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Quantitative and geometric invariants for the complexity of spaces
and groups

Abstract

This Thesis is devoted to the study of numerical invariants that measure the complexity of the
topology and the homotopy type of a space. A natural way to quantify the complexity of a space
is by computing the minimum number of simple pieces needed to assemble it, since intuitively,
the spaces that exhibit highly non-trivial topology should be hard to build. This is the essential
idea behind the definition of some classic invariants that detect non-trivial topology, such as the
Lusternik-Schnirelmann (L-S) category and relatives. Minimal triangulations of spaces have also
been studied for this reason. In this direction, we show that the minimal triangulations of closed
surfaces optimize the number of vertices in triangulations of spaces of their homotopy type, with
the only exception of the torus with two handles. This result settles a problem posed by Karoubi
and Weibel. We also prove that minimal triangulations of a closed surface S minimize the
number of 2-simplices among those simplicial complexes with fundamental group isomorphic to
π1(S). This partially answers a question raised by Babenko, Balacheff and Bulteau. Despite the
similarity with the first result, the motivation for this problem comes from the close connection
between the simplicial complexity and the systolic area of groups. The systolic area of a group
G is a notion due to Gromov that, roughly, consists of the minimum amount of area needed
to build a complex K with fundamental group G out of riemannian simplices, normalized by
the condition that the length of the shortest non-trivial loop (i.e. the systole) in K equals 1.
Meanwhile, the simplicial complexity of a group G is defined as the minimum number of 2-
simplices in a simplicial complex K with π1(K) = G. This notion, that may be regarded as
a discrete version of the area for groups, was recently introduced by Babenko, Balacheff and
Bulteau. The authors showed that the simplicial complexity approximates (asymptotically) the
systolic area of groups. Thus, it is natural to attack problems about the systolic area in this new
combinatorial context. For instance, a basic open problem about the systolic geometry of groups,
which goes back to Gromov, is whether the systolic area σ(G ∗Z) of a free product G ∗Z equals
σ(G). The real question here is whether the canonical (wedge sum) model for the groups of the
form G ∗ Z is the most effective one. This motivates the study of the analogue problem for the
simplicial complexity of a free product of the form G ∗ Z, which is also open. In this direction,
we prove that the simplicial complexity of fundamental groups of surfaces is stable under free
product with free groups. We also describe a construction, based on Stallings’ topological proof
of Grushko theorem, that we think might be a first step towards the computation of both the
systolic area and the simplicial complexity of free product of groups.

Lastly, we provide new estimates for the systolic area of some specific groups through the
study of the systolic geometry of polyhedra of dimension 2. More concretely, we find a (pos-
sibly singular) surface of relatively large area embedded in piecewise riemannian polyhedra of
dimension 2 that satisfy a certain cohomological condition. Using this, we prove a new systolic
inequality that extends to piecewise riemannian complexes of dimension 2 an inequality of Guth
for riemannian manifolds. As a consequence, we conclude that for a large class of groups the
systolic area is greater than or equal to 1

2 , which improves the best previously known general
lower bound and brings it closer to the conjectured 2

π .
Part of the results of the Thesis appear in the works [16, 15, 17, 18], while some others will
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be the subject of an article in preparation.
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Introduction

One of the objectives in the field of quantitative topology and geometry is to turn qualitative
and existence results in algebraic topology into quantitative ones by studying some measures
(often continuous) of the size and complexity of the maps and spaces involved. This process is
perhaps best illustrated by some concrete examples.

• It is a basic fact from algebraic topology that a null-homotopic loop γ : S1 → X is filled
by a “disk” γ̄ : D → X. The space X often comes with some natural inherent geometry
(like a distance function or a riemannian metric) which allows to measure how difficult
is to realize the trivialization of the loop by looking at the “size” of the filling disks D,
for instance, the Hausdorff measure or parameterized area. This leads to the well-known
notion of filling function of riemannian manifolds. That the filling function of a riemannian
manifold M presents the same qualitative behavior as the Dehn filling of its fundamental
group π1(M) is a foundational result in geometric group theory (see [45, 22]).

• One of the most basic invariants of a group G (say, finitely generated) is its cardinality.
By fixing a finite (symmetric) generating set A of G, it is possible to refine the study
of the cardinality of G by counting for each natural n the number of different elements
of G expressible as words of length at most n in the alphabet A. This is the growth
function of the group G with respect to the generating set A, which is a central object
of study in geometric group theory. Remarkably, the growth function of a group contains
algebraic information about the group, as it is shown by Gromov’s characterization of the
finitely generated groups with polynomial growth function as the groups having nilpotent
subgroups of finite index [41].

The unifying theme of this Thesis is the study of quantitative invariants that measure in
different senses the complexity of the topology or the homotopy type of a space, as well as the
topological models at which the optimal values for these invariants are attained. As opposed
to the classical approach of algebraic topology, which focuses on developing algebraic tools and
invariants to study a space, such as homology and homotopy groups, the objective here is to
obtain a single non-negative number that accounts for the inherent complexity of a space, or at
least, some aspect of it. A natural way to accomplish this task is by first identifying the simplest
possible spaces (for instance, disks, balls, contractible sets, etc.) and then setting the complexity
of a space X to be the minimum number of simple pieces required to assemble X. The classical
Lusternik-Schnirelmann (L-S) category of a space, introduced in [67], is a prototypical invariant
tailored according to this pattern. Since from the point of view of homotopy theory the simplest
sets are the contractible ones, here for a space X the rôle of simple pieces is played by the open
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sets contractible to a point in X. The L-S category of X is then defined as the minimum number
of open sets contractible in the space that cover X. This turns out to be a homotopy invariant of
a space which has been applied in a wide range of fields, from estimating the number of critical
points of a smooth real function on a manifold to nilpotency aspects of homotopy types (see
[29] for more details). Over the last years, there has been a renewed interest in the area of L-S
category and related invariants. Besides the introduction of new L-S category type invariants
(among them, Farber’s topological complexity [31] is probably the one that has attracted the
most attention), several works have concentrated on giving the right analogues of L-S category
and related invariants in the context of discrete objects, such as simplicial complexes, polyhedra
or finite topological spaces (see for example [1, 34, 33]). The common principle underlying these
works is the replacement of contractible sets as the simple building pieces of spaces by other
notions of homotopically simple sets that exploit the more rigid nature of the category under
study (for example, collapsible sets in the classical Whitehead’s simple homotopy theory in [1]
or strong collapsible sets in the relatively new strong homotopy types of Barmak and Minian
[9] in [34, 33]). Another, perhaps rougher way to measure complexity when one deals with
spaces admitting a triangulation is through minimal triangulations. The problem of determining
small triangulations of PL manifolds was investigated by a number of authors (see for example
[20, 21, 68, 69, 58, 76] and references therein) and it was related explicitly to the complexity of the
topology of 3-manifolds by Matveev [70] (more precisely, his notion of combinatorial complexity
uses minimal pseudotriangulations instead of triangulations).

Interestingly, the point of view of minimal triangulations is relied to L-S category type invari-
ants by Karoubi and Weibel through the introduction of the covering type of a space [61]. Recall
that an open cover of a space is a good cover if every nonempty intersection of its members is
contractible. The covering type of a space X is defined as the minimum size of a good cover of a
space Y of the homotopy type of X. This invariant is closely related to minimal triangulations
of homotopy types by the following argument. By the Nerve Theorem, a topological space X
admitting a good cover U of cardinality n is homotopy equivalent to the nerve of N (U) of the
cover, which is a simplicial complex on n vertices. Hence, for those spaces X of the homotopy
type of a finite simplicial complex (for example, all compact CW-complexes fall in this class) the
covering type is the minimum number of vertices in a simplicial complex K homotopy equivalent
to X. In the cited work [61], Karoubi and Weibel computed the covering type of 1-dimensional
simplicial complexes and posed the problem of finding the exact value of the covering type of
closed surfaces. Using the reformulation via the Nerve Theorem, this is equivalent to the follow-
ing natural question:
What is the minimum number of vertices in a simplicial complex homotopy equivalent to a given
closed surface?
We provide a complete solution to this problem by proving that the expected result almost holds.

Theorem 2.4.5. Let S be a closed surface, either orientable or non-orientable. Then, the
covering type of S coincides with the minimum number of vertices in an optimal triangulation of
S, with the only exception of the torus with two handles in which case both numbers differ by 1.

We remark that an explicit formula for the minimum number of vertices in a triangulation of
any closed surface is well known. It was obtained by Ringel [76] in the non-orientable case and
Jungerman and Ringel [58] in the orientable case.

A similar (at least, at first sight) question was recently raised by Babenko, Balacheff and
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Bulteau ([4]):
What is the minimum number of 2-simplices in a simplicial complex with the fundamental group
of a given closed surface S?

This second problem is related to a combinatorial invariant of groups introduced by the
authors in [4] called simplicial complexity. Given a (finitely presentable) group G, let us say that
a connected simplicial complex K is a triangulation of G or that K triangulates G if π1(K) = G.
The simplicial complexity of the group G is defined as the minimum number of 2-simplices in a
triangulation of G. As opposed to what happens for the covering type, we show that there are
no exceptional cases for the simplicial complexity of fundamental groups of surfaces. In what
follows, we will refer by surface groups to this class of groups, as usual.

Theorem 4.4.7. The simplicial complexity κ(π1(S)) of the fundamental group of a non-simply
connected closed surface S coincides with the minimum number of 2-simplices in an optimal
triangulation of S. Furthermore, the simplicial complexity of surface groups is stable under free
product with free groups, that is, κ(π1(S) ∗ Z) = κ(π1(S)).

Previously, the exact value of the simplicial complexity was known only for a few specific
groups (Z2, Z3, Z ⊕ Z and the fundamental group of the Klein bottle), obtained mainly by a
case-by-case analysis in [25]. With regard to the second statement, it was conjectured by the
authors in [4] that the simplicial complexity is stable under free product of groups, i.e. that
κ(G) = κ(G ∗ Z) for finitely presented groups G. The conjecture is motivated by the fact that,
from a triangulation of a group G, it is always possible to obtain a triangulation of G∗Z with no
additional 2-simplices by forming a wedge sum with (a triangulation of) S1. Beyond the notation,
the question is whether this natural construction is the optimal way to triangulate a group of
the form G ∗ Z. The verification of the conjecture in the case of surface groups constitutes the
first (even if partial) evidence in favor of an affirmative answer to this question.

Both Theorems 2.4.5 and 4.4.7 indicate that in a quantifiable way the closed surfaces are
the most effective topological models within their homotopy type. To prove these results, we
employed the same core techniques, which we proceed to describe. The first crucial step is the
identification of a relevant property in the cohomology ring of spaces and groups, which we call
property (A).

Definition 2.3.2. Let X be a topological space or a group. We say that the cohomology ring
H∗(X;Z2) satisfies property (A) if for every non-trivial α ∈ H1(X,Z2) there exists β ∈ H1(X,Z2)
such that α ∪ β is non-trivial in H2(X,Z2).

Notice that if X is a surface (either orientable or non-orientable), its cohomology ring satisfies
property (A) by Poincaré Duality. Intuitively, if the cohomology ring of a simplicial complex K
satisfies property (A), the 2-skeleton of K should be dense, in the sense that it should contain
several 2-simplices (for instance, K cannot be homotopy equivalent to a wedge sum of the form
X∨S1). For complexes of dimension 2, property (A) implies an explicit quantitative lower bound
for the number of vertices and 2-simplices through a straightforward Euler characteristic com-
putation. In addition, except for a few exceptional cases this estimate is optimal if the involved
2-dimensional complex has Z2-(co)homology isomorphic to that of a closed surface S, which
means that it coincides with the number of vertices or 2-simplices in a minimal triangulation of
S.
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The second key step is a homological simplification method controlled by the property (A).
The precise meaning of such a process is best illustrated while estimating the covering type of
surfaces. Suppose given a simplicial complex K of the homotopy type of a closed surface S. If
the dimension of K is greater than 2, its 2-skeleton K(2) has the same (co)homology as S up
to degree 1 but in general the induced map H2(K

(2),Z2) → H2(S,Z2) is only surjective. The
homological simplification method allows to find a subcomplex Z ≤ K(2) with Z2-(co)homology
isomorphic to that of S and hence, satisfying property (A). Now the desired estimate for the
number of vertices and 2-simplices follows from the mentioned Euler characteristic computation.

We have omitted so far to discuss the motivation behind the definition of the simplicial
complexity, which brings us to another of the central subjects of this Thesis. Namely, Babenko,
Balacheff and Bulteau introduced the simplicial complexity of a group G to approximate an
invariant called the systolic area of G. To give a meaningful account of this notion, we need to
briefly introduce some fundamental concepts and results in systolic geometry and topology.

The systole sys(X) of a metric space X is the length of a shortest non-contractible loop in the
space. If positive, it is a metric measure of the non-triviality of the topology of X. Historically,
the first result involving this invariant dates from 1949 (although not under that name, which
was coined in 1980), when Loewner proved the following kind of inverse isoperimetric inequality
for riemannian 2-tori.

Theorem 3.1.1. Let (T2, g) be a riemannian 2-torus. Then, sys(T2, g)2 ≤ 2√
3

Area(T2, g).
Moreover, the constant 2√

3
is optimal and it is realized by a flat metric.

This was later generalized by Accola [2] and Blatter [14], who proved independently the
existence of a non-optimal constant C = C(γ) such that for any orientable riemannian surface
(S, g) of genus γ the inequality

sys(S, g)2 ≤ C(γ) Area(S, g)

holds. The subject was popularized by Berger in the seventies (see [13, 12]), but it was not
until Gromov’s Filling Riemannian manifolds [44] that it reached full maturity. One of the main
results in that article is a far-reaching generalization of the inequalities by Loewner, Accola and
Blatter.

Theorem 3.1.2. Let (M, g) be an aspherical riemannian manifold of dimension n. Then, there
exists a universal constant C = Cn depending only on the dimension n such that

sys(M, g)n ≤ Cn Vol(M, g).

The best way of understanding the significance of this estimate is seeing it as a part of the
constellation of isoperimetric inequalities. To prove this systolic inequality, Gromov introduced
a new metric invariant of riemannian manifolds, called filling radius, which informally speaking
measures the “roundness” of the manifold and related it to both the systole and the volume.
More precisely, for a submanifold M of an euclidean space RN , the filling radius can be viewed
as the minimum radius of a neighbourhood around M in which M bounds (that is, such that
there exists an (n+ 1)-chain F with ∂F = M). Thus the link between the filling radius and the
volume is given by the Federer-Fleming isoperimetric inequality [32], which may be interpreted
in this new language to provide an upper estimate for the filling radius of a manifold sitting in
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an Euclidean space in terms only of a dimensional constant and its volume. In order to extend
this for a general closed riemannian manifold M , Gromov employed the Kuratowski isometric
embedding to view M as a submanifold of the Banach space L∞(M). The crucial technical
step in Gromov’s proof of Theorem 3.1.2 is an extension of the Federer-Fleming isoperimetric
inequality [32] to submanifolds of Banach spaces, obtaining in this way an upper bound for the
filling radius of a manifold only in terms of its volume and a dimensional constant. As for the
estimate involving the systole and the filling radius, it is not difficult to prove that the systole
of a riemannian manifold is dominated up to a universal constant by its Filing Radius.

Another perspective on the systolic inequality, more in line with the topological complexity
viewpoint, is offered in the field of hyperbolic manifolds. The volume of a hyperbolic manifold
(M,h) was long regarded as a good measure of the complexity of the topology ofM , especially in
the context of 3-manifolds (see for example [82, Chapter 6]). The Thurston-Milnor triangulation
estimate [71] is a concrete manifestation of this principle.

Theorem (Thurston-Milnor). Let (M,h) be a closed hyperbolic n-manifold. Then, any triangu-
lation of M requires at least cn Vol(M,h) n-simplices, where cn is a constant that depends only
on the dimension.

To see the connection with Gromov’s systolic inequality, notice that since a hyperbolic mani-
foldM is aspherical, the non-trivial topology ofM occurs at a scale larger than sys(M,h). More
precisely, balls of radii less than half the systole are contractible inM . Thus, intuitively it should
take many balls of small radius (which play the rôle of the n-simplices in this analogy) to cover
a hyperbolic manifold M with complex topology, which therefore cannot have arbitrarily small
volume (see also Guth’s survey [49] for more details).

