Álgebra II – Primer parcial

Para aprobar el parcial hay que elegir 4 ejercicios de la siguiente lista y resolverlos bien. Las soluciones deberán ser entregadas en la clase práctica del viernes 20/5.

Ejercicio 1. Sea $G = \mathbb{Z}^3 \times S_7$ y sea $H \subseteq G$ el subgrupo

$$H = \{(a_1, a_2, a_3, \sigma) \in \mathbb{Z}^3 \times S_7 \mid 17 \text{ divide a } a_2 + a_3, \ a_1 = 0 \ \text{y} \ \sigma \in A_7\}.$$

Probar que H es normal en G y decidir si la proyección $\pi: G \to G/H$ es una retracción —es decir, si existe un morfismo $\sigma: G/H \to G$ tal que $\pi \circ \sigma = \mathrm{id}_{G/H}$. Sugerencia: caracterizar G/H de manera más explícita como un producto directo de grupos conocidos.

Ejercicio 2. Sean $G = \operatorname{GL}_2(\mathbb{Z}_3)$ y $H = \langle \left(\begin{smallmatrix} 2 & 0 \\ 0 & 2 \end{smallmatrix} \right) \rangle$. Probar que $G/H \simeq S_4$. Sugerencia: G actúa en el conjunto de subespacios vectoriales de dimensión 1 de \mathbb{Z}_3^2 .

Ejercicio 3. Probar que un grupo de orden 105 con un 3-subgrupo de Sylow normal es abeliano.

Ejercicio 4.

(i) Sean G un grupo y A un anillo. Probar que la función

$$\operatorname{Hom}_{\operatorname{An}}(\mathbb{Z}[G], A) \to \operatorname{Hom}_{\operatorname{Grp}}(G, \mathcal{U}(A))$$

 $f \mapsto f|_G$

es una biyección. Esto significa que dar un morfismo de anillos de $\mathbb{Z}[G]$ en A equivale a dar un morfismo de grupos de G en las unidades de A.

(ii) Sea D_n el grupo diedral de orden 2n. Hallar todos los morfismos de anillos de $\mathbb{Z}[D_n]$ en \mathbb{C} .

Ejercicio 5. Sean A un anillo, $S \subseteq \mathbf{Z}(A)$ un conjunto multiplicativamente cerrado y $f: A \to A_S$ el morfismo de localización.

- (i) Probar que si $I \subseteq A_S$ es un ideal a izquierda, entonces $f^{-1}(I) \subseteq A$ también lo es. De esta manera se obtiene una función f^* del conjunto de ideales a izquierda de A_S en el conjunto de ideales a izquierda de A.
- (ii) Probar que f^* preserva inclusiones y que es inyectiva.
- (iii) Probar que si A es un anillo artiniano a izquierda entonces A_S también lo es.

Ejercicio 6. Sean A un dominio íntegro y M un A-módulo finitamente generado. Probar que si M es un A-módulo de torsión, entonces existe $a \in A$ no nulo tal que aM = 0. Mostrar que esta implicación no vale si M no es finitamente generado.