lx so that < lx, < Ty1X,Ty2X >>=< Ty1X,Ty2X > would force S(lx, SX) = SX , i.e. lx ⊆ Vert(SX).
So the point remain fixed, i.e. p ∈ ∩y∈XTyX = Vert(X) and X is a cone by proposition 1.2.6.)

1.6.5. EXERCISE. Prove Edge’s argument from [Ed] to the effect that smooth irreducible divisors of type
(0, 2), (1,2) and (2, 1) on the Segre varieties Y = P1×Pn ⊂ P2n+1, n ≥ 2, have one apparent double point in
the following steps.

(1) Prove first that the only smooth curves, not necessarily irreducible, on a smooth quadric in P3 having
one apparent double point are of the above types.

(2) For p /∈ Y := P1 × Pn, the entry locus Σp(Y ) has the form P1 × P1
p for some P1

p ⊂ Pn and spans a
linear P3

p.
(3) If X is a divisor of type (a, b) of Y , the secant lines of X passing through p are exactly the secant

lines of X ∩ P3
p passing through p.

(4) For a general p ∈ P2n+1, X ∩ P3
p is a reduced, not necessarily irreducible curve and it is a di-

visor of type (a, b) on P1 × P1
p. Hence X has one apparent double point if and only if (a, b) ∈

{(1, 2), (2, 1), (2, 0), (0, 2)}. If (a, b) = (2, 0), then X = Pn q Pn is reducible.
The divisors of type (2, 1) are the rational normal scrolls of minimal degree in P2n+1. The divisors of

type (0, 2) are isomorphic to P1 × Qn−1, where Qn−1 ⊂ Pn is a quadric hypersurface of maximal rank, so
that they admit a structure of twisted cubic over a split cubic Jordan algebra, see [Mk]; divisors of type (1, 2)
are hyperquadric fibrations of special kind. The above varieties are usual called Edge varieties. Edge varieties
have degree d = n + 2, respectively 2n, 2n + 1 and in [AR] are characterized as the only varieties with one
apparent double point of dimension n and degree d ≤ 2n + 1 for every n ≥ 2. Moreover in [AR] it is shown
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that for 2n+ 2 ≤ d ≤ 2n+ 4 there are only 3 varieties with one apparent double point: for n = 3 and d = 8 it
is the scroll over a surface we cited above; for n = 4 and d = 12 the linear section of S10 ⊂ P15 and for n = 6
and d = 16 the variety Glag

R (2, 5) ⊂ P13.

1.6.6. EXERCISE. Prove the following facts.

(1) Let X ( PM ( PN be a degenerate variety. Prove that X∗ ⊂ PN∗ is a cone of vertex PM∗ =
PN−M−1 ⊂ PN∗ over the dual variety of X in PM . Suppose X = S(L,X ′) is a cone of vertex L =
Pl, l ≥ 0, over a variety X ′ ⊂ M = PN−l−1, M ∩ L = ∅. Then X∗ ⊂ (Pl)∗ = PN−l−1 ⊂ (PN )∗

is degenerated. Is there any relation between X∗ and the dual of X ′ in M?
Suppose X ⊂ PN is a cone. Prove that X∗ ⊂ PN∗ is degenerated. Conclude that X ⊂ PN is

degenerated if and only if X∗ ⊂ PN∗ is a cone; and, dually, that X ⊂ PN is a cone if and only if
X∗ ⊂ PN∗ is degenerated.

(2) Let C ⊂ PN be an irreducible non-degenerate projective curve. Then p2 : PC → C∗ ⊂ (PN )∗ is a
finite morphism so that def(C) = 0.

(3) Let X ⊂ PN be a non-singular variety, then PX ' P(NX/PN (1)) (Grothendieck’s notation), where
NX/PN (1) is the the twist of the normal bundle ofX in PN byOPN (1). Show that p2 : PX → X∗ ⊂
PN∗ is given by a sublinear system of |ONX/PN (1)(1)|. (Hint: restrict Euler sequence to X and
use the standard conormal sequence; interpret these sequences in terms of the associated projective
bundles and of the incidence correspondence defining PX ).

(4) Let X ⊂ PN be a smooth non-degenerate complete intersection. Deduce by the previous exercise
that p2 : PX → X∗ ⊂ PN∗ is a finite morphism so that dim(X∗) = N − 1, i.e. def(X) = 0 (Hint:
show that NX/PN (1) is a sum of very ample line bundles; deduce that ONX/PN (1)(1) is very ample
and finally that p2 : PX → X∗ ⊂ PN∗ is a finite morphism).

(5) Suppose char(K)=0 and letC ⊂ P2 be an irreducible curve, not a line. Show thatC∗ is an irreducible
curve of degree at least 2. Take a tangent line at a point x ∈ C. Show that if TxC is tangent at
another point y ∈ C, y 6= x, then the point (TxC)∗ ∈ C∗ is a singular point of C∗. Deduce that if
char(K)=0, then a general tangent line is tangent to C only at one point. Deduce that the same is true
for an irreducible curve C ⊂ PN , N ≥ 3.

(6) Let X = P1 × Pn ⊂ P2n+1, n ≥ 1, be the Segre embedding of P1 × Pn. Identify P2n+1 with the
projectivization of the vector space of 2 × n + 1 matrices and show that, due to the fact that there
are only two orbits for the action of GL(2) on PN and on (PN )∗, (P1 × Pn)∗ ' P1 × Pn so that
def((P1 × Pn)) = n − 1. Interpret this result geometrically and reverse the construction for n = 2
to show directly that X = X∗.

(7) Use the same argument as above to show that if X = ν2(P2) ⊂ P5, or if X = P2 × P2 ⊂ P8, then
X∗ ' SX and SX∗ ' X .

1.6.7. EXERCISE. Let X ⊂ PN be an irreducible non-degenerate projective variety. Assume char(K)=0
and SX ( PN . Then (SX)∗ ⊆ Sing(X∗) ( X∗, i.e. a general bitangent hyperplane represents a singular
point of X∗. More generally for a given k ≥ 2 such that k < k0(X), we have (SkX)∗ ⊆ Sing((Sk−1X)∗) (
(Sk−1X)∗, i.e. a general (k + 1)-tangent hyperplane represents a singular point of (Sk−1X)∗.

(Hint: Take H ∈ (SX)∗ general point. Then H ⊇ TzSX , with z ∈ SX general point. By Corollary
1.3.6, H is tangent to X along Σz(X)\ (Σz(X)∩Sing(X)) so that H ∈ X∗. Since X is non-degenerate, then
z 6∈ X implies that the contact locus of H on X is not linear, yielding H ∈ Sing(X∗) by Proposition 1.4.5.

Take more a general H ∈ (SkX)∗ and recall that SkX = S(X,Sk−1X). Then H ⊆ TzS
kX , with

z ∈ SkX general point. Then there exists y ∈ Sm(Sk−1X) with y ∈ Σkz(X) and such that z ∈< x, y >,
x ∈ X , x 6= y. By Terracini Lemma TzSkX ⊇ TyS

k−1X so that H ∈ (Sk−1X)∗. Since x ∈ X , x ∈
Sing(H ∩ Sk−1X), so that p−1

2 (H) ⊆ Sk−1X is not linear since once again z ∈ SkX \ Sk−1X by the
non-linearity of SkX).
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1.6.8. EXERCISE. Let X,Y ⊂ PN be closed, irreducible, subvarieties and let L = Pl be a linear subspace
of dimension l ≥ 0, which does not contain either X or Y . Let πL : PN 99K PN−l−1 be the projection from
L. Then:

πL(S(X,Y )) = S(πL(X), πL(Y )).
In particular, if L does not contain X , then for any non–negative integer k one has:

π(Sk(X)) = Sk(πL(X)).
(Hint: It is clear that π(S(X,Y )) ⊆ S(X ′, Y ′). Let x′ ∈ X ′, y′ ∈ Y ′ be general points. Then there are

x ∈ X, y ∈ Y such that π(x) = x′, π(y) = y′. Thus π(< x, y >) =< x′, y′ >, proving that S(X ′, Y ′) ⊆
π(S(X,Y )), i.e. the first assertion. The rest of the statement follows by making induction on k.

1.6.9. EXERCISE. Let X ⊂ Pr be an irreducible, projective variety. For all i = 1, ..., k one has:

h(k−i)(Xi) = h(k)(X)

whereas for all i ≥ 1 one has:
h(k)(Xi) = max{0, h(k)(X)− i}.

(Hint: Let p0, ..., pk ∈ X be general points. Terracini’s lemma says that TX,p0,...,pk is a general tangent
space to Sk(X) and that its projection from TX,pk−i+1,...,pk is the general tangent space to Sk−i(Xi). This
implies the first assertion.

To prove the second assertion, note that it suffices to prove it for i < h(k)(X). Indeed, if i ≥ h(k)(X)
then, by Lemma 1.5.1 one has h(k)(Xi) = 0 since already h(k)(Xh(k)

) = 0. Thus, suppose i < h(k)(X).
Let p0, ..., pk ∈ X be general points and take i general points q1, ..., qi in X \ (X ∩ TX,p0,...,pk). Then the
projection of TX,p0,...,pk from < q0, ..., qi > is the tangent space to Sk(Xi). Furthermore i < h(k)(X) yields
< q0, ..., qi > ∩TX,p0,...,pk = ∅. This implies the second assertion.

1.6.10. EXERCISE. Fill the details in the above proofs and claims.
Let 0 ≤ a1 ≤ a1 ≤ ... ≤ an be integers and set P(a1, ..., an) := P(OP1(a1)⊕ ...⊕OP1(an)). We will de-

note byH a divisor in |OP(a1,...,an)(1)| and by F a fibre of the structure morphism π : P(a1, ..., an)→ P1. No-
tice that the corresponding divisor classes, which we still denote byH andF , freely generate Pic(P(a1, ..., an)).

Set r = a1 + ...+ an + n− 1 and consider the morphism:

φ := φ|H| : P(a1, ..., an)→ Pr

whose image we denote by S(a1, ..., an). As soon as an > 0, the morphism φ is birational to its image.
Then the dimension of S(a1, ..., an) is n and its degree is a1 + ... + an = r − n + 1, thus S(a1, ..., an)
is a rational normal scroll, which is smooth if and only if a1 > 0. Otherwise, if 0 = a1 = ... = ai <
ai+1, then S(a1, ..., an) is the cone over S(ai+1, ..., an) with vertex a Pi−1. One uses the simplified notation
S(ah1

1 , ..., ahmm ) if ai is repeated hi times, i = 1, ...,m.
We will sometimes use the notation H and F to denote the Weil divisors in S(a1, ..., an) corresponding to

the ones on P(a1, ..., an). Of course this is harmless if a1 > 0, since then P(a1, ..., an) ' S(a1, ..., an).
Recall that rational normal scrolls, the Veronese surface in P5 and the cones on it, and the quadrics, can

be characterized as those non–degenerate, irreducible varieties X ⊂ Pr in a projective space having minimal
degree deg(X) = codim(X) + 1 (see [EH]).

Let X = S(a1, . . . , an) ⊂ Pr be as above. We leave to the reader to see that:

(1.6.1) X1 = S(b1, ..., bn) where {b1, ..., bn} = {a1, ..., an − 1}.
One can also consider the projectionX ′ ofX from a general Pn−1 of the ruling ofX . This is not birational

to its image if a1 = 0 and one sees that if a1 = ... = ai = 0 < ai+1, then:



1.6. EXERCISES 29

(1.6.2) X ′ = S(c1, ..., cn−i) where {c1, ..., cn−i} = {ai+1 − 1, ..., an − 1}.

A general tangential projection of X = S(a1, . . . , an) is the composition of the projection of X from a
general Pn−1 of the ruling of X and of a general internal projection of X ′. Therefore, by putting (1.6.1) and
(1.6.2) together, one deduces that if a1 = ... = ai = 0 < ai+1, then:

(1.6.3) X1 = S(d1, ..., dn−i) where {d1, ..., dn−i} = {ai+1 − 1, ..., an − 2}.

As a consequence we have:
Let X = S(a1, . . . , an) ⊂ Pr be a rational normal scroll as above. Then:

dim(Sk(X)) = min{r, r + k + 1−
∑

1≤j≤n; k≤aj

(aj − k)}.

In particular, if r ≥ (k + 1)n+ k, then s(k)(X) = (k + 1)n+ k if and only if a1 ≥ k.
(Hint: It follows by induction using (1.6.3) and Terracini’s lemma. We leave the details to the reader).
A different proof of the same result can be obtained by writing the equations of Sk(X) (see [Ro] and

[CJ1] for this point of view).

1.6.11. EXERCISE. Given positive integers 0 < m1 ≤ ... ≤ mh we will denote by Seg(Pm1 , ...,Pmh), or
simply by Seg(m1, ...,mh) the Segre variety of type (m1, ...,mh), i.e. the image of Pm1 × ... × Pmh in Pr,
r = (m1 +1) · · · (mh+1)−1, under the Segre embedding. Notice that, if Pmi = P(Vi), where Vi is a complex
vector space of dimension mi + 1, i = 1, ..., h, then Pr = P(V1 ⊗ ...⊗ Vh) and Seg(m1, ...,mh) is the set of
equivalence classes of indecomposable tensors in Pr. We use the shorter notation Seg(mk1

1 , ...,m
ks
s ) if mi is

repeated ki times, i = 1, ..., s.
Recall that Pic(Pm1 × ...× Pmh) ' Pic(Seg(m1, ...,mh)) ' Zh, is freely generated by the line bundles

ξi = pr∗i (OPmi (1)), i = 1, ..., h, where pri : Pm1 × ... × Pmh → Pmi is the projection to the i–th factor. A
divisor D on Seg(m1, ...,mh) is said to be of type (`1, ..., `h) if OSeg(m1,...,mh)(D) ' ξ`11 ⊗ ... ⊗ ξ

`h
h . The

line bundle ξ`11 ⊗ ... ⊗ ξ
`h
h on Pm1 × ... × Pmh is also denoted by OPm1×...×Pmh (`1, ..., `h). The hyperplane

divisor of Seg(m1, ...,mh) is of type (1, ..., 1).
It is useful to recall what are the defects of the Segre varieties Seg(m1,m2) with m1 ≤ m2. As above, let

Vi be complex vector spaces of dimension mi + 1, i = 1, 2. We can interpret the points of P(V1 ⊗ V2) as the
equivalence classes of all (m1 + 1) × (m2 + 1) complex matrices and Seg(m1,m2) = Seg(P(V1),P(V2)))
as the subscheme of P(V1 ⊗ V2) formed by the equivalence classes of all matrices of rank 1. Similarly
Sk(Seg(m1,m2)) can be interpreted as the subscheme of P(V1 ⊗ V2) formed by the equivalence classes of
all matrices of rank less than or equal to k + 1. Therefore Sk(Seg(m1,m2)) = P(V1 ⊗ V2) if and only if
k ≥ m1. In the case k < m1 one has instead:

codim(Sk(Seg(m1,m2)) = (m1 − k)(m2 − k)

(see [ACGH], pg. 67). As a consequence one has:

δk(Seg(m1,m2)) = k(k + 1)

if k < m1 ≤ m2.
The degree of Sk(Seg(m1,m2)), with k < m1 ≤ m2, are computed by a well known formula by Gi-

ambelli [Gi], apparently already known to C. Segre (see [Ro], pg. 42, and [Fl1, 14.4.9] for a modern reference).
The case k = m1 − 1, which is the only one we will use later, is not difficult to compute (see [Ha], pg. 243)
and reads:
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deg(Sm1−1(Seg(m1,m2))) =
(
m2 + 1
m1

)
.

Given positive integers n, d, we will denote by Vn,d the image of Pn under the d–Veronese embedding of
Pn in P(n+d

d )−1.
If X is a variety of dimension n and Y a subvariety of X , we will denote by BlY (X) the blow–up of X

along Y . If Y is a finite set {x1, ..., , xn} we denote the blow–up by Blx1,...,xn(X).



CHAPTER 2

Fulton-Hansen Connectedness Theorem, Scorza Lemma and their
applications to projective geometry

2.1. Connectedness principle of Enriques-Zariski-Grothendieck-Fulton-Hansen and some classical
Theorems in algebraic geometry

In the first chapter we introduced the main definitions of classical projective geometry proving many
classical results. Many theorems in classical projective geometry deal with ”general” objects. For example the
classical Bertini theorem on hyperplane sections, see Theorem 1.4.2. A more refined version of this theorem
says that if f : X → PN is morphism, with X proper and such that dim(f(X)) ≥ 2, and if H = PN−1 ⊂
PN is a general hyperplane, then f−1(H) is irreducible, see [Ju, Theorem 6.10] for a modern reference.
The Enriques-Zariski principle says that limits of connected varieties remain connected and it is for example
illustrated in the previous example because for an arbitrary H = PN−1 ⊂ PN , f−1(H) is connected as we
shall prove below.

This result is particularly interesting because, as shown by Deligne and Jouanolou, a small generalization
of it proved by Grothendieck, [Gr2, XIII 2.3], yields a simplified proof of a beautiful and interesting con-
nectedness theorem of Fulton and Hansen, [FH], whose applications are deep and appear in different areas of
algebraic geometry and topology. Moreover, Deligne’s proof generalizes to deeper statements involving higher
homotopy groups when studying complex varieties, see [D1], [D2], [Fl2], [FL].

2.1.1. THEOREM. (Fulton-Hansen Connectedness Theorem, [FH]) Let X be an irreducible variety,
proper over an algebraically closed filed K. Let f : X → PN × PN be a morphism and let ∆ = ∆PN ⊂
PN × PN be the diagonal.

(1) If dim(f(X)) ≥ N , then f−1(∆) 6= ∅.
(2) If dim(f(X)) > N , then f−1(∆) is connected.

We begin by recalling the following ”classical” Bertini theorem in a more general form. For a proof we
refer to [Ju, Theorem 6.10], where the hypothesis K = K is relaxed.

2.1.2. THEOREM. (Bertini Theorem, see [Ju]) Let X be an irreducible variety and let f : X → PN be a
morphism. For a fixed integer l ≥ 1, let G(N − l, N) be the Grassmann variety of linear subspaces of PN of
codimension l. Then

(1) if l ≤ dim(f(X)), then there is a non-empty open subset U ⊆ G(N − l, N) such that for every
L ∈ U ,

f−1(L) 6= ∅;
(2) if l < dim(f(X)), then there is a non-empty open subset U ⊆ G(N − l, N) such that for every

L ∈ U ,
f−1(L) is irreducible.

We now show that the Enriques-Zariski principle is valid in this setting by proving the next result, which is
the key point towards Theorem 2.1.1. We pass from general linear sections to arbitrary ones and for simplicity
we suppose K = K as always.

31
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2.1.3. THEOREM. ([Gr2], [FH], [Ju, Theorem 7.1]) Let X be an irreducible variety and let f : X → PN
be a morphism. Let L = PN−l ⊂ PN be an arbitrary linear space of codimension l.

(1) If l ≤ dim(f(X)) and if X is proper over K, then

f−1(L) 6= ∅.

(2) If l < dim(f(X)) and if X is proper over K, then

f−1(L) is connected.

More generally for an arbitrary irreducible variety X , if f : X → PN is proper over some open subset
V ⊆ PN , and if L ⊆ V , then, when the hypothesis on the dimensions are satisfied, the same conclusions hold
for f−1(L).

PROOF. (According to [Ju]). We prove the second part of the theorem from which the statements in 1)
and 2) follow.

Let W ⊆ G(N − l, N) be the open subset consisting of linear spaces contained in V and let

Z = {(x, L′) ∈ X ×W : f(x) ∈ L′} ⊂ {(x, L′) ∈ X ×G(N − l, N) : f(x) ∈ L′} = I.
The scheme Z is irreducible since it is an open subset of the Grassmann bundle p1 : I → X . Since f is proper
over V , the second projection p2 : Z →W is a proper morphism. Consider its Stein factorization:

X

q

��

p2

!!C
CC

CC
CC

C

W ′ r
// W ;

the morphism q is proper with connected fibers and surjective, while r is finite. By Theorem 2.1.2 r is dominant
and hence surjective if l ≤ dim(f(X)), respectively generically one-to-one and surjective if l < dim(f(X)).
In the first case p2 : Z → W is surjective so that f−1(L) 6= ∅ for every L ∈ W . In the second case, since W
is smooth, it follows that r is one to one everywhere so that f−1(L) = q−1(r−1(L)) is connected for every
L ∈W . �

2.1.4. REMARK. The original proof of Grothendieck used an analogous local theorem proved via local
cohomology. His method has been used and extended by Hartshorne, Ogus, Speiser and Faltings. Faltings
proved with similar techniques a connectedness theorem for other homogeneous spaces, see [Fa], at least in
characteristic zero. A different proof of a special case of the above result was also given by Barth in 1969.

Now we are in position to prove the connectedness theorem.

PROOF. (of Theorem 2.1.1, according to Deligne, [D1]). The idea is to pass from the diagonal embedding
∆ ⊂ PN × PN to a linear embedding L = PN ⊂ P2N+1, a well known classical trick.

In P2N+1 separate the 2N+2 coordinates into [X0 : . . . : XN ] and [Y0 : . . . : YN ] and think these two sets
as coordinates on each factor of PN×PN . The twoN dimensional linear subspacesH1 : X0 = . . . = XN = 0
and H2 : Y0 = . . . = YN = 0 of P2N+1 are disjoint. If V = P2N+1 \ (H1∪H2) since there is a unique secant
line to H1 ∪H2 passing through each p ∈ V , there is a morphism

φ : V → H1 ×H2 = PN × PN ,
which to p associates the points (p1, p2) = (< H2, p > ∩H1, < H1, p > ∩H2). In coordinates,

φ([X0 : . . . : XN : Y0 : . . . : YN ] = ([X0 : . . . : XN ], [Y0 : . . . : YN ]).

Then φ−1(φ(p)) =< p1, p2 > \{p1, p2} ' A1
K \0. Let L = PN ⊂ V be the linear subspace of P2N+1 defined

by Xi = Yi, i = 0, . . . , N . Then
φ|L : L '−→ ∆
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is an isomorphism. Given f : X → PN × PN we construct the following Cartesian diagram

X ′

f ′

��

φ′ // X

f

��
V

φ // PN × PN ,

where
X ′ = V ×PN×PN X.

Clearly φ′ induces an isomorphism between f ′−1(L) and f−1(∆). To prove the theorem it is sufficient
to verify the corresponding assertion for f ′−1(L). To this aim we apply Theorem 2.1.3. Let us verify the
hypothesis.

Since φ′−1(x) ' φ−1(f(x)) = A1
K \ 0 for every x ∈ X , the scheme X ′ is irreducible and of dimension

dim(X) + 1. The morphism f is proper, so that also f ′ : X ′ → V is proper and moreover dim(f(X ′)) =
dim(f(X)) + 1. If dim(f(X)) ≥ N , then dim(f(X ′)) ≥ N + 1 = codim(L,P2N+1). If dim(f(X ′)) > N ,
then dim(f(X ′)) > N + 1 = codim(L,P2N+1). �

Let us list some immediate consequences of Fulton-Hansen Theorem.

2.1.5. COROLLARY. (Generalized Bézout Theorem) Let X and Y be closed subvarieties of PN . If
dim(X) + dim(Y ) ≥ N , then X ∩ Y 6= ∅. If dim(X) + dim(Y ) > N , then X ∩ Y is connected (and more
precisely (dim(X) + dim(Y )−N)-connected).

PROOF. Let Z = X × Y and let f = iX × iY : Z → PN × PN , where iX and iX are the inclusions in
PN . Then X ∩ Y ' f−1(∆PN ) and the conclusions follows from Fulton-Hansen Theorem. �

2.1.6. COROLLARY. (Generalized Bertini Theorem) Let X ⊂ PN be an irreducible non-degenerate
vatiety If dim(X) ≥ 2, then every hyperplane section is connected.

If X is also smooth a general hyperplane section is smooth and irreducible.

PROOF. Let Z = X×H and let f = iX× iH : Z → PN ×PN , where iX and iX are the inclusions in PN
and H = PN−1 is a hyperplane. Then X ∩H ' f−1(∆PN ) and the conclusions follows from Fulton-Hansen
Theorem. �

2.2. Zak’s applications to Projective Geometry

In this section we come back to projective geometry and apply Fulton-Hansen theorem to prove some
interesting and non-classical results in projective geometry. Most of the ideas and the results are due to Fyodor
L. Zak, see [Z2], [FL], [LV], and they will be significant improvements of the classical material presented in
the first chapter. Other applications to new results in algebraic geometry can be found in [FH], [FL], [Fl2].

We begin with the following key result, which refines a result of Johnson, [Jo].

2.2.1. THEOREM. ([FH], [Z2]) Let Y ⊆ X ⊂ PN be a closed subvariety of dimension r = dim(Y ) ≤
dim(X) = n, with X irreducible and projective. Then either

(1) dim(T ∗(Y,X)) = r + n and dim(S(Y,X)) = r + n+ 1, or
(2) T ∗(Y,X) = S(Y,X).

PROOF. We can suppose Y irreducible and then apply the same argument to each irreducible component
of Y . We know that T ∗(Y,X) ⊆ S(Y,X) and that dim(T ∗(Y,X)) ≤ r + n by construction. Suppose that
dim(T ∗(Y,X)) = r + n. Since S(Y,X) is irreducible and dim(S(Y,X)) ≤ r + n+ 1, the conclusion holds.

Suppose now dim(T ∗(Y,X)) = t < r+n. We prove that dim(S(Y,X)) ≤ t so that T ∗(Y,X) = S(Y,X)
follows from the irreducibility of S(Y,X). There exists L = PN−t−1 such that L ∩ T ∗(Y,X) = ∅ = L ∩X .
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The projection πL : PN \ L → Pt restricts to a finite morphism on X and on Y , since L ∩ X = ∅. Then
(πL × πL)(X × Y ) ⊂ Pt × Pt has dimension r + n > t by hypothesis. By Theorem 2.1.1, the closed set

∆̃ = (πL × πL)−1(∆Pt) ⊂ Y ×X

is connected and contains the closed set ∆Y ⊂ Y ×X so that ∆Y is closed in ∆̃.
We claim that

∆Y = ∆̃.
This yields L ∩ S(Y,X) = ∅ and hence dim(S(Y,X)) ≤ N − 1− dim(L) = t.

Suppose ∆̃ \∆Y 6= ∅. We shall find y′ ∈ Y such that ∅ 6= T ∗y′(Y,X) ∩ L ⊆ T ∗(Y,X) ∩ L contrary to

the assumption. If ∆̃ \∆Y 6= ∅, the connectedness of ∆̃ implies the existence of (y′, y′) ∈ ∆̃ \∆Y ∩∆Y . Let
notation be as in definition 1.2.1. i. e. p2(p−1

1 (y, x)) =< x, y > if x 6= y and p2(p−1
1 (y, x)) = T ∗y (Y,X) if

x = y ∈ Y . Since for every (y, x) ∈ ∆̃ \∆Y we have < y, x > ∩L 6= ∅ by definition of πL (indeed πL(y) =
πL(x), y 6= x, if and only if < y, x > ∩L 6= ∅), the same holds for (y′, y′) so that p2(p−1

1 (y, x)) ∩ L 6= ∅
forces p2(p−1

1 (y′, y′)) ∩ L 6= ∅. �

2.2.2. COROLLARY. Let X ⊂ PN be an irreducible projective variety of dimension n. Then either
(1) dim(T ∗X) = 2n and dim(SX) = 2n+ 1, or
(2) T ∗X = SX .