With this in mind, the volume of a space normalized by its systole may be considered as a
measure of the complexity of the underlying topology. This idea is formalized by the definition of
a numerical invariant called systolic volume, introduced by Gromov, which is meaningful for the
category of piecewise riemannian polyhedra, more general and flexible than that of riemannian
manifolds. A piecewise riemannian polyhedron is a polyhedron in which every simplex is endowed
with a smooth riemannian metric (as a manifold with boundary) in a compatible way. The
systolic volume σ(X) of a polyhedron X of dimension n (or also systolic area, in case that the
dimension n = 2) is defined as

σ(X) := inf
g

Vol(X, g)

sys(X, g)n
,

where the infimum is taken over the piecewise riemannian metrics g on X. The study of this
invariant is one of the central problems in systolic geometry. In particular, one would like to
know under which topological conditions on X this invariant is strictly positive, and once that is
established, what is the precise value of σ within each topological type (or at least good estimates
for it).

As for the first question, Gromov’s proof of the systolic inequality is robust enough to apply
to the class of essential polyhedra, although with worse constants. Recall that an n-dimensional
polyhedron is called essential if there exists an aspherical polyhedron K together with a contin-
uous map X → K that does not contract to the (n− 1)-skeleton of K. In particular, by taking
this map to be the identity, we see that all aspherical manifolds are essential. Using this new
language, Gromov’s systolic inequality takes the following form.
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Theorem 3.2.6. (Gromov) Let X be an essential polyhedron of dimension n. Then there exists
a positive constant Cn such that σ(X) ≥ Cn.

With respect to the second problem, as it may be expected, it is an extremely difficult
one. To the best of our knowledge, the only closed manifolds for which the systolic volume
is known are the torus (due to Loewner), the projective plane [74] and the Klein bottle [11].
Moreover, it is expected that, in general, the metrics realizing the systolic volume of manifolds
contain singularities (this happens for example in the case of the Klein bottle), so it could be
very difficult to even guess how the optimal metrics look like. However, for the specific case of
surfaces several good estimates are available. Most relevantly, the precise asymptotic behavior
of the systolic area of surfaces with respect to the genus was determined by Gromov [44] (lower
bound) and Buser and Sarnak [27] (upper bound).

Theorem 3.2.5. There exist positive constants C,C ′ such that given a surface S of genus g,

C
g

log(g)2
≤ σ(S) ≤ C ′ g

log(g)2
.

The minimum value that the systolic area of a surfaces can take is also known, due to yet
another Gromov’s inequality [44, §5.2.B]. Specifically, it can be deduced that σ(S) ≥ 2

π for
any closed (either orientable or non-orientable) non-simply connected surface S, with equality
attained only at the real projective plane endowed with its standard round metric.

Besides surfaces, we are mainly concerned with the study of the systolic volume of polyhedra
of dimension 2 for its connection with finitely presentable groups. Following Gromov [46], it is
possible to attach a geometrically defined invariant to each finitely presentable group known as
systolic area. The systolic area σ(G) of a finitely presentable group G is defined as

σ(G) := inf
π1(X)=G

σ(X),

where the infimum is over the compact piecewise riemannian polyhedra X with fundamental
group isomorphic to G. Since plenty is known about the systolic area of closed surfaces, a
natural question would be to understand how the systolic area of a closed surface S compares to
the systolic area of its fundamental group, beyond the obvious inequality σ(π1(S)) ≤ σ(S). A
quite satisfactory answer was provided in [5], where the authors showed that the systolic area of
fundamental groups of surfaces grows asymptotically with the genus g as g

log(g)2
and thus exhibits

the same asymptotic behavior as the systolic area of surfaces. Moreover, our Theorem 4.4.7 could
be read as an indication that the most efficient geometric-topological model of a surface group
is the surface itself. Hence, the most optimistic conjecture would be that σ(π1(S)) = σ(S).
Unfortunately, this problem seems very hard and in fact, the precise value of the systolic area is
not known for any non-free group. As an alternative way to compare these quantities, we focus
on improving the universal lower bound for the systolic area of surface groups. In contrast to the
case of the systolic area of surfaces, for which it is known that 2

π is the optimum universal lower
bound, there were no results in the literature addressing this issue for surface groups. Rather,
the best lower bound available is valid for all non-free groups: by the combined works of Katz,
Rudyak and Sabourau [64], Rudyak and Sabourau [77], and Katz, Katz, Sabourau, Shnider and
Weinberger [63], it is known that σ(G) ≥ 1

4 whenever G is a non-free group. This constitutes a
considerable improvement over the lower bound 1

104
, which is the estimate that can be extracted
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from the original techniques of Gromov for these groups [44, Theorem 6.7.A]. By analogy to the
case of surfaces, the constant 2

π is a candidate to be optimal also for the systolic area of surface
groups (or even for non-free groups, cf. [77, Question 1.5]). In this direction, we refine the
universal lower bound for the systolic area of a large class of groups which includes the surface
groups, bringing it closer to 2

π . This class of groups, which we call surface-like groups is defined
in terms of a cohomological condition.

Definition 3.3.9. Let G be a group. We say that G is surface-like if there exist classes α, β in
H1(G,Z2) such that α ∪ β 6= 0 in H2(G,Z2).

Notice that as the name suggests, surface groups are surface-like as follows from Poincaré
Duality.

Theorem 3.3.10. Let K be a 2-dimensional complex such that there exist classes α, β ∈
H1(K,Z2) with α ∪ β 6= 0. Then, σ(K) ≥ 1

2 . In particular, if G is a surface-like group,
σ(G) ≥ 1

2 .

We remark here that the use of a covering theory argument borrowed from [63] (certainly also
known to Gromov) allows to extend the inequality to groups containing a surface-like subgroup,
a class that includes among others, free abelian groups, most of irreducible 3-manifold groups,
non-free Artin groups and Coxeter groups or, more generally, groups containing an element of
order 2.

The inequality from Theorem 3.3.10 can be regarded both as an extension of a systolic
inequality due to Guth [50] in dimension 2 to complexes of maximal Z2 cup-length, and as a
generalization of Burago and Hebda’s inequality for closed essential surfaces [26, 53]. The proof,
vaguely inspired in the (co)homological methods previously described, involves realizing a certain
Z2-homology class of the 2-complex K by a simplicial map f : S → K from a (triangulated)
closed surface S in a controlled way. The image of this map is a surface embedded in K (strictly
speaking it is in general not a surface since its 1-skeleton may contain singularities), which turns
out to have relatively large area by a systolic inequality of Nakamura [73] which refines Guth’s
inequality.

The Thesis is divided in four chapters. The first chapter is opened by a discussion about
the Lusternik-Schnirelmann category and some related invariants, with emphasis in the recent
discrete versions. The main subject is the definition and analysis of a new invariant of type L-S
for compact polyhedra called the PL geometric category, designed to exploit the combinatorial
structure of spaces admitting triangulations while at the same time capturing some of its inherent
topology and geometry. In Chapter 2, we analyze the covering type of spaces and present the
resolution of the quoted problem raised by Karoubi and Weibel [61] about minimal triangulations
of the homotopy type of surfaces. The third chapter is devoted to systolic geometry, with a focus
in the study of the systolic area of groups. Here we give the proof of our extension of Guth’s
systolic inequality. Also, we describe a construction for complexes mapping to a wedge sum
based in Stalling’s proof of Grushko theorem [80]. We think that this construction may shed
new light in the study of optimal geometrical-topological models for free products of groups. In
the final chapter we discuss the simplicial complexity of groups, some of its properties and its
relation to the systolic area of groups, to finally present the answer to the question posed by
Babenko, Balacheff and Bulteau [4] about optimal triangulations of surface groups.
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Some of the original results in this Thesis appear in our works [17, 18, 16] and in the preprint
[15]. Other results will be part of a work in preparation.
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Chapter 1

Lusternik-Schnirelmann category and
related invariants

The Lusternik-Schnirelmann (L-S) category is a numerical invariant associated to topological
spaces, originally introduced in [67] for smooth manifolds in the context of variational problems.
One of the goals of Lusternik and Schnirelmann was to relate the number of critical points of a
smooth real function defined on a manifold to topological properties of the manifold. The classical
Morse theory [72], developed shortly after with the same motivations, provides a deep connection
between the structure of the set of critical points of a smooth map and the homotopy type of
the manifold. Although the conclusions of Lusternik-Schnirelmann category theory are weaker,
it complements Morse theory in the sense that it applies to manifolds of infinite dimension and
to maps with degenerate critical points.

Some years later, Fox reformulated in [36] the definition of L-S category, extending it to gen-
eral topological spaces. In that work, Fox analyzed among other things the interaction between
the L-S category of a space and classical topological invariants, such as homology and homotopy
groups and homotopy type, thus installing the invariant as a subject of study in the field of
algebraic topology. In this new context, the L-S category may be interpreted as a measure of the
complexity of the topology (or more precisely, of the homotopy type) of a space. Concretely, the
L-S category is defined for a topological space X as the minimum number of open sets that are
contractible in the space and cover X. Since contractible sets are the simplest possible sets from
the homotopy theory point of view, the L-S category measures how difficult is to decompose a
space into simple pieces.

In the first section of this chapter we briefly survey some fundamental properties and results
about the L-S category. We make no attempt to be comprehensive here. Rather, we highlight
some structural aspects, such as the relation of the L-S category with the cohomology and
the dimension of a space, that will reappear later in our own work. Next we present some
discretizations of the L-S category and relatives for simplicial complexes. In the recent years,
besides the introduction of new L-S type invariants, there has been a considerable work aimed
to obtain discrete versions of the L-S category and related results. Again, completeness is not
the objective of the exposition. We limit ourselves to describe two such invariants, defined
with very different motivations, which partially inspired our own contribution to the field of
discrete L-S type invariants. Specifically, for the discrete category from [1] the authors recover a
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discrete version of the Lusternik-Schnirelmann theorem, which gives an estimate for the number
of critical points of a smooth function on a manifold. On the other hand, with the introduction of
the simplicial L-S category [34], the authors intend to give the right analogue of the classical L-S
category for the category of finite simplicial complexes. In order to do that, they work within the
theory of strong homotopy types of Barmak and Minian [9] in substitution of classical homotopy
theory, obtaining a notion that depends strongly on the combinatorial structure of the simplicial
complex. In the final sections we discuss a new L-S type discrete invariant, called PL geometric
category, which uses the geometrically flavored notion of PL collapsible in replacement of the
contractible sets as building blocks of spaces.

1.1 Lusternik-Schnirelmann category

This section is intended as a brief introduction to the Lusternik-Schnirelmann category theory.
We want to make clear from the beginning that we regard the Lusternik-Schnirelmann category as
one of the numerical invariants that measure the complexity of the topology of a space via optimal
special covers. From this point of view, estimating the L-S category in terms of other invariants,
both classical and new, is specially relevant. This leads us to privilege in the exposition aspects
such as the homotopy invariance of the L-S category, as well as the relation of the invariant with
the cohomology ring and the dimension of a space. For a more comprehensive account of the
L-S category theory, we refer the reader to the book [29].

As we have already mentioned, the Lusternik-Schnirelmann (L-S) category of a topological
space X, denoted cat(X), is the minimum number of open sets in a cover of X in which each
open set is contractible in the space. Here, a set U ⊆ X is contractible in X (or also, categorical)
if the inclusion U ↪→ X is null-homotopic. At first, this requirement may look less natural than
asking that the members of the cover are contractible (in themselves), but it is the key point
that makes the L-S category a homotopy invariant. We remark here that several authors define
the L-S category of a space with a different normalization, so that it differs by one from our
definition (this is the case in the cited [29]). In particular, the L-S category of a contractible
space equals 1 according to the definition here, while it is 0 for other authors.

Proposition 1.1.1. The Lusternik-Schnirelmann category cat(X) of a topological space X is a
homotopy invariant.

Proof. Let f : X → Y , g : Y → X be mutually inverse homotopy equivalences. By symmetry,
it is enough to show that cat(Y ) ≤ cat(X). Let U1, . . . , Un be a cover of X by open categorical
sets. For each j, consider the open subset Vj ⊆ Y defined as Vj := g−1(Uj). Let us see that
the inclusion iVj : Vj → Y is null-homotopic. Indeed, since f ◦ g is homotopic to the identity
map Y → Y , the composition f ◦ g ◦ iVj : Vj → Y is homotopic to the inclusion iVj . On the
other hand, it is straightforward to verify that f ◦ g ◦ iVj = f ◦ iUj ◦ g|Vj , where g|Vj denotes
the restriction of the map g to Vj and iUj is the inclusion Uj ↪→ X. Since this last inclusion is
null-homotopic, the map f ◦ iUj ◦ g|Vj is homotopic to a constant and hence, the inclusion iVj
is null-homotopic as well. Summing up, the open cover of X by categorical sets {U1, . . . , Un}
pulls back to an open cover of Y by categorical sets via g. Since the cover was arbitrary, the
conclusion follows.

12



Chapter 1. Lusternik-Schnirelmann category and related invariants

In view of the homotopy invariance of the L-S category, it is natural to try to compare it to
the standard homotopy and homology invariants of a topological space. One of the most useful
elementary estimates for the L-S category is derived from the ring structure of the cohomology
ring of a space.

Definition 1.1.2. Let X be a topological space and fix a coefficient ring R. The cup-length
cupR(X) of X (with coefficients in R) is the least number k such that for any (k+1) cohomology
classes α1, . . . αk+1, the cup product α1 ∪ · · · ∪ αk+1 is trivial in the reduced cohomology ring
H∗(X,R).

In other words, the cup-length of a space X with coefficients in a ring R is the index of
nilpotency of the ring H∗(X,R). While it may be infinite, for our principal class of interest
which is the class of compact CW-complexes, the index of nilpotency is always finite and in fact,
bounded from above by the dimension of the space. The following result relates the cup-length
of a space to its L-S category. It constitutes one of the many connections of L-S category theory
with notions of nilpotency (see for example [85]).

Lemma 1.1.3. Let X be a topological space and R a ring. Then, cupR(X) < cat(X).

Proof. Suppose that the value of the L-S category of X is a finite integer n (otherwise, there is
nothing to prove) and take an open cover by categorical sets {U1, . . . , Un}. For every i, since
the inclusion Ui ↪→ X is null-homotopic, the induced morphism in cohomology H∗(X,R) →
H∗(Ui, R) is trivial. From the exactness of the sequence

· · · → Hk(X,Ui;R)→ Hk(X,R)→ Hk(Ui, R)→ · · · ,

it follows that the maps Hk(X,Ui;R) → Hk(X,R) are surjective. Hence, if α1, . . . , αn are
cohomology classes in H∗(X,R), we can pull back each αi to the group H∗(X,Ui;R). But
then, via the canonical maps H∗(X,

⋃
Ui;R)→ H∗(X,Ui;R) it turns out that the cup product

α1 ∪ · · · ∪ αn ∈ H∗(X,R) is the image of a corresponding product in H∗(X,
⋃
Ui;R). Since⋃

Ui = X, this ring is trivial and hence α1 ∪ · · · ∪ αn = 0, as we wanted to prove.

The most classical estimate from above is given by the covering dimension of a space. The
covering dimension of a (Hausdorff, paracompact) space is defined, similarly as the L-S category,
in terms of optimizing a certain quantity related to open covers of the space. Since the covering
dimension of a CW-complex coincides with the usual notion of dimension, we opt to prove
the result only for this case. Actually, for compact CW-complexes there is a stronger estimate
involving the L-S category and the dimension. We take the opportunity to introduce the notion of
geometric category of a space, which was defined by Fox in [36] to approximate the L-S category.
The geometric category gcat(X) of a topological space X is simply the minimum number of
contractible open sets that cover X. The more natural condition of working with contractible
sets rather than contractible relative to the space as in the definition of the L-S category comes
at the cost of the geometric category not being a homotopy invariant, as the following example
due to Fox shows [36, §39] (see also [29, Proposition 3.11]).

Lemma 1.1.4. The geometric category is not a homotopy invariant.
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Proof. Consider the topological space X formed by adding two edges to the sphere S2 joining a
point p1 with two different points p2 and p3. By identifying to a point two simple paths contained
in the sphere that connect p1 to p2 and p3, we see that X is homotopy equivalent to a wedge
sum S2 ∨ S1 ∨ S1 (since the union of the two paths is contractible). On the other hand, the
quotient Y of X by the two extra edges is homeomorphic to S2 with the three points p1, p2 and
p3 identified. Hence, Y is homotopy equivalent to the wedge sum S2 ∨ S1 ∨ S1.