The following result well illustrates the passage from general to arbitrary linear spaces.

2.2.3. THEOREM. (Zak’s Theorem on Tangencies) Let X ⊂ PN be an irreducible projective non-
degenerate variety of dimension n. Let L = Pm ⊂ PN be a linear subspace, n ≤ m ≤ N − 1, which is
J-tangent along the closed set Y ⊆ X . Then dim(Y ) ≤ m− n.

PROOF. Without loss of generality we can suppose that Y is irreducible and then apply the conclusion to
each irreducible component. By hypothesis and by definition we get T ∗(Y,X) ⊆ L. Since X ⊆ S(Y,X) and
since X is non-degenerate, S(Y,X) is not contained in L so that T ∗(Y,X) 6= S(Y,X). By Theorem 2.2.1 we
have dim(Y ) + n = dim(T ∗(Y,X)) ≤ dim(L) = m. �

We now come back to the problem of tangency and to contact loci of smooth varieties providing two
beautiful applications of the Theorem on Tangencies. We begin with the finiteness of the Gauss map of a
smooth variety.

2.2.4. COROLLARY. (Gauss map is finite for smooth varieties, Zak) Let X ( PN be a smooth irre-
ducible non-degenerate projective variety of dimension n. Then the Gauss map GX : X → G(n,N) is finite.
If moreover char(K)=0, then GX is birational onto the image, i.e. X is a normalization of GX(X).

PROOF. As always it is sufficient to prove that GX has finite fibers. For every x ∈ X , G−1
X (GX(x)) is the

locus of points at which the tangent space TxX is tangent. By Theorem 2.2.3 it has dimension less or equal
than dim(TxX)− n = 0.

If char(K)=0, then every fiber G−1
X (GX(x)) is linear by Theorem 1.4.8 and of dimension zero by the first

part, so that it reduces to a point as a scheme. �

The next result reveals a special feature of non-singular varieties, since the result is clearly false for cones,
see exercise 1.6.6.

2.2.5. COROLLARY. (Lower bound for the dimension of dual varieties) Let X ⊂ PN be a smooth
projective non-degenerate variety. LetX∗ ⊂ PN∗ be its dual variety. Then dim(X∗) ≥ dim(X). In particular,
if also X∗ is smooth, then dim(X∗) = dim(X).
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PROOF. By the theorem of the dimension of the fiber, letting notation as in definition 1.4.1, dim(X∗) =
N − 1 − dim(p−1

2 (H)), H ∈ X∗ general point. By Theorem 2.2.3, dim(p−1
2 (H)) ≤ N − 1 − dim(X) and

the conclusion follows. �

2.2.6. REMARK. In Exercise 1.6.6, we saw that (P1 × Pn)∗ ' P1 × Pn for every n ≥ 1. In [E1], L. Ein
shows that if N ≥ 2/3 dim(X), if X is smooth, if char(K)=0 and if dim(X) = dim(X∗), then X ⊂ PN
is either a hypersurface, or P1 × Pn ⊂ P2n+1 Segre embedded, or G(1, 4) ⊂ P9 Plücker embedded, or the
10-dimensional spinor variety S10 ⊂ P15. In the last three casesX ' X∗. For a different proof relating duality
and secant defectivity, see Corollary 3.3.22.

We apply the Theorem on Tangencies to deduce some strong properties of the hyperplane sections of
varieties of small codimension. By Bertini’s Theorem proved in the previous section we know that arbitrary
hyperplane sections of varieties of dimension at least 2 are connected. When the codimension of the variety is
small with respect to the dimension, some further restrictions for the scheme structure appear.

If X ⊂ PN is a non-singular irreducible nondegenerate variety, we recall that for every H ∈ X∗

Sing(H ∩X) = {x ∈ X : TxX ⊂ H},
i.e. it is the locus of points at which H is tangent. By Theorem 2.2.3 we get

dim(Sing(X ∩X) ≤ N − 1− dim(X),
i.e.

codim(Sing(X ∩H), X ∩H) ≥ 2 dim(X)−N.
Recall that H ∩ X is a Cohen-Macaulay scheme of dimension dim(X) − 1 and that such a scheme is

reduced as soon as it is generically reduced (R0 + S1 ⇔ R1).
If N ≤ 2 dim(X) − 1, then H ∩ X is a reduced scheme being non-singular in codimension zero and

in particular generically reduced. The condition forces dim(X) ≥ 2, so that it is also connected by Bertini
Theorem.

If N ≤ 2 dim(X)− 2, which forces dim(X) ≥ 3, then H ∩X is also non-singular in codimension 1, so
that it is normal being Cohen-Macaulay. Since it is connected and integral, it is also irreducible. The case of the
Segre 3-fold P1 × P2 ⊂ P5 shows that this last result cannot be improved, since an hyperplane containing a P2

of the ruling yields a reducible, reduced, hyperplane section. Clearly in the same way, ifN ≤ 2 dim(X)−k−1,
k ≥ 0, then X ∩H is connected, Cohen-Macaulay and non-singular in codimension k. We summarize these
result in the following Corollary to the Theorem on Tangencies.

2.2.7. COROLLARY. (Zak) Let X ⊂ PN be a smooth non-degenerate projective variety of dimension n.
Then

(1) if N ≤ 2n− 1, then every hyperplane section is connected and reduced;
(2) if N ≤ 2n− 2, then every hyperplane section is irreducible and normal;
(3) let k ≥ 2. If N ≤ 2n− k− 1, then every hyperplane section is irreducible, normal and non-singular

in codimension k.

2.3. Tangential projections, second fundamental form, tangential invariants of algebraic varieties,
Scorza Lemma and applications

There are several possible equivalent definitions of the projective second fundamental form |IIx,X | ⊆
P(S2(TxX)) of an irreducible projective variety X ⊂ PN at a general point x ∈ X , see for example [IL, 3.2
and end of section 3.5]. We shall use the one related to tangential projections, as in [IL, remark 3.2.11].

Suppose X ⊂ PN is non-degenerate, as always, let x ∈ X be a general point and consider the projection
from TxX onto a disjoint PN−n−1:

πx : X 99KWx ⊆ PN−n−1.
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The map πx is associated to the linear system of hyperplane sections cut out by hyperplanes containing TxX ,
or equivalently by the hyperplane sections of X ⊂ PN singular at x.

Let φ : BlxX → X be the blow-up of X at x, let

E = P((TxX)∗) = Pn−1 ⊂ BlxX

be the exceptional divisor and let H be a hyperplane section of X ⊂ PN . The induced rational map π̃x :
BlxX 99K PN−n−1 is defined along E since X ⊂ PN is not a linear space. Indeed, the restriction of π̃x to
E is given by a linear system in |φ∗(H) − 2E||E ⊆ | − 2E|E | = |OP((TxX)∗)(2)| = P(S2(TxX)). This
means that to a hyperplane section H tangent to X at x we are associating the projectivization of the affine
tangent cone to H ∩X at x. Thus this linear system is empty if and only if the associated quadric hypersurface
in P(TxX)) = Pn−1 has rank 0. If def(X) = k, then a local calculation of Kleiman, see for example [E1,
2.1 (a)], show that the rank of the projectivezed tangent cone to a general tangent hyperplane section at x is a
quadric of rank equal to n − k. Thus π̃ is not defined along E if and only if def(X) = n, i.e. if and only if
X ⊂ PN is a linear subspace.

2.3.1. DEFINITION. The second fundamental form |IIx,X | ⊆ P(S2(TxX)) of a non-degenerate irre-
ducible variety X ⊂ PN at a general point x ∈ X is the non-empty linear system of quadric hypersurfaces in
P((TxX)∗) defining the restriction of π̃x to E.

Clearly dim(|IIx,X |) ≤ N − n− 1 and π̃x(E) ⊆Wx ⊆ PN−n−1. From this point of view the base locus
on E of the second fundamental form |IIx,X | consists of asymptotic directions, i.e. of directions associated to
lines having a contact to order two with X at x. Thus, when X ⊂ PN is defined by equations of degree at most
two, the base locus of the second fundamental form consists of points giving tangent lines contained in X and
passing through x. In this case the base locus scheme of |IIx,X | in E is exactly the locus of lines through x
and contained in X . If X is also smooth, then for general x ∈ X , the variety of lines passign through x can be
naturally identified with a smooth not necessarily irreducible subscheme Yx ⊂ P((TxX)∗) = E.

The following result was classically well known and used repeatedly by Scorza in his papers on secant
defective varieties, see [S1] and [S4].

2.3.2. PROPOSITION. Let X ⊂ PN be a smooth irreducible non-degenerate variety of secant defect
δ(X) = δ ≥ 1 such that SX ( PN . Then

(1) dim(|IIX,x|) = N − n− 1 for x ∈ X general point;
(2) N ≤ n(n+3)

2 and equality holds if and only if |IIX,x| is the complete linear system of quadrics on
P((TxX)∗) = Pn−1.

PROOF. Let notation be as above. To prove part (1) it is sufficient to show that dim(π̃x(E)) = n − δ
because π̃x(E) ⊆Wx. Recall that Wx ⊂ PN−n−1 is a non-degenerate variety of dimension n− δ by Terracini
Lemma.

Let TX = ∪x∈XTxX be the tangential variety to X . The following formula holds:

(2.3.1) dim(TX) = n+ 1 + dim(π̃x(E)),

see [T2] (or [GH, 5.6, 5.7] and [FP, Theorem 3.3.1] for a modern reference).
The variety X ⊂ PN is smooth and secant defective, so that TX = SX by Fulton–Hansen Theorem, see

Corollary 2.2.2. Therefore dim(TX) = 2n+ 1− δ and from (2.3.1) we get dim(π̃x(E)) = n− δ, as claimed.
Since |IIX,x| ⊆ |OPn−1(2)|, we haveN−n−1 ≤ dim(|OPn−1(2)|) =

(
n+1

2

)
−1 and the final statements

of part (1) and part (2) follow. �

We finally introduce some projective invariants of an irreducible non-degenerate variety X ⊂ PN such
that SX ( PN . These invariants measure the tangential behaviour of X ⊂ PN and the relative position of two
general tangent spaces.
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Consider a general point p ∈ SX , p ∈< x, y >, x, y ∈ X general points, and take

TpSX =< TxX,TyX >

.

2.3.3. DEFINITION. The contact locus of TpSX on X , Γp = Γp(X) ⊂ X , is the closure in X of the locus
of smooth points z ∈ X such that TzX ⊆ TpSX .

For a general hyperplane H ⊂ PN containing TpSX , we define the contact locus of H on X ⊂ PN ,
Ξp(H) = Ξp(X,H), as the closure of the locus of smooth points z ∈ X such that TzX ⊆ H .

The contact locus of TpSX on X was called the tangential contact locus of X in [CC1].

By Terracini Lemma and by definition we get

(2.3.2) Σp ⊆ Γp ⊆ Ξp(H)

for every H containing TpSX . A monodromy argument shows that the irreducible components of Γp, respec-
tively of Ξp(H), through x and y are uniquely determined and have the same dimension (and in the second
case that this dimension does not depend on the choice of a general H ⊇ TpSX). We define this dimension as
γ(X), respectively ξ(X). In particular we deduce

δ(X) ≤ γ(X) ≤ ξ(X).

Let
πx : X 99KWx ⊂ PN−n−1

be a general tangential projection and let γ̃(X) be the dimension of the general fiber of the Gauss map

GWx : Wx 99K G(n− δ(X), N − n− 1)

of the irreducible non-degenerate variety Wx = πx(X) ⊂ PN−n−1 of dimension n− δ(X). By definition, for
y ∈ Wx smooth point, GWx

(y) = [TyWx] ∈ G(n − δ(X), N − n − 1), where G(m,M) is the Grassmanian
of projective subspaces of PM of dimension m ≥ 0. Set ξ̃(X) = def(Wx), the dual defect of Wx ⊂ PN−n−1.
Thus

(2.3.3) γ̃(X) ≤ ξ̃(X).

Since dim(Wx) = n− δ(X), a general fiber of πx has pure dimension δ(X).

The following result generalizes the ideas behind the proof of Scorza Lemma, which we shall describe
below.

2.3.4. LEMMA. Let X ⊂ PN be an irreducible non-degenerate variety such that SX ( PN and let
πx : X 99KWx ⊂ PN−n−1 be a general tangential projection. Then:

(1) ξ(X) = δ(X) + ξ̃(X);
(2) γ(X) = δ(X) + γ̃(X);
(3) 0 ≤ γ(X)− δ(X) ≤ ξ(X)− δ(X) ≤ n− 1− δ(X).

PROOF. Let us prove (1) and (3), the proof of (2) being similar. Let notation be as above. Consider πx
also as a map from PN \ TxX to PN−n−1. Define H̃ = πx(H) ⊂ PN−n−1 and let Ξ̂ = πx(Ξp(X)). For
every point z ∈ Ξp(X) \ (TxX ∩X) we get πx(TzX) ⊆ Tπx(z)Wx. Thus a smooth point πx(z) ∈ Wx, with
z ∈ Ξp(X) ∩ Xreg, is contained in the contact locus of H̃ on Wx. Remark that by generic smoothness we
can assume that πx(TyX) = πx(TpSX) = Tπx(y)Wx and that πx(y) is a smooth point of Wx. Therefore Ξ̂
is contained in the contact locus, let us say Ξ̃, of H̃ on Wx, yielding Ξp(X) ⊆ π−1

x (Ξ̃). On the other hand,
by reverting the argument, we immediately see that the irreducible component of π−1

x (Ξ̃) passing through y
coincides with the irreducible component of Ξp(X) passing through y. By the generality assumptions every
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irreducible component of π−1
x (Ξ̃) has dimension dim(Ξ̃) + δ(X) = ξ̃(X) + δ(X), proving part (1). The last

inequality in part (3) follows from the fact that X ⊂ PN is non-degenerate. �

The following theorem of Scorza reveals that (smooth) varieties with good tangential behaviour have as
entry loci quadric hypersurfaces, provided their secant varieties do not fill the ambient space. It easily implies
also [Oh, Proposition 2.1], where another condition assuring the quadratic entry locus property is introduced.

2.3.5. THEOREM. (Scorza Lemma, [S1, footnote pg. 170 Opere Scelte Vol. I] and [S4]) Let X ⊂ PN
be an irreducible non-degenerate variety of secant defect δ(X) = δ ≥ 1 such that SX ( PN . Suppose that a
general tangential projection πx(X) = Wx ⊂ PN−n−1 is an irreducible variety having birational Gauss map,
i.e. γ̃(X) = 0; equivalently suppose that γ(X) = δ. Let y ∈ X be a general point. Then

(i) the irreducible component of the closure of fiber of the rational map πx : X 99K Wx ⊂ PN−n−1

passing through y is either an irreducible quadric hypersurface of dimension δ or a linear space of
dimension δ, the last case occurring only for singular varieties.

(ii) There exists on X ⊂ PN a 2(n − δ)-dimensional family Q of quadric hypersurfaces of dimension δ
such that through two general points of x, y ∈ X there passes a unique quadric Qx,y of the family
Q. Furthermore, the quadric Qx,y is smooth at the points x and y and it consists of the irreducible
components of Σp passing through x and y, p ∈< x, y > general.

(iii) If X is smooth, then a general member of Q is smooth.

PROOF. Let p ∈< x, y > be a general point. Then πx(y) = y′ ∈ Wx and πy(x) = x′ ∈ Wy . By
definition of πx, respectively πy ,

(2.3.4) < TxX,TyX >=< TxX,Ty′Wx >=< Tx′Wy, TyX >

and these linear spaces have dimension 2n+ 1− δ = dim(TpSX) by Terracini Lemma.
The cones S(TxX,Wx) and S(TyX,Wy) contains X . Thus, by (2.3.4), we deduce that Γp is contained in

the the contact locus on S(TxX,Wx) of < TxX,Ty′Wx >, which is < TxX, y
′ >=< TxX, y >, and also in

the contact locus on S(TyX,Wy) of < Tx′Wy, TyX >, which is < TyX,x
′ >=< TyX,x >. This follows

from the the hypothesis on Wx, respectively Wy .
In particular, the irreducible component through y of the contact locus on X of < TxX,Ty′Wx >, re-

spectively the irreducible component through x of the contact locus of < Tx′Wy, TyX >, is contained in
< TxX, y >, respectively < x, TyX >. Thus the irreducible components of Γp through x and through y have
dimension γ(X) = δ, coincide with Σxp and Σyp and are contained in < y, TxX > ∩ < x, TyX >= Pδ+1.

The line < x, y > is a general secant line to X , contained in Pδ+1, so that

{x, y} ⊆< x, y > ∩(Σxp ∪ Σyp) ⊆< x, y > ∩X = {x, y},

where the last equality is scheme-theoretical by Trisecant Lemma. Thus the hypersurface Σxp ∪ Σyp ⊂ Pδ+1

has degree two and the points x, y are smooth points of the quadric hypersurface Σxp ∪ Σyp. Therefore either
Σxp = Σyp is an irreducible quadric hypersurface, or Σxp ∪ Σyp is a rank 2 quadric hypersurface in Pδ+1. Since
Σp is equidimensional, Terracini Lemma implies that Σp \ Sing(X) = (Σxp ∪ Σyp) \ Sing(X).

Let Q be the family of quadric hypersurfaces generated in this way. A count of parameters shows that the
family has dimension 2(n − δ), while the smothness of the entry loci at x and y assures that there is a unique
quadric of the family through x and y.

If X is smooth, the arguments of [FR, pg. 964–966] yield the smoothness of the general entry locus of X .
All the other assertions now easily follow. �

Scorza repeatedly used the above result in [S1] and [S4] when ξ(X) = δ(X) = 1, even if his argument
actually proves Theorem 2.3.5. The fact that varieties with ξ(X) = δ(X) ≥ 1 have quadratic entry loci can
also be obtained via a strengthening of Terracini Lemma, a result proved by Terracini in [T3] and reobtained
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recently by Chiantini and Ciliberto. Before stating this result we remark that for k = 1 it is a consequence of
Scorza Lemma since ν(X) = δ(X) implies γ(X) = δ(X).

2.3.6. THEOREM. ([CC2, Theorem 2.4]) Let X ⊂ PN be an irreducible non-degenerate variety such that
SkX ( PN . Then for general p ∈ SkX we have

dim(< Ξp(H) >) = (k + 1)(νk(X)− n) + sk(X)

and moreover SkΞp(H) =< Ξp(H) > .

We now state an important and well known consequence of Scorza Lemma, or of Theorem 2.3.6, whose
proofs usually are somehow more technical and less transparent. This has been considered by Severi, [Sev],
Scorza, [S1] and Edwards, [Ew], in different statements and formulations.

2.3.7. COROLLARY. Let X ⊂ PN be an irreducible non-degenerate variety of dimension n ≥ 2 such
that dim(SkX) = n + 2k for some k ≥ 1 and such that N ≥ n + 2k + 1 (equivalently SkX ( PN ). Let
b = dim(Vert(X)). Then either b = n − 1 and X ⊂ PN is a cone over a curve or k = 1, N = n + 3,
b = n− 3 and X ⊂ Pn+3 is a cone over a Veronese surface in P5.

PROOF. Exercises 2.4.1 and 2.4.2. �

Now we are in position to provide a suitable generalization for smooth varieties of the characterization of
the Veronese surface, [Sev], we have just proved. This result was firstly obtained by Zak during the classifica-
tion of Scorza varieties of secant defect δ = 1, see [Z2, Chapter V], in a different way. The proof presented
below, based on tangential projections and its connections with the second fundamental form, has the advan-
tage of revealing a very interesting parallel with the proof of the well known non-embedded characterization
of Pn, due to Mori [Mo2], as the unique smooth variety with ample tangent bundle. Thus this proof reveals the
first instance of the importance of studying rational curves naturally appearing on secant defective varieties,
their relations with the second fundamental form and with tangential projections. All the ideas behind this
proof are essentially due to Scorza, see [S4], who always considered the class of irreducible, not necessarily
smooth, secant defective varieties and who firstly realized the importance of the conic connectedness condition
for embedded varieties.

2.3.8. COROLLARY. Let X ⊂ PN , N ≥ n(n+3)
2 , be a smooth non-degenerate variety of secant defect

δ(X) ≥ 1. Then N = n(n+3)
2 and X ⊂ P

n(n+3)
2 is projectively equivalent to ν2(Pn) ⊂ P

n(n+3)
2 .

PROOF. Exercise 2.4.4. �

In the following definition, we consider varieties having the simplest entry locus.

2.3.9. DEFINITION. A smooth irreducible non-degenerate projective variety X ⊂ PN is said to be a
quadratic entry locus manifold of type δ ≥ 0, briefly a QEL-manifold of type δ, if for general p ∈ SX the entry
locus Σp(X) is a quadric hypersurface of dimension δ = δ(X).

Let us remark that the Trisecant Lemma ensures that, as soon as Cp(X) is a linear space and codim(X) ≥
2, the general entry locus Σp(X), being a hypersurface in Cp(X), is necessarily a quadric hypersurface. More-
over, the smoothness of the general entry locus of a QEL-manifold is a consequence of the smoothness of X
(see for example [FR, pp. 964–966]).

The next result, which is contained in [Ve], shows that the class of QEL-manifolds is sufficiently large and
interesting.

2.3.10. PROPOSITION ([Ve]). A smooth non-degenerate variety X ⊂ PN , scheme theoretically defined by
quadratic equations whose Koszul syzygies are generated by linear ones, is a QEL-manifold.
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The class of QEL-manifolds is not stable under isomorphic projection. So, we extend this notion in the
next:

2.3.11. DEFINITION. A smooth irreducible non-degenerate projective varietyX ⊂ PN is said to be a local
quadratic entry locus manifold of type δ ≥ 0, briefly an LQEL-manifold of type δ, if, for general x, y ∈ X
distinct points, there is a quadric hypersurface of dimension δ = δ(X) contained in X and passing through
x, y.

Note that, for δ = 0, being an LQEL-manifold imposes no restriction on X .
A further generalization is given by the following class of manifolds.

2.3.12. DEFINITION (cf. also [KS]). A smooth irreducible non-degenerate projective variety X ⊂ PN is
said to be a conic-connected manifold, briefly a CC-manifold, if through two general points of X there passes
an irreducible conic contained in X .

Smooth cubic hypersurfaces in P4 are CC-manifolds, which are not LQEL-manifolds, so that the classes
are all distinct.

2.3.13. LEMMA. LetX be an LQEL-manifold with δ(X) > 0 and let x, y ∈ X be general points. There is
a unique quadric hypersurface of dimension δ, say Qx,y , passing through x, y and contained in X . Moreover,
Qx,y is irreducible.

PROOF. Uniqueness follows from the fact that the general entry locus passing through two general points
is smooth at these points (see e.g. [HR, Proposition 3.3]). To see thatQx,y is irreducible, we may assume δ = 1
by passing to general hyperplane sections (see Proposition 2.3.14 below). Assume first that X is covered by
lines passing through x. Being also smooth, X is a linear space, so it is not an LQEL-manifold. Otherwise,
after suitable normalization, the family of conics through x is generically smooth and the result follows. �

A monodromy argument shows that ifX is an LQEL-manifold, the general entry locus is a union of quadric
hypersurfaces of dimension δ. Let us collect some consequences of the above definitions in the following
proposition, whose easy proof is left to the reader.

2.3.14. PROPOSITION. Let X ⊂ PN be an irreducible non-degenerate smooth projective variety.
(i) If X is a QEL-manifold and SX = PN , then X is linearly normal.

(ii) If X ′ ⊂ PM , M ≤ N − 1, is an isomorphic projection of X , then X ′ is an LQEL-manifold if and
only if X is an LQEL-manifold.

(iii) If X is an (L)QEL-manifold of type δ ≥ 1, then a general hyperplane section is an (L)QEL-manifold
of type δ − 1.

All examples of LQEL-manifolds we are aware of are got by isomorphic projections of QEL-manifolds.
Therefore, we would like to ask: Is any linearly normal LQEL-manifold a QEL-manifold?

2.3.15. LEMMA. ([Ru2, Lemma 1.6]) Let X ⊂ PN be a smooth irreducible non-degenerate variety, and
assume δ > 0. The irreducible components of the closure of a general fibre of πx are not linear.

PROOF. We may assume by passing to linear sections δ(X) = 1. Let l be a line, passing through a general
point y ∈ X , which is an irreducible component of the closure of a general fibre of πx. By Terracini Lemma
Tx(X)∩Ty(X) is a point, say px,y . Since l ⊂ 〈Tx(X), y〉 ∩Ty(X), px,y ∈ l. By symmetry there is also a line
l′ in 〈Ty(X), x〉 ∩X , x ∈ l′, px,y ∈ l′. So, l ∪ l′ is a conic contained in the plane 〈x, y, px,y〉 passing through
x, y. Reasoning as in the proof of Lemma 2.3.13 we find a contradiction. �

2.4. Exercises

2.4.1. EXERCISE. Let X ⊂ PN be a subvariety such that for some k ≥ 1 the variety SkX ⊂ PN has
dimension n+ 2k < N .
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(1) Apply Exercise 1.6.2 to conclude that dim(SX) = n+ 2 < N ;
(2) Prove that for general x ∈ X the tangential projection is an irreducible curve so that γ̃(X) = 0.

Apply Scorza Lemma and Exercise 1.6.4 to deduce that either X ⊂ PN is a cone over a curve or
N = n + 3 and X ⊂ Pn+3 is a cone of vertex a linear subspace of dimension n − 3 over an
irreducible non-degenerate surface S ⊂ P5 with an irreducible two dimensional family of conics
such that through two general points of S there passes a unique conic of this family.

2.4.2. EXERCISE. Show that S ⊂ P5 as in the item above is projectively equivalent to the Veronese surface
in P5, concluding the proof of a famous Theorem of Severi, [Sev], via the following steps:

(1) SinceWx ⊂ P2 is a non-degenerate irreducible curve and since through two general points of S there
passes an irreducible conic, thenWx ⊂ P2 is an irreducible conic being a linear projection of a conic.

(2) Thus the tangential projection of a conic passing through a general point z is an isomorphism onto
Wx. The conic through x and z is contracted by πx so that the intersection of two general conics of
the family is transversal and consists of a unique point, see also the proof of Corollary 3.1.8.

(3) Deduce by the above description that the restriction of π̃x to the exceptional divisor of Blx S → Wx

is an isomorphism given by the complete linear system |OP1(2)|. Conclude that there is no line
through x, so that every conic of the family passing through x is irreducible.