Let us see that the geometric category of these two spaces differs. It is not difficult to check
that gcat(S2 ∨ S1 ∨ S1) = 2. Indeed, it is possible to cover the space with two contractible open
sets, each obtained by choosing one (slightly fattened) hemisphere of each sphere. On the other
hand, it is not possible to cover Y by two contractible open sets. Suppose on the contrary that
Y = U1 ∪ U2 for contractible open sets U1 and U2. Notice that the connected components of
the preimage of U1 and U2 under the quotient map q : S2 → Y are contractible. Moreover, if
we set Vi := q−1(Ui) for i = 1, 2, by Alexander duality the last statement implies that S2 \ Vi is
connected. We split the proof in two cases, according to whether the point x = q(p1) is in the
intersection of U1 and U2 or not. In the second case, without loss of generality x ∈ U1 \U2. Since
the complement S2 \ V2 is connected, it is completely contained in one connected component of
V1. Then, the other connected components of V1 are contained in V2. Since no two of the points
pj may belong to the same connected component of V1 (otherwise, U1 would not be acyclic), this
implies that at least one of the pj is in U2, a contradiction. If x is in the intersection of the sets
U1 and U2, each Vi should have three different connected components V j

i , one containing each
of the points pj . Since S2 \ V1 is connected, it is contained in one of the connected components
of V2, say, V 1

2 . Then, the components V 2
2 , V 3

2 are contained in the corresponding components
V 2
1 and V 3

1 of V1. Applying the same argument to the complement S2 \ V2, we see that at least
one of the components V 2

1 , V 3
1 is contained in the corresponding component V 2

2 , V 3
2 . But then,

one of the components of V1 equals a component of V2, which implies that V1 ∪ V2 is the union
of mutually disjoint open sets. This is a contradiction, since V1 and V2 cover S2.

Although not a homotopy invariant, the geometric category clearly constitutes an upper
bound for the L-S category and it is often easier to estimate than the L-S category. It is via this
invariant that we deduce, for compact CW-complexes, an inequality relating the L-S category
and the dimension.

Lemma 1.1.5. Let X be a compact connected CW-complex. Then gcat(X) ≤ dim(X) + 1. In
particular, cat(X) ≤ dim(X) + 1.

Proof. Let Ui be the union of the interior of all the i-cells of X. Since X is connected, hence
path-connected, and each connected component of Ui is contractible, these sets can be enlarged
to contractible open sets by joining the components appropriately through slightly inflated paths.
A word is in order about the 1-dimensional case. Here, the contractible set that can be formed
out of the 0-cells is a spanning tree of the complex X, while the other one is a spanning tree of
X plus the interior of all the 1-cells not belonging to the spanning tree. We see then that it is
always possible to cover X by at most dim(X) + 1 contractible open sets.

Using these elementary estimations, it is possible to compute the L-S category of some rele-
vant spaces (cf. [29, Example 1.8]). For example, we can check that the L-S category of both the
n-dimensional torus Tn and the n-dimensional projective plane RPn is exactly n + 1. Indeed,

14



Chapter 1. Lusternik-Schnirelmann category and related invariants

that cat(Tn) ≤ n + 1 and cat(RPn) ≤ n + 1 follows from Lemma 1.1. For the lower bound,
we compute the cup-length of both spaces and apply Lemma 1.1.3. The cohomology ring of the
torus Tn with coefficients in Q is isomorphic to an exterior algebra on n generators and hence
cupQ(Tn) = n. With respect to the projective space RPn, the cohomology ring with coefficients
in Z is isomorphic to Z[ω]/〈ωn+1〉, where ω has degree 1, and hence the cup-length of RPn
with coefficients in Z equals n. By Lemma 1.1.3, cat(Tn) ≥ n + 1, cat(RPn) ≥ n + 1 and the
computation is complete.

We close this introductory section by presenting the original motivation for the Lusternik-
Schnirelmann theory. Lusternik and Schnirelmann were interested in finding critical points of
functionals defined over manifolds (generally, infinite-dimensional) in the context of variational
problems. More precisely, they were interested in critical points of the energy functional over
the free loop space of a smooth closed riemannian manifold. Recall that the free loop space LM
of a riemannian manifold M is the infinite-dimensional manifold formed by the smooth loops
S1 →M , and that the energy functional E : LM → R sends a loop γ to its energy 1

2

∫
S1 ‖γ̇(t)‖2.

The analysis of the critical points for E is motivated by the fact that they clearly contain the
closed geodesics on M . In this direction, the Lusternik-Schnirelmann theorem asserts that the
number of critical points of a smooth function f : M → R defined over a smooth manifold (not
necessarily of finite dimension) that satisfies a certain compactness condition is bounded from
below by cat(M) (see [29, Chapter 1] for the precise statement and the proof). Probably, this
result reminds the reader of the classical Morse theory, which gives a close connection between
the topology of a manifold M and the critical points of a smooth real map f : M → R, provided
that f is Morse, that is, those critical points are non-degenerate. The important point to notice
is that, while Morse theory has stronger implications than the Lusternik-Schnirelmann theory
when both apply, the latter allows for some control in the degenerate case. In the case under
consideration the traditional Morse theory does not apply, since among other things constant
loops are degenerate critical points of the energy functional E. (We remark however, that for
generic riemannian metrics on M the Bott’s extension [19] of Morse theory allows to obtain the
classical conclusions for this functional).

Lusternik and Schnirelmann employed the estimate on the number of critical points in
the proof of the three closed geodesics theorem, arguably the most celebrated application of
Lusternik-Schnirelmann theory.

Theorem 1.1.6. Let (S, g) be a riemannian closed surface of genus 0 (that is, S is topologically
a sphere). Then, there exist at least three different embedded closed geodesics in S.

For a proof, see for example [6, 39], where a gap in the original proof of Lusternik and
Schnirelmann is corrected.

1.2 Discrete versions of L-S type invariants

Over the past few years, several works were devoted to introduce what we loosely call discrete
versions of the L-S category (and related invariants). Such versions usually apply to topological
spaces with a rigid combinatorial structure, like simplicial complexes or finite topological spaces.
Moreover, the simple building blocks are defined in terms of a homotopy theory that exploits
this rigid structure, such as Whitehead’s simple homotopy theory. In this section we concentrate
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in two of these notions, which in part motivated us to introduce another natural discrete L-S
category type invariant.

We start by describing the discrete (geometric) category from [1], which is inspired in the
geometric category but instead of covers by contractible sets employs collapsible sets as building
blocks. Before the actual definition, we need to recall the basic concepts of Whitehead’s simple
homotopy theory. A simplex σ of K is a free face of a finite simplicial complex K if there is a
unique simplex τ ∈ K containing σ. In that case, we say that there is an elementary collapse from
K to L = K \ {σ, τ}, denoted K↘e L. Notice that the inclusion L ↪→ K is a strong deformation
retract and hence, K and L are homotopy equivalent. More generally, K collapses to L, denoted
by K↘ L, if there is a sequence K1 = K,K2, . . . ,Kr = L such that Ki↘e Ki+1 for every i; in
particular, K and L are homotopy equivalent in such situation. We also say that L expands to
K and denote L↗ K. The complex K is called collapsible if it collapses to a complex with only
one vertex. Since collapses are in particular homotopy equivalences, collapsible complexes may
be considered as an analogue to contractible sets in this context.

We now give the definition of discrete geometric category, warning the reader that we employ
a different normalization than the original definition, so that both differ by 1.

Definition 1.2.1. (cf. [1, Definition 8]) LetK be a simplicial complex and L ≤ K a subcomplex.
The discrete geometric pre-category of L in K is the minimum number (the minimum minus 1
in the original definition) of collapsible subcomplexes of K that cover L. The discrete geometric
category dgcat(K) of K is the minimum among the discrete geometric pre-categories of those
subcomplexes L to which K collapses.

The use of subcomplexes in the definition instead of open subsets is justified by the well-known
(kind of) correspondence between them for a simplicial complex. Namely, every subcomplex L of
a simplicial complex K may be inflated to a slightly larger open set which deformation retracts
to L. In the other direction, an open subset of K deformation retracts to a subcomplex of an
appropriate subdivision of K. Thus, ignoring for one moment the intermediate pre-category,
the discrete geometric category may be viewed as a version of the usual geometric category
in the context of simplicial complexes and simple homotopy theory. As the authors observe
in [1, Remark 9], the definition guarantees that an elementary collapse does not decrease the
geometric category of a complex avoiding the need to subdivide. In a sense, we explore in the
next section the properties of the invariant that results from taking the other path, that is,
allowing subdivisions.

Despite this, the discrete geometric category is not a simple homotopy invariant, just as
the geometric category is not a homotopy invariant. Recall that a pair of simplicial complexes
K and L are simple homotopy equivalent if there exists a finite sequence of complexes K1 =
K,K2, . . . ,Kr = L such that for every i either Ki ↗e Ki+1 or Ki↘e Ki+1. To show that dgcat
is not a simple homotopy invariant, we prove that, in dimension 2, this invariant generalizes the
notion of collapsible complex. We state a simple lemma first.

Lemma 1.2.2. Let K be a collapsible simplicial complex of dimension 2 and let L be a subcomplex
of K. If dimL = 2, L collapses to a graph, i.e. a complex of dimension 1.

Proof. Fix an ordering σ1, σ2, . . . , σr of the 2-simplices of K that induces a valid sequence of
collapses. It is clear then that the first 2-simplex of L appearing in that list must have a free
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face in L and hence L collapses to a subcomplex with one fewer 2-simplex. By induction on the
number of 2-simplices of L, it follows that L collapses to a graph.

Proposition 1.2.3. Let K be a finite, connected simplicial complex of dimension 2. Then,
dgcat(K) = 0 if and only if K is collapsible.

Proof. One direction is obvious. For the other one, suppose that dgcat(K) = 0, so that there
exists a subcomplex L to which K collapses contained in another collapsible subcomplexM ≤ K.
By Lemma 1.2.2, L collapses to a 1-dimensional complex. Hence, K collapses to a 1-dimensional
subcomplex, so it suffices to check that K is acyclic to show that K is collapsible. Now, since
the inclusion L ↪→ K is a homotopy equivalence, it induces an isomorphism H∗(L) → H∗(K)
(with integer coefficients). On the other hand, the isomorphism factors through H∗(M) which is
trivial because M is collapsible. The conclusion follows.

As a consequence, we see that dgcat is not a simple homotopy invariant by considering some
fixed triangulation of the dunce hat D. As it is well known, the dunce hat is not collapsible
(hence dgcat(D) > 0) but it is simple homotopy equivalent to a point.

Another salient feature of the discrete geometric category is that it depends strongly on
the simplicial structure and not only on the topology. To illustrate this point, we consider
the complete graph Kn on n vertices, which has

(
n
2

)
edges. Since trees (i.e., acyclic connected

graphs) are the only collapsible graphs and a subtree of Kn may have at most n − 1 edges, at
least 1

n−1
(
n
2

)
≥ n

2 collapsible subcomplexes are required to cover Kn, whence dgcat(Kn) ≥ n
2 .

On the other hand, it is not difficult to show that a subdivision of Kn may be decomposed as
the union of two collapsible subcomplexes (see Proposition 1.3.5 below for more details).

Nonetheless, there is a point which discrete geometric category shares with the continuous
L-S category: it provides a lower bound for the number of critical points of certain functions,
called discrete Morse functions, defined over finite simplicial complexes. It is this result which
motivated the introduction of the discrete geometric category as an analogue of the L-S category
for simplicial complexes.

Theorem 1.2.4. ([1, Theorem 26]) Let f : K → R be a discrete Morse function with m critical
points. Then dgcat(K) ≤ m.

The so-called discrete Morse theory was introduced by Forman in [35]. We content here with
referring the reader to that work for the basic definitions of discrete Morse theory and to [1] for
the proof of the theorem.

For its part, with the introduction of the simplicial L-S category in [34], the authors intend to
develop the Lusternik-Schnirelmann theory for simplicial complexes using the notion of contiguity
as a discrete version of homotopy. We recall next the definition of contiguity classes of simplicial
maps, together with the description of this homotopy theory in terms of simple combinatorial
moves by Barmak and Minian [9]. Let φ, ψ : K → L be two simplicial maps. We say that φ
and ψ are contiguous and denote φ ∼c ψ if for every simplex σ ∈ K, φ(σ)∪ψ(σ) is a simplex in
L. Notice that two contiguous maps are homotopic via the linear homotopy (in each simplex).
Two simplicial maps are in the same contiguity class, noted φ ∼ ψ whenever they are joined by
a finite sequence of contiguous simplicial maps φ = φ0 ∼c · · · ∼c φn = ψ. By analogy with the
notion of homotopy equivalence, a simplicial map φ : K → L is called a strong equivalence if
there exists another simplicial map ψ : L → K with φ ◦ ψ ∼ idL and ψ ◦ φ ∼ idK . In the last
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case, we note K ∼ L. This equivalence relation between simplicial complexes was rewritten in
terms of strong homotopy types in [9].

Definition 1.2.5. [9] Let K be a simplicial complex and v ∈ K a vertex. We say that v is
dominated by a vertex v′ 6= v if every maximal simplex that contains v also contains v′. If v
is dominated by some vertex v′, we say that there is an elementary strong collapse from K to
K \ v and denote K↘↘e K \ v. In that situation we also say that there is an elementary strong
expansion from L = K \ v to K and denote it by L↗e ↗ K. If there is a sequence of elementary
strong collapses that starts in K and ends in L, we say that there is a strong collapse from K to
L and denote K↘↘ L. The inverse of a strong collapse is called a strong expansion and denoted
by L↗↗ K. Finally, K and L have the same strong homotopy type if there is a sequence of strong
collapses and expansions that transforms K in L.

Remark 1.2.6. [9, Remark 2.4] K↘↘ L implies that K↘ L.

As Barmak and Minian show, the strong collapses and expansions completely determine the
discrete homotopy theory based in contiguity.

Theorem 1.2.7. [9, Corollary 2.12] The simplicial complexes K and L have the same strong
homotopy type if and only if K ∼ L.

The notion of simplicial L-S category is obtained almost verbatim from the definition of L-S
category, replacing null-homotopic by contiguous to a constant map. Concretely, the simplicial
L-S category scat(K) of a simplicial complex K is the minimum number of subcomplexes that
cover K such that the inclusion of each one is contiguous to a constant map (by a slight abuse,
we will also call categorical such subcomplexes). This invariant relies even more strongly than
dgcat on the simplicial structure. For example, in [34, Example 3.3] the authors exhibit a certain
subdivision K of the 2-simplex which is not strong collapsible, i.e., it does not strong collapse
to a vertex, and show that scat(K) = 1 (this complex originally appeared in [9]). Although
this example shows that scat is far from being a homotopy invariant, it turns out to be strong
homotopy invariant, resembling the classical L-S category in this aspect.

Proposition 1.2.8. ([34, Proposition 3.7] The simplicial L-S category is a strong homotopy
invariant.

Proof. Let f : K → L, g : L → K be mutually inverse strong simplicial equivalences. The
proof is completely analogous to that of Proposition 1.1.1. Take a cover M1, . . . ,Mn of K by
categorical subcomplexes. We check that the subcomplex Nj := g−1(Mj) ≤ L is categorical in
L for every j. Indeed, it is enough to observe that the simplicial map f ◦ g ◦ iNj is contiguous to
iNj on one hand and equals f ◦ iMj ◦ g|Nj on the other, which is contiguous to a constant map
since iMj is by hypothesis.

1.3 Covers of polyhedra by PL collapsible subpolyhedra

In this section we define and explore a natural variant of the geometric category in the context of
compact connected polyhedra, which we call PL geometric category (here PL stands for piecewise
linear). Although this is formally a discrete version of the geometric category and we recover
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some results that hold for the classical case, our motivation is more naïve: what topological
consequences, both local and global, may be derived for a polyhedron that is covered by few
collapsible subpolyhedra?

Let us clarify in first place what we understand by the terms polyhedron and (PL) collapsi-
ble. By a polyhedron we mean a topological space which admits triangulations, that is, the
underlying space of some simplicial complex. More simply, one can think of a polyhedron as a
simplicial complex but in which there is no preferred simplicial structure. Thus, a subspace Q of
a polyhedron P is called a subpolyhedron if it is the underlying space of a subcomplex of some
triangulation of P . The basic concepts from simple homotopy theory for polyhedra are defined
analogously. We say that a polyhedron P PL collapses to a subpolyhedron Q (still denoted by
P ↘ Q) if there exist coherent triangulations K, L of P and Q respectively such that K↘ L
(see [55, Ch.2]). A polyhedron P is called PL collapsible if it PL collapses to a point, i.e. some
simplicial complex that triangulates P collapses to a vertex.