(4) Let Cx ⊂ Hilb2t+1
x (S) be an irreducible (rational) curve parametrizing conics of the family passing

through a general point x ∈ S. After normalizing and after letting C̃x → C be the normalization
morphism, we can suppose that we have the following diagram:

F

π

��

φ

  @
@@

@@
@@

@

C̃x X,

where F is a smooth surface such that π : F → C̃x is a P1–bundle and φ is birational.
(5) The fibers of π are sent into conics through x, while the strict transform on F of general conics

through a general point z are sent into sections of π disjoint from the tautological section E =
φ−1(x), which is contracted to the smooth point x. Deduce that F → P1 is isomorphic to F1 → P1

as P1-bundles. If f is a class of a general fiber, then i ◦ φ : F1 → P5 is given by the linear system
2(E + f).

(Hint: if H ⊂ P5 is a hyperplane, then φ∗(H) = αE + βf ; thus 2 = f · φ∗(H) = α and
0 = φ∗(H) · E = −2e + β; E′ section such that E · E′ = 0, yields E′ = E + ef so that
2 = 2(E + ef)2 finally yields e = 1).

(6) Conclude S ' P2 and OS(1) ' OP2(2).

2.4.3. EXERCISE. Let X ⊂ PN be an irreducible closed subvariety. Suppose there exists a proper family
Cx of smooth conics passing through a point x and let Vx ⊆ X be the locus described by the conics in Cx.
Prove via the following steps that through every point y ∈ Vx \x there passes at most a finite number of conics
in Cx (if you are interested in, prove directly that there exists a unique conic through every such y!).

(1) Suppose there exists infinitely many smooth conics through x and such a y. Then we can construct
the following diagram:

F

π

��

φ

!!B
BB

BB
BB

B

C̃x,y X,
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where F is a smooth surface, C̃x,y is a smooth curve and π : F → C̃x,y is a P1–bundle having two
sections: Ex=conics through x and Ey=conics through y.

(2) Apply Hodge index Theorem toEx, Ey and the class f of a fiber of π to obtain a contradiction (recall
that E2

x < 0 and E2
y < 0 since they are contracted by φ).

2.4.4. EXERCISE. We shall prove Corollary 2.3.8 in several steps.

(1) Proposition 2.3.2 furnishes N = n(n+3)
2 , X ⊂ PN linearly normal and that through x there passes

no line contained in X (a line contained in X and passing through x clearly furnishes a base point of
|IIx,X |).

(2) Then πx(X) = Wx ⊂ P
(n−1)(n+2)

2 is projectively equivalent to ν2(Pn−1) ⊂ P
(n−1)(n+2)

2 , being equal
to π̃x(E).

(3) Scorza Lemma implies that X ⊂ P
n(n+3)

2 has an irreducible family Cx of dimension 2n − 2 of
irreducible conics such that through 2 general points of X there passes a unique conic of the family.

(4) Consider the diagram

F
π

��

φ

  A
AA

AA
AA

A

Cx X,

where F is the unversal family and φ is the tautological morphism. Let Ẽ = φ−1(x), scheme
theoretically.

(5) Every conic in Cx, is smooth by item 1) so that through every point of X \ x there passes a unique
conic of Cx by Zariski’s Main Theorem and by Exercise 2.4.3, i. e. φ is an isomorphism between
F \ Ẽ and X \ x, contracting Ẽ to a point.

(6) Given an arbitrary point y ∈ X\x, there exists a unique smooth conic through x and y, which implies
(TxX ∩X)red = x and that π̃x : BlxX → Wx is a morphism. Thus given a conic through x and a
tangential direction through x there exists a unique smooth conic through x tangent to this direction.

(7) Prove that φ : F → X factors through BlxX → X inducing an isomorphism between Ẽ and E.
Conclude that F ' BlxX and that Ẽ ' Pn−1.

(8) Conclude that Blx(X)→ Pn−1 is isomorphic over Pn−1 to P(OPn−1⊕OPn−1(−1)), see for example
[Ko, Lemma V.3.7.8]. In conclusion, X is isomorphic to Pn and the embedding is clearly given by
the complete linear system |OPn(2)|.



CHAPTER 3

Hartshorne’s conjectures, LQEL–manifolds, Severi varieties and
Scorza varieties

3.1. Hartshorne’s conjectures and a refinement of Zak’s theorem on linear normality

After the period in which new and solid foundations to the principles of algebraic geometry were rebuilt
especially by Zariski, Grothendieck and their schools, at the beginning of the ’70 a new trend began. There
was a renewed interest in solving concrete problems and in finding applications of the new methods and ideas.
One can consult the beautiful book of Robin Hartshorne, [H1], to have a picture of that situation. In [H1]
many outstanding questions, such as the set-theoretic complete intersection of curves in P3 (still open), the
characterization of PN among the smooth varieties with ample tangent bundle (solved by Mori in [Mo1] and
which cleared the path to the foundation of Mori theory, [Mo2]) were discussed, or stated, and a lot of other
problems solved. In related fields we only mention Deligne proof of the Weil conjectures or later Faltings proof
of the Mordell conjecture, which used the new machinery.

The interplay between topology and algebraic geometry returned to flourish. Lefschetz Theorem and
Barth-Larsen Theorem, also suggested that smooth varieties, whose codimension is small with respect to their
dimension, should have very strong restrictions both topological, both geometrical. To have a feeling we remark
that a codimension 2 smooth complex subvariety of PN , N ≥ 5, has to be simply connected for example. If
N ≥ 6, there are no known examples of codimension 2 smooth varieties with the exception of the trivial ones,
the complete intersection of two hypersurfaces, i.e. the transversal intersection of two hypersurfaces, smooth
along the subvariety. In fact, at least for the moment, one is able to construct only these kinds of varieties whose
codimension is sufficiently small with respect to dimension. Let us recall the following definition and some
notable properties of complete intersections analogous to varieties whose codimension is small with respect to
dimension.

3.1.1. DEFINITION. (Complete intersection) A variety X ⊂ PN of dimension n is a complete intersec-
tion if there exist N − n homogeneous polynomials fi ∈ K[X0, . . . , XN ] of degree di ≥ 1, generating the
homogeneous ideal I(X) ⊂ K[X0, . . . , XN ], i.e. I(X) =< f1, . . . , fN−n > .

Let us recall that since f1, . . . , fN−n form a regular sequence in K[X0, . . . , XN ], the homogeneous coor-
dinate ring

S(X) =
K[X0, . . . , XN ]

I(X)

has depth n + 1, i.e. X ⊂ PN is an arithmetically Cohen-Macaulay variety. Thus a complete intersection
X ⊂ PN is projectively normal, i.e. the restriction morphisms

H0(OPN (m))→ H0(OX(m))

are surjective for every m ≥ 0, so that X is connected, and Hi(OX(m)) = 0 for every i such that 0 < i <
n and for every m ∈ Z. Moreover, by Grothendieck theorem on complete intersections, Pic(X) ' Z <
OX(1) >, as soon as n ≥ 3, see [H1]. By Lefschetz theorem complete intersections defined over K = C
are simply connected, as soon as n ≥ 2 and have the same cohomology Hi(X,Z) of the projective spaces
containing them for i < n.

43
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Based on some empirical observations, inspired by the Theorem of Barth and Larsen and, according to
Fulton and Lazarsfeld, ”on the basis of few examples”, Hartshorne was led to formulate the following conjec-
tures.

3.1.2. CONJECTURE. (1st Conjecture of Hartshorne, or Complete Intersection Conjecture, [H2]) Let
X ⊂ PN be a smooth irreducible non-degenerate projective variety.

If N <
3
2

dim(X), i.e. if codim(X) <
1
2

dim(X), then X is a complete intersection.

Let us quote Hartshorne: While I am not convicted of the truth of this statement, I think it is useful to
crystallize one’s idea, and to have a particular problem in mind ([H2]).

Hartshorne immediately remarks that the conjecture is sharp, due to the examples of the Grassmann variety
of lines in P4, G(1, 4) ⊂ P9, Plücker embedded, and of the spinorial variety of dimension 10, S10 ⊂ P15;
moreover, the examples of cones over curves in P3, not complete intersection, reveals the necessity of the
non-singularity assumption. Varieties for which N = 3

2 dim(X) and which are not complete intersection are
usually called Hartshorne varieties. It is not a case that these varieties are homogeneous since a technique
for constructing varieties of not too high codimension is exactly via algebraic groups, see for example [Z2,
Chapter 3] or the appendix to [LV].

One of the main difficulties of the problem is a good translation in geometrical terms of the algebraic
condition of being a complete intersection and in general of dealing with the equations defining a variety.

It is not here the place to remark how many important results originated and still today arise from this open
problem in the areas of vector bundles on projective space, of the study of defining equations of a variety and
k-normality and so on. The list of these achievements is too long that we preferred to avoid citations, being
confident that everyone has met sometimes a problem or a result related to this conjecture.

Let us recall the following definition.

3.1.3. DEFINITION. (Linear normality) A non-degenerate irreducible variety X ⊂ PN is said to be
linearly normal if the linear system of hyperplane sections is complete, i.e. if the injective, due to non-
degenerateness, restriction morphism

H0(OPN (1)) r→ H0(OX(1))

is surjective and hence an isomorphism.
If a variety X ⊂ PN is not linearly normal, then the complete linear system |OX(1)| is of dimension

greater than N and embeds X as a variety X ′ ⊂ PM , M > N . Moreover, there exists a linear space L =
PM−N−1 such that L ∩ X ′ = ∅ and such that πL : X ′ → X ⊂ PN is an isomorphism. Indeed, if V =
r(H0(OPN (1))) ( H0(OX(1)) and if U ⊂ H0(OPN (1)) is a complementary subspace of V in H0(OPN (1)),
the one can take PM = P(H0(OPN (1))), L = P(U) and the claim follows from the fact that πL : X ′ ' X →
X ⊂ PN = P(V ) is given by the very ample linear system |V |. On the contrary, if X is an isomorphic linear
projection of a variety X ′ ⊂ PM , M > N , then X is not linearly normal.

In the same survey paper Hartshorne posed another conjecture, based on the fact that complete intersections
are linearly normal and on some examples in low dimension.

3.1.4. CONJECTURE. (2nd Conjecture of Hartshorne, or Linear Normality Conjecture, [H2]) Let
X ⊂ PN be a smooth irreducible non-degenerate projective variety.

If N <
3
2

dim(X) + 1, i.e. if codim(X) <
1
2

dim(X) + 1, then X is linearly normal.
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Recalling proposition 1.2.7 and the above discussion, we can equivalently reformulate it by means of secant
varieties putting ”N = N + 1”.

If N <
3
2

dim(X) + 2, then SX = PN .

Let us quote once again Hartshorne point of view on this second problem: Of course in settling this
conjecture, it would be nice also to classify all nonlinearly normal varieties with N = 3n

2 + 1, so as to have
a satisfactory generalization of Severi’s theorem. As noted above, a complete intersection is always linearly
normal, so this conjecture would be a consequence of our original conjecture, except for the case N = 3n

2 . My
feeling is that this conjecture should be easier to establish than the original one ([H2]). Once again the bound
is sharp taking into account the example of the projected Veronese surface in P4.

The conjecture on linear normality was proved by Zak at the beginning of the ’80’s and till now it is the
major evidence for the possible truth of the complete intersection conjecture. As we shall see Conjecture 3.1.4
is now an immediate consequence of Terracini Lemma and of Theorem 2.2.1. Later we will furnish another
proof of this theorem, cfr. Theorem 3.4.5.

3.1.5. THEOREM. (Zak Theorem on Linear Normality) Let X ⊂ PN be a smooth non-degenerate
projective variety of dimension n. If N < 3

2n + 2, then SX = PN . Or equivalently if SX ( PN , then
dim(SX) ≥ 3

2n+ 1 and hence N ≥ 3
2n+ 2.

PROOF. Suppose that SX ( PN , then there exists a hyperplaneH containing the general tangent space to
SX , let us say TzSX . Then by Corollary 1.3.6, the hyperplane H is tangent to X along Σz(X), which by the
generality of z has pure dimension δ(X) = 2n+1−dim(SX). Since T (Σz(X), X) ⊆ H , the non-degenerate
variety S(Σz(X), X) ⊇ X is not contained in H , yielding T (Σz(X), X) 6= S(Σz(X), X). By Theorem 2.2.1
we get

2n+ 1− dim(SX) + n+ 1 = dim(S(Σz(X), X)) ≤ dim(SX),
i.e.

3n+ 2 ≤ 2 dim(SX)
implying

N − 1 ≥ dim(SX) ≥ 3
2
n+ 1.

�

Now we are in position to provide a slight refinement of Zak’s Linear Normality Theorem, [Z2, Theorem
2.8]. The proof is essentially identical to Zak’s one but it reveals the importance of the projective invariants de-
fined above. This new bound also strengthens the bound for smooth varieties obtained by Landsberg involving
γ̃(X) = γ(X)− δ(X), which equals dim(Fv) in Landsberg notation, see [L1] and also [IL, 3.15].

3.1.6. THEOREM. Let X ⊂ PN be an irreducible non-degenerate variety such that SX ( PN . Let
b = dim(Sing(X)), ξ = ξ(X) and δ = δ(X). Then:

(3.1.1) dim(SX) ≥ 3
2
n+

1− b
2

+
ξ − δ

2
;

(3.1.2) N ≥ 3
2
n+ 1 +

1− b
2

+
ξ − δ

2
;

(3.1.3) n ≤ 1
3

(2N + b− (ξ − δ))− 1.

In particular if X ⊂ PN is also smooth, then

(3.1.4) dim(SX) ≥ 3
2
n+ 1 +

ξ − δ
2

;
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(3.1.5) N ≥ 3
2
n+ 2 +

ξ − δ
2

and

(3.1.6) n ≤ 2(N − 2)
3

− ξ − δ
3

.

PROOF. If ξ ≤ b+ 1, then

dim(SX) >
3
2
n+

1− b
2

+
ξ − δ

2
,

so that we can assume ξ ≥ b+ 2 and hence n ≥ b+ 3.
Fix a general p ∈ SX and consider a general hyperplane H ⊂ PN containing TpSX . By definition H

is tangent to X along Ξp \ Sing(X). Consider a general L = PN−b−1 and set X̂ = X ∩ L, Ξ̂p = Ξp ∩ L
and Ĥ = H ∩ L. The variety X̂ ⊂ PN−b−1 = L is smooth, irreducible and non-degenerate of dimension
n − b − 1 ≥ 2, while the hyperplane Ĥ = PN−b−2 is tangent to X̂ along the variety Ξ̂p, whose dimension is
ξ − b− 1 ≥ 1.

Since X̂ ⊂ L is non-degenerate and contained in S(Ξ̂p, X̂), we get S(Ξ̂p, X̂) 6= T (Ξ̂p, X̂), where
T (Ξ̂p, X̂) := ∪y∈bΞpTyX̂ ⊆ Ĥ . Therefore by applying Theorem 2.2.1 to S(Ξ̂p, X̂) we deduce that

dim(SX)− b− 1 = dim(SX ∩ L) ≥ dim(SX̂) ≥ dim(S(Ξ̂p, X̂)) =

= dim(Ξ̂p) + dim(X̂) + 1 = (ξ − b− 1) + (n− b− 1) + 1.

Hence

2n+ 1− δ ≥ n+ ξ − b = n+ δ + ξ̃ − b,
where ξ̃ = ξ − δ, that is

δ ≤ n+ b+ 1− ξ̃
2

.

Thus

dim(SX) = 2n+ 1− δ ≥ 3
2
n+

1− b
2

+
ξ̃

2
=

3
2
n+

1− b
2

+
ξ − δ

2
.

Since SX ( PN , we deduce N ≥ dim(SX) + 1, which combined with the above estimates yields
n ≤ 1

3 (2N + b− (ξ − δ))− 1. The other assertions are now obvious. �

We recall the notion of Severi variety, [Z2].

3.1.7. DEFINITION. A smooth non-degenerate irreducible variety X ⊂ P 3
2n+2 of dimension n such that

SX ( P 3
2n+2 is called a Severi variety.

Theorem 3.1.6 implies that a Severi variety X ⊂ P 3
2n+2 has ξ(X) = γ(X) = δ(X) = n

2 and that
SX ( P 3

2n+2 is a hypersurface.
With these powerful instruments at hand we can immediately prove, via Scorza Lemma, the following

interesting corollary, in a way slightly different from [Z2, IV.2.1, IV.3.1, IV.2.2].

3.1.8. COROLLARY. Let X ⊂ P 3
2n+2 be a Severi variety. Then

(i) X ⊂ P 3
2n+2 is a LQEL-variety of type δ = n

2 .
(ii) The image of a general tangential projection of X , πx(X) = Wx ⊂ Pn

2 +1, is a smooth quadric
hypersurface.

(iii) Given three general points x, y, z ∈ X , let Qx,z , respectively Qy,z , be the smooth quadrics passing
through x and z, respectively y and z. Then Qx,z ∩Qy,z = z, the intersection being transversal.
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PROOF. As we observed above, for a Severi variety we have ξ(X) = γ(X) = δ(X) = n
2 due to Theorem

3.1.6. The conclusion of the first part follows from Scorza Lemma.
The proof of Theorem 3.1.6 yields SX = S(Σq, X) for a general q ∈ SX . From Terracini Lemma we get

TxX∩TwΣq = ∅ for a general x ∈ X and for a general w ∈ Σq . Thus dim(πx(Σq)) = n
2 for q ∈ SX general.

Since πx(X) = Wx has dimension n
2 , we deduce that πx(Σq) = Wx for q ∈ SX general. Therefore the variety

Wx ⊂ Pn
2 +1 is a quadric hypersurface, being a hypersurface and also a non-degenerate linear projection of a

quadric hypersurface. The smoothness of Wx follows from 0 = ξ̃(X) = def(Wx). In particular the restriction
of πx to Σq is an isomorphism. Scorza Lemma also yields Σp = π−1

x (πx(z)). Take q ∈< y, z > general and
consider Σq . From the previous analysis πx|Σq : Σq →Wx is an isomorphism so that Σq intersects Σp only at
z, the intersection being transversal. �

Clearly the dimension n of a Severi variety X ⊂ P 3
2n+2 is even so that the first case to be considered is

n = 2. These are smooth surfaces in P5 such that SX ( P5. They were completely classified in the classical
and well known theorem of Severi, [Sev], which is Corollary 2.3.7 here, saying thatX is projectively equivalent
to the Veronese surface ν2(P2) ⊂ P5. This justifies the name given by Zak to such varieties. By Theorem 3.1.5,
it follows that SX ⊂ P 3

2n+2 is necessarily an hypersurface, i.e. dim(SX) = 3
2n+ 1.

In Exercise 1.6.1 we showed that the Segre variety X = P2 × P2 ⊂ P8 is an example of Severi variety of
dimension 4. Indeed N = 8 = 3

2 · 4 + 2 and SX is a cubic hyersurface, see loc. cit.. By the classical work of
Scorza, last page of [S1], it turns out that P2 × P2 is the only Severi variety of dimension 4. We shall provide
a short, geometrical and elementary proof of this fact later, see Theorem 3.3.12.

The realization of the Grassmann variety of lines in P5 Plücker embedded, X = G(1, 5) ⊂ P14, as the
variety given by the pfaffians of the general antisymmetric 6× 6 matrix, yields that G(1, 5) is a Severi variety
of dimension 8 such that its secant variety is a degree 3 hypersurface, see for example [Ha, pg. 112 and pg.
145] for the last assertion.

A less trivial examples is a variety studied by Elie Cartan and also by Room. It is a homogeneous complex
variety of dimension 16, X ⊂ P26, associated to the representation of E6 and for this reason called E6-variety,
or Cartan variety by Zak. It has been shown by Lazarsfeld and Zak that its secant variety is a degree 3
hypersurface, see for example [LV] and [Z2, Chapter 3].

There is a unitary way to look at these 4 examples, by realizing them as ”Veronese surfaces over the
composition algebras over K”, K = K and char(K)=0, [Z2, Chapter 3]. Let U0 = K, U1 = K[t]/(t2 + 1),
U2 = quaternion algebra over K, U3 = Cayley algebra over K. For K = C, we get R, C, H and the octonions
numbers O. Let Ii, i = 0, . . . , 3, denote the Jordan algebra of Hermitian (3×3)-matrices over Ui, i = 0, . . . , 3.
A matrix A ∈ Ii is called Hermitian if A

t
= A, where the bar denotes the involution in Ui. Let

Xi = {[A] ∈ P(Ii) : rk(A) = 1 } ⊂ P(Ii).

Then

Ni = dim(P(I)) = 3 · 2i + 2, ni = dim(Xi) = 2i+1 = 2 dimK(Ui),

and

SX = {[A] ∈ P(Ii) : rk(A) ≤ 2 } = V (det(A)) ⊂ P(Ii)

is a degree 3 hypersurface. By definition Xi ⊂ P(Ii) is a Severi variety of dimension 2i+1, which is seen to be
one of the above examples.

A Theorem of Jacobson states that over a fixed algebraically closed field K there are only four Jordan
algebras, the algebras Ui’s, and hence these are the only examples which can be constructed in this way.

The highly non-trivial and very beautiful result, which is essentially equivalent to Jacobson Classification
Theorem, is the following beautiful result firstly proved by Zak in [Z1].
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3.1.9. THEOREM. (Zak’s Classification of Severi varieties, [Z1], [Z2], [LV], [L1], [Ru2, Corollary 3.2]
or Theorem 3.3.12 here) Let X ⊂ P 3

2n+2 be a Severi variety of dimension n, defined over an algebraically
closed field K of characteristic 0. Then X is projectively equivalent to one of the following:

(1) the Veronese surface ν2(P2) ⊂ P5;
(2) the Segre 4-fold P2 × P2 ⊂ P8;
(3) the Grassmann variety G(1, 5) ⊂ P14;
(4) the E6-variety X ⊂ P26.

We shall obtain this classification result as part of the classification of LQEL-manifolds of type δ = n
2

proved in Theorem 3.3.12 below.

3.2. Basics of deformations theory of (smooth) rational curves on smooth projective varieties

In this section we recall some definitions and results concerning the parameter spaces of rational curves
on smooth algebraic varieties. These notions will be immediately applied to some explicit problems in the
next sections. The standard reference for the most technical results is the book [Ko]. A more geometrical and
simpler introduction to the subject (and containing almost all the results needed here) is contained in [De1] (see
also [De2]). Another recent and very interesting source for the theory of Hilbert Schemes and for Deformation
Theory of more general varieties is the book [Sr].

Let us begin with the basic definitions.

3.2.1. DEFINITION. Let P (t) =
∑d
i=0 ai

(
t+d
i

)
∈ Q[t] be a numerical polynomial of degree d ≥ 0, i. e.

ai ∈ Z for every i = 0, . . . d and ad 6= 0. Let T be a fixed scheme, which in many applications will simply be
Spec(K) with K an algebraically closed field. Let X be a scheme projective over T and letO(1) be a φ-ample
line bundle, where φ : X → T is the structural morphism. Let

HilbPT (X) : {T − Schemes}o → Sets

be the contravariant functor defined for every T -scheme S by

HilbPT (X)(S) = {χ ⊂ S ×T X},

the set of subchemes of S ×T X , proper and flat over S and such that χs has Hilbert polynomial P = P (t)
relative to O(1) for every s ∈ S. When T = Spec(K) we set HilbP (X) = HilbPSpec(K)(X).

If the functor HilbPT (X) is representable, we indicate by HilbPT (X) the T -scheme representing it and
called the Hilbert scheme of closed T -subvarieties of X with Hilbert polynomial P = P (t).

If HilbPT (X) exists, there is a universal family χP ⊂ X ×T HilbPT (X) proper and flat over HilbPT (X)
such that for every T -scheme S and for every χ ∈ HilbPT (X)(S) there exists a unique T -morphism f : S →
HilbP (X) such that

χ = S ×HilbP (X) χ
P ⊂ S ×T X,

via the base change induced by f .
Finally we can define the Hilbert scheme of X as

HilbT (X) = qP HilbPT (X).

For every W ∈ HilbPT (X)(T ), we have a unique morphism f : T → HilbP (X) such that

W = T ×HilbP (X) χ
P ⊂ T ×T X ' X.

If T = Spec(K), let us indicate by [W ] = f(Spec(K)) ∈ HilbP (X)(K). In this case, the above tautological
non-sense means exactly that the restrictions of the obvious projections to the factors define a tautological
diagram
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(3.2.1)

χP

π

��

φ

##H
HHHHHHHHH

HilbP (X) X,

such that φ(π−1([W ])) = W as schemes.

The first important and rather difficult result in the theory of Hilbert scheme is the following Existence
Theorem, see for example [Ko, I.1.4] or [Sr, Theorem 4.3.4].

3.2.2. THEOREM. For every scheme X projective over T and for every numerical polynomial P (t), the
Hilbert scheme HilbPT (X) exists and it is projective over T . In particular HilbP (X) is projective over K
for every scheme X projective over K, so that under these hypothesis it has a finite number of irreducible
components.

It is well known that in general HilbP (X) is neither irreducible nor reduced so that it is important to
analyze its scheme structure, locally and globally.

Let g : Spec(K[ε]/(ε2)) → HilbP (X) such that g(Spec(K)) = [W ], where K is the residual field at the
unique closed point of Spec(K[ε]/(ε2)). Then it is well known that such g’s correspond to tangent vectors to
HilbP (X) at [W ], i.e.

T[W ] HilbP (X) = HilbP (X)(Spec(K[ε]/(ε2)).

Let IW /I2
W be the conormal bundle of W in X and let NW/X = (IW /I2

W )∗ be the normal bundle of W
in X . A fundamental result in the infinitesimal study of Hilbert schemes is the following, see [Ko, I.2.15] and
[Sr, Theorem 4.3.5].

3.2.3. THEOREM. Let X be a scheme projective over K. Then:
(1)

T[W ] HilbP (X) = H0(NW/X).

In particular dim[W ](HilbP (X)) ≤ h0(NW/X).
(2)

dim[W ](HilbP (X)) ≥ h0(NW/X)− h1(NW/X).

In particular if h1(NW/X) = 0, then

dim[W ](HilbP (X)) = h0(NW/X),

HilbP (X) is smooth at [W ] so that under this hypothesis there exists an unique irreducible compo-
nent of HilbP (X) containing [W ].

3.2.4. DEFINITION. For a closed subscheme Z ⊂ X of a scheme X projective over K, we can define the
contravariant functor

HilbP,Z(X) : {K − Schemes}o → Sets

which to every K-scheme S associates the set

HilbP,Z(X)(S) = {χ ⊂ S ×K X},
of flat families of closed subschemes of X parametrized by S, having Hilbert polynomial P = P (t) and such
that Z ∩ χs 6= ∅ for every s ∈ S(K).

The functor HilbP,Z(X) is representable by a closed subscheme HilbP,Z(X) ⊆ HilbP (X) called the
Hilbert scheme of subvarieties of X with Hilbert polynomial P = P (t) and intersecting Z. If Z consists of
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a finite number of points (this will always be the case in which we shall use this scheme), then we shall call
it the Hilbert scheme of subvarieties of X with Hilbert polynomial P = P (t) and passing through Z and for
Z = x ∈ X a point we set HilbPx (X) = HilbP,x(X), respectively Hilbx(X) = Hilbx(X), being sure that no
confusion will arise for this abuse of notation and that everyone will agree that this is not the case T = x!