Definition 1.3.1. Let P be a polyhedron. The PL geometric category plgcat(P ) of P is the
minimum number of PL collapsible subpolyhedra that cover P .

Since subpolyhedra and open sets in a polyhedron are, homotopically speaking, equivalent,
the geometric category of a polyhedron coincides with the minimum number of contractible
subpolyhedra that cover it. This formulation makes clear that the PL geometric category may
be regarded as a version of the classical geometric category.

A feature shared by most of the L-S category type invariants (in the continuous context) is
that they are bounded by the dimension of the space. The geometric category is no exception: as
we showed above, the geometric category of a (compact, connected) polyhedron P of dimension
n is at most n + 1 (see Lemma 1.1). Our first result concerning the PL geometric category
shows that it also verifies this nice structural property, namely, that a polyhedron of dimension
n is covered by at most n + 1 PL collapsible subpolyhedra. To prove this result, we follow
essentially the same strategy as in the proof of the geometric category version: first, inductively
cover the (n− 1)-skeleton of an appropriate triangulation of the polyhedron by n PL collapsible
subpolyhedra, slightly inflate this cover and then form the last PL collapsible subpolyhedron by
joining a triangulation of the interior of each n-simplex. However, since being PL collapsible
imposes a greater rigidity than just being contractible, we are forced to take a slight technical
detour to adapt this strategy to our context. Specifically, we carry out part of the argument by
employing the strong homotopy types of [9], which we briefly introduced in Definition 1.2.5.

We take care in first place of the part of the argument that involves extending a cover by PL
collapsible subpolyhedra to a slightly inflated polyhedron. To start, we need to recall the notion
of star and link of a vertex v in a simplicial complex, which are the simplicial analogues of ball
and sphere around the vertex, respectively. The star of a vertex v in a simplicial complex K is
the subcomplex stK(v) ⊆ K formed by the union of the simplices σ ∈ K such that σ ∪ v ∈ K.
The link of v is the subcomplex lkK(v) ⊆ stK(v) of the simplices that do not contain v. For a
given simplex σ, its boundary ∂σ is the subcomplex formed by the simplices τ strictly contained
in σ. We add here an alternative description of domination of vertices that uses these concepts.

Remark 1.3.2. A vertex v in a simplicial complex K is dominated by v′ if and only if the link
lkK(v) is a simplicial cone with apex v′, i.e. lkK(v) = v′M for certain subcomplex M .
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The next two lemmas allow to inflate the cover locally, that is, simplex by simplex. In the
first one, we prove the intuitively clear fact that if we remove the central part of a sufficiently
fine subdivision of a simplex, the resulting subcomplex will collapse to the boundary.

Lemma 1.3.3. Let σn be the standard n-simplex. Consider the subcomplex of the second barycen-
tric subdivision of σn defined as Kn := σ′′n \ stσ′′n({v}), where v is the barycenter of σn. Then Kn

strong collapses to (∂σn)′′.

Proof. For formal reasons, it will be convenient to adopt the set theoretic definition of simplicial
complex along the proof. Thus, we consider the simplices of the second subdivision of σn as
chains of simplices of σ′n ordered by inclusion. That means that a vertex of σ′′n is given by a
0-chain {τ} where τ is some simplex of σ′n, an edge of σ′′n as a 1-chain {τ ⊆ η} for some simplices
τ , η of σ′n and so on.

Let w ∈ lkσ′′n({v}) be a vertex. It follows from the definition of link that there is a 1-simplex
in σ′′n with vertices {v} and w and so there is a chain of inclusion of simplices of σ′n {{v} ⊆ w}.
Suppose w = {e}, where e = {v, a} is a 1-simplex of σ′n. Then, any maximal simplex of σ′′n
containing w either contains {v} or {a}. Since {v} 6∈ Kn, this shows that w is dominated by {a}
in Kn.

Consider now the complex K̃n obtained from Kn by removing all the vertices of the form {e}
for e a 1-simplex of σ′n containing v. Take a vertex u ∈ lkσ′′n({v}) ∩ K̃n. Suppose that u = {τ}
for some 2-simplex τ = {v, a, b} of σ′n. Since K̃n does not contain vertices of the form {{v, x}},
nor the vertex {v}, any maximal simplex of K̃n containing u also contains {a, b}. Hence u is
dominated by {a, b} in K̃n. By removing the vertices of lkσ′′n({v}) in non-decreasing order of the
dimension of the simplex of σ′n that they represent, we see that Kn↘↘ (∂σn)′′.

Lemma 1.3.4. Let K, L be simplicial complexes such that L↗↗ K. If L can be covered by n
strong collapsible subcomplexes, so does K.

Proof. Let {L1, . . . , Ln} be a cover of L by n strong collapsible subcomplexes and assume that
there is an elementary strong expansion from L to K, say L = K \ v for certain v ∈ K. Let
v′ ∈ K be a vertex that dominates v, so that lkK(v) = v′M for some subcomplex M of L. For
each 1 ≤ i ≤ n, define the subcomplex Ki of K as

Ki =

{
Li ∪ v(v′M ∩ Li) if v′M ∩ Li 6= ∅,
Li otherwise.

If v′M∩Li is nonempty, then v ∈ Ki and is clearly dominated by v′ because lkKi(v) = v′(M∩Li).
In any case, Ki strong collapses to Li and is therefore strong collapsible. This shows that K
is covered by n strong collapsible subcomplexes. The conclusion follows by induction on the
number of elementary strong expansions from L to K.

We are now able to prove that the PL geometric category of a polyhedron of dimension n is
bounded from above by n+ 1. We will prove the following slightly stronger result.

Proposition 1.3.5. Let K be a complex of dimension n. Then, the second barycentric subdivision
K ′′ of K can be covered by n+ 1 strong collapsible subcomplexes.
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Proof. Proceed by induction on n, the dimension of K. When n = 1, K is a simplicial graph.
We show first that in this case K ′ admits a cover by two strong collapsible subcomplexes. In
order to produce the strong collapsible cover, let T be a spanning tree of the graph K and note
that each edge e ∈ K \ T becomes the union of two edges in K ′, say e = e1 ∪ e2. Consider the
following subcomplexes of K ′:

K1 = T ′ ∪
⋃

e∈K\T

e1 , K2 = T ′ ∪
⋃

e∈K\T

e2.

As K1, K2 both strong collapse to T ′, they are strong collapsible and they clearly cover K ′.
Since their barycentric subdivisions are also strong collapsible, the base case is complete.

Let now K be a simplicial complex of dimension n. By inductive hypothesis, the second
barycentric subdivision of the (n − 1)-skeleton

(
K(n−1))′′ of K can be covered by n strong col-

lapsible subcomplexesK1, . . . ,Kn. Let v1, . . . , vr be the barycenters of the simplices of dimension
n of K. By Lemma 1.3.3, we see that

(
K(n−1))′′↗↗ K ′′ \

⋃r
i=1 stK′′({vi}) and so Lemma 1.3.4

implies that this last complex is covered by n strong collapsible subcomplexes. Since K ′′ is
connected and stK′′({vi}) is strong collapsible for every i, we can include their union in a strong
collapsible subcomplex of K ′′.

For dimension 1, this implies that the PL geometric category only distinguishes trees (con-
tractible graphs) from the rest of graphs, just like the geometric category. In contrast, the PL
geometric category of 2-dimensional polyhedra has some subtler properties that we explore in
the next section.

1.4 PL geometric category in dimension 2

We know by Proposition 1.3.5 that the PL geometric category of a 2-dimensional polyhedron
is bounded by 3. Since PL collapsible polyhedra are relatively well understood, the interest in
dimension 2 is centered in distinguishing polyhedra of PL geometric category 2 from those of PL
geometric category 3. Without reaching a full characterization, in this section we show among
other things that the simple homotopy type of a polyhedron P with plgcat(P ) = 2 is severely
constrained and derive a criterion, which involves both global and local conditions, to decide
that certain polyhedra do not admit covers by two PL collapsible subpolyhedra.

We analyze in first place the simple homotopy type of polyhedra of plgcat 2. If we look
at the analogous situation for the geometric category, we find that the homotopy type of the
2-dimensional polyhedra which are the union of two contractible subpolyhedra is completely
determined. Indeed, by the Seifert-van Kampen theorem the fundamental group of such a poly-
hedron is free of rank equal to the number of connected components minus 1 of the intersection
of the elements of the contractible cover. Then, by a result of C.T.C. Wall [83] a 2-dimensional
polyhedron with free fundamental group is homotopy equivalent to a wedge sum of spheres of
dimension 1 and 2. Thus, it is reasonable to expect that an even stronger restriction holds for
polyhedra P with plgcat(P ) = 2, which is in fact the case. Recall that for a pair of simple homo-
topy equivalent simplicial complexes K and L we say that K n-deforms to L, or that there is an
n-deformation fromK to L, if there exists a finite sequence of complexesK1 = K,K2, . . . ,Kr = L
such that for every i either Ki ↗e Ki+1 or Ki↘e Ki+1 and the dimension of Ki is at most n.
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Lemma 1.4.1. Let K be a simplicial complex of dimension 2 which is covered by collapsible
subcomplexes K1, K2. Then there is a 3-deformation from K to the suspension Σ(K1 ∩K2) of
K1 ∩K2.

Proof. Cone off K1, K2 with vertices v1, v2. This gives an expansion K↗ v1K1∪v2K2. Collapse
every new simplex based on a simplex contained inK1 orK2 but not in both. Hence, K↗ v1K1∪
v2K2↘ v1(K1 ∩K2) ∪ v2(K1 ∩K2), which is the desired 3-deformation.

The combination of this result with Lemma 1.2.2, which provides a certain control over the
intersection of collapsible complexes in dimension 2, yields the following restriction on the simple
homotopy type of polyhedra of plgcat 2.

Proposition 1.4.2. Let P be a polyhedron of dimension 2 such that plgcat(P ) = 2. Then P
3-deforms to the suspension of a graph.

Proof. Take a triangulation K of P covered by collapsible subcomplexes K1, K2. By Lemma
1.4.1, K 3-deforms to Σ(K1 ∩K2) = v1(K1 ∩K2) ∪ v2(K1 ∩K2) and by Lemma 1.2.2 K1 ∩K2

collapses to a 1-dimensional subcomplex G. It follows that vi(K1 ∩K2)↘ viG for i = 1, 2, and
hence K 3-deforms to the suspension of G.

Remark 1.4.3 (On the Andrews-Curtis conjecture). The Andrews-Curtis conjecture [3] states
that (compact) contractible polyhedra of dimension 2 3-deform to a point. As a consequence
of Proposition 1.4.2, the Andrews-Curtis conjecture is satisfied by contractible polyhedra which
admit a cover by two PL collapsible subpolyhedra. Indeed, let P be a contractible polyhedron
covered by collapsible subpolyhedra P1, P2. From the Mayer Vietoris sequence, the intersection
P1∩P2 has trivial homology and by Lemma 1.2.2, P1∩P2 collapses to a tree. Then, by Proposition
1.4.2, P 3-deforms to a point.

Even though Proposition 1.4.2 provides a valuable piece of information, it is far from charac-
terizing those polyhedra that admit covers by two collapsible subpolyhedra. Indeed, as it may be
suspected by analogy with the geometric category, the PL geometric category is not a (simple)
homotopy invariant of a polyhedron. Even more, this may be deduced from exactly the same
example used by Fox to show that the geometric category is not a homotopy invariant, described
in Lemma 1.1.4. Let X1 be the wedge sum of S2 and two circles and let X2 be the space ob-
tained from S2 by identifying three distinct points. Notice that X1 and X2 are simply homotopy
equivalent (in fact, there is a 3-deformation from X1 to X2, which follows from the argument
employed in Lemma 1.1.4 to show that X1 and X2 are homotopy equivalent). By splitting every
sphere in X1 in two, we see that X1 admits a cover by two PL collapsible subpolyhedra and
hence plgcat(X1) = 2. On the other hand, since X2 does not admit covers by two contractible
subpolyhedra by the proof of Lemma 1.1.4, plgcat(P2) = 3.

For the rest of the section, we will try to understand under what conditions it is possible
to determine the PL geometric category of a polyhedron once we already know that its simple
homotopy type is the correct one. If a given polyhedron P admits a cover by two collapsible
subpolyhedra P1 and P2, most of the relevant information about the topology of P is concentrated
in the way the intersection P1 ∩ P2 is embedded in P . A particularly favorable situation would
be that this intersection is 1-dimensional (a graph). With this idea in mind, we describe a class
of polyhedra that we call inner connected for which it is always the case that the intersection
may be deformed to be 1-dimensional.
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Definition 1.4.4. Let K be a simplicial complex of dimension 2. We say that an edge of K is
inner if it is a face of exactly two 2-simplices of K.

Recall that a simplicial complexK of dimension n is homogeneous or pure if all of its maximal
simplices have dimension n.

Definition 1.4.5. Let K be a homogeneous 2-dimensional simplicial complex. We say that K
is inner-connected if any pair of 2-simplices σ, τ of K is connected by a sequence of 2-simplices
σ = η1, η2, . . . , ηr = τ such that ηi ∩ ηi+1 is an inner edge of K for each 1 ≤ i < r. We call
such a sequence an inner sequence. We say that a polyhedron P is inner-connected if one, (or
equivalently, any) of its triangulations is inner-connected.

Example 1.4.6. Surfaces or more generally pseudosurfaces are inner-connected. The presenta-
tion complex associated to finite one-relator presentation in which every generator appears at
least once in the relator is also inner-connected.

The intuition here is that inner edges of a polyhedron determine locally in a concrete manner
two sides and that, in order to cover the polyhedron by two collapsible subpolyhedra, it should be
enough to pick one side for each member of the cover around the intersection edges. The global
condition required in the definition of inner connected polyhedra guarantees that the elections
may be performed coherently. We formalize this in the next result.

Lemma 1.4.7. Let K be an inner-connected and non collapsible simplicial complex of dimension
2. Suppose that K is the union of collapsible subcomplexes K1, K2. Then there exist collapsible
subcomplexes L1, L2 such that K = L1 ∪ L2 and L1 ∩ L2 is 1-dimensional.

Proof. Suppose that K1∩K2 has at least one 2-simplex η. Since K1∩K2 is a proper subcomplex
of K, we can find a 2-simplex not in K1 ∩K2 and an inner sequence joining it to η. Then there
are 2-simplices σ, τ together with an inner edge e = σ∩τ such that τ ∈ K1∩K2 but σ 6∈ K1∩K2.
Without loss of generality, suppose that σ ∈ K1. Then e is a free face of the complex K2, which
implies that we can remove τ from K2. That is, the complexes K1 and K̃2 = K2 \ τ form again
a collapsible cover of K and K1 ∩ K̃2 has one fewer 2-simplex than K1 ∩ K2. It follows by
induction that it is possible to find collapsible subcomplexes L1, L2 that cover K and intersect
in a graph.

Now that we know that the intersection of a PL collapsible cover of size 2 is 1-dimensional
for a considerable class of polyhedra, the next object of interest is the structure of the graph
itself. We focus on the leaves of this intersection graph, since they are the natural candidates to
start simplifying the graph. More specifically, we find that very often the local topology of the
polyhedron around a leaf of the intersection graph exhibits a certain rigidity. We introduce a
definition from [51] to make this statement precise.

Definition 1.4.8. [51] Let K be a simplicial complex. A vertex v of K is a bridge if K \ v has
more connected components than K. We say that v is splittable if the link lkK(v) has bridges.
Note that it makes sense to say that a point in a polyhedron is splittable because this property
depends only on the homeomorphism type of a small closed neighborhood around the point and
not on a specific triangulation of the space.

Both the content and the proof of the following lemma are inspired on results from [8, 51].
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Lemma 1.4.9. Let K be a homogeneous complex of dimension 2 which admits a collapsible cover
of size two. Suppose additionally that the link of every non splittable vertex of K is connected.
Then, there exist collapsible subcomplexes L1, L2 that cover K and such that every leaf of the
1-skeleton (L1 ∩ L2)

(1) of L1 ∩ L2 is a splittable vertex of K.

Proof. Let K1 and K2 be subcomplexes of K that form a collapsible cover of K. Take η = vw ∈
(K1 ∩K2)

(1) an edge such that w is a leaf, i.e. lk(K1∩K2)(1)
(w) = v, but not a splittable vertex.

Suppose in first place that η is not maximal in either of the subcomplexes K1,K2, so that there
exist vertices vi ∈ Ki with vwvi ∈ Ki for i = 1, 2. As w is not a splittable vertex, we can find a
path joining v1 and v2 in lkK(w)\v. But then there must be at least another edge in lkK1∩K2(w)
contradicting the hypothesis that η is a leaf of (K1 ∩K2)

(1). Suppose now η is maximal in K1

and take τ = v2η a 2-simplex of K2 containing η (we can find one by homogeneity of K). We
show that in this case K1 collapses to K1 \w. If it was not the case, there should be another edge
η′ ∈ K1 hanging from w. By the homogeneity of K, η′ is the face of some 2-simplex σ = v1η

′

which per force is in K1 but not in K2. Since by hypothesis w is not splittable and has connected
link, there is a path in lkK(w) \ v joining v1 to v2 and so w cannot be a leaf of (K1 ∩K2)

(1), a
contradiction. By performing the collapses that correspond to edges in the second case, we may
assume that the leaves of (K1 ∩K2)

(1) are splittable vertices.

Suppose now that a 2-dimensional polyhedron P is covered by collapsible subpolyhedra P1,
P2. In the case that the intersection is a graph, we already know something about its local
behavior at leaves. With respect to the global topology of P1 ∩ P2, since by Lemma 1.2.2
it collapses to a graph, its homotopy type is completely determined by the homology. As a
straightforward computation using the (reduced) Mayer-Vietoris long sequence reveals,

H̃0(P1 ∩ P2) ≡ H1(P ), H1(P1 ∩ P2) ≡ H2(P ),

where the homology groups are taken with coefficients in Z. From Proposition 1.4.2, we know
that H1(P ) and H2(P ) are finitely generated free abelian groups. Now, if rkH2(P ) < rkH1(P )
at least two connected components of P1∩P2 are acyclic. Since the polyhedron P1∩P2 collapses
to a graph, this implies that at least two connected components of P1 ∩ P2 are collapsible. If
moreover these components are graphs, P1 ∩ P2 should have at least two leaves which in turn
implies by Lemma 1.4.9 that P has at least two vertices that are splittable or with non connected
links, provided P is homogeneous. The conclusion reached in this paragraph is roughly that an
inner-connected polyhedron which is regular both in a local and a global sense does not admit
PL collapsible covers of size two.

Theorem 1.4.10. Let P be an inner-connected polyhedron of dimension 2 such that H2(P ) ≡ 0
or rkH2(P ) < rkH1(P ). Suppose additionally that P is not PL collapsible, has at most one
splittable vertex and that the link of every non splittable vertex is connected. Then plgcat(P ) = 3.

Proof. The case rkH2(P ) < rkH1(P ) was already treated in the paragraph above. Suppose then
H2(P ) ≡ H1(P ) ≡ 0 and that P is the union of PL collapsible subpolyhedra P1, P2 that intersect
in a graph. Hence, P1 ∩P2 is a tree and since we may assume by Lemma 1.4.9 that its leaves are
located in splittable vertices, P1 ∩ P2 should be a point. It follows that P is a wedge sum of PL
collapsible polyhedra, which contradicts the hypothesis that P be inner-connected.
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Example 1.4.11. The dunce hat D is an inner-connected contractible polyhedron with only
one splittable vertex and such that every other vertex has connected link. Hence, by Theorem
1.4.10 no triangulation of D admits a cover by two collapsible subcomplexes. In fact, we can
say a little more. The dunce hat D can be viewed as the presentation complex associated to the
one-relator presentation 〈 a | aaa−1 〉 (see the first paragraph of Section 1.4.1). More generally,
by Theorem 1.4.10 none of the presentation complexes associated to a presentation of the form
〈 a | ana−(n−1) 〉 (n ≥ 2) admits a cover by two PL collapsible subpolyhedra.

We remark that this example generalizes a result from [40], where the authors show that a
specific triangulation of the dunce hat cannot be written as the union of two collapsible subcom-
plexes.

Example 1.4.12. The standard Bing’s house with two rooms admits a PL collapsible cover of
size two (to see this, split the complex in two halves, each one containing the walls which support
the vertical tunnels). Note that unlike the dunce hat, the Bing’s house with two rooms is not
inner-connected. Moreover, as a consequence of the proof of Theorem 1.4.10 it is impossible to
cover this polyhedron by two PL collapsible subpolyhedra intersecting in a graph.

1.4.1 The geometry of one-relator presentations

In this brief section we compute completely the PL geometric category of the one-relator presen-
tation complexes, by showing that the value of this invariant can be read off directly from the
presentation.

We mentioned in passing in Example 1.4.6 that the complexes associated to one-relator pre-
sentations are inner-connected. We recall here the precise construction of complexes associated
to presentations. Let P = 〈X |R 〉 be a finite presentation. We associate a topological model
to P in the following way. First we form K = ∨x∈XS1

x, the wedge sum of 1-spheres indexed by
X. Every word r ∈ R spells out a combinatorial loop on the space K based on the wedge point,
which is used to attach a 2-cell on K. The resulting 2-dimensional CW-complex is called the
presentation complex of P and is denoted by KP . Since the attaching maps are combinatorial,
the presentation complex KP is a polyhedron (see [54, Chapter 2] for more details). When the
set R consists of only one word r the presentation 〈X | r 〉 is called a one-relator presentation.

Homogeneous presentation complexes associated to one-relator presentations are inner con-
nected: since they have only one 2-cell, any two points are connected by a path through the
interior of the cell. To avoid unnecessary extra case-by-case analysis we work exclusively with
homogeneous one-relator presentation complexes, which amounts to ask that every generator
appears in the relator. If this was not the case, such a presentation complex K would decompose
as the wedge sum of a bouquet of 1-spheres K1 and a homogeneous complex K2, which turns
out to be also a presentation complex (associated to the presentation obtained by removing the
generators not appearing in the relator). Since K1 is always the union of two PL collapsible sub-
polyhedra (simply split in two halves each 1-sphere), the PL geometric category of K coincides
with plgcat(K2), unless K is PL collapsible.

The computation of the PL geometric category for homogeneous one-relator complexes is
divided in two cases, according to whether the presentation admits an algebraic collapse or not.
Here, we say that a one-relator presentation P = 〈x1, . . . , xk | r 〉 admits an algebraic collapse
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if one of the generators xi occurs only once in r, with exponent ±1. The case of presentations
admitting algebraic collapses is the easier of the two.

Lemma 1.4.13. Let K be a connected simplicial complex and let L1, . . . , Ln be disjoint col-
lapsible subcomplexes of K. Then there exists a collapsible subcomplex of K containing

⋃n
i=1 Li.

Proof. Since K is connected and L1 is disjoint with
⋃n
i=2 Li, there exists a simple path p in the

1-skeleton of K joining a vertex of L1 with a vertex of some Li (i 6= 1) with no edges in
⋃n
i=1 Li.

Consider the subcomplex M of K defined as M := L1 ∪ p ∪ Li. Since L1 and Li are collapsible,
they collapse to any of its vertices and hence M collapses to p which is in turn collapsible. The
result now follows from induction.

Proposition 1.4.14. Let P = 〈x1, . . . , xk | r 〉 be a finite one-relator presentation and suppose
that r admits an algebraic collapse. Then KP admits a cover by two PL collapsible subpolyhedra,
that is, plgcat(KP) ≤ 2.

Proof. Without loss of generality, x1 occurs only once in r and the relator is of the form r =
x±11 a1 . . . am−1, where each ai is equal to some x±1j , j 6= 1. Picture the complex KP as a disk with
the boundary subdivided in m edges labeled in counterclockwise order according to r. Subdivide
the edge labeled x1 in 2(m − 1) + 1 edges and subdivide the rest of the edges in three edges.
Join the 2i-th edge of the subdivided x1 to the central edge of (the edge labeled as) ai by a
2-dimensional strip inside the disk in such a way that the strips are pairwise disjoint (see Figure
1.1).

Figure 1.1: The strips (shaded) PL collapse to a tree through the edge which intersects the edge
labeled x1.

Both the subpolyhedron P1 formed by the union of these strips and its complement P2 consist
of a disjoint union of PL collapsible subpolyhedra of KP . Hence, by Lemma 1.4.13, P1 and P2

may be included in PL collapsible polyhedra Q1 and Q2 that cover KP .

As for the other case, notice that in a one-relator presentation complex with no algebraic
collapses every point has a connected link, except possibly the wedge point. Since homoge-
neous one-relator complexes are inner-connected, as a consequence of Theorem 1.4.10 most such
complexes do not admit PL collapsible covers of size two.
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Proposition 1.4.15. Let P = 〈x1, . . . , xk | r〉 be a finite one-relator presentation such that r
does not admit algebraic collapses. Then, if the number of generators k is greater than 1 or
H2(KP) is trivial, plgcat(KP) = 3.

Proof. By cellular homology, the group H2(KP) is free abelian of rank at most 1. Moreover, by
a straightforward Euler characteristic computation we know that

rkH2(KP)− rkH1(KP) = 1− k.

Hence, if P has k > 1 generators, we have rkH2(KP) < rkH1(KP) and the conclusion follows
from Theorem 1.4.10. The case H2(P ) ≡ 0 is also covered by Theorem 1.4.10.

To complete the picture, it remains to handle the specific subcase of the one-relator presen-
tations with only one generator and non trivial second homology group, which are exactly the
presentations of the form 〈x | r 〉, where r is a word on letters x, x−1 with total exponent 0. The
computation of the PL geometric category for these complexes requires a careful ad-hoc analysis.

Proposition 1.4.16. Let P = 〈x | r 〉 be a one-relator presentation such that H2(KP) is not
trivial. Then, plgcat(KP) = 2 if and only P is of the form 〈x | (xx−1)±1 〉.

Proof. Suppose that a triangulation of KP admits a cover by collapsible subcomplexes K1, K2,
which we may suppose to intersect in a graph with at most one leaf by Lemmas 1.4.7 and 1.4.9.
Since H0(K1 ∩K2) ≡ Z2 and H1(K1 ∩K2) ≡ Z, one of the connected components of K1 ∩K2

is acyclic and therefore consists of only one point. For this to be possible, the link of the wedge
point v must have more than one connected component.

Recall that the Whitehead graph of r (see [54, Ch.6]) allows to determine the (homeomor-
phism type of the) link of the wedge point in presentation complexes directly from the relations.
Let us briefly indicate how the Whitehead graph is constructed for the specific case at hand.
Apart from v, mark two points x+ and x− in the loop x, one walking away from the base point
following the orientation of x, the other on the contrary sense. Now, if for example xx is a
subword of the relator r, there is two-dimensional material connecting the final part of the first
x cycle to the initial part of the second one, so that there should be an edge connecting x− to
x+ in the link of v. The Whitehead graph has as vertices x+ and x− and the edges are derived
from the word r (viewed cyclically) generalizing the last example in the obvious way. Hence,
it is not difficult to see that the link of v is not connected only for presentations of the form
〈x | (xx−1)±n〉, n ∈ N, since the presence of subwords xx or x−1x−1 connects the points x+ and
x−.

Given one such presentation, let us call C the connected component of K1 ∩K2 which is not
the wedge point. Since it is a connected graph with one cycle and no leaves, C is homeomorphic
to S1. Moreover, by perturbing slightly K1 and K2 near the loop x if necessary, the intersection
of this component with x may by assumed to be transversal, that is, a finite set of points. Also,
notice that the intersection C∩x cannot be empty. Indeed, if the loop x was entirely contained in
K1 (the argument for K2 is identical), this complex would have non trivial first homology group
because the homology class determined by x generates H1(KP), leading to a contradiction. Let
then w be a point in C ∩ x and let us label by a and b the edges of the subdivision of x (one
in each side) that contain w. Since C intersects the loop x only at points, the edges a and b
are completely contained in different members of the collapsible cover, say a ∈ K1 \ K2 and
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b ∈ K2 \ K1. Notice that, in any triangulation of KP , the edges a, b are the face of 2n 2-
simplices. Furthermore, the (open) star of w is homeomorphic to a union of 2n half euclidean
planes with the x axis identified. It follows that vertex w has valency 2n in the graph C. This
is impossible unless n = 1. Finally, observe that the complex associated to a presentation of
the form 〈x | (xx−1)±1 〉 is homeomorphic to a 2-sphere with its poles identified and so admits a
cover by two PL collapsible subpolyhedra.

The complete characterization of the behavior of the PL geometric category for one-relator
presentation complexes follows as a corollary to Propositions 1.4.14, 1.4.15 and 1.4.16, and may
be summarized as follows.

Theorem 1.4.17. Let P = 〈x1, . . . , xk | r〉 be a finite one-relator presentation. Then KP can be
covered by two PL collapsible subpolyhedra if and only if r admits an algebraic collapse or P is
of the form 〈x | (xx−1)±1 〉.

1.4.2 Inner-connected polyhedra

The purpose of this section is to prove a structural result about inner connected polyhedra.
Specifically, we show that all inner connected polyhedra can be obtained as a quotient of a disk,
much in the same way that closed surfaces are formed by making identifications on pairs of
boundary edges of an appropriate polygon. We follow the treatment and notation of [66, Ch.6].

Definition 1.4.18. Given a finite alphabet S, a word of length k in S is an ordered list of k
symbols of S ∪ S−1. A polygonal presentation P is a finite alphabet S together with a finite set
of words W1, . . . ,Wr in S of length at least three such that every element of S (or its formal
inverse) appears in some word. We denote such a presentation by P = 〈S |W1, . . . ,Wr〉.

A polygonal presentationP determines a topological space (called the geometric realization of
P) in the following fashion. For each wordWi in P of length k form the regular convex polygon of
k sides Pi and label its edges in counterclockwise order according to Wi, starting by an arbitrary
vertex. Now identify edges with the same label in

∐
i Pi by the simplicial homeomorphism that

matches the vertices of the edges, inverting orientation when necessary.
There is a number of combinatorial movements on polygonal presentations, called elementary

transformations, that preserve the (PL) homeomorphism type of the corresponding geometric
realizations. We describe here only the transformations we will use and refer to [66, Ch.6] for
the complete list.

• Reflection: 〈S | a1 . . . am,W2, . . . ,Wr〉 7→ 〈S | a−1m . . . a−11 ,W2, . . . ,Wr〉.

• Rotation: 〈S | a1a2 . . . am,W2, . . . ,Wr〉 7→ 〈S | a2 . . . ama1,W2, . . . ,Wr〉.

• Pasting: 〈S, e |W1e, e
−1W2, . . . ,Wr〉 7→ 〈S |W1W2, . . . ,Wr〉. Note that e does not belong

to S so that none of the words W1, . . . ,Wr should contain e for this transformation to be
valid.

The main result of this section states that every inner-connected polyhedron P has a polyg-
onal presentation with one word. The strategy of the proof consists of repeatedly pasting pairs
of 2-simplices of a triangulation of P joined by an inner edge until we are left with only one
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polygon. However, the vertices of an inner edge may be singular, i.e. they may have a neigh-
borhood that is not homeomorphic to an open disk. By pasting a pair of 2-simplices through
an inner edge with singular vertices, we may create identifications in the interior of the polygon
we are building. We show in the next lemma that we can avoid this situation by considering a
sufficiently fine triangulation of P .

Lemma 1.4.19. Let K be an inner-connected simplicial complex of dimension 2. Then, each pair
of simplices of the second barycentric subdivision K ′′ of K may be joined by an inner sequence
such that the vertices of the inner edges in the sequence are not singular.

Proof. Let σ1, σ2 be a pair of 2-simplices of K ′′ and let τ1, τ2 be respectively the 2-simplices
of K containing them. Since K is inner-connected, there is an inner sequence S in K joining
τ1 to τ2. It is not difficult to find an inner sequence in K ′′ formed by 2-simplices contained in
2-simplices of S that avoids the vertices of K and joins σ1 to σ2.

Theorem 1.4.20. Let P be an inner-connected polyhedron. Then P admits a polygonal presen-
tation with only one word.