As before, there is a universal family χPZ ⊂ X×HilbP,Z(X), flat over HilbP,Z(X), of closed subschemes
of X such that for every scheme S and for every χ ∈ HilbP,Z(X)(S) there exists a unique morphism f : S →
HilbP,Z(X) such that this base change induces the equality

χ = S ×HilbP,Z(X) χ
P
Z ⊂ S ×X.

For HilbP,Z(X) there are results analogous to those of Theorem 3.2.2 and of Theorem 3.2.3, which will
not be recalled here since we shall describe them for rational curves on a smooth variety from a different point
of view we now introduce.

3.2.5. DEFINITION. Let Y be a projective scheme over the fixed algebraically closed field K and let X
be a scheme quasi-projective over K. Fix an ample line bundle H = O(1) on X , a numerical polynomial
P (t) ∈ Q[t] and for every morphism f : S ×K Y → S ×K X let fs : Y → X be the morphism induced by
base extension by a point s ∈ S(K). Let

HomP (Y,X) : {K − Schemes}o → Sets

be the contravariant functor defined for every K-scheme S by

HomP (Y,X)(S) = {f : S ×K Y → S ×K X}

such that χ(f∗s (O(m)) = P (m) for m sufficiently large and for every s ∈ S(K). Then HomP (Y,X) is called
the functor of morphism from Y to X with Hilbert polynomial P .

If the functor HomP (Y,X) is representable, we indicate by HomP (Y,X) the scheme representing it and
called the scheme of morphism from Y to X with Hilbert polynomial P = P (t).

If HomP (Y,X) exists, there is a universal morphism

ev : Y ×HomP (Y,X)→ X

such that for every K-scheme S and for every g : Y ×K S → X ×K S ∈ HomP (Y,X)(S) there exists a
unique K-morphism g̃ : S → HomP (Y,X) such that

g = ev ◦(IY × g̃).

Then we define the scheme of morphisms from Y to X:

Hom(Y,X) = qP HomP (Y,X).

For every morphism f : Y → X ∈ HomP (Y,X)(K) having Hilbert polynomial P , we have a unique
morphism f̃ : Spec(K)→ HomP (Y,X) such that f = ev ◦(IY × f̃). Let us indicate by [f ] = f̃(Spec(K)) ∈
HomP (Y,X)(K). The above tautological non-sense means exactly that the restrictions of ev to Y ×K [f ] is
exactly f : Y → X , i. e. that

ev(y, [f ]) = f(y).

The Existence of Hilbert Schemes implies the existence of Hom(Y,X) under the above hypothesis, see
expecially [Gr1] and also [Ko, I.1.10] , [Sr, §4.6.6].

3.2.6. THEOREM. For every scheme Y projective over a K, for every scheme X quasi-projective over K
and for every numerical polynomial P (t), the scheme HomP (Y,X) exists and it is quasi-projective over K.
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PROOF. (Sketch) Suppose first that X is projective over K. Let S be a K-scheme, let f : Y ×K S →
X ×K S ∈ Hom(Y,X)(S). If we consider f as a S-morphism, Y ×K S and X ×K S as S-schemes, we can
define

Γ = (IY , f) : Y ×K S → (Y ×K S)×S (X ×K S) ' Y ×K X ×K S.

Then Γ is a closed immersion so that Γ(Y ×K S) ' Y ×K S is proper and flat over S and Γ(Y ×K S) ∈
Hilb(Y ×K X)(S). This gives a morphism

Γ : Hom(Y,X)→ Hilb(Y ×k X),

and hence a morphism Γ : Hom(Y,X)→ Hilb(Y ×K X), which is an open immersion of schemes. From the
projectivity over K of every HilbPX(Y ×K X), see Theorem 3.2.2 observing that Y ×K X is projective over
K, one deduces that HomP (Y,X) is quasi-projective over K for every numerical polynomial P (t).

If X is quasi-projective over K, then there exists an open immersion i : X → X with X projective
over K. For every K-scheme S there is a morphism Hom(Y,X)(S) → Hom(Y,X) defined by sending
f : Y ×K S → X ×K S to (i, IS) ◦ f : Y ×K S → X ×K S. One then deduces the existence of a
morphism j : HomP (Y,X) → Hom(Y,X) and proves that j is an open immersion. Finally one deduces the
quasi-projectivity over K of HomP (Y,X). For more details consult [Gr1]. �

Let g : Spec(K[ε]/(ε2)) → HomP (Y,X) such that g(Spec(K)) = [f ], where K is the residual field at
the unique closed point of Spec(K[ε]/(ε2)). Then such g’s correspond to tangent vectors to HomP (Y,X) at
[f ], i.e.

T[f ] HomP (Y,X) = HomP (Y,X)(Spec(K[ε]/(ε2)).

Let ΩX/k be the sheaf of Kähler differentials of X . We have the following infinitesimal results for
Hom(Y,X), see [De1, §2.2] and [Ko, I.2.16].

3.2.7. THEOREM. Let notation be as above. Then:
(1)

T[f ] Hom(Y,X) = H0(Hom(f∗(ΩX/K),OY )).

In particular if X is smooth along f(Y ), then dim[f ](Hom(Y,X)) ≤ h0(f∗(TX)), where TX =
Hom(ΩX/K ,OX) is the tangent bundle of X .

(2) If X is projective and non-singular along f(Y ), then

dim[f ](Hom(Y,X)) ≥ h0(f∗(TX))− h1(f∗(TX)).

In particular if h1(f∗(TX)) = 0, then dim[f ](Hom(Y,X)) = h0(f∗(TX)), Hom(Y,X) is smooth
at [f ] so that there exists an unique irreducible component of Hom(Y,X) containing [f ].

Suppose that C ⊂ X is a smooth rational and that X ⊂ PN is a smooth projective variety. Then NC/X '
⊕n−1
i=1 OP1(ai) being a locally free sheaf of rank n − 1 = codim(C,X). If f : C → X is the embedding of

C into X , then f∗(TX) = TX|C = ⊕ni=1OP1(bi) and everything is easily computable. Moreover we have the
exact sequence

0→ OP1(2) ' TP1 → TX|C → NC/X → 0,

which is very useful for computations. By Theorem 3.2.7 the exact sequence at level of H0 can be interpreted
as saying that the tangent space to Hilb(X) at [C] is given by factoring out the automorphism of C ' P1 from
the tangent space to Hom(P1, X) at f : C → X . Indeed, Hom(P1,P1) contains the group subscheme of
automorphism of P1, whose tangent space at the identity is exactly H0(TP1).
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3.2.8. DEFINITION. Let Y be a projective scheme over the fixed algebraically closed field K, let X be a
scheme quasi-projective over K, let B ⊂ Y be a closed subscheme and let g : B → X be a fixed morphism,
which for every K-scheme S induces a morphism g × IS : B ×K S → X ×K S. Let Hom(Y,X; g)(S)
be the set of morphism from Y ×K S → X ×K S whose restriction to B ×K S ⊂ Y ×K S coincide with
g × IS . This defines a contravariant functor Hom(Y,X; g) : {K − schemes}0 → Sets which is a subfunctor
of Hom(Y,X). The natural restriction morphisms

ρ(S) : Hom(Y,X)(S)→ Hom(B,X)

induce a morphism
ρ : Hom(Y,X)→ Hom(B,X)

such that ρ−1([g]) is exactly Hom(Y,X : g), proving the representability of Hom(Y,X; g) by a projec-
tive scheme over K which will be indicated by Hom(Y,X; g) and which is naturally a closed subscheme of
Hom(Y,X).

Fix an ample line bundle H = O(1) on X , a numerical polynomial P (t) ∈ Q[t] and Let

HomP (Y,X; g) : {K − Schemes}o → Sets

be the contravariant functor defined for every K-scheme S by

HomP (Y,X; g)(S) = {f ∈ Hom(Y,X; g(S) : χ(f∗(O(m)) = P (m) for m >> 0}.

The functor HomP (Y,X; g) is representable and we indicate by HomP (Y,X; g) the scheme representing
it, which is called the scheme of morphism from Y to X with Hilbert polynomial P = P (t) whose restriction
to B is X .

There is a universal morphism
ev : Y ×Hom(Y,X; g)→ X

such that for every scheme S and for every φ : Y ×K S → X ×K S ∈ Hom(Y,X; g)(S) there exists a unique
morphism φ̃ : S → Hom(Y,X; g) such that

φ = ev ◦(IY × φ̃).

Then we have as always

Hom(Y,X; g) = qP HomP (Y,X; g).

Suppose for semplicity that X is smooth along f(Y ), where f : Y → X is a morphism which restricts to
g on B. The restriction ρ : Hom(Y,X)→ Hom(B,X) naturally induces a morphism of K-vector spaces

ρ : H0(f∗(TX))→ H0(g∗(TX)),

so that

(3.2.2) T[f ] Hom(Y,X; g) = ker(ρ : H0(f∗(TX))→ H0(g∗(TX))) = H0(f∗(TX)⊗ IB),

where IB is the ideal sheaf of B in Y .
We have finally the following infinitesimal results for Hom(Y,X; g), see [De1, §2.3].

3.2.9. THEOREM. Let Y and X be schemes projective over K, let B be a closed subscheme of Y and let
f : Y → X be a morphism whose restriction to B is g : B → X . Suppose moreover that X is smooth along
f(Y ). Then:

(1)
T[f ] Hom(Y,X; g) = H0(f∗(TX)⊗ IB),

yielding dim(Hom(Y,X; g) ≤ h0(f∗(TX)⊗ IB).
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(2)
dim[f ](Hom(Y,X; g)) ≥ h0(f∗(TX)⊗ IB)− h1(f∗(TX)⊗ IB).

In particular if h1(f∗(TX)⊗IB) = 0, then dim[f ](Hom(Y,X; g)) = h0(f∗(TX)⊗IB), the scheme
Hom(Y,X; g) is smooth at [f ] so that there exists a unique irreducible component of Hom(Y,X; g)
containing [f ].

3.2.10. DEFINITION. Let 0 ∈ P1, let x ∈ X and let g : 0→ X be a morphism such that g(0) = x. In this
case Hom(P1, X; g) will be indicated by Hom(P1, X; 0→ x).

Let X ⊂ PN be a fixed embedding. Then Homd(P1, X) = Homdt+1(P1, X) parametrizes morphism
f : P1 → X such that the cycle f∗(P1) has degree d. Let us remember that, if C = f(P1), then deg(f∗(P1)) =
deg(f) · deg(C). In the same way one can define Homd(P1, X; g) = Homdt+1(P1, X; g).

Before passing to the applications of our interest we need an explicit description of the differential of
ev : Y ×Hom(Y,X; g)→ X .

3.2.11. THEOREM. ([Ko, Proposition II.3.10]) LetB ⊂ P1 a scheme of lenght |B| ≤ 2 and let g : B → X
be a morphism to a smooth projective variety X . Let

ev : P1 ×Hom(P1, X; g)→ X

be the evaluation morphism and let f : P1 → X such that [f ] ∈ Hom(P1, X; g).
If

f∗(TX)⊗ IB = ⊕ni=1OP1(αi),
then for every p ∈ P1 \B we have

rk(d(ev)(p, [f ]) = #{i | αi ≥ 0}.

Now we can finally state and prove two fundamental tools for the classification of LQEL-manifolds in the
next sections.

3.2.12. COROLLARY. ([Ko, Corollary II.3.11, Theorem II.3.12]) Let notation be as in Theorem 3.2.11 and
suppose char(K)=0. Then

i) (B = ∅) Suppose V ⊂ Hom(P1, X) is an irreducible component such that ev : P1 × V → X is
dominant. Then for [f ] ∈ V general f∗(TX) is generated by global sections.

ii) (|B| = 1) Suppose V ⊂ Hom(P1, X; 0→ x) is an irreducible component such that ev : P1 × V →
X is dominant. Then for [f ] ∈ V general f∗(TX) is ample.

PROOF. Since ev : P1 × V → X is dominant there exists an open subset U ⊆ X such that for every
(p, [f ]) ∈ ev−1(U) we have n = rk(d(ev)(p, [f ]) = #{i | αi ≥ 0}, where f∗(TX) = ⊕ni=1OP1(αi) so that
αi ≥ 0 for every i = 1, . . . , n and f∗(TX) is generated by global sections.

Reasoning as above and recalling that for B = x we have IB ' OP1(−1), letting f∗(TX) ⊗ IB =
⊕ni=1OP1(αi) we deduce αi ≥ 0 for every i = 1, . . . , n so that f∗(TX) = ⊕ni=1OP1(βi) with βi > 0 for every
i = 1, . . . , n, as claimed. �

The next result will permit to count parameters without worring about pathologies.
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3.2.13. COROLLARY. Let notation be as in Theorem 3.2.11 and assume char(K)=0. Then

i) if X ⊂ PN and if through a general point of X there passes a rational curve of degree d ≥ 1 in
the given embedding, then there exists an open dense subset U ⊆ X and an irreducible component
V ⊆ Homd(P1, X) such that for every [f ] ∈ V with f(P1) ∩ U 6= ∅ we have f∗(TX) generated by
global sections.

Let C = f(P1) ⊂ X be such a curve and suppose that f is an isomorphism so that C is a
smooth rational curve. Then h0(NC/X) = −KX · C + n− 3, the Hilbert scheme of rational curves
of degree d is smooth at [C] of dimension−KX ·C−2. There exists a unique irreducible component
C ⊆ Hilbdt+1(X) containing [C] and dominating X .

ii) Suppose X ⊂ PN and let x ∈ X be a point. If through x and a general point of X there passes
a rational curve of degree d ≥ 1 in the given embedding, then there exists an open dense subset
U ⊆ X and an irreducible component V ⊆ Homd(P1, X; 0 → x) such that for every [f ] ∈ V with
f(P1) ∩ U 6= ∅ we have f∗(TX) ample.

Let C = f(P1) ⊂ X be such a curve and suppose that f is an isomorphism so that C is a
smooth rational curve. Then h0(NC/X(−1)) = −KX ·C − 2, the Hilbert scheme of rational curves
of degree d passing through x is smooth at [C] of dimension−KX ·C−2 so that there exists a unique
irreducible component Cx ⊆ Hilbdt+1

x (X) containing [C] and dominating X .

PROOF. The hypothesis in i), respectively ii), assure that ev : P1 × Homd(P1, X) → X is dominant,
respectively ev : P1 × Hom(P1, X; 0 → x) → X is dominant. Thus there exists an irreducible component
V ⊆ Hom(P1, X), respectively V ⊆ Hom(P1, X; 0→ x), such that ev : P1 × V → X is dominant. Then we
can take as U ⊆ X the open non-empty subset constructed in the proof of the two parts of Corollary 3.2.12.

Let NC/X = ⊕n−1
j=1OP1(γi) From the exact sequence

0→ OP1(2) ' TP1 → TX|C → NC/X → 0,

we deduce that NC/X is generated by global sections, respectively ample, and that

deg(NC/X) = deg(TX|C)− 2 = −KX · C − 2.

By Riemann-Roch and by the fact that γj ≥ 0 for every j, we deduce

h0(NC/X) =
n−1∑
j=1

h0(OP1(γj)) =
n−1∑
j=1

(γj + 1) = −KX · C + n− 3,

as claimed in i).
In case ii), we have γj > 0 for every j so that

h0(NC/X(−1)) =
n−1∑
j=1

h0(OP1(γj − 1)) =
n−1∑
j=1

γj = −KX · C − 2,

as claimed. The other conclusions follow directly from Theorem 3.2.3 since h1(NC/X) = 0, respectively
h1(NC/X(−1)) = 0. �

3.3. Classification of LQEL-varieties, of Severi varieties, of Conic-connected manifolds and of varieties
with small duals

3.3.1. Qualitative properties of CC-manifolds and of LQEL-manifolds. We describe the conics natu-
rally appearing onCC-manifolds and onLQEL-manifolds of type δ > 0 and relate them to intrinsic invariants,
using the tools introduced in Theorem 3.2.13.
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3.3.1. PROPOSITION. Let X ⊂ PN be a CC-manifold of secant defect δ. Let C = Cx,y be a general conic
through the general points x, y ∈ X and let c = [C] be the point representing C in the Hilbert scheme of X .
Let Cx be the unique irreducible component of the Hilbert scheme of conics passing through x which contains
the point c.

(i) We have n + δ ≥ −KX · C = dim(Cx) + 2 ≥ n + 1 and the locus of conics through x and y is
contained in the linear space

Pδ+1 = 〈TxX, y〉 ∩ 〈x, TyX〉.

(ii) The equality −KX · C = n+ δ holds if and only if X ⊂ PN is an LQEL-manifold.
(iii) If δ ≥ 3, thenX ⊂ PN is a Fano manifold with Pic(X) ' Z〈OX(1)〉 and index i(X) = dim(Cx)

2 +1.

PROOF. We have the universal family g : Fx → Cx and the tautological morphism f : Fx → X ,
which is surjective. Since C ∈ Cx is a general conic and since x ∈ X and y are general points, we get
dim(Cx) = −KX · C − 2.

Indeed, by Theorem 3.2.13,

TX|C '
n⊕
i=1

OP1(ai)

is ample. Hence ai > 0 for every i = 1, . . . , n, and NC/X is ample being a quotient of TX|C . Thus Cx is
smooth at C ∈ Cx and of dimension

H0(NC/X(−1)) = H0(TX|C(−1))− 2 = −2 +
n∑
i=1

ai = −KX · C − 2.

Take a general point y ∈ X and a general p ∈ 〈x, y〉. The conics passing through x and y are parameterized
by g(f−1(y)), which has pure dimension

dim(Fx)− n = dim(Cx) + 1− n = −KX · C − 1− n.

We claim that the locus of conics through x and y, denoted by Lx,y , has dimension−KX · C − n and is clearly
contained in the irreducible component of the entry locus (with respect to p) through x and y. Indeed, conics
through x, y and another general point z ∈ Lx,y have to be finitely many. Otherwise, their locus would fill up
the plane 〈x, y, z〉 and this would imply that the line 〈x, y〉 is contained in X . But we have excluded linear
spaces from the definition of CC and LQEL-manifolds. Therefore δ ≥ −KX ·C−n, that is−KX ·C ≤ n+δ.
The locus of conics is contained in 〈TxX, y〉∩〈x, TyX〉, which is a linear space of dimension δ+1 by Terracini
Lemma. This proves (i).

If −KX · C = n + δ, then, for p ∈ 〈x, y〉 general, the irreducible component Σpx,y of the entry locus
passing through x and y coincides with the locus of conics through x and y, so that it is contained in 〈TxX, y〉∩
〈x, TyX〉 = Pδ+1. Thus Σpx,y is a quadric hypersurface by the Trisecant Lemma and by the generality of x and
y (if δ = n, X ⊂ Pn+1 is a quadric hypersurface). So, (ii) is proved.

Finally, (iii) follows from the Barth–Larsen Theorem, the fact that X contains moving conics and (i). �

3.3.2. COROLLARY. Let X ⊂ PN be an LQEL-manifold of type δ ≥ 1. Then:

(1) X is a simply connected manifold such that H0(Ω⊗mX ) = 0 for every m ≥ 1 and Hi(OX) = 0 for
every i > 0.

(2) There exists on X an irreducible family of conics C of dimension 2n+ δ− 3, whose general member
is smooth. This family describes an open subset of an irreducible component of the Hilbert scheme
of conics on X .

(3) Given a general point x ∈ X , let Cx be the family of conics in C passing through x. Then Cx has
dimension n + δ − 2, equal to the dimension of the irreducible components of Cx describing dense
subsets of X .
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(4) Given two general points x, y ∈ X , the locus Qx,y of the family Cx,y of smooth conics in C passing
through x and y is a smooth quadric hypersurface of dimension δ. The family Cx,y is irreducible and
of dimension δ − 1.

(5) A general conic C ∈ Cx intersects TxX only at x. Moreover the tangent lines to smooth conics
contained in X and passing through x ∈ X describe an open subset of P((TxX)∗).

PROOF. The variety X is clearly rationally connected. The conclusions of part (1) are contained in
[KMM, Proposition 2.5] and also in [De1, Corollary 4.18].

Part (4) is the definition of an LQEL-variety. Indeed, the plane spanned by every conic through x and y
contains the line 〈x, y〉, which is a general secant line to X . Thus a conic through x and y is contained in the
entry locus of every p ∈ 〈x, y〉 not on X , so that for p ∈ 〈x, y〉 general it is contained in the smooth quadric
hypersurface Qx,y , the unique irreducible component of Σp passing through x and y.

Let us prove parts (3) and (5). Fixing two general points x, y ∈ X there exists a smooth quadric hypersur-
face Qx,y ⊂ X ⊂ PN of dimension δ ≥ 1 through x and y. Thus there exists a smooth conic passing through
x and a general point y ∈ X . In particular, there exists an irreducible family of smooth conics passing through
x, let us say C1

x, whose members describe a dense subset of X .
Let C̃x be the universal family over Cx and let π : C̃x → X be the tautological morphism. By part (4) and

the Theorem on the dimension of the fibers we get that dim(C̃1
x) = n+ δ − 1. Thus n+ δ − 2 = dim(C1

x) and
part (3) and (5) are proved. Part (2) now easily follows in the same way counting dimensions.

Let C ⊂ X be a general smooth conic passing through x ∈ X . If we fix a direction through x, there exists
a conic in C1

x tangent to the fixed direction. If the direction does not correspond to a line contained in X , then
the conic is irreducible. and hence smooth at x.

Consider the map τx : Cx 99K P((TxX)∗), which associates to a conic in Cx its tangent line at x. The
closure of the image of τx in P((TxX)∗) has dimension n − 1 by the above analysis, containing the open set
parametrizing tangent direction not corresponding to lines through x and contained in X . �

On an LQEL-manifold of type δ ≥ 2 there are also lines coming from the entry loci and we proceed to
investigate them. The following result is essentially well known, see also [Hw1, Proposition 1.5]; we recall its
proof for reader’s convenience.

3.3.3. PROPOSITION. Let X ⊂ PN be a smooth irreducible variety. Then:
(1) The Hilbert scheme of lines passing through a general point x ∈ X , if not empty, is smooth and can

be identified with a smooth not necessarily irreducible variety Yx ⊆ Pn−1 = P((TxX)∗).
(2) If Y jx , j = 1, . . . ,m, are the irreducible components of Yx, then we have

dim(Y lx) + dim(Y px ) ≤ n− 2 for every l 6= p.

PROOF. We argue essentially as in the proof of Theorem 3.3.2. By Theorem 3.2.13 for every line L

contained in X ⊂ PN and passing through the general point x ∈ X we have TX|L =
n⊕
i=1

OP1(ai(L)), with

an(L) ≥ an−1(L) ≥ · · · ≥ a1(L) ≥ 0. Moreover an(L) ≥ 2 because TP1 is a subbundle of TX|L. On the
other hand, TPN|L = O(2)⊕O(1)N−1 contains TX|L as a subbundle so that an(L) = 2 and 1 ≥ an−1(L) ≥
· · · ≥ a1(L) ≥ 0 (i.e. the arbitrary line L is a standard (or minimal) curve in the sense of Mori Theory. It
follows that the map which associates to each line through x its tangent direction is a closed embedding by
Theorem 3.2.13 so that we can identify the Hilbert scheme of lines through x with a variety Yx ⊂ Pn−1 =

P((TxX)∗), which is smooth. Indeed, NL/X =
n−1⊕
j=1

OP1(bj(L)) with bj(L) ≥ 0 for every j = 1, . . . , n − 1,

being the quotient of a locally free sheaf generated by global sections. Therefore h1(NL/X(−1)) = 0 and
Yx is smooth at the point corresponding to L. Since L was an arbitrary line through x, Yx is smooth. The
conditions on the dimension of two irreducible components simply say that these components cannot intersect
in Pn−1. �
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Now we prove a fundamental result on the geometry of lines on an LQEL-manifold, which, via the study
of the projective geometry of Yx ⊂ Pn−1 and of its dimension, will yield significant obstructions for the
existence of LQEL-manifolds of type δ ≥ 3. The most relevant part for future applications is part (4), d). Part
(1) holds more generally for every smooth secant defective variety.

3.3.4. THEOREM. Suppose that X ⊂ PN is an LQEL-manifold of type δ.
(1) ([S4, p. 282, Opere Complete, vol. I]) If δ ≥ 1, then

π̃x : P((TxX)∗) 99KWx ⊆ PN−n−1

is dominant, so that dim(|IIx,X |) = N − n− 1 and N ≤ n(n+3)
2 .