Proof. Take a simplicial complex K that triangulates P . By Lemma 1.4.19, we may assume that
every pair of 2-simplices of K is joined by an inner sequence such that the inner edges involved
do not have singular vertices. Choose a different label for each edge of K and fix an orientation
for its simplices. Consider the polygonal presentation P that has as alphabet the set of labels of
edges of K and a word for each 2-simplex, determined by the edges of its boundary in the order
given by the prescribed orientations. Since the geometric realization of P is homeomorphic to P ,
it suffices to reduce P to a presentation with one word by applying elementary transformations.
The 2-simplex that corresponds to W1 has at least one inner edge a with no singular vertices.
Without loss of generality, assume that W2 is the only other word in which a or a−1 appears.
By applying rotations and reflections we may assume that W1 = W̃1a, W2 = a−1W̃2 and paste
them to reduce the number of words in P. Inductively, suppose that there is more than one word
in the presentation. We claim that there is one inner edge with no singular vertices of K that
appears exactly once in W1. Indeed, if it was not the case, it would be impossible to connect a
2-simplex of (the subcomplex determined by)W1 and a 2-simplex not inW1 by an inner sequence
with no singular vertices in its edges. As before, rearrange the words and perform rotations and
reflections in such a way that it is possible to paste words W1 and W2.

Remark 1.4.21. Let P be an inner-connected polyhedron and let P = 〈S |W 〉 be a polygonal
presentation of P with one word obtained as in Theorem 1.4.20. Consider the subgraph G of
P formed by the edges determined by S. The word W defines a surjective combinatorial map
ϕ : S1 → G for a suitable triangulation of S1. This provides an alternative description of inner-
connected polyhedra. Concretely, given a simplicial graph G and a surjective combinatorial map
ϕ : S1 → G we obtain an inner-connected polyhedron as the space underlying the CW-complex
that consists of one 2-cell attached to G according to ϕ. In the case that G is homeomorphic
to a bouquet of spheres of dimension 1, the resulting space is a (homogeneous) one-relator
presentation complex.
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Chapter 2

Minimal triangulations of homotopy
types of surfaces

Closed smooth manifolds have long known to be triangulable and studied from that perspective.
Several classical results are devoted to understanding the restrictions imposed by the topology of
a manifold to its triangulations, such as the Dehn-Sommerville relations and the Lower Bound
Theorem (see [10, 60]). A particularly active area in the field is the study of minimal trian-
gulations or triangulations with few simplices of manifolds. Besides its intrinsic interest, the
availability of optimal or almost optimal triangulations of manifolds would allow to compute
(with the assistance of a computer) some invariants such as the first Pontrjagin class [38, 37].

On the other hand, the use of optimal triangulations to measure the complexity of the
topology of manifolds has also a long tradition, especially in the context of 3-manifolds (see
[70]) and hyperbolic manifolds (see [71] and Chapter 3 for more details). In the recent article
[61] Karoubi and Weibel related the topological complexity to minimal triangulations of the
homotopy type of spaces through the introduction of the covering type. The covering type of a
space is a L-S category type invariant designed to measure the complexity of a space through its
good covers. The connection to minimal triangulations comes from the fact that for a space X of
the homotopy type of compact simplicial complexes, the covering type may be reformulated as
the number of vertices in a minimal triangulation of a simplicial complex homotopy equivalent
to X.

The main objective of this chapter is the exposition of the complete computation of the
covering types of closed surfaces, which settles a problem formulated by Karoubi and Weibel.
This computation reveals that the optimal triangulations of closed surfaces turn out to be,
with only one exception, the most economical models within their homotopy type. For this
reason, we open the chapter with a discussion of Jungerman and Ringel theorem [58, 76], which
characterizes the optimal triangulations of closed surfaces, both orientable and non-orientable.
We continue with a brief introduction to the covering type and some of its basic properties after
Karoubi and Weibel. The remaining two sections concern the computation of the covering type
of closed surfaces. The tools involved are fairly classical and elementary: the ring structure of
the cohomology ring of surfaces and the Euler characteristic formula.
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2.1 Minimal triangulations of surfaces

We say as usual that a simplicial complex K is a triangulation of a topological space X if the
geometric realization ofK is homeomorphic toX. As it is well known, all smooth manifolds admit
triangulations. The problem of finding small or minimal triangulations of smooth manifolds has
been extensively investigated (see for example [20, 21, 68, 69, 58, 76]), while the interest in
optimal triangulations of closed surfaces goes back at least to 1950 [58]. The objective of this
section is presenting the complete solution to the problem of minimal triangulations of closed
surfaces obtained by Ringel [76], in the non-orientable case, and Jungerman and Ringel [58] in
the orientable case.

Theorem 2.1.1. Let S be a closed surface different from the orientable surface of genus 2 (M2),
the Klein Bottle (N2) and the non-orientable surface of genus 3 (N3). There exists a triangulation
of S with n vertices if and only if

n ≥
7 +

√
49− 24χ(S)

2
.

For the exceptional cases M2, N2 and N3 it is necessary to replace n by n − 1 in the formula
above.

The proof of this result consists of two separate parts, and, as it may be expected, the hard
part is to produce triangulations of a surface S with n vertices whenever n exceeds the number in
the formula. It involves extensive use of the theory of current graphs and a complete exposition
would deviate us from our objectives, so we refer the interested reader to the original works
[76, 58]. We content here with explaining the argument to prove the lower bound on the number
of vertices, which amounts to a relatively easy computation with the Euler characteristic formula
and will be relevant later. We introduce some convenient notation before the proof.

Notation. Let k ≤ 2 be an integer number. We denote by ρ(k) the integer defined as

ρ(k) :=

⌈
7 +
√

49− 24k

2

⌉
.

By abuse of notation, for a simplicial complex K of dimension 2 with χ(K) ≤ 2, we will write
ρ(K) to mean ρ(χ(K)). Also, αi(K) will denote the number of i-simplices in the complex K.

Proof of Theorem 2.1.1 (lower bound). Let K be a triangulation of a closed surface S. Then, by
the Euler characteristic formula,

χ(S) = χ(K) = α0(K)− α1(K) + α2(K).

Since every edge of K is incident to exactly two 2-simplices, we see that 3α2(K) = 2α1(K) by
double counting. On the other hand, since K is a simplicial complex it has at most

(
α0(K)

2

)
edges. Then

6χ(S) ≥ 6α0(K)− α0(K)(α0(K)− 1).

If χ(S) ≤ 0, the minimum strictly positive integer that satisfies this inequality is precisely
ρ(S) = ρ(χ(S)) and therefore α0(S) ≥ ρ(S). An easy analysis shows that α0(S) ≥ ρ(S) also
when χ(S) = 1, 2.
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We have implicitly so far talked about minimal triangulations of surfaces as triangulations
that minimize the number of vertices. For general smooth manifolds, a minimal triangulation
often means one that minimizes the number of maximal dimension faces. In the case of surfaces,
there is a linear relation between the number of simplices in each dimension and so the different
possible meanings of minimal triangulations coincide in dimension 2.

Notation. Let S be a closed surface. We will denote by δ(S) the minimum number of 2-simplices
in a triangulation of S and by λ(S), the minimum number of vertices (0-simplices).

Thus, Theorem 2.1.1 provides an explicit formula for both δ(S) and λ(S), whenever S is a
closed surface. We restate it in form of a lemma for future reference.

Lemma 2.1.2. Let S be a closed surface. Then,

λ(S) = ρ(S) =

⌈
7 +

√
49− 24χ(S)

2

⌉
,

except for S = M2, N2, and N3, in which cases it is λ(S) = ρ(S) + 1. On the other hand,

δ(S) = 2λ(S)− 2χ(S).

Proof. The formula for λ(S) is simply a restatement of Theorem 2.1.1. For the second statement,
recall that if K triangulates the surface S, 3α2(K) = 2α1(K) because every edge is the face of
exactly two 2-simplices. Hence, from the Euler characteristic formula we have

2χ(S) = 2α0(K)− 2α1(K) + 2α2(K) = 2α0(K)− α2(K),

and it follows that α2(K) = 2α0(K)− 2χ(S).

2.2 The covering type of spaces

The purpose of this section is presenting an invariant known as covering type, introduced by
Karoubi and Weibel in [61] as a way to measure the complexity of topological spaces. The
covering type of a space X admitting a triangulation is intimately related to the minimal tri-
angulations of X (in the sense of vertex minimizing) and it was our main motivation to study
triangulations of the homotopy type of closed surfaces.

Before giving the definition of the covering type of a space, we need to recall the notion
of good cover. An open cover U = {Ui}i∈I of a topological space X is called a good cover if
every nonempty intersection Ui1 ∩ · · · ∩Uin is contractible. Good covers have been used by Weil
to prove some of de Rham’s theorems about the cohomology of manifolds (see [84, 61]). They
appear naturally in the context of riemannian manifolds: any point in a riemannian manifold has
a geodesically convex neighborhood (which, in particular, is contractible) and the intersections
of such neighborhoods are again geodesically convex. A refinement of the classical notion of
Lusternik-Schnirelmann category in terms of such covers was recently formulated by Karoubi
and Weibel [61].

Definition 2.2.1. The strict covering type ofX is defined to be the minimum number of elements
in a good cover of X. The covering type of X, denoted by ct(X), is the minimum of the strict
covering types taken over all spaces Y homotopy equivalent to X.
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One of the most salient features of this invariant is the connection to minimal (vertex)
triangulations of the homotopy types of spaces. Indeed, reinterpreting Proposition 2.1 and
Theorem 2.5 from [61] (see also [17, Lemma 2.1]), we obtain the following equivalent definition
for the covering type of spaces of the homotopy type of (finite) CW-complexes.

Lemma 2.2.2. Let X be a topological space homotopy equivalent to a finite CW-complex. Then
ct(X) coincides with the minimum possible number of vertices of a simplicial complex K homo-
topy equivalent to X.

Proof. Suppose that ct(X) = r and let Y be a space homotopy equivalent to X which admits a
good cover U of size r. By the Nerve Theorem, Y is homotopy equivalent to the nerve N (U),
which is a simplicial complex with r vertices. Reciprocally, if K is a simplicial complex homotopy
equivalent to X, the open stars of its vertices form a good cover of K.

To explore the behavior of the covering type of spaces, one may start by analyzing connected
graphs, i.e. connected 1-dimensional complexes. The homotopy type of such spaces is completely
determined by a positive integer number h, the rank of the first homology group. Concretely,
a connected graph Y with rk(H1(Y,Z)) = h is homotopy equivalent to a bouquet (wedge sum)
of h circles. An explicit formula for the covering type was computed for this family by Karoubi
and Weibel.

Proposition 2.2.3. ([61, Proposition 4.1]) Let Xh be a bouquet of h circles. Then, the covering
type of Xh is

ct(Xh) =

⌈
3 +
√

1 + 8h

2

⌉
.

That is, ct(Xh) equals the unique integer n satisfying(
n− 2

2

)
< h ≤

(
n− 1

2

)
.

To contextualize this result, recall that the L-S category of connected graphs is at most 2.
Hence, it indicates that the covering type retains more information about the homotopy type
of the underlying space. On the other hand, the formula becomes more transparent when one
thinks about the alternative formulation for the covering type of a graph from Lemma 2.2.2.
Intuitively, one should try to construct a simplicial complex K homotopy equivalent to Xh with
as little vertices as possible. It is clear that, among simplicial graphs on r vertices, the complete
graphKr has the maximum rank

(
r−1
2

)
in H1. Thus, it is impossible to form a simplicial graph on

n vertices homotopy equivalent to Xh if
(
n−1
2

)
< h, while by removing some edges (if necessary)

from the complete graph Kn one may construct such a graph in the opposite case.
We close this section by relating the covering type of a space to the Betti numbers, a more

classical manifestation of the presence of non-trivial topology. Recall that for a space X with
finitely generated homology (say, Hk(x) = 0 for k > m) the Poincaré polynomial PX(t) is defined
as

PX(t) = β0 + β1t+ · · ·+ βmt
m,

where βi is the rank of the homology group Hi(X) with coefficients taken in a field. Karoubi
and Weibel showed the following result.
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Theorem 2.2.4. ([61, Theorem 3.3]) Let PX(t) be the Poincaré polynomial of X and let n be
its covering type. If X is not empty then:

PX(t) ≤ (1 + t)n−1 − 1

t
+ 1 = n+

(
n− 1

2

)
t+

(
n− 1

3

)
t2 + · · ·+ t(n−2),

meaning that β0 ≤ n, β1 ≤
(
n−1
2

)
, . . . , βn−2 ≤ 1 and βi = 0 for i ≥ n− 1.

Proof. The proof is by induction on n, the cases n = 1, 2 being trivial since the polynomial PX(t)
equals 1 and 2, respectively, for those cases.

For the inductive step, if ct(X) = n, without loss of generality X admits a good cover of size
n and hence X = ∪ni=1Ui for some contractible open subspaces Ui. Set Y = ∪i 6=1Ui the subspace
of X formed by the union of the last n− 1 members of the good cover. Clearly, both ct(Y ) and
ct(U1 ∩ Y ) are at most n − 1. From the Mayer-Vietoris sequence applied to X = U1 ∪ Y , we
obtain for each k exact sequences

Hk(U1)⊕Hk(Y )→ Hk(X)→ Hk−1(U1 ∩ Y ).

Hence, by the inductive hypothesis we have β0(X) ≤ n and for k > 0,

βk(X) ≤ βk(Y ) + βk−1(U1 ∩ Y ) ≤
(
n− 2

k

)
+

(
n− 2

k − 1

)
=

(
n− 1

k

)
.

2.3 The covering type of surfaces

As it is well known, the topological type of a closed surface is completely determined by a single
integer number (the genus) and whether the surface is orientable or not. Hence, they constitute
in this sense the simplest family of 2-dimensional spaces and it is natural to ask about their
covering types after computing them for graphs. This problem, posed by Karoubi and Weibel in
[61] admits via Lemma 2.2.2 the following equivalent formulation.

Problem. Given a closed surface S, compute the minimum number of vertices in a simplicial
complex homotopy equivalent to S.

Here, by closed surface we mean as usual a compact 2-dimensional manifold without bound-
ary, not necessarily orientable. The purpose of this section is to provide a complete solution to
this problem.

Although it is only almost true, it may serve the reader to take throughout the section as
a working hypothesis that minimal triangulations of closed surface are also minimal triangula-
tions of the corresponding homotopy type. If one accepts that the optimal triangulation of the
homotopy type of a closed surface is realized by a 2-dimensional complex (which we think is not
obvious but it seems reasonable), the conjecture is plausible. Indeed, intuitively a 2-dimensional
complex homotopy equivalent but not homeomorphic to a surface appears to contain “extra” 2-
simplices. Also, Karoubi and Weibel verified this conjecture for the projective plane and the torus
by exploiting the non-triviality of the cup product in the first cohomology groups of those spaces.
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Thus, in view of Theorem 2.1.1, it is enough to prove (at least for non-exceptional cases) that a

complex K homotopy equivalent to a given closed surface S has at least ρ(S) =

⌈
7+
√

49−24χ(S)
2

⌉
vertices. The departing point for achieving this is the remark that the proof of the lower bound
part of Theorem 2.1.1 is valid under weaker hypotheses than the original.

Lemma 2.3.1. Let K be a simplicial complex of dimension 2 such that every edge of K belongs
to at least two 2-simplices and that χ(K) ≤ 2. Then, K has at least ρ(K) vertices.

Proof. As in the proof of the lower bound of Theorem 2.1.1, we start from the Euler characteristic
formula for K,

χ(K) = α0(K)− α1(K) + α2(K).

By hypothesis, the number of simplices in K satisfies 3α2(K) ≥ 2α1(K). It is a matter of a
simple computation to check that this leads to the inequality

6χ(K) ≥ 6α0(K)− α0(K)(α0(K)− 1).

If χ(K) ≤ 0, the minimum strictly positive integer that satisfies this inequality is precisely ρ(K)
and therefore α0(K) ≥ ρ(K). It remains to show that α0(K) ≥ ρ(K) when χ(K) = 1 or
χ(K) = 2. If χ(K) = 1, the minimum positive solutions for the above inequality are a = 1 and
a = 6 = ρ(K), but a 6= 1 since dim(K) = 2. It follows that α0(K) ≥ ρ(K). If χ(K) = 2, the
inequality is satisfied by every positive integer. However, since every edge of K is the face of at
least two 2-simplices, K cannot have 3 or less vertices. Hence α0(K) ≥ 4 = ρ(K).

Roughly, the previous lemma states that ifK is a complex of dimension 2 homology equivalent
to a surface S with a triangulation at least as dense as a surface, then α0(K) ≥ ρ(K) = ρ(S).
We systematize the use of the cohomology ring of surfaces by Karoubi and Weibel to obtain
lower bounds for the covering type (notice that the cohomology ring of a space is also exploited
in the context of L-S category, see Lemma 1.1.3). Namely, we identify a purely cohomological
counterpart to the combinatorial property of a simplicial complex of being densely triangulated.