(2) If δ ≥ 2, the smooth, not necessarily irreducible, variety Yx ⊂ Pn−1 is non-degenerate and it
consists of irreducible components of the base locus scheme of |IIx,X |. Moreover, the closure of the
irreducible component of a general fiber of π̃x passing through a general point p ∈ P((TxX)∗) is a
linear space Pδ−1

p , cutting scheme-theoretically Yx in a quadric hypersurface of dimension δ − 2.
(3) If Yx ⊂ P((TxX)∗) is irreducible and if δ ≥ 2, then SYx = P((TxX)∗) and Yx ⊂ P((TxX)∗) is a

QEL-manifold of type δ(X)− 2.
(4) If δ ≥ 3, then

a) Pic(X) ' Z〈OX(1)〉.
b) For any line L ⊂ X ,−KX ·L = n+δ

2 , so that i(X) = n+δ
2 , where i(X) is the index of the Fano

manifold X . In particular n+ δ ≡ 0 (mod 2), that is n ≡ δ (mod 2).
c) There exists on X an irreducible family of lines of dimension 3n+δ

2 − 3 such that for a general
L in this family

TX|L = OP1(2)⊕OP1(1)
n+δ

2 −2 ⊕O
n−δ

2 +1

P1 .

d) If x ∈ X is general, then Yx ⊂ P((TxX)∗) is a QEL-manifold of dimension n+δ
2 − 2, of type

δ(X)− 2 and such that SYx = P((TxX)∗);

PROOF. Part (1) is classical and as we said above holds for every smooth secant defective variety. Since
its proof is self-contained and elementary for LQEL-varieties, we include it for the reader’s convenience. It
suffices to show that, via the restriction of π̃x, the exceptional divisor E = P((TxX)∗) dominates Wx ⊆
PN−n−1. Take a general point y ∈ X . By part (6) of Theorem 3.3.2, there exists a conic Cx,y through x and
y, cutting TxX only at x. Thus πx(Cx,y) = πx(y) ∈ Wx is a general point and clearly π̃x(P(TxCx,y)) =
πx(Cx,y) = πx(y). Therefore the restriction of π̃x to E is dominant as a map to Wx ⊆ PN−n−1, yielding
dim(|IIx,X |) = N − n− 1. In particular N − n− 1 = dim(|IIx,X |) ≤ dim(|OPn−1(2)|) = n(n+1)

2 − 1 and
N ≤ n(n+3)

2 .
Suppose from now on δ ≥ 2. If y ∈ X is a general point and if Cx,y is a smooth conic through x and y

the point P(TxCx,y) is a general point of P((TxX)∗), by Theorem 3.3.2 part (6). Consider the unique quadric
hypersurface Qx,y of dimension δ ≥ 2 through x and y, the irreducible component through x and y of the
entry locus of a general p ∈ 〈x, y〉. Then Cx,y ⊂ Qx,y and Tx Cx,y ⊂ TxQx,y . Take a line Lx through x
and contained in Qx,y , which can be thought of as a point of Yx ⊂ P((TxX)∗). The plane 〈Lx,Tx Cx,y〉
is contained in TxQx,y so that it cuts Qx,y at least in another line L′x, clearly different from Tx Cx,y . Thus
Tx Cx,y belongs to the pencil generated by Lx and L′x, which projectivezed in P((TxX)∗) means that through
the general point P(TxCx,y) ∈ P((TxX)∗) there passes the secant line 〈P(TxLx),P(TxL

′
x)〉 to Yx. Therefore

Yx ⊂ P((TxX)∗) is non-degenerate and the join of Yx with itself equals P((TxX)∗). For an irreducible
Yx ⊂ P((TxX)∗) this means exactly SYx = P((TxX)∗). The scheme TxQx,y ∩ Qx,y is a quadric cone
with vertex x and base a smooth quadric hypersurface of dimension δ − 2. The lines in TxQx,y ∩ Qx,y
describe a smooth quadric hypersurface of dimension δ − 2, Q̃x,y ⊂ Yx ⊂ P((TxX)∗), whose linear span
〈Q̃x,y〉 = Pδ−1 passes through r = P(TxCx,y). Since π̃x : P((TxX)∗) 99K Wx ⊆ PN−n−1 is given by a
linear system of quadrics vanishing on Yx, the whole Pδ−1 is contracted by π̃x to π̃x(r). The closure of the
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irreducible component of π̃−1
x (π̃x(r)) passing through r has dimension n − 1 − dim(Wx) = δ − 1 so that it

coincides with 〈Q̃x,y〉 = Pδ−1. This also shows that Yx is an irreducible component of the support of the base
locus scheme of |IIx,X | and also that, when irreducible, Yx ⊂ P((TxX)∗) is a QEL-manifold of type δ − 2.
Indeed in this case r ∈ SYx is a general point and every secant or tangent line to the smooth irreducible variety
Yx passing through r is contracted by π̃x, since the quadrics in |IIx,X | vanish on Yx. Thus every secant line
through r is contained in 〈Q̃x,y〉 and the entry locus with respect to r is exactly Q̃x,y . This concludes the proof
of parts (2) and (3).

Suppose δ ≥ 3 and let us concentrate on part (4). Item (a) follows directly from Barth–Larsen Theorems,
see [BL], but we provide a direct proof using the geometry of LQEL-varieties. There are lines through
a general point x ∈ X , for example the ones constructed from the family of entry loci. Reasoning as in
Proposition 3.3.3, we get

TX|L = OP1(2)⊕OP1(1)m(L) ⊕On−m(L)−1
P1

for every line L through x. Thus if such a line comes from a general entry locus, we get

2 +m(L) = −KX · L =
−KX · C

2
=
n+ δ

2
,

yielding m(L) = n+δ
2 − 2.

We define Rx to be the locus of points on X which can be joined to x by a connected chain of lines whose
numerical class is 1

2 [C], C ∈ C a general conic. By construction we get Rx = X , so that the Picard number of
X is one by [Ko, IV.3.13.3]. Since the variety X is simply connected being rationally connected, see Theorem
3.3.2, we deduce Num(X) = NS(X) = Pic(X) ' Z〈O(1)〉. Thus X ⊂ PN is a Fano variety, Yx ⊂ Pn−1 is
equidimensional of dimension n+δ

2 − 2 and m(L) = n+δ
2 − 2 for every line L through x. We claim that Yx is

irreducible.
Indeed, if there were two irreducible components Y 1

x , Y
2
x ⊂ Yx ⊂ P((TxX)∗), then dim(Y 1

x )+dim(Y 2
x ) =

n+ δ − 4 ≥ n− 1, in contrast to Proposition 3.3.3.
The fact that Yx ⊂ P((TxX)∗) is aQEL-manifold of type δ(X)−2 such that SYx = P((TxX)∗) follows

from part (3) above. Therefore all the assertions are now proved. �

3.3.5. EXAMPLE. (Segre varieties X = Pl × Pm ⊂ Plm+l+m, l ≥ 1, m ≥ 1, are QEL-manifolds of
type δ = 2) By Proposition 2.3.10, we know that X = Pl × Pm ⊂ Plm+l+m is a QEL-manifold, clearly with
δ ≥ 2, and we calculate its type, that is we determine δ(X).

The locus of lines through a point x ∈ X is easily described, being the union of the two linear spaces
of the rulings through x, that is Yx = Pl−1 q Pm−1 ⊂ Pl+m−1. Letting notation be as in Theorem 3.3.2,
we have C ≡ L1 + L2, where the lines L1 and L2 belongs to different rulings. Then n + δ = −KX · C =
(−KX ·L1) + (−KX ·L2) = (l− 1) + 2 + (m− 1) + 2 = n+ 2, so that δ(Pl × Pm) = 2 for every l,m ≥ 1.

3.3.6. EXAMPLE. (Grassmann varieties of lines G(1, r) ⊂ P(r+1
2 )−1 are QEL-manifolds of type δ = 4)

It is well known that Yx ⊂ P((TxG(1, r))∗) ' P2r−3 is projectively equivalent to the Segre variety P1 ×
Pr−2 ⊂ P2r−3. Moreover, G(1, r) ⊂ P( r+1

m+1)−1 is a QEL-manifold, for example by Proposition 2.3.10, and
we determine its type δ. Take x, y ∈ G(1, r) general. They represent two lines lx, ly ⊂ Pr, r ≥ 3, which are
skew so that 〈lx, ly〉 = P3

x,y ⊆ Pr. The Plücker embedding of the lines in P3
x,y is a G(1, 3)x,y ⊆ G(1, r) passing

through x and y. Therefore δ(G(1, r)) ≥ 4. Thus r − 1 = dim(Yx) = −KX · L − 2, where L ⊂ G(m, r) is
an arbitrary line, yielding −KX = (r+ 1)H , H an hyperplane section. Finally r+ 1 = 2(r−1)+δ

2 by Theorem
3.3.4, that is δ = 4.

3.3.7. EXAMPLE. (Spinor variety S10 ⊂ P15 andE6-varietyX ⊂ P26 asQEL-manifolds) Let us analyze
the 10-dimensional spinor variety S10 ⊂ P15. It is scheme theoretically defined by 10 quadratic forms defining
a map φ : P15 99K φ(P15) ⊂ P9. The imageQ = φ(P15) ⊂ P9 is a smooth 8-dimensional quadric hypersurface
and the closure of every fiber is a P7 cutting X along a smooth quadric hypersurface, see for example [ESB].
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In particular δ(X) = 6 and X ⊂ P15 is a Fano manifold of index i(X) = 8 = n − 2 such that Pic(X) =
Z〈OX(1)〉. It is a so called Mukai variety with b2(X) = 1 and by the above description it is a QEL-manifold
of type δ = 6. For every x ∈ X the variety X1 := Yx(X) ⊂ P9 is a variety of dimension n+δ(X)

2 − 2 = 6,
defined by codim(X) = 5 quadratic equations yielding a dominant map π̃x : P9 99K P4. The general fiber of
π̃x is a linear P5 cutting Yx ⊂ P9 along a smooth quadric hypersurface of dimension 4; see Theorem 3.3.4. It
is almost clear (and well known) that Yx ' G(1, 4) ⊂ P9 Plücker embedded. From Yx ⊂ P9 we can construct
the locus of tangent lines and obtain X2 := Yx(X1) ⊂ P5, the Segre 3-fold P1 × P2 ⊂ P5; see Example 3.3.6.

We can begin the process with the 16-dimensional variety X = E6 ⊂ P26, a Fano manifold of index
i(X) = 12 with b2(X) = 1 and with δ(X) = 8. This is a QEL-manifold of type δ = 8, being the center of
a (2, 2) special Cremona transformation, see [ESB]. By applying the above constructions one obtains X1 =
Yx(X) = S10 ⊂ P15, see [Z2, IV]. One could also apply [Mk], since X1 ⊂ P15 has dimension 10 and type
δ = 6 so that it is a Fano manifold of index i(X) = (n + δ)/2 = 8 = n − 2. Hence X2 = Yx(X1) =
G(1, 4) ⊂ P9 and finally X3 = Yx(X2) = P1 × P2 ⊂ P5.

The examples discussed above and the results of Theorem 3.3.4 suggest to iterate the process, whenever
possible, of attaching to an LQEL-manifold of type δ ≥ 3 a non-degenerate QEL-manifold Yx ⊂ Pn−1 of
type δ − 2 such that SYx = Pn−1. If r ≥ 1 is the largest integer such that δ − 2r ≥ 1, and if X ⊂ PN
is a LQEL-manifold of type δ, then the process can be iterated r times, obtaining QEL-manifolds of type
δ − 2k ≥ 3 for every k = 1, . . . , r − 1.

3.3.8. DEFINITION. Let X ⊂ PN be an LQEL-manifold of type δ ≥ 3. Let

rX = sup{r ∈ N : δ ≥ 2r + 1}.
For every k = 1, . . . , rX − 1, we define inductively

Xk = Xk(z0, . . . , zk−1) = Yzk−1(Xk−1(z0, . . . , zk−2)),

where zi ∈ Xi, i = 0, . . . , k − 1, is a general point and where X0 = X .

The process is well defined by Theorem 3.3.4 since for every k = 1, . . . , rX−1, the varietyXk is aQEL-
manifold of type δ(Xk) = δ − 2k ≥ 3. The QEL-manifold Xk depends on the choices of the general points
z0, . . . , zk−1 used to define it. The type and dimensions of the Xk’s are well defined and we are interested in
the determination of these invariants.

The following result is crucial for the rest of the paper. Its proof is a direct consequence of part (4), d) of
Theorem 3.3.4.

3.3.9. THEOREM. Let X ⊂ PN be an LQEL-manifold of type δ ≥ 3. Then:

(1) For every k = 1, . . . , rX , the variety Xk ⊂ P
n+(2k−1−1)δ

2k−1 −2k+1 is a QEL-manifold of type δ(Xk) =

δ − 2k, of dimension dim(Xk) = n+(2k−1)δ
2k

− 2k, such that SXk = P
n+(2k−1−1)δ

2k−1 −2k+1; in partic-
ular, codim(Xk) = n−δ

2k
+ 1.

(2) 2rX divides n− δ, that is n ≡ δ (mod 2rX ).

3.3.10. REMARK. Much weaker forms of the Divisibility Theorem were proposed in [Oh, Theorem 0.2]
after long computations with Chern classes.

The hypothesis δ ≥ 3 is clearly sharp for the congruence established in part (2) of Theorem 3.3.9, or for its
weaker form proved in part (4) of Theorem 3.3.4. Indeed for the Segre varieties Xl,m = Pl×Pm ⊂ Plm+l+m,
1 ≤ l ≤ m, of odd dimension n = l +m we have δ(Xl,m) = 2; see Example 3.3.5.

It is worthwhile remarking that the above result is not true for arbitrary smooth secant defective varieties
having δ(X) ≥ 3 neither in the weaker form of a parity result. One can consider smooth non-degenerate
complete intersections X ⊂ PN with N ≤ 2n− 2 and such that n 6≡ N − 1 (mod 2). It is easy to see that for
an arbitrary non-degenerate smooth complete intersection X ⊂ PN with N ≤ 2n+ 1, we have SX = PN . If
N ≤ 2n− 2, then δ(X) = 2n+ 1−N ≥ 3 and δ ≡ N − 1 (mod 2).
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Infinite series of secant defective smooth varieties X ⊂ PN of dimension n with SX ( PN , δ(X) ≥ 3
and such that n 6≡ δ(X) (mod 2rX ) can be constructed in the following way. Take Z ⊂ PN a smooth QEL-
manifold of type δ ≥ 4 and dimension n such that SZ ( PN . Consider a PN+1 containing the previous PN as
a hyperplane, take p ∈ PN+1 \PN and let Y = S(p, Z) ⊂ PN+1 be the cone over Z of vertex p. IfW ⊂ PN+1

is a general hypersurface of degree d > 1, not passing through p, then X = W ∩ Y ⊂ PN+1 is a smooth non-
degenerate variety of dimension n such that SX = S(p, SZ) ( PN+1. Thus δ(X) = δ(Z)− 1 = δ − 1 ≥ 3
and n 6≡ δ(X) (mod 2rX ) since n ≡ δ (mod 2rX ). Clearly also n 6≡ δ(X) (mod 2).

One can take, for example, Zn = G(1, n2 +1) ⊂ P
n(n+6)

8 , n ≥ 8, which areQEL-manifolds of dimension

n ≥ 8 and type δ = 4 such that SZ ( P
n(n+6)

8 .

3.3.2. Some classification results. In this section we classify various important classes ofLQEL-manifolds.
[IR1] contains the complete classification ofCC-manifolds with δ(X) ≤ 2 and hence that ofLQEL-manifolds
of type δ = 1, 2, see Theorem 3.3.16 below.

Let us recall that a non-degenerate smooth projective variety X ⊂ P 3
2n is said to be a Hartshorne variety

if it is not a complete intersection. It is worth remarking that there exist Hartshorne varieties different from
surfaces in P3 and from the ones described in item ii) and iii) of Corollary 3.3.11 below, see for example [E2,
Proposition 1.9]. This last fact was kindly pointed out to me by Giorgio Ottaviani.

The first relevant application of the Divisibility Property is the following classification ofLQEL-manifolds
of type δ > n

2 , which answers a problem posed in [KS, 0.12.6].

3.3.11. COROLLARY. Let X ⊂ PN be an LQEL-manifold of type δ with n
2 < δ < n. Then X ⊂ PN is

projectively equivalent to one of the following:
i) the Segre 3-fold P1 × P2 ⊂ P5;

ii) the Plücker embedding G(1, 4) ⊂ P9;
iii) the 10-dimensional spinor variety S10 ⊂ P15;
iv) a general hyperplane section of G(1, 4) ⊂ P9;
v) a general hyperplane section of S10 ⊂ P15.

In particular, smooth quadric surfaces in P3, G(1, 4) ⊂ P9 and S10 ⊂ P15 are the only LQEL-manifolds,
modulo projective equivalence, which are also Hartshorne varieties.

PROOF. By assumption δ > 0. If δ ≤ 2, then n = 3 and δ = 2 = n − 1. Therefore N = 5 and X is
projectively equivalent to the Segre 3-fold P1 × P2 ⊂ P5 by Proposition 3.3.13 below.

From now on we can assume δ ≥ 3 and that X ⊂ PN is a Fano manifold with Pic(X) = Z〈O(1)〉. By
Theorem 3.3.9 there exists an integer m ≥ 1 such that 2δ > n = δ +m2rX , so that

(3.3.1) δ > m2rX .

Suppose δ = 2rX + 2. From 2rX + 2 > m2rX it follows m = 1 and rX ≤ 2. Hence either δ = 4 and
n = 6 and X ⊂ PN is a Fano manifold of index i(X) = (n + δ)/2 = 5 = n − 1 or δ = 6 and n = 10 and
X ⊂ PN is a Fano manifold as above and of index i(X) = (n + δ)/2 = 8 = n − 2. In the first case by [Fj,
Theorem 8.11] we get case ii). In the second case we apply [Mk], obtaining case iii).

Suppose δ = 2rX + 1. From (3.3.1) we get 2rX + 1 > m2rX forcing m = 1 and rX = 1, 2. Therefore
either δ = 3 and n = δ +m2rX = 5; or δ = 5 and n = δ +m2rX = 9. Reasoning as above, we get cases iv)
and v).

To prove the last part let us recall that for a non-degenerate smooth variety X ⊂ P 3
2n necessarily SX =

P 3
2n; see Theorem 3.1.5. Thus δ(X) = n

2 + 1 > n
2 and applying the first part we deduce that we are either in

case ii) or iii) or that n2 + 1 = δ = n, i.e. n = 2, concluding the proof. �

Another interesting application of Theorem 3.3.9 is the classification of LQEL-manifolds of type δ = n
2 .

For such varieties we get immediately that n = 2, 4, 8 or 16 and among them we find Severi varieties. Indeed,
by [Z2, IV.2.1, IV.3.1, IV.2.2], see Corollary 3.1.8, Severi varieties are LQEL-manifolds of type δ = n

2 . Once



3.3. CLASSIFICATION OF LQEL–MANIFOLDS 61

we know that n = 2, 4, 8 or 16, it is rather simple to classify Severi varieties, as we shall show in Proposition
3.1.9 below, see also [Z2, IV.4] and [L1]. For n = 2, 4 the result is classical and well known while in our
approach the n = 8 case follows from the classification of Mukai manifolds, [Mk]. The less obvious case
is n = 16. What is notable, in our opinion, is not the fact that this proof is short, easy, natural, immediate
and almost self-contained but the perfect parallel between our argument based on the Divisibility Theorem
and some proofs of Hurwitz Theorem on the dimension of composition algebras over a field such as the one
contained in [La, V.5.10], see also [Cu, Chap. 10. Sec. 36]. Surely this connection is well known today,
see [Z2, pg. 89–91], but the other proofs of the classification of Severi varieties did not make this parallel so
transparent.

About this result and the word ”generalization” we would like to quote Herman Weyl: ”Before you can
generalize, formalize and axiomatize, there must be a mathematical substance”, [We]. There is no doubt that
the mathematical substance in this problem is entirely due to Fyodor Zak, who firstly brilliantly solved it in
[Z1].

3.3.12. COROLLARY. Let X ⊂ PN be an LQEL-manifold of type δ = n
2 . Then n = 2, 4, 8 or 16 and

X ⊂ PN is projectively equivalent to one of the following:
i) the cubic scroll S(1, 2) ⊂ P4;

ii) the Veronese surface ν2(P2) ⊂ P5 or one of its isomorphic projection in P4;
iii) the Segre 4-fold P1 × P3 ⊂ P7;
iv) a general 4-dimensional linear section X ⊂ P7 of G(1, 4) ⊂ P9;
v) the Segre 4-fold P2 × P2 ⊂ P8 or one of its isomorphic projections in P7;

vi) a general 8-dimensional linear section X ⊂ P13 of S10 ⊂ P15;
vii) the Plücker embedding G(1, 5) ⊂ P14 or one of its isomorphic projection in P13;

viii) the E6-variety X ⊂ P26 or one of its isomorphic projection in P25;
ix) a 16-dimensional linearly normal rational variety X ⊂ P25, which is a Fano variety of index 12

with SX = P25, def(X) = 0 and such that the base locus of |IIx,X |, Zx ⊂ P15, is the union of a
10-dimensional spinor variety S10 ⊂ P15 with CpS10 ' P7, p ∈ P15 \ S10.

In particular, a Severi variety X ⊂ P 3n
2 +2 is projectively equivalent to a linearly normal variety as in ii), v),

vii) or viii).

PROOF. By assumption n is even. If n < 6, then n = 2 or n = 4. If n = 2, the conclusion is well known,
see [Sev] or Proposition 3.3.13. If n = 4, then δ = 2 = n− 2. If H is a hyperplane section and if C ∈ C is a
general conic, then (KX + 3H) · C = −n− δ + 2n− 2 = 0 by part (5) of Theorem 3.3.2. Suppose X ⊂ PN
is a scroll over a curve, which is rational by Theorem 3.3.2. Since for a rational normal scroll either SX = PN
or dim(SX) = 2n+ 1, we get N = dim(SX) = 2n+ 1− δ = 7 so that X ⊂ P7 is a rational normal scroll of
degree 4, which is the case described in iii). If X ⊂ PN is not a scroll over a curve, |KX + 3H| is generated
by global sections, see [Io, Theorem 1.4], and since through two general points of X there passes such a conic,
we deduce −KX = 3H . Thus X ⊂ PN is a del Pezzo manifold, getting cases iii), iv) or v) by [Fj, Theorem
8.11].

Suppose from now on n ≥ 6, δ = n/2 ≥ 3 and hence that X ⊂ PN is a Fano manifold with Pic(X) =
Z〈O(1)〉. By Theorem 3.3.9, 2rX divides n − δ = n

2 = δ so that 2rX+1 divides n and δ = n
2 is even. By

definition of rX , n2 = 2rX + 2, so that, for some integer m ≥ 1,

m2rX+1 = n = 4(rX + 1).

Therefore either rX = 1 and n = 8, or rX = 3 and n = 16. In the first case we get that X ⊂ PN is a Fano
manifold as above and of index i(X) = (n+δ)/2 = 6 = n−2 and we are in cases vi) and vii) by [Mk]. In the
remaining cases Yx ⊂ P15 is a 10-dimensional QEL-manifold of type δ = 6 so that Yx ⊂ P15 is projectively
equivalent to S10 ⊂ P15 by Corollary 3.3.11. Furthermore

N − 16 = dim(|IIX,x|) + 1 ≤ h0(IS10(2)) = 10.
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Thus either N = 26 and Yx ' S10 ⊂ P15 is the base locus of the second fundamental form or one easily
sees that we are in case ix). If |IIX,x| ' |H0(IS10(2))|, we are in case viii) by [L2], see also [L3] and also
Proposition 3.3.15 or Proposition 3.4.22 below. �

We collect below some classification results used previously in this section, whose proof is straightforward.

3.3.13. PROPOSITION. Let X ⊂ PN be an LQEL-manifold of type δ = n−1 ≥ 1. Then n = 2 or n = 3,
N ≤ 5 and X ⊂ PN is projectively equivalent to one of the following:

(1) P1 × P2 ⊂ P5 Segre embedded, or one of its hyperplane sections;
(2) the Veronese surface ν2(P2) ⊂ P5 or one of its isomorphic projections in P4.

PROOF. Theorem 3.3.4 part(4) yields n− 1=δ≤2. Thus either n=2 and δ=1, or n=3 and δ=2.
Suppose first n = 2. Let C ⊂ X be a general entry locus. Since −KX · C = 3, Theorem 3.3.2,

we get C2 = 1 via adjunction formula. Moreover, h1(OX) = 0 by Theorem 3.3.2, so that h0(OX(C)) =
h0(OP1(1)) + 1 = 3 and |C| is base point free. The birational morphism φ = φ|C| : X → P2 sends a conic C
into a line. Thus φ−1 : P2 99K X ⊂ PN is given by a sublinear system of |OP2(2)| of dimension at least four
and the conclusion for n = 2 is now immediate. If n = 3, we get the conclusion by passing to a hyperplane
section, taking into account Proposition 2.3.14. �

3.3.3. Reconstruction Severi varieties of dimension 2, 4, 8 and 16. We propose an elementary approach
to the classification of Severi varieties. Arguing as in Corollary 3.3.12, we get immediately via the Divisibility
Theorem that the dimension of a Severi variety is 2, 4, 8 or 16. At this point it should be clear that the
classification of Severi varieties in dimension 2, 4, 8 and 16 is a straightforward consequence of the above
results. As we said above for dimension 2 and 4 it is classical and elementary. Due to the beautifulness of this
classification results, we shall reproduce here a short argument also as an interesting tour in higher dimensional
projective geometry.

Let us recall the following picture of the known Severi varieties in dimension n = 2, 4, 8 and 16. Let
Y ⊂ Pn−1 ⊂ Pn be either ∅, respectively P1 q P1 ⊂ P3, P1 × P3 ⊂ P7 Segre embedded, S10 ⊂ P15 the 10
dimensional spinor variety. On Pn−1 we take coordinates x0, . . . , xn−1 and on Pn coordinates x0, . . . , xn. Let
Q1, . . . , Qn

2 +2 be the quadratic forms in the variables x0, . . . , xn−1 defining Y ⊂ Pn−1. The subvariety Y ⊂
Pn is scheme-theoretically defined by the 3n

2 + 3 quadratric forms: Qi, xnxj , i = 1, . . . , n2 + 2, j = 0, . . . , n.
More precisely these quadric hypersurfaces form the linear system of quadrics on Pn vanishing along Y , that
is |H0(IY,Pn(2))|. Let

φ|H0(IY,Pn (2))| : Pn 99K P
3n
2 +2.

For Y = ∅, clearly φ(P2) = ν2(P2) ⊂ P5. For Y = P1 q P1 ⊂ P3 we get φ(P4) = P2 × P2 ⊂ P8, a
particular form of a result known to C. Segre, see [Sg], found when studying for the first time the nowadays
called Segre varieties. For Y = P1 × P3 ⊂ P7, one obtains φ(P8) = G(1, 5) ⊂ P14 Plücker embedded, a
particular case of a general result of Semple, see [Sm] and [RS]. For Y = S10 ⊂ P15, Zak has shown in [LV]
and [Z2], chapter III, that φ(P16) = E6 ⊂ P26 is the Cartan, or E6, variety.

The birational inverse of φ, φ−1 : X 99K Pn, with X ⊂ P 3
2n+2 one of the Severi variety described

above, is given by the linear projection from the linear space P
n
2 +1
p =< Σp >, p ∈ SX a general point. We

prove that, more generally and a priori, a Severi variety of dimension n can be birationally projected from
P
n
2 +1
p =< Σp >, p ∈ SX general, onto Pn. This was originally proved in [Z2, IV.2.4 f)] and we furnish a

proof for the reader convenience.

3.3.14. PROPOSITION. Let X ⊂ P 3
2n+2 be a Severi variety. Let p ∈ SX be a general point, let Σp ⊂

P
n
2 +1
p be its entry locus and let

π = πLp : X 99K Pn
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be the projection from Lp =< Σp >= P
n
2 +1
p = Lp. Let X̃ = BlΣpX

α→ X , let E be the exceptional divisor
and let F be the strict transform of Hp = TpSX ∩X on X̃ . Let π̃ : X̃ → Pn be the resolution of πL and let
π̃(F ) = TpSX ∩ Pn = Pn−1 ⊂ Pn. By definition of π̃ we have π̃−1(Pn−1) = E ∪ F . Then:

i) if dim(π̃−1(z)) > 0, z ∈ Pn, then π̃−1(z) ⊆ E ∪ F ;
ii) the morphism π̃ is birational and defines an isomorphism between X̃ \ (E ∪ F ) and Pn \ Pn−1. In

particular, the locus of indetermination of π̃−1 is a subscheme Y ⊂ Pn−1.

PROOF. Let z ∈ Pn \ Pn, let Z = π̃−1(z)) and suppose dim(Z) > 0. Then Z ∩ (E ∪ F ) = ∅, so that
α(Z) = W is positive dimensional and it does not cut Lp. Thus W contains a positive dimensional variety
M ⊂ X such that Lp ∩M = ∅ and such that π(M) = z. This contradicts the fact that a linear projection,
when it is defined everywhere, is a finite morphism. The first part is proved.