Definition 2.3.2. Let X be a topological space. We say that the cohomology ring H∗(X,Z2)
satisfies property (A) if for every non-trivial α in H1(K,Z2), there exists β ∈ H1(K,Z2) such
that α ∪ β is non-trivial in H2(K,Z2).

In what follows, we will work with reduced (co)homology and the coefficient ring for the
(co)homology groups will be Z2. The reason for this is that it allows to handle the orientable
and the non-orientable case at the same time.

Remark 2.3.3. Note that, by Poincaré Duality, the cohomology ring H∗(S,Z2) of any closed
surface S (orientable or non-orientable) satisfies property (A).

In the following result, we make explicit our assertion that property (A) constitutes a coho-
mological counterpart to being densely triangulated.

Lemma 2.3.4. Let K be a simplicial complex of dimension 2 and suppose that H∗(K,Z2) satisfies
property (A) of Definition 2.3.2. If χ(K) ≤ 2, then K has at least ρ(K) vertices.

36



Chapter 2. Minimal triangulations of homotopy types of surfaces

Proof. Collapse every free face of K to get a subcomplex L with no free faces. If every edge of
L is incident to some 2-simplex, Lemma 2.3.1 applies and we are done.

We treat then the case in which L has maximal edges (i.e. there exists some 1-simplex
that is not a face of any 2-simplex of L). We will show that it is always possible to replace
L by a homotopy equivalent simplicial complex with less vertices and less maximal edges. Let
e = {a, b} be a maximal edge. Suppose that there is a simple path P joining a to b in L \ e
(the simplicial complex obtained from L by removing the edge e). Consider the quotient L/P ,
which is homotopy equivalent to a wedge sum of the form T ∨ S1, where the sphere S1 is the
image under the quotient of the edge e. Since on the other hand L/P is homotopy equivalent
to L, we have L ' T ∨ S1. The cohomology ring of T ∨ S1 is isomorphic to the product
H∗(T,Z2) × H∗(S1,Z2) (the product in the category of graded algebras, where the operations
are defined coordinate-wise), and therefore it does not satisfy property (A). Concretely, for the
nonzero element γ ∈ H1(S1,Z2), the class α = (0, γ) ∈ H1(T ∨ S1,Z2) does not satisfy the
requirements of property (A). Since the cohomology ring H∗(L,Z2) satisfies property (A), this
is a contradiction and hence, there is no path between a and b in L \ e.

Therefore the quotient L/e has a natural simplicial structure and is homotopy equivalent to
L. Thus, if we replace L by L/e we obtain a simplicial complex homotopy equivalent to K with
one fewer vertex and less maximal edges than L. By iterating this procedure we end up with a
simplicial complex K̂ of dimension 2 homotopy equivalent to K with no more vertices than K
and such that each edge of K̂ belongs to at least two 2-simplices. By Lemma 2.3.1 applied to
K̂, we deduce that K̂ (and in consequence K) has at least ρ(K) vertices.

In particular, as a corollary to Lemma 2.3.4 we see that minimal triangulations of a (non-
exceptional) closed surface S optimize the number of vertices within complexes of dimension 2 of
the homotopy type of S (or, more generally, within those with Z2-homology isomorphic to that
of S). We will need a different argument in order to extend this to the general case.

Suppose that K is a simplicial complex, not necessarily of dimension 2, of the homotopy
type of a closed surface S. We propose to compare K to its 2-skeleton K(2) to somehow reduce
the general problem to the 2-dimensional case. Obviously, the inclusion K(2) ↪→ K induces an
isomorphism i∗ : Hn

(
K(2),Z2

)
→ Hn(K,Z2) for n < 2 but it is in general only an epimorphism

for n = 2. Hence, informally speaking, in order to obtain a complex with homology isomorphic
to that of S we need to remove the “extra” homology classes present in K(2). To accomplish
this, we will develop a homological simplification method controlled by property (A) to find a
subcomplex Z ≤ K(2) with the (co)homology of S, consisting of removing some carefully chosen
2-simplices of K(2). Here, it is important to remark that it is not enough to simply remove some
2-simplices from K(2) to kill homology classes until there remains only one. We also need to
ensure that the triangulation of the resulting subcomplex is sufficiently dense, that is to say,
that at every step of the simplification the involved subcomplexes satisfy property (A). The next
lemma describes how property (A) descends to subcomplexes and it is the key to control the
homological simplification process.

Lemma 2.3.5. Let K be a simplicial complex and let L ≤ K be a subcomplex such that the
inclusion i : L ↪→ K induces isomorphisms i∗ : Hn(L,Z2) → Hn(K,Z2) for n < 2 and an
epimorphism for n = 2. If the cohomology ring H∗(K,Z2) satisfies property (A), then the
cohomology ring H∗(L,Z2) also satisfies property (A).
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Proof. Identify Hn(K,Z2) with Hom(Hn(K),Z2) by the universal coefficient theorem for coho-
mology. By assumption H∗(K,Z2) satisfies property (A) and i∗ : Hn(K,Z2)→ Hn(L,Z2) is an
isomorphism for n < 2 and a monomorphism for n = 2. The claim follows from the naturality
of the cup product.

Given a simplicial complex K, we will denote by (C∗(K,Z2), d∗) its simplicial chain complex
with coefficients in Z2. If L ≤ K is a subcomplex, we denote by dimH2(L,Z2) the dimension of
H2(L,Z2) as a vector space over Z2.

Proposition 2.3.6. Let K be a simplicial complex and let L ≤ K(2) be a subcomplex. Sup-
pose that H∗(K,Z2) has property (A) and that the inclusion L ↪→ K induces isomorphisms
i∗ : Hn(L,Z2) → Hn(K,Z2) for n < 2 and an epimorphism for n = 2. If dimH2(L,Z2) >
dimH2(K,Z2), there is a 2-simplex σ ∈ L such that the inclusion j : L\σ ↪→ K also induces iso-
morphisms j∗ : Hn(L \ σ,Z2)→ Hn(K,Z2) for n < 2 and an epimorphism for n = 2. Moreover,
dimH2(L \ σ,Z2) = dimH2(L,Z2)− 1.

Proof. Since by hypothesis dimH2(L,Z2) > dimH2(K,Z2) there is a non-trivial class B in the
kernel of the inclusion induced map i∗ : H2(L,Z2)→ H2(K,Z2). Let σ be a 2-simplex of L in the
support of B. The topological boundary ∂σ viewed as a chain in C1(L\σ,Z2) is the boundary of
the 2-chain B − σ. Hence the inclusion induces the zero morphism H1(∂σ,Z2)→ H1(L \ σ,Z2).
It follows that the inclusion L \ σ ↪→ L induces isomorphisms Hn(L \ σ,Z2) → Hn(L,Z2) for
n < 2. It remains to verify the surjectivity of the map j∗ : H2(L \ σ,Z2)→ H2(K,Z2), where j
is the inclusion j : L \ σ ↪→ K. Let [Z] be a class in H2(K,Z2). By hypothesis, there is some
class C ∈ H2(L,Z2) such that i∗[C] = [Z]. If σ does not belong to the support of C, when
viewed as a class in H2(M \ σ,Z2) we have j∗[C] = [Z]. In the other case, consider the 2-chain
C + B. Since the coefficients are taken in Z2, this chain is a well defined 2-cycle in L \ σ and
j∗[C + B] = i∗[C] + i∗[B] = i∗[C] = [Z]. Hence, in any case j∗ : H2(L \ σ,Z2) → H2(K,Z2) is
an epimorphism. The fact that dimH2(L \ σ,Z2) = dimH2(L,Z2)− 1 follows immediately from
the Euler characteristic formula, since χ(L \ σ) = χ(L)− 1.

Now, given a simplicial complex K homotopy equivalent to a closed surface S its 2-skeleton
K(2) satisfies property (A) by Lemma 2.3.5. Hence, by applying iteratively Proposition 2.3.6 to
L = K(2), we end up with a subcomplex T ≤ K(2) such that the inclusion i : T ↪→ K induces an
isomorphism in all homology groups (note that here we implicitly use that K is finite). Thus,
the reduction from the general case to dimension 2 is complete.

Theorem 2.3.7. Let K be a simplicial complex homotopy equivalent to a surface S. Then K
has at least ρ(S) vertices. In particular, if S 6= M2, N2, N3 then ct(S) = λ(S).

Proof. By Proposition 2.3.6 and the subsequent paragraph, there exists a subcomplex T ≤ K(2)

with χ(T ) = χ(S) and such that its cohomology ring satisfies property (A). Since the number
of vertices of T is less than or equal to the number of vertices of K, by Lemma 2.3.4 K has at
least ρ(S) vertices.

We perform the computation of the covering type of the exceptional surfaces in the next
section, since it requires a different set of tools.
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Chapter 2. Minimal triangulations of homotopy types of surfaces

2.4 The covering type of surfaces: the exceptional cases

In this section we analyze the covering type of the exceptional surfaces M2, N2 and N3. By
Theorem 2.3.7, for S = M2, N2, N3 the covering type of S lies between λ(S) − 1 and λ(S). We
complete the computation of their covering types by showing that ct(N2) = λ(N2), ct(N3) =
λ(N3) and exhibiting a simplicial complex homotopy equivalent to M2 with λ(M2)− 1 vertices.

To gain some understanding of the difficulties that arise in this case, let S be one of the
three exceptional surfaces and suppose that K is a simplicial complex homotopy equivalent to S
realizing the covering type, that is, such that K has ct(S) vertices. By applying Theorem 2.3.7
and Proposition 2.3.6, we obtain a subcomplex L of K of dimension 2 with the (co)homology of S
(and thus, its cohomology ring satisfies property (A)) with at least ρ(S) = λ(S)−1 vertices. We
would like to find out whether it is possible for L to have less than λ(S) vertices. To accomplish
this, we analyze the interaction of the number of vertices of L with its number of edges and
2-simplices. In first place, by collapsing the free faces of L and proceeding as in Corollary 2.3.4
we can assume further that every edge of L is the face of at least two 2-simplices. As before,
this implies that 3α2(L) ≥ 2α1(L) and by the Euler characteristic formula for L we have the
inequality

3(α0(L)− χ(S)) ≤ α1(L).

Let us plug in some numbers in the above equation. For example, if S = N2 and L has 7 =
λ(S)− 1 vertices we obtain the inequality α1(L) ≥ 21 using that χ(N2) = 0. Since on the other
hand α1(L) ≤

(
α0(L)

2

)
= 21, it turns out that the number of edges and 2-simplices is completely

determined, resulting in α1(L) = 21 and α2(L) = 14 respectively. Observe that 3α2(L) = 2α1(L)
in this case, which implies that every edge of L is the face of exactly two 2-simplices. Repeating
the experiment for S = N3, we obtain that α1(L) is between 27 and 28. If we proceed to analyze
the case when α1(L) = 27, we find analogously as in the previous example that 3α2(L) = 2α1(L)
and thus, that every edge of L belongs to exactly two 2-simplices. Intuitively, since this is one
of the principal conditions satisfied by triangulations of (closed) surfaces, such complexes should
be close to being a surface. This is formalized in the next result and helps to deal with some of
the cases we need to analyze for the exceptional surfaces.

Before the result, we recall some definitions. A simplicial complexK of dimension 2 is strongly
connected if for every pair of 2-simplices σ, τ ∈ K (with σ 6= τ) there exists a (finite) sequence
σ = σ1, σ2, . . . , σr = τ of 2-simplices such that for each i, σi and σi+1 intersect in an edge. We
say that K is a pseudosurface (without boundary) if K is strongly connected (in particular, it is
connected) and each of its edges is the face of exactly two 2-simplices.

Proposition 2.4.1. Let K be a simplicial complex of dimension 2 such that each edge of K is the
face of exactly two 2-simplices and let S be a closed surface. Suppose that there is a continuous
map K → S inducing isomorphisms in all homology groups. Then K is homeomorphic to S.

Proof. Each strongly connected component C of K is a pseudosurface without boundary, so that
H2(C,Z2) = Z2. Since two different strongly connected components of K may intersect only at
vertices, the dimension of the vector space H2(K,Z2) coincides with the number of its strongly
connected components. Hence, K is strongly connected and therefore a pseudosurface. We show
next that K is indeed a surface. Since K is a pseudosurface, only the vertices of K may be
singular points (i.e. points that do not have a neighborhood in K homeomorphic to a disk).

39



2.4. The covering type of surfaces: the exceptional cases

Since every edge of K is the face of exactly two 2-simplices, the link of every vertex is a 2-regular
graph and hence, homeomorphic to a disjoint union of some copies of S1.

Suppose that there is a vertex v of K such that its link has m > 1 connected components.
We claim that in this case K is homotopy equivalent to the wedge sum of a suitable 2-complex L
with m− 1 spheres of dimension 1. To see this, consider the star stK(v) of v. Note that stK(v)
is the wedge sum (at v) of m subcomplexes K0, . . . ,Km−1 ≤ stK(v). Take a star-shaped graph
T with m− 1 leaves, that is, a 1-dimensional simplicial complex formed by a root vertex w0 and
m− 1 vertices w1, . . . wm−1 with an edge connecting w0 to each wi (i ≥ 1). Note that stK(v) is
homotopy equivalent to a complex N obtained from the graph T by attaching each Ki to T at
the vertex wi, since by collapsing the tree T to a point we obtain stK(v). Construct a complex
K ′ by replacing in K the subcomplex stK(v) by N in the natural way. Now, since K is strongly
connected, there is a path in K ′ \ T connecting w0 to each wi. It follows that for each edge
between w0 and wi the attaching map φi : S0 → K ′ of the edge (which takes the values w0 and
wi) is homotopic to the constant map cw0 : S0 → K ′, and therefore K ′ ' L ∨m−1i=1 S1 where L is
the subcomplex K ′ \T of K ′. Since the map f : K → S induces an isomorphism in cohomology,
H∗(K,Z2) satisfies property (A). Similarly as in the proof of Lemma 2.3.4, the cohomology ring of
H∗(L∨m−1i=1 S1,Z2) is isomorphic to the product ring H∗(L,Z2)×

∏m−1
i=1 H∗(S1,Z2) and therefore

it does not satisfy property (A). It follows that the link of every vertex of K is homeomorphic
to only one copy of S1, which in turn implies that K is a surface. By the classification of closed
surfaces, K is homeomorphic to S.

We are now ready to compute the covering type of N2 and N3.

Proposition 2.4.2. Let S = N2 or N3. Then ct(S) = λ(S).

Proof. Let K be a simplicial complex on ct(S) vertices such that there is a homotopy equivalence
f : K → S. As described in the discussion opening this section, there is a subcomplex L ≤ K(2)

such that the map L ↪→ K
f−→ S induces an isomorphism in homology and such that every edge

of L is the face of at least two 2-simplices. Recall that this implies that 3α2(L) ≥ 2α1(L) and
by the Euler characteristic formula for L we have

3(α0(L)− χ(S)) ≤ α1(L) ≤
(
α0(L)

2

)
.

For S = N2, if it were α0(L) = 7 = λ(N2) − 1, as we have seen it would imply α1(L) = 21 and
α2(L) = 14. Hence, 3α2(L) would equal 2α1(L), which means that every edge of L is the face
of exactly two 2-simplices. Then, by Proposition 2.4.1 L is homeomorphic to N2, contradicting
Theorem 2.1.1. Hence ct(N2) = 8.

Consider now the case S = N3. If L has λ(N3) − 1 = 8 vertices, using that χ(N3) = −1
combined with the inequality above leads to α1(L) = 27 or α1(L) = 28. As before, if α1(L) = 27
then L should be homeomorphic to N3 and this is impossible by Theorem 2.1.1. If α1(L) = 28,
since χ(N3) = −1, it is α2(L) = 19. Since 3α2(L) = 2α1(L) + 1 in this case, every edge of L is
the face of two 2-simplices except for one edge that is contained in three 2-simplices. Let v ∈ L
be a vertex of this edge. The link of v is a graph in which exactly one vertex has degree 3 and
every other vertex is of degree 2. Since the sum of the degrees of all vertices should be even, this
is a contradiction. Hence ct(N3) = λ(N3) = 9 and the proof is complete.
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When repeating this analysis for the double torus S = M2, more subcases appear. Keeping
the notations from Proposition 2.4.2, if α0(L) = λ(M2)−1 = 9, we would have that L has between
33 and 36 edges and, correspondingly, between 22 and 25 2-simplices. Some of these cases may
be handled in the same way as in the proof of Proposition 2.4.2. For example, if α1(L) = 33, L
has 22 2-simplices and hence every edge of L is in exactly two 2-simplices which contradicts the
Jungerman and Ringel Theorem 2.1.1 in view of Proposition 2.4.1, while the subcase α1(L) = 34
is discarded by a parity argument. However, after devoting a considerable effort to trying to show
the impossibility of constructing a simplicial complex that satisfies the hypotheses in every other
subcase, we started considering the possibility that M2 was also exceptional with respect to the
covering type. Much to our surprise, it was not too difficult to construct a simplicial complex on
λ(M2) − 1 = 9 vertices homotopy equivalent to M2, departing from a minimal triangulation of
M2 described in [58]. In what follows, we give a rigorous construction of such an example, which
is illustrated in Figure 2.1 and developed in the next result.