To prove part (ii) let us remark that if p ∈< x, y >, x, y ∈ X general points, then

(3.3.2) Lp =< Σp >=< TxX, y > ∩ < TyX,x >,

by Terracini Lemma (see also the proof of Scorza Lemma). The projection from the linear space < TxX, y >
can be thought as the composition of the tangential projection πx : X 99K Wx ⊂ Pn

2 +1 and the projection
of the smooth quadric hypersurface Wx from the point πx(y). Thus the projection from < TxX, y >, πx,y :
X 99K Pn

2 is dominant and for a general point z ∈ X we get

(3.3.3) < TxX, y, z > ∩X \ (< TxX, y > ∩X) = π−1
x,y(πx,y(z)) = Qx,z \ (Qx,z∩ < TxX, y >),

where as always Qx,z is the entry locus of a general point on < x, z >. Similarly

(3.3.4) < TyX,x, z > ∩X \ (< TyX,x > ∩X) = π−1
y,x(πy,x(z)) = Qy,z \ (Qy,z∩ < TxX, y >).

By definition of projection we have that

(3.3.5) π−1(π(z)) =< Lp, z > ∩(X \ Σp).

By the generality of z, we get

(3.3.6) π−1(π(z)) =< Lp, z > ∩(X \Hp).

By Terracini Lemma the linear spaces < TxX, y > and < TyX,x > are contained in TpSX , so that
< TxX, y > ∩X and < TyX,x > ∩X are contained in Hp. By combining (3.3.2), (3.3.3), (3.3.4) and (3.3.6)
we finally get

z ⊆ π−1(π(z)) ⊆ Qx,z ∩Qy,z = z,

where the last equality is scheme theoretical by Corollary 3.1.8 and by the generality of x, y, z ∈ X . �

3.3.15. PROPOSITION. Let X ⊂ P 3n
2 +2 be a Severi variety of dimension n. Then X ⊂ P 3n

2 +2 is projec-
tively equivalent to one of the following:

(1) the Veronese surface ν2(P2) ⊂ P5;
(2) the Segre 4-fold P2 × P2 ⊂ P8;
(3) the Grassmann variety G(1, 5) ⊂ P14;
(4) the Cartan (or E6) variety X ⊂ P26.

PROOF. By Proposition 3.1.8 a Severi variety is a QEL-variety of type δ = n
2 . The Divisibility Theorem

easily implies n = 2, 4, 8 or 16. For n = 2 one can apply Proposition 3.3.13 (or Corollary 2.3.7) to get case 1).
Assume n = 4, so that δ = 2. The base locus scheme of |IIx,X |, which is a linear system of dimension

3, is a smooth not necessarily irreducible curve in P3 with one apparent double point by Theorem 3.3.4. It
immediately follows that Yx ⊂ P3 is the union of two skew lines and that it coincides with the base locus
scheme of |IIx,X |.
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Suppose n = 8 and δ = 4. By Theorem 3.3.4, the variety Yx ⊂ P7 is a smooth, irreducible, non-
degenerate, QEL-variety of dimension 4 and such that SYx = P7. Furthermore, by Theorem 3.3.4 part 1),
there are at least six quadric hypersurfaces vanishing on Yx ⊂ P7. By restricting to a general P3 ⊂ P7, the
usual Castelnuovo Lemma yields deg(Yx) ≤ 4 and hence deg(Yx) = 4 since Yx ⊂ P7 is non-degenerate. Thus
Yx ⊂ P7 is projectively equivalent to the Segre variety P1 × P3 ⊂ P7 and clearly it is the base locus scheme of
|IIx,X |.

Suppose n = 16. Then by Theorem 3.3.4, Yx ⊂ P15 is a Mukai variety of dimension 10 and type
δ = 6 > n/2 = 5. Thus by Corollary 3.3.11, Yx ⊂ P15 is projectively equivalent to S10 ⊂ P15.

From now on we suppose n ≥ 4 so that a general entry locus is not a divisor on X . Let p ∈ SX \ X
be a general point and let P

n
2 +1
p be the locus of secant lines through p. Take a Pn disjoint from P

n
2 +1
p and let

ϕ : X 99K Pn be the projection from P
n
2 +1
p . By Proposition 3.3.14 the map ϕ is birational and an isomorphism

on X \ (TpSX ∩X). Let Y ⊂ TpSX ∩ Pn = Pn−1 be the base locus scheme of ϕ−1 : Pn 99K X ⊂ P 3n
2 +2,

that is of ϕ−1 composed with the inclusion i : X → P 3n
2 +2.

Take a general point y ∈ Σp. A general smooth conic through y cuts Σp transversally so that it is mapped
onto a line by ϕ. By Theorem 3.3.2 there is an irreducible family of such conics through y of dimension 3n

2 −2.
By varying y ∈ Σp the projected lines form a (2n− 2)-dimensional family of lines on Pn, which is then a part
of the whole family of lines in Pn. This means that ϕ−1 is given by a linear system of quadrics hypersurfaces
vanishing on the subscheme Y ⊂ Pn−1. Moreover since X ⊂ P 3n

2 +2 is linearly normal, ϕ−1 is given by
|H0(IY,Pn(2))|.

Consider a general point q ∈ Pn \ Pn−1, which we can write as ϕ(x) with x ∈ X general. Consider the
family of lines through ϕ(x) and parametrized by the not necessarily irreducible variety Yred ⊂ Pn−1. The
image viaϕ−1 of these lines are lines passing through x. Indeed, these lines cannot be contracted by Proposition
3.3.14, they cut Y and the restriction of ϕ−1 to such a line is given by a sublinear system of |OP1(2)|with a base
point. Thus we get a morphism αx : Yred → Yx, since Yx is isomorphic to the Hilbert scheme of lines through
x. Moreover, the birational map ϕ−1 is an isomorphism near ϕ(x), so that the morphism αx is one-to-one.

A general line through a general point x ∈ X is sent into a line passing through ϕ(x), because it does
not cut the center of projection. Since ϕ−1 is given by a linear system of quadric hypersurfaces, a general line
through ϕ(x) cuts Y in one point, proving that αx : Yred → Yx is dominant and hence surjective. Thus αx :
Yred → Yx is an isomorphism by Zariski Main Theorem. Moreover, the variety Yred ⊂ Pn−1 is projectively
equivalent to Yx. Thus Yred ⊂ Pn−1 has homogeneous ideal generated by n

2 + 2 quadratic equations and
therefore it coincides with Y ⊂ Pn−1.

Therefore the previous analysis furnishes that Y ⊂ Pn−1 is projectively equivalent to P1 q P1 ⊂ P3,
P1 × P3 ⊂ P7, respectively S10 ⊂ P15. The conclusion follows from the birational representation of the
known Severi varieties recalled above. �

3.3.4. Classification of conic-connected manifolds. The following Classification Theorem is one of the
main result of [IR1]. As CC-manifolds are stable under isomorphic projection, we may assumeX to be linearly
normal.

3.3.16. THEOREM. ([IR1, Theorem 2.1]) Let X ⊂ PN be a smooth irreducible linearly normal non-
degenerate CC-manifold of dimension n. Then either X ⊂ PN is a Fano manifold with Pic(X) ' Z〈OX(1)〉
and of index i(X) ≥ n+1

2 , or it is projectively equivalent to one of the following:

(i) ν2(Pn) ⊂ P
n(n+3)

2 .
(ii) The projection of ν2(Pn) from the linear space 〈ν2(Ps)〉, where Ps ⊂ Pn is a linear subspace;

equivalently X ' BlPs(Pn) embedded in PN by the linear system of quadric hypersurfaces of Pn
passing through Ps; alternativelyX ' PPr (E) with E ' OPr (1)⊕n−r⊕OPr (2), r = 1, 2, . . . , n−1,
embedded by |OP(E)(1)|. Here N = n(n+3)

2 −
(
s+2

2

)
and s is an integer such that 0 ≤ s ≤ n− 2.
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(iii) A hyperplane section of the Segre embedding Pa×Pb ⊂ PN+1. Here n ≥ 3 andN = ab+a+ b−1,
where a ≥ 2 and b ≥ 2 are such that a+ b = n+ 1.

(iv) Pa × Pb ⊂ Pab+a+b Segre embedded, where a, b are positive integers such that a+ b = n.

3.3.17. COROLLARY. A CC-manifold is a Fano manifold with second Betti number b2 ≤ 2; for b2 = 2 it
is also rational.

The preceding Theorem reduces the classification of CC-manifolds to the study of Fano manifolds having
large index and Picard group Z. The next result, essentially due to Hwang–Kebekus [HK, Theorem 3.14],
shows that, conversely, such Fano manifolds are conic-connected. Note that we slightly improve the bound on
the index given in [HK]. The first part of the Proposition is well known.

3.3.18. PROPOSITION. ([IR2, Proposition 2.4]; cf. also [HK]) Let X ⊂ PN be a Fano manifold with
Pic(X) ' Z〈H〉 and −KX = i(X)H , H being the hyperplane section and i(X) the index of X . Let as
always Yx ⊂ P(T ∗x (X)) = Pn−1 be the Hilbert scheme of lines through a general point x ∈ X .

(i) If i(X) > n+1
2 , then X ⊂ PN is ruled by lines so that Yx is nonempty and smooth. If i(X) ≥ n+3

2 ,
Yx ⊂ Pn−1 is also irreducible.

(ii) If i(X) ≥ n+3
2 and SYx = Pn−1, then X ⊂ PN is a CC-manifold.

(iii) If i(X) > 2n
3 , then X ⊂ PN is a CC-manifold.

PROOF. By a Theorem of Mori [Mo1] the variety X ⊂ PN is ruled by a family of rational curves L such
that for L ∈ L we have −KX ·L ≤ n+ 1. It follows that X ⊂ PN is ruled by lines, that is H ·L = 1, because

n+ 1 ≥ −KX · L = i(X)(H · L) > H · Ln+ 1
2

.

By Proposition 3.3.3 the Hilbert scheme of lines passing through x is smooth equidimensional and it can be
identified with a subscheme Yx ⊂ P(T ∗x (X)) = Pn−1 of dimension i(X) − 2. Thus, if i(X) − 2 ≥ n−1

2 ,
Yx ⊂ Pn−1 is irreducible.

Part (ii) follows from [HK, Theorem 3.14].
To prove part (iii), first observe that i(X) ≥ n+3

2 , unless n ≤ 6. If n ≤ 6, i(X) > 2n
3 gives i(X) ≥ n−1,

so the conclusion follows by the classification of del Pezzo manifolds (see [Fj]). To conclude, using part (ii), it
is enough to see that SYx = Pn−1.

By [Hw1, Theorem 2.5], the variety Yx ⊂ Pn−1 is non-degenerate and by hypothesis

n− 1 <
3i(X)− 6

2
+ 2 =

3 dim(Yx)
2

+ 2,

so that SYx = Pn−1 by Zak Linear Normality Theorem; see Theorem 3.1.5. �

3.3.19. COROLLARY. If X ⊂ Pn+r is a smooth non-degenerate complete intersection of multi-degree
(d1, d2, . . . , dr) with n > 3

(∑r
1 di − r − 1

)
, then X is a CC-manifold.

3.3.5. Classification of varieties with small dual. For an irreducible variety Z ⊂ PN , we defined
def(Z) = N − 1− dim(Z∗) as the dual defect of Z ⊂ PN , where Z∗ ⊂ PN∗ is the dual variety of Z ⊂ PN .
In [E1, Theorem 2.4] it is proved that if def(X) > 0, then def(X) ≡ n(mod 2), a result usually attributed
to Landman. Moreover, Zak Theorem on Tangencies implies that dim(X∗) ≥ dim(X) for a smooth non-
degenerate variety X ⊂ PN ; see Corollary 2.2.5.

We combine the geometry of CC and LQEL-manifolds to give a new proof of [E1, Theorem 4.5]. Our
approach avoids the use of Beilinson spectral sequences and more sophisticated computations as in [E1,
4.2, 4.3, 4.4].

We begin by recalling some basic facts from [E1].

3.3.20. PROPOSITION. Let X ⊂ PN be a smooth irreducible non-degenerate variety and assume that
def(X) > 0. Then
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(i) ([E1, Theorem 2.4]) through a general point x ∈ X there passes a line Lx ⊂ X such that −KX ·
Lx = n+def(X)+2

2 , so that def(X) ≡ n (mod 2);
(ii) ([E1, Theorem 3.2]) def(X) = n− 2 if and only if X ⊂ PN is a scroll over a smooth curve, i.e. it is

a Pn−1-bundle over a smooth curve, whose fibers are linearly embedded.

The following Proposition reinterprets the result of Hwang and Kebekus [HK, Theorem 3.14] on Fano
manifolds with large index.

3.3.21. PROPOSITION. ([IR2, Proposition 4.3]) Let X ⊂ PN be a smooth irreducible non-degenerate
variety. Assume that X is a Fano manifold with Pic(X) ∼= Z〈OX(1)〉 and let x ∈ X be a general point.

(i) If def(X) > 0 and def(X) > n−6
3 , then X is a CC-manifold with δ ≥ def(X) + 2. Moreover, if

δ = def(X) + 2, then X is an LQEL-manifold of type δ = def(X) + 2.
(ii) If X is an LQEL-manifold of type δ and def(X) > 0, then δ = def(X) + 2.

PROOF. In the hypothesis of (i), [E1, Theorem 2.4] yields i(X) = n+def(X)+2
2 > 2n

3 so that X is a CC-
manifold by Proposition 3.3.18. Proposition 3.3.1 yields δ ≥ def(X) + 2 and also the remaining assertions of
(ii) and (ii). �

We recall that according to Hartshorne Conjecture, if n > 2
3N , then X ⊂ PN should be a complete

intersection and that complete intersections have no dual defect, see part (4) of Exercise refexecisedual. Thus,
assuming Hartshorne Conjecture, the following result yields the complete list of manifolds X ⊂ PN such that
dim(X∗) = dim(X). The second part says that under the LQEL hypothesis the same results hold without any
restriction.

3.3.22. THEOREM. Let X ⊂ PN be a a smooth irreducible non-degenerate variety such that dim(X) =
dim(X∗).

(i) ([E1, Theorem 4.5]) If N ≥ 3n
2 , then X is projectively equivalent to one of the following:

(a) a smooth hypersurface X ⊂ Pn+1, n = 1, 2;
(b) a Segre variety P1 × Pn−1 ⊂ P2n−1;
(c) the Plücker embedding G(1, 4) ⊂ P9;
(d) the 10-dimensional spinor variety S10 ⊂ P15.

(ii) If X is an LQEL-manifold, then it is projectively equivalent either to a smooth quadric hypersurface
Q ⊂ Pn+1 or to a variety as in (b), (c), (d) above.

PROOF. Clearly def(X) = 0 if and only if X ⊂ Pn+1 is a hypersurface, giving case (a), respectively that
of quadric hypersurfaces. From now on we suppose def(X) > 0 and hence n ≥ 3. By parts (i) and (ii) of
Proposition 3.3.20, def(X) = n− 2 and N = 2n− 1 if and only if we are in case (b); see also [E1, Theorem
3.3, c)].

Thus, we may assume 0 < def(X) ≤ n − 4, that is N ≤ 2n − 3. Therefore δ ≥ 4 and X is a Fano
manifold with Pic(X) ∼= Z〈OX(1)〉. Moreover, in case (i), def(X) = N − n− 1 > n−6

3 by hypothesis. Thus
Proposition 3.3.21 yields that X is also a CC-manifold with δ ≥ def(X) + 2. Taking into account also the last
part of Proposition 3.3.21, from now on we can suppose that X is a CC-manifold with δ ≥ def(X) + 2 ≥ 3.

We have n − δ ≤ N − 1 − n = def(X) ≤ δ − 2, that is δ ≥ n
2 + 1. Zak Linear Normality Theorem

implies SX = PN , so that

N = dim(SX) = 2n+ 1− δ ≤ 3n
2
.

Since N ≥ 3n
2 , we get N = 3n

2 , δ = n
2 + 1 = def(X) + 2 and n even. Therefore X is an LQEL-manifold

of type δ = n
2 + 1 by Proposition 3.3.21. Corollary 3.3.11 concludes the proof, yielding cases (c) and (d). �
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3.3.6. A refined linear normality bound for LQEL–varieties. We defined inductively in Definition
3.3.8 some varieties naturally attached to a LQEL-manifold of type δ ≥ 3. Let ij = i(Xj), j = 1, . . . , rX−1,
be the index of the Fano manifold Xj . Computing as in Theorem 3.3.9 we get:

(3.3.7) ij =
n− δ
2j+1

+ δ − 2j, 0 ≤ j ≤ rX − 1.

3.3.23. COROLLARY. ([Fu, Theorem 3]) Let X ⊂ PN be an n-dimensional LQEL-manifold of type δ. If

δ > 2[log2 n] + 2 or δ > min
k∈N
{

n

2k−1 + 1
+

2kk
2k−1 + 1

},

then N = n+ 1 and X ⊂ Pn+1 is a quadric hypersurface.

PROOF. If δ > 2[log2 n] + 2, then n < 2r, where r = [(δ − 1)/2]. By Theorem 3.3.9, 2r divides n − δ.
This is possible only if δ = n. Thus X is a hyperquadric. Now assume we have the second inequality. Note

that for a fixed n, the minimum mink∈N{
n

2k−1 + 1
+

2kk
2k−1 + 1

} is achieved for some k ≤ n/2, so we may

assume that for some k ≤ n/2, we have δ >
n

2k−1 + 1
+

2kk
2k−1 + 1

= 2k+
n− 2k

2k−1 + 1
≥ 2k, so that δ ≥ 2k+1.

Now we can consider the variety Yk ⊂ PdimYk−1−1. Note that dimYk = i(Yk−1)− 2 and

dimYk−1 = 2ik−1 − δ(Yk−1) =
n− δ
2k−1

+ δ − 2k + 2.

On the other hand, Yk ⊂ Pdim(Yk−1)−1 is non-degenerate and it contains a hyperquadric of dimension
δ− 2k, which is strictly bigger than (dimYk−1− 2)/2 under our assumption on δ. Now [Z2, Corollary I.2.20]
implies that Yk ⊂ Pdim(Yk−1)−1 is a hypersurface. Since it is a non-degenerate hypersurface by Theorem 3.3.9
and a LQEL-manifold, Yk−1 is a quadric hypersurface. This easily implies yields the conclusion. �

We now state a sharper Linearly Normality Bound for LQEL-manifolds, see Theorem 3.1.5.

3.3.24. COROLLARY. ([Fu]) Let X ⊂ PN be a LQEL-manifold of type δ, not a quadric hypersurface.
Then

δ ≤ min
k∈N
{

n

2k−1 + 1
+

2kk
2k−1 + 1

} ≤
n+ 8

3
and

N ≥ dim(SX) ≥ 2n+ 1−min
k∈N
{

n

2k−1 + 1
+

2kk
2k−1 + 1

} ≥ 5
3

(n− 1).

Furthermore δ = n+8
3 if and only if X ⊂ PN is projectively equivalent to one of the following:

i) a smooth 4-dimensional quadric hypersurface X ⊂ P5;
ii) the 10-dimensional spinor variety S10 ⊂ P15;

iii) the E6-variety X ⊂ P26 or one of its isomorphic projection in P25;
iv) a 16-dimensional linearly normal rational variety X ⊂ P25, which is a Fano variety of index 12 with

SX = P25, dual defect def(X) = 0 and such that the base locus scheme Cx ⊂ P15 of |IIx,X | is the
union of 10-dimensional spinor variety S10 ⊂ P15 with CpS10 ' P7, p ∈ P15 \ S10.

PROOF. We shall prove only the second part. If δ = n+8
3 , then n− δ = 2n−8

3 . Suppose δ = 2rX + 1, so
that n− δ = 12rX−18

3 . By Theorem 3.3.9 we deduce that 2rX should divide 4rX − 6, which is not possible.
Suppose now δ = 2rX + 2, so that n − δ = 12rX−12

3 = 4(rX − 1). Since 2rX has to divide 4(rX − 1),
we get rX = 1, 2, 3 and, respectively, n = 4, 10, 16 with δ = 4, 6, respectively 8. The conclusion follows from
Theorems 3.3.11 and 3.3.12. �
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Let us observe that Lazarsfeld and Van de Ven posed the question if for an irreducible smooth projective
non-degenerate n-dimensional variety X ⊂ PN with SX ( PN the secant defect is bounded, see [LV]. This
question was motivated by the fact that for the known examples we have δ(X) ≤ 8, the bound being attained
for the sixteen dimensional Cartan variety E6 ⊂ P26, which is a LQEL-variety of type δ = 8. Based on these
remarks and on the above results one could naturally formulate the following problem, see [Fu].

Question: Is a LQEL-manifold X ⊂ PN with δ > 8 a smooth quadric hypersurface?

3.4. Additivity of higher secant defects, maximal embeddings and Scorza varieties

In this section we study the behaviour of the higher secant defects δk = δk(X), k ≥ 1, of an irreducible
smooth non-degenerate variety of dimension n, X ⊂ PN .

Let us recall that, for z ∈ SkX general point,

δk = dim(Σkz(X)) = dim(Sk−1X) + n+ 1− dim(SkX) = sk−1 + n+ 1− sk.

So higher the defect, smaller the dimension of SkX . As we shall see below, if X is secant defective, i.e. if
δ1 = δ > 0, then its k-secant defect has to be at least kδ, so that a secant defective variety has a minimum
k-secant defect determined a priori. Of special interest will be secant defective varieties for which each δk will
attain the minimal value kδ. What is not at all clear at this point is the fact that these varieties can be completely
classified in every dimension, at least in characteristic 0, and that they are suitable generalizations of Severi
varieties.

First we need a further application of Terracini Lemma to the description of the tangent space to the
entry locus of SX at a general point of it. As a minimal generalization we can define the projections onto
the i-factor φi : X1 × X2 → Xi and for z ∈ S(X1, X2), define Σz(Xi) = φi(p1(p−1

2 (z))), where the
morphism pi’s are the map used for the definition of the join. We remark that dim(Σz(X1)) = dim(Σz(X2)) =
dim(X1) + dim(X2) + 1− dim(S(X1, X2)). With this notation we get the following result.

3.4.1. PROPOSITION. LetX,Y ⊂ PN be closed irreducible subvarieties and assume char(K)=0. Suppose
S(X,Y ) ) X and S(X,Y ) ) Y to avoid trivialities. If z ∈ S(X,Y ) is a general point, if x ∈ Σz(X) is a
general point and if < z, x > ∩Y = y ∈ Σz(Y ), then y is a smooth point of Σz(Y ),

TxΣz(X) = TxX∩ < x, TyΣz(Y ) >= TxX∩ < x, TyY >,

TyΣz(Y ) = TyY ∩ < y, TxΣz(X) >= TyY ∩ < y, TxX >

and
TxX ∩ TyY = TxΣz(X) ∩ TyΣz(Y ).

In particular for z ∈ SX general point, X not linear, and for x ∈ Σz(X) general point, we have that, if
< x, z > ∩X = y ∈ Σz(X), then y is a smooth point of Σz(X),

TxΣz(X) = TxX∩ < x, TyΣz(X) >= TxX∩ < x, TyY >

and
TxX ∩ TyX = TxΣz(X) ∩ TyΣz(X).

PROOF. Exercise 3.5.1. �

Let us start with a general property of varieties defined over a field of characteristic 0.

3.4.2. PROPOSITION. Let X ⊂ PN be a smooth irreducible non-degenerate projective variety. Suppose
char(K)=0. Let k ≥ 1 be such that SkX ( PN , let x, y ∈ X and u ∈ Sk−1X be general points. Then

TxX ∩ TyX ∩ TuSk−1X = ∅.
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PROOF. Let z ∈ SkX be a general point and let SkX = S(X,Sk−1X). Then by Corollary 1.3.6 the
linear space TzSk 6= PN is tangent along Σkz(X) so that it contains T (Σkz(X), X). Since X is non-degenerate,
S(Σkz(X), X) is not contained in TzSkX . By Theorem 2.2.1 we get dim(S(Σkz(X), X)) = dim(Σkz(X)) +
dim(X) + 1 so that, for x, y ∈ X general points,

(3.4.1) TxX ∩ TyΣkz(X) = ∅.
By Proposition 3.4.1, if u ∈ Sk−1X is general, then

(3.4.2) TyΣkz(X) = TyX∩ < y, TuS
k−1X > .

By equations (3.4.1) and (3.4.2), we finally obtain

TxX ∩ TyX ∩ TuSk−1X ⊆ TxX ∩ TyX∩ < y, TuS
k−1X >= TxX ∩ TyΣkz(X) = ∅.

�

By combining Terracini Lemma with the above proposition, we immediately obtain a proof in character-
istic zero, the case we treat in the whole chapter, of the next theorem, which is true for arbitrary fields. For a
proof valid in arbitrary characteristic one can consult [Z2], pg. 109.

3.4.3. THEOREM. (Additivity of higher secant defects, Zak) Let X ⊂ PN be an irreducible smooth
non-degenerate projective variety. Let k ∈ N, 1 ≤ k ≤ k0. Then

δk ≥ δk−1 + δ ≥ kδ.

PROOF. Fix k, 2 ≤ k ≤ k0, the result being trivial for k = 1. By definition Sk−1X ( PN , so that if
x, y ∈ X and u ∈ Sk−2X are general points, by Proposition 3.4.2, we get TxX ∩ TyX ∩ TuSk−2X = ∅.

Let
L1 = TxX ∩ TuSk−2X and L2 = TxX ∩ TyX.

By Terracini Lemma, dim(L1) = δk−1 − 1 and dim(L2) = δ − 1 since x, y ∈ X and u ∈ Sk−2X are general
points. Let SkX = S(X,Sk−1X) and set

L = TxX∩ < TyX,TuS
k−2X > .

Once again by Terracini Lemma,
dim(L) = δk − 1.

Since Li ⊆ L and L1 ∩ L2 = TxX ∩ TyX ∩ TuSk−2X = ∅, then

δk − 1 = dim(L) ≥ dim(< L1, L2 >) = δk−1 − 1 + δ − 1− (−1) = δk−1 + δ − 1,

yielding the conclusions. �

We deduce some interesting corollaries of the above result. For a real number r ∈ R, [r] denotes the largest
integer not exceeding r.

3.4.4. COROLLARY. Let X ⊂ PN be a smooth irreducible non-degenerate variety of dimension n. Sup-
pose δ > 0. Then k0 ≤ [nδ ], i.e.

S[nδ ]X = PN .

PROOF. Recall that δk0 ≤ n by its definition so that

n ≥ δk0 ≥ k0δ,

i.e.
n

δ
≥ k0.

�
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The second application is a different proof of Hartshorne conjecture on linear normality, cfr. theorem 3.1.5.

3.4.5. COROLLARY. (Zak Theorem on Linear Normality) Let X ⊂ PN be a smooth non-degenerate
projective variety of dimension n. If N < 3

2n + 2, then SX = PN . Or equivalently if SX ( PN , then
dim(SX) ≥ 3

2n+ 1 and hence N ≥ 3
2n+ 2.

PROOF. Let us prove the last part. If δ > n
2 , then 1 = [nδ ] ≥ k0 ≥ 1 yields SX = PN . So δ ≤ n

2 as soon
as SX ( PN . This yields

N ≥ dim(SX) + 1 = 2n+ 2− δ ≥ 3n
2

+ 2.

�

We begin a systematic study of smooth secant defective varieties in characteristic zero and try to determine
the restrictions in terms of the embedding. We saw that if δ = 0 and N ≥ 2n + 1, there always exist smooth
non-degenerate varieties X ⊂ PN of dimension n and with δ = 0. For example one takes as X a smooth
complete intersection of N − n general hypersurfaces. Moreover, by Corollary 1.4.4, for such varieties, if
k < k0(X), then sk(X) = (k + 1)n+ k, δk(X) = 0 and sk0 = N , so that N and k0 are not determined or at
least bounded by a function of n and δ and both can grow arbitrarily.

On the other hand, Corollary 3.4.4 and Theorem 3.4.3 say that for non-degenerate varieties of fixed dimen-
sion n and with fixed δ > 0, k0 and N are bounded from above by a function depending on n and δ. Indeed,
k0 ≤ [nδ ], so that, by Corollary 1.3.6 part 4 and by Theorem 3.4.3,

(3.4.3) N = sk0 = (k0 + 1)(n+ 1)− 1−
k0∑
i=1

δi ≤ (k0 + 1)(n+ 1)− 1− δ
k0∑
i=1

i,

is bounded by a function depending only on n, δ and k0.
So a secant defective smooth non-degenerate projective variety X ⊂ PN of dimension n can be isomor-

phically projected in PM , M ≤ 2n, but due to the secant deficiency it cannot be the isomorphic projection of a
variety living in a projective space of arbitrary large dimension. The result of theorem 3.4.3 and the definition
of SkX and of k0 say that linearly normal secant defective varieties with higher N +1 = h0(OX(1)) are those
for which δk is the minimum possible, i.e. varieties such that δk = kδ.

On the base of the previous discussion let us introduce some definitions and collect the above argument in
a more systematic statement. We can think linear projection as a partial order in the set of the embeddings of a
variety X in projective space. Of particular interest will be maximal and minimal elements with respect to this
partial order.

3.4.6. DEFINITION. (Functions M(n, δ), m(n, δ) and f(n, δ, k)) All varieties X ⊂ PN are supposed to
be smooth, non-degenerate and projective.

Let us define, it it exists (otherwise we put it equal to∞), for n ≥ 1 and for δ ≥ 0,

M(n, δ) := max{N : ∃X ⊂ PN : dim(X) = n, δ(X) = δ}.
In the same way we define

m(n, δ) := min{N : ∃X ⊂ PN : dim(X) = n, δ(X) = δ}.

Inspired by (3.4.3) we define, following Zak, for k ≥ 0, for n ≥ 1 and for δ ≥ 0:

f(k, n, δ) := (k + 1)(n+ 1)− k(k + 1)δ
2

− 1.



3.4. ADDITIVITY OF HIGHER SECANT DEFECTS, MAXIMAL EMBEDDINGS AND SCORZA VARIETIES 71

We saw that M(n, 0) = ∞. Clearly m(n, δ) = 2n + 1 − δ. Indeed general complete intersection of
dimension n in P2n+1−δ are smooth non-degenerate varieties with SX = P2n+1−δ so that δ(X) = δ and
m(n, δ) ≤ 2n + 1 − δ. On the other hand every variety X ⊂ PN with δ(X) = δ and of dimension n has
2n+ 1− δ = dim(SX) ≤ N , yielding m(n, δ) ≥ 2n+ 1− δ.

The equation (3.4.3) can be read as, if δ > 0, then N ≤ f(k0, n, δ).

Let us reinterpret Corollary 3.4.4 in terms of these functions and study their first properties.

3.4.7. PROPOSITION. Let the pairs (n, δ) in the statement be such that the functions M(n, δ) and m(n, δ)
are defined. Then

(1) if δ > n
2 , then M(n, δ) = m(n, δ) = 2n+ 1− δ;

(2) M(n, δ − 1) ≥M(n, δ) + 1;
(3) M(n− 1, δ − 1) ≥M(n, δ)− 1.

PROOF. By Corollary 3.4.4, δ > n
2 gives k0 = 1 and hence SX = PN so that N = dim(SX) =

2n+ 1− δ = m(n, δ) is determined by n and δ, yielding part 1).
Suppose given X ⊂ PN , dim(X) = n and δ(X) = δ ≥ 1. Let p ∈ PN+1 \ PN , set Y = S(p,X)

and take X ′ = Y ∩ H ⊂ PN+1, H ⊂ PM(n,N+1 a general hypersurface of degree d > 1. The variety X ′

is smooth, non-degenerate, irreducible and of dimension n with δ(X ′) = δ(X) − 1 and SX ′ = S(p, SX).
Indeed, SX ′ ⊆ S(p, SX) so that it will be sufficient to prove the first part of the claim. Let πp : X ′ → X be
the projection from p onto PN . By Terracini lemma, if p′1, p′2 ∈ X ′ are general points, then

δ(X ′) + 1 = dim(< p, Tp′1X > ∩ < p, Tp′2X >)

= dim(< p, Tp′1X > ∩ < p, Tp′2X > ∩PN ) + 1

= dim((< p, Tp′1X > ∩PN ) ∩ (< p, Tp′2X > ∩PN )) + 1

= dim(Tπp(p′1
)X ∩ Tπp(p′2)X) + 1 = δ.

Suppose given X ⊂ PN , dim(X) = n and δ(X) = δ ≥ 1. Let X ′ = X ∩H ⊂ H = PN−1 be a general
hyperplane section. By Terracini Lemma and by the generality of H , if one takes p1, p2 ∈ X ′ = X ∩ H
general, then δ(X ′)− 1 = dim(Tp1X

′ ∩ Tp2X ′) = dim(Tp1X ∩ Tp2X ∩H) = δ − 2 so that δ(X ′) = δ − 1
and dim(SX ′) = 2(n− 1) + 1− δ(X ′) = 2n− δ = dim(SX)− 1. Since SX ′ ⊆ SX ∩H we also deduce
SX ′ = SX ∩H . �

3.4.8. DEFINITION. (Extremal variety) A smooth irreducible non-degenerate projective variety X ⊂ PN
of dimension n is said to be an extremal variety if δ(X) = δ > 0 and if N = M(n, δ).

In other words an extremal variety is a smooth secant defective variety, which is a maximal element in the
partial order defined by isomorphic projection.

We are now in position to refine (3.4.3) in the sharpest form.

3.4.9. THEOREM. (Maximal embedding of secant defective varieties, Zak, [Z2]) Suppose δ > 0. Then

M(n, δ) ≤ f([
n

δ
], n, δ).

In particular a smooth non-degenerate irreducible projective varietyX ⊂ PN withN = f([nδ ], n, δ) is linearly
normal.

PROOF. By equation (3.4.3) we know that for a given varietyX ⊂ PN of dimension n and with δ(X) = δ,
we have N ≤ f(k0, n, δ). On the other hand by Corollary 3.4.4 we know that k0 ≤ [nδ ]. Fixing n and

δ, y = f(k, n, δ) is a parabola in the plane (k, y), whose vertex has coordinates ( 2n−δ+2
2δ , (2n+δ+2)2

8δ ); in
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particular it is an increasing function on the interval 0 ≤ k ≤ 2n−δ+2
2δ . So if k0 = [nδ ], there is nothing to

prove. If k0 < [nδ ], then

k0 ≤ [
n

δ
]− 1 ≤ n

δ
− 1 <

2n− δ + 2
2δ

,

so that
N ≤ f(k0, n, δ) ≤ f(

n

δ
− 1) = f(

n

δ
, n, δ)− 1 < f([

n

δ
], n, δ),

where the last inequality follows from the fact that f(m,n, δ) ∈ N for every m ∈ N. This finishes the
proof. �

Theorem 3.4.9 says that secant defective varieties are allowed to live in a projective space of bounded
dimension, the bound being expressed by the value f([nδ ], n, δ).

Let us reinterpret some results in the light of the new definitions and of the first properties of the functions
M(n, δ) and f(k, n, δ), following Zak [Z2].

3.4.10. REMARK. (Case δ > n
2 ) If δ > n

2 , then [nδ ] = 1, SX = PN so that

m(n, δ) = M(n, δ) = 2n+ 1− δ = f(1, n, δ).

3.4.11. REMARK. (Case δ = n
2 ) In this case n ≡ 0 (mod. 2) and by Theorem 3.4.9

N ≤ f(2, n,
n

2
) =

3n
2

+ 2.

There are two possibilities:
(1) SX = PN , m(n, n2 ) = 3n

2 + 1 = dim(SX) = N ;
(2) SX ( PN , N = dim(SX) + 1 = M(n, n2 ) = f(2, n, n2 ) = 3n

2 + 2.
Varieties in case 2) are clearly Severi varieties so the remark furnishes a new proof that Severi varieties are

linearly normal.

In the next remark we connect these results with the classical work of Gaetano Scorza.

3.4.12. REMARK. Suppose
n ≡ 1(mod. 2) and SX ( PN .

By Remark 3.4.10

δ <
n− 1

2
and s = dim(SX) = 2n+ 1− δ ≥ 3n+ 3

2
.

We now discuss the extremal case δ = n−1
2 in the above hypothesis.

Suppose n = 3 so that δ = 1. By Theorem 3.4.9

N ≤ f(3, 3, 1) = 9 = s+ 2.

By the main classification Theorem of [S1], see also Theorem 2.3.8, there is only one such 3-fold, X =
ν2(P3) ⊂ P9.

If n > 3, then

N ≤ f(
2n
n− 1

, n,
n− 1

2
) =

3n+ 7
2

= s+ 2.

Therefore, for n ≡ 1 (mod. 2), δ = n−1
2 there are only the following cases:

(1) SX = PN , N = s = m(n, n−1
2 ) = 3n+3

2 ;
(2) N = s+ 1 = 3n+5

2 ;
(3) N = s+ 2 = 3n+7

2 (= M(n, n−1
2 ) if n > 3);

(4) n = 3, N = s+ 3 = M(3, 1) = 9.
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All these cases really occur. Examples of case 2) are hyperplane sections of the Severi varieties. For an
example as in case 3) one can take P2×P3 ⊂ P11 Segre embedded, while we saw above an example as in case
4).

3.4.1. Scorza varieties. In the previous section we defined extremal varieties and discussed various cases.
In particular we saw that if δ > n

2 , then SX = PN and X ⊂ PN is an extremal variety such that M(n, δ) =
f([nδ ], n, δ) = f(1, n, δ) = 2n+ 1− δ = N = m(n, δ).

By definition of the function f(k, n, δ) and due to Theorem 3.4.9, an extremal variety X ⊂ PM(n,δ),
δ > 0, satisfies M(n, δ) = f([nδ ], n, δ) if and only if k0 = [nδ ] and δk = kδ for 0 ≤ k ≤ k0.

The case of extremal varieties with k0 = 1 = [nδ ], i.e. M(n, δ) = m(n, δ) does not present particular
restrictions and there are infinite examples. On the base of the examples in dimension 3 and 4, classically
studied by Scorza in [S1] and [S4], Zak introduced the following definition.

3.4.13. DEFINITION. (Scorza variety, [Z2], pg. 121) Let X ⊂ PN be a smooth irreducible non-
degenerate projective variety of dimension n. Then X is said to be a Scorza variety if:

(i) N > m(n, δ), where δ = δ(X) = 2n+ 1− dim(SX);
(ii) N = M(n, δ) <∞, i.e. δ > 0 and X is an extremal variety;

(iii) M(n, δ) = f([nδ ], n, δ), where f(k, n, δ) = (k + 1)(n+ 1)− k(k+1)
2 δ − 1.

From now on we will suppose char(K)=0. Under these hypothesis, a smooth non-degenerate irreducible
projective variety X ⊂ PN of dimension n is a Scorza variety if and only if δ ≤ n

2 , k0 = [nδ ] and δk = kδ for
0 ≤ k ≤ [nδ ].

As we saw in Remark 3.4.11, Severi varieties are instances of Scorza varieties with δ = n
2 . So the class

of Scorza varieties includes the four Severi varieties. The extraordinary and remarkable classification result
due to Zak, which we will try to illustrate in this section, states that there are only few other examples. These
examples form infinite series, whose first members are the three classical Severi varieties of dimensions 2,4
and 8. The classification result is the following.

3.4.14. THEOREM. (Classification of Scorza varieties, [Z2, Chapter V]) LetX ⊂ PN be a Scorza variety
of dimension n. Then X is projectively equivalent to one of the following:

(1) ν2(Pn) ⊂ P
n(n+3)

2 (δ = 1);
(2) Pa × Pb ⊂ Pab+a+b, a+ b = n, |a− b| ≤ 1 (δ = 2);
(3) G(1, n2 + 1) ⊂ P

n(n+6)
2 , n ≡ 0 (mod. 2) (δ = 4);

(4) the E6-variety X ⊂ P26 of dimension 16 (δ = 8).

There is a uniform description of Scorza varieties with n ≡ 0 (mod. δ), ”the most interesting case”,
according to Zak, [Z2, pg. 152]. These varieties have a determinantal description as locus of rank 1 matrices in
the projective space of suitable Jordan algebras of Hermitian matrices of order nδ +1 over composition algebras,
generalizing the one furnished for Severi varieties, see loc. cit. and [Ch2]; hence they are realized as suitable
quadratic Veronese embedding of generalized projective spaces. From this point of view the classification of
these Scorza varieties is completely parallel to the classification of the above algebras obtained algebraically
by Albert, see for example [BK] or [Ja].

The first techinical and important towards classification is the following.

3.4.15. THEOREM. (Entry loci of Scorza varieties, [Z2], pg. 122) Let X ⊂ PN be a Scorza variety of
dimension n, with δ = δ(X) and N = f([nδ ], n, δ). Let z ∈ SkX , 2 ≤ k ≤ k0 − 1 = [nδ ]− 1. Then

Σkz(X) ⊂ CTzSkX(SkX) = Pf(k,kδ,δ) = SkΣkz(X)
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is a Scorza variety such that

dim(Σkz(X)) = kδ, k0(Σkz(X)) = k, δi(Σkz(X)) = iδ, 0 ≤ i ≤ k.

If nδ > k0 ≥ 2, then Σk0z (X) is a Scorza variety of dimension k0δ < nwith δ(Σk0z (X)) = δ and< Σk0z (X) >=
Sk0Σk0z (X) = CTzSk0X(Sk0X) = Pf(k0,k0δ,δ).

For z ∈ SX general point, Σz(X) ⊂ Pδ+1 is a non-singular quadric hypersurface of dimension δ.

The following corollary is a fundamental step for the classification of Scorza varieties since it drastically
reduces the cases to be considered.

3.4.16. COROLLARY. (Singular defect of Scorza varieties, [Z2], pg. 125) Let X ⊂ Pf([nδ ],n,δ) be a
Scorza variety. Then for z ∈ S2X general point, Σ2

z(X) is a Severi variety so that δ = 1, 2, 4, or 8.

In order to classify Scorza varieties we have to consider only the 4 cases: δ = 1, 2, 4 or 8. The case δ = 1
was proved in Theorem 2.3.8.

3.4.17. THEOREM. (Classification of Scorza varieties with δ = 1) Let X ⊂ PN be a smooth non-
degenerate irreducible projective variety of dimension n such that dim(SX) ≤ 2n. Then N ≤ n(n+3)

2 and

equality holds if and only if X is projectively equivalent to ν2(Pn) ⊂ P
n(n+3)

2 .
In particular M(n, 1) = n(n+3)

2 and ν2(Pn) ⊂ PN is the only Scorza variety of dimension n with δ = 1.

The follwoing Corollary of Theorems 3.3.16 and 3.3.4 will imply the calssification of Scorza varieties with
δ = 2.

3.4.18. COROLLARY. Let X ⊂ PN be a QEL-variety of type δ = 2. Then one of the following holds:

i) n is even, Pic(X) = Z < O(1) >, N ≤ n + n(n+2)
8 , X is a Fano variety of index n

2 + 1 and
Yx ⊂ Pn−1 is a smooth irreducible variety with one apparent double point of dimension n

2 − 1.
Furthermore, if N = n + n(n+2)

8 , then Yx ⊂ Pn−1 is a rational normal scroll of dimension n
2 − 1,

which is a variety with one apparent double point.
ii) N ≤ (n− l)l + n, 1 ≤ l ≤ n

2 , and X is projectively equivalent to (an isomorphic projection of) the
Segre variety Pl× ⊂ Pn−l ⊂ P(n−l)l+n.

PROOF. By Theorem 3.3.16 we have that either we are in case ii) or n is even and X ⊂ PN is a Fano
variety of index n

2 + 1 with Pic(X) = Z < O(1) > such that Yx ⊂ Pn−1 is a smooth equidimensional scheme
such that through a general point of Pn−1 tehre passes a unique secant line to Yx.

If Yx ⊂ Pn−1 were reducible, then it should consists of at least 3 irreducible components by [Hw2,
Proposition2] and through a general point of Pn−1 there would pass more than one secant line to Yx. Indeed,
by projecting Yx ⊂ Pn−1 from a general point, we would obtain at least 3 singular points in the projection of
Yx, corresponding to the secant lines passing through the center of projection.

Therefore Yx is irreducible and it is a smooth irreducible non-degenerate variety with one apparent double
point. Thus

h0(Yx(2)) ≤
n
2 (n2 + 1)

2
=
n(n+ 2)

8
by [Z3, Corollary 5.4]. Since N − n = dim(|IIx,X |) + 1 ≤ h0(Yx(2)) by Theorem 3.3.4, we get N ≤
n+ n(n+2)

8 .

Assume N = n + n(n+2)
8 . Then Yx ⊂ Pn−1 is a smooth irreducible non-degenerate variety with one

apparent double point defined by n(n+2)
8 quadratic equations, so that it is a rational normal scroll by [Z3,

Corollary 5.8]. �
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We now proceed with the classification of Scorza varities with δ = 2. Our proof is different from the one
proposed by Zak in [Z2, pg. 130] and in our opinion more transparent and direct.

3.4.19. THEOREM. (Classification of Scorza varieties with δ = 2) Let X ⊂ PN be a smooth variety of
dimension n ≥ 4 and such that dim(SX) < 2n. Then

(1) if n = 2m, then N ≤ m(m+ 2) = (m+ 1)2 − 1;
(2) if n = 2m+ 1, then N ≤ (m+ 1)(m+ 2)− 1.

Moreover, the inequalities turn into equalities if and only ifX is projectively equivalent to Pm×Pm ⊂ Pm(m+2)

or to Pm × Pm+1 ⊂ Pm2+3m+1 Segre embedded.
In particular, if m is as above, M(n, 2) = n(n+4)−n−2m

4 and the above ones are the only Scorza varieties
with δ = 2.

PROOF. We have δ ≥ 2, so that if n = 2m,

N ≤ f(m, 2m, 2) = m(m+ 2) = (m+ 1)2 − 1,

while if n = 2m+ 1, then
N ≤ f(m, 2m+ 1, 2) = (m+ 1)(m+ 2)− 1

and the first part follows.
Suppose equality holds in the above inequalities. Then X is a Scorza variety of dimension n = 2m,

respectively n = 2m+ 1, with δ = 2. Since for every n ≥ 2 we have n+ n(n+2)
8 ≤ min{(n2 )2− 1, n+1

2
n+3

2 },
we can conlude via Corollary 3.4.18. �

Next we analyze the case δ = 4. Firstly we present some preliminary results.

3.4.20. PROPOSITION. LetX ⊂ PN be an LQEL-manifold of type δ = 4. ThenN ≤ n2+6n
8 and equality

holds if and only if X is projectively equivalent to the Plücker embedding G(1, n2 + 1) ⊂ P
n2+6n

8 .

PROOF. By Theorem 3.3.9, n is even. If n = 4, then the result is trivially true. So we can suppose n ≥ 6.
Let x ∈ X be a general point. The variety Yx ⊂ P((TxX)∗) = Pn−1 is smooth, irreducible non-degenerate of
dimension n+4

2 − 2 = n
2 , see Theorem 3.3.4. Since codim(Yx) = n−4

2 + 1, we have

(3.4.4) h0(IYx(2)) ≤
(n−4

2 + 1)(n−4
2 + 2)

2
=

(n− 4)2 + 6(n− 4) + 8
8

,

by [Z3, Corollary 5.4]. By Theorem 3.3.4, we get N − n = dim(|IIx,X |) + 1 ≤ h0(Yx(2)), which combined
with (3.4.4) yields N ≤ n2+6n

8 .
Suppose N ≤ n2+6n

8 . Thus by [Z3, Corollary 5.8], the variety Yx ⊂ Pn−1 is a variety of minimal degree
of dimension n

2 , so that it is projectively equivalent to the Segre variety P1 × Pn
2−1 ⊂ Pn−1.

Therefore πx(X) = π̃x(E) = G(1, n2 − 1) ⊂ P
(n−2)(n+4)

8 , Plücker embedded. By the explicit description

of π̃x and by the fact that X ⊂ P
n2+6n

8 is an LQEL-manifold, it follows that the closure of a general fiber of
πx is a smooth quadric hypersurface of dimension 4 passing through x. Let Qx be the irreducible component
of dimension n− 4 of the Hilbert scheme of quadric hypersurfaces of dimension 4 contained in X and passing
through x, to which a general fiber of πx belongs. Let

Q̃x = {Q ∈ Qx smooth and such that Q * TxX ∩X} ⊆ Qx.

Let Cx ⊆ TxX ∩X be the cone with vertex x described by the lines parametrized by Yx ⊂ Pn−1.
We can first blow-up x and then the strict transform of Cx on BlxX . Let αx : Zx → X be the birational

morphism corresponding to these two blow-up’s, let E1 be the strict transform of the first exceptional divisor
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E and let E2 be the exceptional divisor of the second blow-up. The partial resolution of πx on Zx is a rational
map

ψx : Zx 99K G
(

1,
n

2
− 1
)
⊂ P

(n−2)(n+4)
8 ,

defined along E1, see Example 3.3.6, which is equivariant for the corresponding SL(2)-actions on E1 and on
G(1, n2 −1). Every quadric hypersurface in Q̃x is a closed fiber of ψx, so that we can identify Q̃x with an open
subset U ⊆ G(1, n2 − 1). Moreover

W = ψ−1
x (U)

ψx|W−→ U

is a Q4-bundle over U , birational to an open subset of X containing x.
On Gn = G(1, n2 +1) ⊂ P

n(n+6)
8 , fixing any point w on it, (TGn∩Gn)red is projectively equivalent to the

cone over the Segre variety P1×Pn
2−1⊂Pn−1. The corresponding map ψw :Zw 99KG(1, n2−1)⊂P

(n−2)(n+4)
8 is

a morphism which is equivariant for the action of SL(2).
Thus we can conclude that there exists a birational map

φx,w : X 99K G
(

1,
n

2
+ 1
)
⊂ P

n(n+6)
8 ,

sending a general quadric in Q̃x into a general quadric through w and inducing an isomorphism between these
quadric hypersurfaces of dimension 4. Thus φx,w is an isomorphism in codimension 1 such that φ∗x,w(O(1)) =
OX(1) (recall that X is a Fano variety with Pic(X) ' Z〈OX(1)〉, where OX(1) refers to the embedding in
P
n(n+6)

8 ). Therefore φx,w is an isomorphism which can be realized as the restriction of a projective transfor-
mation of P

n(n+6)
8 since X (and G(1, n2 + 1)) is linearly normal in P

n(n+6)
8 by the first part of the proof of the

Proposition. �

3.4.21. THEOREM. (Classification of Scorza varieties with δ = 4) Let X ⊂ PN be a Scorza variety of

dimension n ≥ 4 and with δ = 4. Then X = G(1, n2 + 1) ⊂ P
n2+6n

8 .

PROOF. IfX ⊂ PN is a Scorza variety with δ = 4, then n ≡ 0 mod. 2 by Theorem 3.3.9. Thus by explicit
computation we get N = f([n4 ]) = n2+6n

8 and the conclusion follows from Proposition 3.4.20. �

The following result is useful for the classification of Severi and Scorza varieties, which will be defined
below.

3.4.22. PROPOSITION. Let X ⊂ P26 be a LQEL-manifold of dimension 16 and type δ = 8. Then
X ⊂ P26 is projectively equivalent to the Cartan variety E6 ⊂ P26.

PROOF. Let x ∈ X be a general point. The variety Yx ⊂ P15 is a QEL-manifold of dimension 10 and
type δ = 6, so that it is projectively equivalent to S10 ⊂ P15 by Corollary 3.3.11. Thus |IIx,X | = |H0(IYx(2)|.
Then πx(X) = π̃x(E) = Q8 ⊂ P9, with Q8 a smooth quadric hypersurface, see [ESB, 4.4]. Moreover, the
closure of every fiber of π̃x is a P7 and after blowing-up Yx, the map π̃x becomes an equivariant morphism on
BlYx P15. A P7

r ⊂ P15, closure of the fiber π̃−1
x (π̃x(r)), r ∈ P15 \ Yx, cuts Yx in a six dimensional quadric

Q6
r . The variety S10 parametrizes one of the family of 4-planes in Q8. For any point t = π̃x(r) ∈ Q8, put

St = {L ∈ S10 : t ∈ L}. Then St is the spinor variety associated to the quadric hypersurface Q6
r and St ' Q6

r

by triality; see also [ESB, 4.4].
Repeating the construction in Proposition 3.4.20 and arguing exactly in the same way, we can construct a

birational map φ : X 99K E6 ⊂ P26, which is an isomorphism in codimension 1 and such that φ∗(OE6(1)) =
OX(1), since once again X and E6 are Fano varieties with Pic(X) ' Z〈OX(1)〉, where OX(1) refers to the
embedding in P26. Thus φ is an isomorphism which can be identified to a projective transformation of P26

since X ⊂ P26 (and E6 ⊂ P26) are linearly normal by Theorem 3.1.5. �

To conclude our tour through the classification of Scorza vareities, we sketch the proof of the following
result.
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3.4.23. THEOREM. (Classification of Scorza varieties with δ = 8) Let X ⊂ PM(n,8) be a Scorza variety
of dimension n and with δ = 8. Then X = E6 ⊂ P16.

PROOF. If X ⊂ PM(n,8) is a Scorza variety with δ = 8, then n ≡ 0 mod. 8 by Theorem 3.3.9. If k0 ≤ 3,
then Σ3

z(X) is Scorza variety of dimension 24 and secant defect δ = 8 for z ∈ S3X general. In the proof of
Theorem 3.4.15, Zak shows that in Σ2

u(X) = E6 ⊂ P16, u ∈ S2X general, there would be a 8 dimensional
liner space L ⊂ E6. This can be easily proved by studying carefully the k-tangential projections of X . Thus
for x ∈ L we would deduce L ⊆ TxE6 ∩E6. Since the last intersection is a cone over S10 ⊂ P15 of vertex the
point x, we would get a 7 dimensional linear space M ⊂ S10. Reasoning as above we would construct a P6

contained in TyS10 ∩ S10, which is a cone over over G(1, 4) ⊂ P9, which is impossible. If you do not agree,
apply the argument once more and deduce the existence of a P4 in TwG(1, 4)∩G(1, 4), which has dimension 4
being a cone over P1 × P2 ⊂ P5. Thus k0 = 2, n = 16 and N = 26. The conclusion follows from Proposition
3.4.22. �

3.5. Exercises

3.5.1. EXERCISE. Let X,Y ⊂ PN be closed irreducible subvarieties and assume char(K)=0. Suppose
S(X,Y ) ) X and S(X,Y ) ) Y to avoid trivialities. If z ∈ S(X,Y ) is a general point, if x ∈ Σz(X) is a
general point and if < z, x > ∩Y = y ∈ Σz(Y ), then y is a smooth point of Σz(Y ),

TxΣz(X) = TxX∩ < x, TyΣz(Y ) >= TxX∩ < x, TyY >,

TyΣz(Y ) = TyY ∩ < y, TxΣz(X) >= TyY ∩ < y, TxX >

and
TxX ∩ TyY = TxΣz(X) ∩ TyΣz(Y ).

In particular for z ∈ SX general point, X not linear, and for x ∈ Σz(X) general point, we have that, if
< x, z > ∩X = y ∈ Σz(X), then y is a smooth point of Σz(X),

TxΣz(X) = TxX∩ < x, TyΣz(X) >= TxX∩ < x, TyY >

and
TxX ∩ TyX = TxΣz(X) ∩ TyΣz(X).

(Hint: Let us remark that by assumption and by the generality of z and of x, we can suppose that y 6∈ TxX
and that x 6∈ TyY .

Take S(z,Σz(X)) = S(z,Σz(Y )). Then dim(S(z,Σz(X))) = dim(Σz(X)) + 1. If u ∈< z, x >=<
z, y > is a general point, then

TuS(z,Σz(X)) =< z, TxΣz(X) >= Pdim(S(z,Σz(X)))

because z 6∈ TxX . In particular u is a smooth point of S(z,Σz(X)). By Terracini Lemma, we get TuS(z,Σz(X)) ⊇<
z, TyΣz(Y ) >, which together with z 6∈ TyY yields dim(TyΣz(Y )) = dim(Σz(Y )) so that y ∈ Σz(Y ) is a
smooth point. Moreover,

TxΣz(X) ⊆ TuS(z,Σz(Y )) =< z, TyΣz(Y ) >=< x, TyΣz(Y ) >⊆< x, TyY > .

Since TxΣz(X) ⊆ TxX , to conclude it is enough to observe that

dim(TxX∩ < x, TyY >) = dim(X) + dim(Y ) + 1− dim(< TxX,TyX >)

= dim(Σz(X)) = dim(TxΣz(X)).

The other claims follows from symmetry between x and y or are straightforward).





CHAPTER 4

Degenerations of projections and applications

4.1. Degeneration of projections

In this section we present some of the ideas introduced in §3 and §4 of [CMR], to which we will constantly
refer, and which were later developed in §2 of [CR]. This suitable extended Theorem 4.1 of [CMR]. A further
application of these tecniques appears in [IR2], see section 4.2 below.

Let X ⊂ PN be an irreducible, non–degenerate projective variety of dimension n. We fix k ≥ 1 and we
assume that s(k)(X) = (k + 1)n+ k.

Let us fix an integer s such that N − s(k)(X) ≤ s ≤ N − s(k−1)(X) − 2, so that s(k−1)(X) + 1 ≤
N − s− 1 ≤ s(k)(X)− 1. Let L ⊂ PN be a general projective subspace of dimension s and let us consider the
projection morphism πL : Sk−1(X) → PN−s−1 of X from L. Notice that, under our assumptions on s, one
has:

πL(Sk(X)) = PN−s−1, πL(Sk−1(X)) ⊂ PN−s−1.

Let p1, ..., pk ∈ X be general points and let x ∈< p1, ..., pk > be a general point, so that x ∈ Sk−1(X) is a
general point and TSk−1(X),x = TX,p1,...,pk . We will now study how the projection πL : Sk−1(X)→ PN−s−1

degenerates when its centre L tends to a general s-dimensional subspace L0 containing x, i.e. such that
L0 ∩Sk−1(X) = L0 ∩TX,p1,...,pk = {x}. To be more precise we want to describe the limit of a certain double
point scheme related to πL in such a degeneration.

Let us describe in detail the set up in which we will work. We let T be a general Ps(k−1)(X)+s+1 which is
tangent to Sk−1(X) at x, i.e. T is a general Ps(k−1)(X)+s+1 containing TX,p1,...,pk . Then we choose a general
line ` inside T containing x, and we also choose Σ a general Ps−1 inside T . For every t ∈ `, we let Lt be
the span of t and Σ. For t ∈ ` a general point, Lt is a general Ps in PN . For a general t ∈ `, we denote by
πt : Sk−1(X) → PN−s−1 the projection morphism of Sk−1(X) from Lt. We want to study the limit of πt
when t tends to x. The case k = 1 has been considered in [CMR].

In order to perform our analysis, consider a neighborhood U of x in ` such that πt is a morphism for all
t ∈ U \ {x}. We will fix a local coordinate on ` so that x has the coordinate 0, thus we may identify U with a
disk around x = 0 in C. Consider the products:

X1 = X × U, X2 = Sk−1(X)× U, PN−s−1
U = PN−s−1 × U

The projections πt, for t ∈ U , fit together to give a morphism π1 : X1 → PN−s−1
U and a rational map

π2 : X2 99K PN−s−1
U , which is defined everywhere except at the pair (x, x) = (x, 0). In order to extend it,

we have to blow up X2 at (x, 0). Let p : X̃2 → X be this blow–up and let Z ' Ps(k−1)(X) be the exceptional
divisor. Looking at the obvious morphism φ : X̃2 → U , we see that this is a flat family of varieties over U . The
fibre over a point t ∈ U \ {0} is isomorphic to Sk−1(X), whereas the fibre over t = 0 is of the form S̃ ∪ Z,
where S̃ → Sk−1(X) is the blow up of Sk−1(X) at x, and S̃ ∩ Z = E is the exceptional divisor of this blow
up, the intersection being transverse.

On X̃2 the projections πt, for t ∈ U , fit together now to give a morphism π̃ : X̃2 → PN−s−1
U .

79
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By abusing notation, we will denote by π0 the restriction of π̃ to the central fibre S̃ ∪ Z. The restriction
of π0 to S̃ is determined by the projection of Sk−1(X) from the subspace L0: notice in fact that, since L0 ∩
Sk−1(X) = L0 ∩ TX,p1,...,pk = {x}, this projection is not defined on Sk−1(X) but it is well defined on S̃.

As for the action of π0 on the exceptional divisor Z, this is explained by the following lemma, whose proof
is analogous to the proof of Lemma 3.1 of [CMR], to which we refer for details:

4.1.1. LEMMA. In the above setting, π0 maps isomorphically Z to the s(k−1)(X)–dimensional linear
space Θ which is the projection of T from L0.

Now we consider X1 ×U X̃2, which has a natural projection map ψ : X1 ×U X̃2 → U . One has a
commutative diagram:

X1 ×U X̃2
π→ Pr−s−1

U

ψ ↓ ↓
U

idU→ U

where π = π × π̃. For the general t ∈ U , the fibre of ψ over t is X × Sk−1(X), and the restriction πt :
X × Sk−1(X) → Pr−s−1 of π to it is nothing but πt|X × πt|Sk−1(X). We denote by ∆(s,k)

t the double point

scheme of πt. Notice that dim(∆(s,k)
t ) ≥ s(k)(X) + s− r and, by the generality assumptions, we may assume

that equality holds for all t 6= 0. Finally consider the flat limit ∆̃(s,k)
0 of ∆(s,k)

t inside ∆(s,k)
0 . We will call it

the limit double point scheme of the map πt, t 6= 0. We want to give some information about it. Notice the
following lemma, whose proof is similar to the one of Lemma 3.2 of [CMR], and therefore we omit it:

4.1.2. LEMMA. In the above setting, every irreducible component of ∆(s,k)
0 of dimension s(k)(X) + s− r

sits in the limit double point scheme ∆̃(s,k)
0 .

Let us now denote by:
• XT the scheme cut out by T onX . XT is cut out onX by r−s(k−1)(X)−s−1 general hyperplanes

tangent to X at p1, ..., pk. We call XT a general (r − s(k−1)(X)− s− 1)-tangent section to X at
p1, ..., pk. Remark that each component of XT has dimension at least n− (r−s(k−1)(X)−s−1) =
s(k)(X) + s− r;

• YT the image of XT via the restriction of π0 to X . By Lemma 4.1.1, YT sits in Θ = π0(Z), which is
naturally isomorphic to Z. Hence we may consider YT as a subscheme of Z;

• ZT ⊂ X × Z the set of pairs (x, y) with x ∈ XT and y = π0(x) ∈ YT . Notice that ZT ' XT ;
• ∆’(s,k)

0 the double point scheme of the restriction of π0 to S̃ ×X .
With this notation, the following lemma is clear (see Lemma 3.3 of [CMR]):

4.1.3. LEMMA. In the above setting, ∆(s,k)
0 contains as irreducible components ∆’(s,k)

0 on X× S̃ and ZT
on X × Z.

As an immediate consequence of Lemma 4.1.2 and Lemma 4.1.3, we have the following proposition (see
Proposition 3.4 of [CMR]):

4.1.4. PROPOSITION. In the above setting, every irreducible component of XT , off TX,p1,...,pk , of dimen-
sion s(k)(X) + s− r gives rise to an irreducible component of ZT which is contained in the limit double point
scheme ∆̃(s,k)

0 .

So far we have essentially extended word by word the contents of §3 of [CMR]. This is not sufficient for
our later applications. Indeed we need a deeper understanding of the relation between the double points scheme
∆(s,k)
t and (k+1)–secant Pk’s to X meeting the centre of projection Lt and related degenerations when t goes

to 0. We will do this in the following remark.
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4.1.5. REMARK. (i) It is interesting to give a different geometric interpretation for the general double point
scheme ∆(s,k)

t , for t 6= 0. Notice that, by the generality assumption, Lt ∩ Sk(X) is a variety of dimension
s(k)(X) + s − r, which we can assume to be irreducible as soon as s(k)(X) + s − r > 0. Take the general
point w of it if s(k)(X) + s − r > 0, or any point of it if s(k)(X) + s − r = 0. Then this is a general point
of Sk(X). This means that w ∈< q0, ..., qk >, with q0, ..., qk general points on X . Now, for each i = 0, ..., k,
there is a point ri ∈< q0, ..., q̂i, ...qk > which is collinear with w and qi. Each pair (qi, ri), i = 0, ..., k, is a
general point of a component of ∆(s,k)

t . Conversely the general point of any component of ∆(s,k)
t arises in this

way.

(ii) Now we specialize to the case t = 0. More precisely, consider ZT ⊂ X ×Z and a general point (p, q)
on an irreducible component of it of dimension s(k)(X) + s− r, which therefore sits in the limit double point
scheme ∆̃(s,k)

0 . Hence there is a 1–dimensional family {(pt, qt)}t∈U of pairs of points such that (pt, qt) ∈
∆(s,k)
t and p0 = p, q0 = q.

By part (i) of the present remark, we can look at each pair (pt, qt), t 6= 0, as belonging to a (k+ 1)–secant
Pk to X , denoted by Πt, forming a flat family {Πt}t∈U\{0} and such that Πt ∩ Lt 6= ∅. Consider then the flat
limit Π0, for t = 0, of the family {Πt}t∈U\{0}. Since q ∈ Z, clearly Π0 contains x. Moreover it also contains
p. This implies that Π0 is the span of p with one of the k–secant Pk−1’s to X containing x ∈ Sk−1(X).

As an application of the previous remark, we can prove the following crucial theorem, which extends
Theorem 4.1 of [CMR]:

4.1.6. THEOREM. ([CR, Theorem 2.7]) LetX ⊂ PN be an irreducible, non–degenerate, projective variety
such that s(k)(X) = (k + 1)n+ k. Then:

dX,k · deg(Xk) ≤ νk(X).
In particular:

(i) if N ≥ (k + 1)(n+ 1) and X is not k–weakly defective, then:

deg(Xk) ≤ νk(X);
(ii) if N = (k + 1)n+ k then:

dX,k ≤ µk(X).

PROOF. We let s = h(k)(X) = r − s(k)(X) and we apply Remark 4.1.5 to this situation. Then XT has
dX,k · deg(Xk) isolated points, which give rise to as many flat limits of (k + 1)–secant Pk’s to X meeting a
general Ps. By the definition of νk(X) the first assertion follows. Then (i) follows from Lemma 1.5.5 and (ii)
follows by (1.5.2). �

In the last part we shall suppose k = 1 and study a slight different degeneration, following §2 of [IR2] in
order to provide some new applications of this circle of ideas.

Let us recall the setting for the definition of the secant variety. Let X ⊂ PN be an irreducible non-
degenerate projective variety and let

SX := {(x, y, z) | x 6= y, z ∈ 〈x, y〉} ⊂ X ×X × PN ,
be the abstract secant variety of X ⊂ PN , which is an irreducible projective variety of dimension 2n+ 1. Let
us consider the projections of SX onto the factors X ×X and PN ,

(4.1.1)

SX
p1

{{www
ww

ww
ww p2

!!D
DD

DD
DD

D

X ×X PN .
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With this notation we get
p2(SX) =

⋃
x 6=y
x,y∈X

〈x, y〉 = SX ⊆ PN .

Let L = 〈x, y〉 with x ∈ X and y ∈ X general points, i.e. L is a general secant line to X , and let
p ∈ 〈x, y〉 ⊆ SX ⊆ PN be a general point. We fix coordinates on L so that the coordinate of x is 0; let U be
an open subset of A1

C ⊂ L containing 0 = x. Let p2 : SX → SX ⊆ PN be as above and let

ZU = p−1
2 (U) ⊂ SX .

By shrinking up U , we can suppose that p2 : ZU → U is flat over U \ {0} and that dim(ZU )t = δ(X) for
every t 6= 0. The projection of p1((ZU )t) onto one of the factors is Σt, the entry locus of X with respect to t
for every t 6= 0.

Moreover, by definition, a point (r, s) ∈ X ×X , r 6= s, belongs to (ZU )t, t 6= 0, if and only if t ∈ 〈r, s〉,
that is if and only if (r, s) ∈ p−1

2 (t). Thus, if ψt : X 99K PN−1 is the projection from t onto a disjoint PN−1,
we can also suppose that ψt is a morphism for every t 6= 0 and a rational map not defined at x = 0 for t = 0.
The above analysis says that the abstract entry locus (ZU )t, t 6= 0, can be considered as the closure in X ×X
of the double point locus scheme of ψt, minus the diagonal ∆X ⊂ X ×X .

Let T = 〈TxX, y〉, so that T is a general Pn+1 containing TxX and a general point y ∈ X . By definition
π−1
x (πx(y)) = T ∩X \ (TxX ∩X). Let

Fy = π−1
x (πx(y)),

be the closure of the fiber of πx through y. Every irreducible component of Fy has dimension δ(X) by Terracini
Lemma and by the generality of y. Generic smoothness ensures also that there exists only one irreducible
component of Fy through y.

By using the same ideas recalled above, we get the following result.

4.1.7. PROPOSITION. Let notation be as above. The closure of the fiber of πx through a general point
y ∈ X is contained in the flat limit of the family {(ZU )t}t6=0. In other words, the closure of a general fiber of
the tangential projection is a degeneration of the general entry locus of X .

PROOF. We shall look atψt as a family of morphisms and study the limit of the double point scheme (ZU )t.
Consider the products X = X × U and PU = PN−1 × U . The projections ψt, for t ∈ U , fit together to

give a rational map ψ : X 99K PU , which is defined everywhere except at the pair (x, 0). In order to extend
the projection not defined at x ∈ X , we have to blow up X at (x, 0). Let σ : X̃ → X be this blowing-up and
let Z ' Pn be the exceptional divisor. Looking at the obvious morphism φ : X̃ → U , we see that this is a
flat family of varieties over U . The fiber X̃t over a point t ∈ U \ {0} is isomorphic to X , whereas the fiber
X̃0 over t = 0 is of the form X̃0 = X̃ ∪ Z, where X̃ → X is the blowing-up of X at x, and X̃ ∩ Z = E is
the exceptional divisor of this blowing-up, the intersection being transverse. Reasoning as in [CMR, Lemma
3.1], see also Lemma 4.1.1 above, it is easy to see that ψ0 acts on X̃ as the projection from the point 0 = x,
while it maps Z isomorphically onto the linear space ψ0(T ) = Pn. This immediately implies that every point
of T ∩X , different from x, appears in the “double point scheme” of ψ0 : X̃ ∪Z → PN−1. Therefore Fy , being
of dimension δ(X), is contained in the flat limit of {(ZU )t}t 6=0, proving the assertion. �

For an irreducible variety X ⊂ PN we denoted by µ(X) the number of secant lines passing through a
general point of SX . If δ(X) > 0, then µ(X) is infinite, while for δ(X) = 0 the above number is finite and in
this case

ν(X) = µ(X) · deg(SX)

is called the number of apparent double points of X ⊂ PN . With these definitions we obtain the following
generalization of [CMR, Theorem 4.1] (see also [CR, Theorem 2.7]).



4.2. RATIONALITY OF VARIETIES WITH EXTREMAL SECANT OR TANGENTIAL BEHAVIOUR 83

4.1.8. THEOREM. ([IR2, Theorem 2.3]) LetX ⊂ PN be as irreducible non-degenerate variety. If δ(X) =
0, then

0 < deg(πx) ≤ µ(X).

In particular for a QEL-manifold of type δ = 0, the general tangential projection is birational.
If X ⊂ PN is a QEL-manifold of type δ > 0, then the general fiber of πx is irreducible. More precisely the

closure of the fiber of πx passing through a general point y ∈ X is the entry locus of a general point p ∈ 〈x, y〉,
i.e. a smooth quadric hypersurface.

PROOF. If δ(X) = 0, then for t ∈ U \ {0} the 0-dimensional scheme (ZU )t has length equal to 2µ(X).
The 0-dimensional scheme Fy contains deg(πx) isolated points, yielding 2 deg(πx) points in the flat limit of
{(ZU )t}t6=0 by Proposition 4.1.7 and proving the first part.

Suppose X is a QEL-manifold of type δ > 0. Then for every t 6= 0 the δ-dimensional scheme (ZU )t is
a smooth quadric hypersurface by definition of QEL-manifolds. The fiber Fy contains the entry locus Σp of a
general point p ∈ 〈x, y〉, which is a smooth quadric hypersurface of dimension δ passing through x and y. By
proposition 4.1.7 the variety Fy is also contained in the flat limit of {(ZU )t}t6=0. Therefore Fy coincides with
Σp. In fact, in this case the family {(ZU )t}t6=0 is constant. �

4.2. Rationality of varieties with extremal secant or tangential behaviour

Let us state this highly non-trivial implications of Theorem 4.1.6 and of Theorem 1.5.9.

4.2.1. COROLLARY. Let k be a positive integer. LetX ⊂ PN be an irreducible, non–degenerate, projective
variety of dimension n and let h := codim(Sk(X)) ≥ 0,. One has:

(i) ifX is aMk–variety then for everym such that 1 ≤ m ≤ h, the varietyXm is again aMk–variety;
(ii) if X is a MAk+1

k−1-variety then for every m such that 1 ≤ m ≤ h − 1, the variety Xm is again a
MAk+1

k−1-variety and Xh is a OAk+1
k−1–variety;

(iii) if X is either anMAk+1
k−1-variety or anOAk+1

k−1–variety then τX,k : X 99K Xk ⊆ Pn+h is birational
and Xk is a variety of dimension n of minimal degree h+ 1. In particular X is a rational variety.

PROOF. Parts (i) follows by Theorem 1.5.9, part (ii). Part (ii) follows by Theorem 1.5.9, parts (ii) and (v).
In part (iii), the birationality of τX,k follows by Theorem 4.1.6, part (ii). The rest of the assertion follows by
Theorem 1.5.9, part (iv). �

4.2.2. REMARK. In the papers [B1] and [B2], Bronowski considers the case k = 1, h = 0 and the case
k ≥ 2, n = 2, h = 0. He claims there, without giving a proof, that also the converse of Corollary 4.2.1 holds
for h = 0. We will call this the k–th Bronowski’s conjecture, a generalized version of which, for any h ≥ 0,
can be stated as follows: Let X ⊂ PN be an irreducible, non–degenerate, projective variety of dimension n.
Set h := codim(Sk(X)). If τX,k : X 99K Xk ⊆ Pn+h is birational and Xk is a variety of dimension n and of
minimal degree h + 1, then X is either anMAk+1

k−1–variety or an OAk+1
k−1–variety, according to whether h is

positive or zero. We call this the k–th generalized Bronowski’s conjecture.
Even the curve case n = 1 of this conjecture is still open in general. The results in [CMR], [Ru1], [Sev],

imply that the above conjecture is true for X smooth if k = 1, h = 0 and 1 ≤ n ≤ 3. The general smooth
surface case n = 2, k ≥ 1, h ≥ 0 follows from [CR, Corollary 8.1]). This interesting conjecture is quite open
in general.

Bronowski’s conjecture would, for example, imply that the converse of part (ii) of Corollary 4.2.1 holds.

Now we include as another application the following result.

4.2.3. THEOREM. ([IR2, Theorem 2.1]) Let X ⊂ PN be a smooth irreducible non-degenerate variety and
let x ∈ X be a general point. Then:
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(i) If X is a QEL-manifold of type δ ≥ 0, the projection from a general δ-codimensional subspace of
TxX passing through x is birational onto its image. In particular, if SX = PN , then X is rational.

(ii) Conversely, if the projection from a general δ-codimensional subspace of TxX passing through x is
birational, then X is an LQEL-manifold of type δ.

(iii) If X ⊂ PN is an LQEL-manifold of type δ > 0, then X is rational.

PROOF. Suppose X ⊂ PN is a QEL-manifold of type δ ≥ 0. If δ = 0 then the first part of Theorem 4.1.8
yields that πx is birational onto its image (see also [CMR, Corollary 4.2]).

Suppose from now on δ > 0. The projection from a general codimension δ linear subspace L ⊆ TxX
passing through x is a rational map πL : X 99K PN−n+δ−1. The birationality of πL onto its image follows
from the fact that L is obtained by cutting TxX with δ general hyperplanes through x and by applying the
second part of Theorem 4.1.8. If SX = PN , then N − n+ δ − 1 = n. Part (i) is now completely proved.

Suppose we are in the hypothesis of (ii). Let L = Pn−δ ⊂ TxX be a general linear subspace passing
through x. L is the tangent space of a general codimension δ linear section of X ⊂ PN passing through x, let
us say Z. Thus the restriction of πL to Z, πL|Z : Z 99K PN−δ−dim(Z)−1 = PN−n−1, is the projection from
L = TxZ. Since πL restricted to X is birational onto its image, also πL|Z is easily seen to be birational onto its
image. Moreover, looking at πL|Z as the projection from TxZ, we get πL|Z(Z) = πx(X) = Wx ⊆ PN−n−1

and hence that πx : X 99KWx ⊆ PN−n−1 has irreducible general fibers of dimension δ.
There is no loss of generality in supposing δ = 1, by passing to a general linear section; see Proposi-

tion 2.3.14. Let, for y ∈ X general,

Fy = π−1
x (πx(y)).

We claim that set theoretically L ∩ Fy = {x}. We have Fy ⊂ 〈TxX, y〉 so that TxX ∩ Fy consists of a finite
number of points. By the generality of L we get L ∩ Fy ⊆ {x}. Let t = πx(y). Since 〈L, t〉 is a hyperplane in
〈TxX, y〉 = 〈TxX, t〉, intersecting π−1

x (πx(y)) transversally at a unique point, we get that either we are in the
case of the claim or Fy is a line. This last case is excluded by Lemma 2.3.15.

Let q = π−1
L|Z(t) = 〈L, t〉 ∩ Z \ (L ∩ Z). By definition

(4.2.1) 〈L, t〉 = 〈L, q〉.

Consider the projection from t onto TxX , let us say ψt : 〈TxX, t〉 99K TxX . Let F̃y = ψt(Fy). By
definition x ∈ F̃y because x ∈ Fy . Moreover we claim that L ∩ F̃y is supported at x, so that F̃y is a line
through x. Indeed, if z ∈ L ∩ F̃y , then there exists w ∈ 〈z, t〉 ∩ Fy ⊂ 〈L, t〉 ∩ Fy = 〈L, q〉 ∩ Fy , where the
last equality follows from (4.2.1). Thus either w = x or w = q and in any case x = ψt(w) = z. Therefore
Fy ⊂ 〈F̃y, t〉 ' P2 and moreover the line 〈x, y〉 cuts transversally Fy at x and at y. The line 〈x, y〉 is contained
in the plane 〈F̃y, t〉, so that deg(Fy) = 2 and Fy is a smooth conic passing through x and y, concluding the
proof.

Let us prove part (iii). Fix a general point x ∈ X and denote by Qx the family of δ-dimensional quadric
hypersurfaces contained in X and passing through x. Let Fx → Qx be the universal family, which has a
section corresponding to the point x.

Assume first δ = 1. We see that smooth conics through x are parameterized by an open subset of P(T∗xX).
Moreover, Lemma 2.3.13 shows that the tautological morphism from Fx to X is birational. So, Fx, and also
X , is rational. This classical reasoning, certainly familiar to Scorza, appears in a rather general form in [IN,
Proposition 3.1].

Suppose now that δ ≥ 2 and fix H a general hyperplane section of X through x. Using Lemma 2.3.13, we
see that sending a quadric hypersurface through x to its trace onH yields a birational map between the families
Qx(X) and Qx(H). So, we see inductively that Qx(X) is a rational variety of dimension n − δ. Therefore,
Fx is rational, as the family Fx → Qx has a section. Being birational to Fx by Lemma 2.3.13, X is rational
too. �
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4.2.4. REMARK. We can generalize Bronowski Conjecture, recalled above, to the following: a smooth
irreducible n-dimensional variety X ⊂ P2n+1−δ(X) is a QEL-manifold if and only if the projection from a
general codimension δ(X) linear subspace of TxX passing through x is birational. Theorem 4.2.3 proves one
implication, yielding the rationality of QEL-manifolds and extending [CMR, Corollary 4.2]. One may consult
[CR] for other generalizations of the above conjecture to higher secant varieties.

It is worth mentioning that the above results reveal the following interesting picture for the tangential
projections of QEL-manifolds of type δ ≥ 0 with SX = PN : for δ = 0 we project from the whole space and
we have varieties with one apparent double point; at the other extreme we found the stereographic projection
of quadric hypersurfaces, the only QEL-manifolds of type equal to their dimension.
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