Lemma 2.4.3. Let K be a simplicial complex of dimension 2. Suppose there are two vertices
v, v′ ∈ K not connected by an edge and with disjoint links. Suppose further that there are vertices
w ∈ lkK(v), w′ ∈ lkK(v′) connected by an edge in K. Form the quotient complex L by identifying
v and v′ into a vertex [v], and attach a 2-simplex σ = {[v], w, w′} to L to get a complex K ′. Then
K ′ is a simplicial complex homotopy equivalent to K.

Proof. First notice that the quotient complex L = K/(v ∼ v′) inherits a simplicial structure.
Since v and v′ do not form an edge in K, the edges of the 1-skeleton of L connect different
vertices.

Moreover, since the links of v and v′ are disjoint in K, there is at most one edge between two
given vertices in the 1-skeleton of L. Finally, since L is obtained from K by identifying a pair
of vertices with disjoint links, the 2-simplices of L may intersect only on a vertex or an edge.
Consider next the CW-complex M obtained from K by attaching an edge between vertices v
and v′ and a square (2-cell) with vertices v, v′, w and w′. Note that since K is a deformation
retract of M and the inclusion M ↪→ K ′ is an edge collapse, M is homotopy equivalent to both
K and K ′. This shows that K is homotopy equivalent to K ′.

Figure 2.1: Illustration of the construction in Lemma 2.4.3.

Proposition 2.4.4. There is a simplicial complex of dimension 2 with 9 vertices homotopy
equivalent to M2. In particular, ct(M2) = ρ(M2) = 9.
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Proof. Consider the simplicial complex K which realizes the minimal triangulation of M2 de-
scribed in [58] (see also [61]). The 1-skeleton of the simplicial complex K is a graph on 10 vertices
such that:

• There are two vertices v, v′ of degree 4 that do not form an edge and with disjoint links.

• The subgraph induced by the remaining 8 vertices is the complete graph K8.

Choose vertices w ∈ lkK(v), w′ ∈ lkK(v′). By Lemma 2.4.3, the simplicial complex K/(v ∼
v′) ∪ {[v], w, w′} is homotopy equivalent to K and hence to M2.

We collect the results obtained so far in the following theorem.

Theorem 2.4.5. The covering type of any closed surface S coincides with the number of vertices
in a minimal triangulation of S with the exception of M2, in which case it is one less than the
number of vertices in a minimal triangulation.

Proof. It follows from Theorem 2.3.7 (case S 6= M2, N2, N3), Proposition 2.4.2 (cases S = N2 and
S = N3) and Proposition 2.4.4 (case S = M2). Concretely ct(S) = λ(S) for the non-exceptional
cases, ct(M2) = 9, ct(N2) = 8 and ct(N3) = 9.

Note that, in fact, ct(S) = ρ(S) in all cases includingM2 (where we have ct(M2) = ρ(M2) = 9
but λ(M2) = 10), except for N2 (ct(N2) = λ(N2) = 8 but ρ(N2) = 7) and N3 (ct(N3) = λ(N3) =
9 but ρ(N3) = 8).
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Chapter 3

Systolic geometry

The systole of a metric space X is the length of a shortest non contractible loop in X. Systolic
geometric is concerned with the study of the systole and its multiple surprising interactions
with the global geometry and topology of the underlying space. Such connections often come
in the form of inequalities that link the systole to geometric measures of size (notably volume
and diameter) or even purely homological invariants such as the Betti numbers. The work on
this area could be seen as a part of a broader circle of results, concepts and ideas that loosely
aim to relate the complexity of the topology of a space to relatively coarse geometrical measures
of its size, such as volume, diameter or filling radius, including curvature-free inequalities. As
a paradigmatic example, we cite the Cheeger’s finiteness theorem [28], which states that for
positive real numbers v, D, κ, there are at most finitely many diffeomorphism types of closed
riemannian manifolds of dimension n with volume bounded from below by v, diameter bounded
from above by D and sectional curvature between −κ and κ. Thus, the systole of a space may
be thought of as an invariant of a mixed nature, in the sense that it geometrically detects a
manifestation of the non-trivial underlying topology.

The concept of systole made its first apparition in riemannian geometry in an unpublished
result of Loewner dating from 1949. Loewner showed that the square of the systole of a rieman-
nian torus (for any smooth riemannian metric) bounds from below the area modulo an optimal
constant. Through the use of essentially the same techniques, the inequality was extended to
the projective plane by his student Pu [74] and subsequently, to all orientable, non-simply con-
nected closed surfaces in the early sixties, independently, by Accola [2] and Blatter [14] (we
include below a detailed proof of Pu’s inequality in Theorem 3.2.1). These results revealed a
deep connection between the geometrical size of a surface (the area) and its systole, which as we
remarked, depends both on the geometry and the topology. For many years, systolic inequalities
remained confined within the realm of surfaces. The proofs for all the mentioned results relied
ultimately on the uniformization theorem, and thus were not directly extendable to higher di-
mensions. In the 1983 article Filling Riemannian manifolds Gromov overcame the difficulties
and established a systolic inequality for closed manifolds of arbitrary dimension that satisfy a
purely topological condition. The proofs and the results from that article greatly clarified the
panorama of systolic phenomena. Most relevantly, Gromov identified the topological substrate
underlying systolic inequalities and related these inequalities to generalizations of the classical
Federer-Fleming isoperimetric inequality. Besides, in the course of the proof Gromov invented
new interesting metric invariants for riemannian manifolds, which he used as intermediate quan-
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tities to compare the systole with the volume of a manifold.
After Gromov’s paper, the systolic volume of a manifold, or more generally of a polyhedron,

became one of the central objects of study in systolic geometry. The systolic volume σ(X) of a
polyhedron X of dimension n is defined by Gromov as

σ(X) := inf
g

Vol(X, g)

sys(X, g)n
,

where the infimum is over the piecewise riemannian smooth metrics over X. This homeomor-
phism invariant of a space X identifies optimal riemannian metrics over X, in the sense that it
measures the amount of volume needed to form X, normalized by the condition that the systole
equals 1. The exponent on the systole guarantees that the systolic volume is invariant under
rescalings of the metric. In this language, the most general form of Gromov’s inequality reads
as the lower bound

σ(X) ≥ Cn
for an essential polyhedron X of dimension n, where Cn is a positive constant that depends
only on the dimension. Thus, the systolic volume is not trivial (i.e. strictly positive) for a
considerable class of spaces. For such spaces, a natural problem is to find the value of the
systolic volume, together with the optimal metrics. This would allow to somehow sort the spaces
according to a numerical measure of its complexity, but more importantly it would help identify
optimal geometrical models for certain topological spaces. We remark however that this problem
is very hard, to the point that the precise value of the systolic volume is known only for three
essential manifolds, and all of them are 2-dimensional. A more achievable goal is the estimation
of the systolic volume for some classes of spaces. Advances in this direction also have interesting
implications. For example, resuming the case of surfaces, the precise growth of the functional σ
with respect to the genus of the surface has been determined by the works of Gromov [44] and
Buser and Sarnak [27]. As a consequence, certain arithmetic surfaces (which are in particular
hyperbolic from the riemannian geometry point of view) constructed by Buser and Sarnak in the
cited work are coarsely optimal with respect to the systolic volume.

Another class of spaces which is of particular interest to us is that of 2-dimensional polyhedra.
The reason for this is the classical correspondence between homotopy types of (compact) 2-
polyhedra and (finite) presentations of groups. Via this correspondence, given by the fundamental
group functor in one direction and the presentation complex (see §1.4.1) on the other, it is possible
to extend the systolic invariants to groups. Specifically, for a finitely presentable group G, the
systolic area σ(G) of G, introduced by Gromov in [46], is defined as

σ(G) := inf
π1(X)=G

σ(X),

where the infimum is over the triangulations X of G, that is, 2-polyhedra with fundamental
group isomorphic to G. A new whole range of questions opens up around this invariant, that
mainly inquire about the optimal topological models (triangulations) for certain groups. To cite
a few that partially motivated our work: What is the exact relation between the systolic area
of surface groups and the systolic volume of the surfaces (in other words, are surfaces the most
efficient model for their fundamental groups)? What is the behavior of the systolic area under
free product of groups? That is to say, is the canonical wedge sum the optimal way to build a
topological model for a free product of groups?
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In this chapter, we start with a historical survey of some fundamental results in systolic geom-
etry, which is closed by a discussion of the arguments involved in the proof of Gromov’s systolic
inequality. The second section is devoted to systolic geometry in dimension 2. We present there
some of the best known estimates for both the systolic area of surfaces and groups. In section 3
we prove a universal lower bound for the systolic area of a wide class of groups that includes the
surface groups, which grew out of our effort to understand in more depth the relation between
the systolic area of surfaces and the systolic area of its fundamental groups. This estimate is
obtained by extending a systolic inequality by Guth; the new inequality also generalizes a systolic
inequality of Burago and Hebda for surfaces to certain 2-dimensional polyhedra.

In the final section of the chapter we study the systolic area of a free product of groups. We
give a construction, based on a similar one due to Stallings, to somehow split a polyhedron with
fundamental group isomorphic to a free product of two groups in two subpolyhedra, each one
responsible, roughly, for one of the free factors. Even though we are not able to establish new
estimates for the systolic area of a free product of groups in terms of the systolic area of its free
factors, we discuss a possible strategy involving the mentioned construction that could be used
for that purpose.

3.1 An overview of systolic geometry

In this section we propose to survey some of the fundamental concepts and results in systolic
geometry.

As we have mentioned in the introduction of the chapter, the first result in the area was
discovered by Loewner, who proved in 1949 the following result.

Theorem 3.1.1. Let (T2, g) be a riemannian 2-torus. Then,

sys(T2, g)2 ≤ 2√
3

Area(T2, g).

Moreover, the constant 2√
3
is optimal and it is realized by a flat metric.

Loewner’s inequality is interesting at least for three different reasons. In first place, it is
valid for any riemannian metric on the torus, and thus it reveals a non-trivial restriction over the
metrizations of the topology of a torus. In second place, it is optimal, and hence it identifies a
critical point in the space of riemannian metrics on the torus with respect to a certain functional.
Lastly, it may be understood as a reverse isoperimetric inequality, in the sense that a function
of the perimeter (length) of a non-contractible loop is shown to bound from below the volume of
the space.

The proof of Loewner’s inequality goes roughly as follows. By the uniformization theorem,
a given riemannian torus (T2, g) is conformally homeomorphic to a flat torus (T2, g0), that is,
there exists a positive function f : T2 → R such that g = fg0. The first step consists on forming
the average f̄ of f over the isometry group of the flat torus (T2, g0) to obtain a new riemannian
metric f̄g0. The key of the argument resides in that, as it is not difficult to check, this averaging
process improves (decreases) the ratio

Area(T2, f̄g0)

sys(T2, f̄g0)2
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with respect to the ratio computed with the original riemannian metric g = fg0. On the other
hand, since the isometry group of a flat torus is transitive, the average f̄ is a constant function
and hence Loewner’s inequality reduces to the flat case, which can be solved by hand. We give
a formal proof of Pu’s optimal systolic inequality [74] for the projective plane along these lines
below (see Theorem 3.2.1).

About a decade a later, Accola [2] and Blatter [14] independently generalized these inequalities
to all orientable closed surfaces different from the sphere, by showing the existence of a non-
optimal constant C = C(γ) > 0 such that

sys(S, g)2 ≤ C(γ) Area(S, g),

for each surface S of genus γ. In the early seventies, Berger started a more systematic study
of the subject [13, 12], posing among other things two natural problems about higher dimen-
sional analogues of these inequalities, both involving higher dimensional versions of the systole
and asking for extensions of the inequalities to any dimension. In the 1983 article Filling Rie-
mannian manifolds [44] Gromov established a systolic inequality for (certain) manifolds of any
dimension through new and radically different methods from the conformal techniques that had
been employed in dimension 2 so far.

Theorem 3.1.2. (Gromov’s systolic inequality) Let (M, g) be an essential riemannian manifold
of dimension n. Then, there exists a universal constant C = Cn > 0 depending only on the
dimension n such that

sys(M, g)n ≤ Cn Vol(M, g).

We discuss at some length the hypothesis of essentialness. One of the key insights of Gromov
to prove his systolic inequality was realizing the rôle of this purely topological condition in systolic
phenomena. A closed manifoldM of dimension n is essential if the image of the fundamental class
[M ] is non-trivial under the canonical map Hn(M) → Hn(K(π1(M), 1)), where K(π1(M), 1) is
an Eilenberg-MacLane space for π1(M). Here and elsewhere, we understand that the coefficient
ring for homology groups is Z if the manifold is orientable and Z2 in the opposite case. The
essential manifolds can be regarded as a generalization of aspherical manifolds which includes,
among others, the projective real spaces RPn of any dimension and the lens spaces. Already
some years before proving his systolic inequality, Gromov was aware that for such inequality to
hold for a manifold M , its 1-dimensional topology should detect in some way the fundamental
class ofM . 1 Let us explain heuristically the apparition of the fundamental class of the manifold
by using an analogy from hyperbolic geometry.

The simplicial volume (also called Gromov norm) of a closed, orientable manifold M is a ho-
motopy invariant introduced in [43] that measures how difficult is to triangulate the fundamental
class [M ] . Concretely, the simplicial volume ‖M‖ of M is the infimum of

‖C‖1 :=
∑
i

|ai|,

taken over all those (singular) cycles C =
∑

i aiσi in Cn(M,Z) that represent [M ]. Gromov
proved that, for a hyperbolic closed manifold M , the simplicial volume ‖M‖ is proportional to

1“... il faut, on le sent, que, comme dans le cas de T 2, ou RP 2, l’homologie de dimension 1 de M engendre au
sens anneau, toute la topologie de M , ou à tout le moins la classe fondamentale de M .” Excerpt taken from [42,
p. 49].
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the volume of the manifold (this is an important step in the Gromov-Thurston proof of Mostow
rigidity theorem). So, to put it crudely, the size of the fundamental class of a riemannian manifold
acts as an avatar for the volume. In turn, if the 1-dimensional topology of a manifoldM generates
its fundamental class, since at a scale smaller than the systole the 1-dimensional topology of M
is trivial, one may speculate that the systole is controlled by the size of [M ].

The proof of Theorem 3.1.2 involves an extensive use of techniques drawn from Geometric
Measure Theory, particularly from the area of isoperimetric inequalities. More precisely, Gromov
created a new metric invariant of riemannian manifolds called filling radius that links the systolic
inequality to a generalization of the Federer-Fleming isoperimetric inequality. The filling radius
is used by Gromov as an intermediate quantity between the systole and the volume of a manifold.
The proof of Gromov’s systolic inequality is obtained as a consequence of two estimates, one that
involves the systole and the filling radius of a closed essential riemannian manifold and an upper
bound for the filling radius of a manifold in terms of its volume.

To motivate the definition of filling radius, consider a codimension 1 closed submanifold M
of an euclidean space Rn (for example, we can takeM = Sn−1). Then, M determines an interior
hole, that is, the bounded connected component of Rn\M . Provisionally, define the filling radius
as the greatest radius of an euclidean ball completely contained in the interior hole of M . For
example, in the case that M is a sphere of radius R, this filling radius coincides with R. To
extend this notion to a submanifold M of general codimension, a different way to measure the
radius of the hole generated by M is needed. It turns out that the technically correct tool to
achieve that is homology. Namely, for a submanifoldM ⊆ RN of dimension n < N , the (relative)
filling radius FillRad(M ⊆ RN ) is defined as the smallest radius r > 0 for which the inclusion M
is a boundary in its r-neighborhood Ur(M), that is, such that the inclusion induced morphism
Hn(M)→ Hn(Ur(M)) is trivial. Gromov transformed this a priori extrinsically defined invariant
of a riemannian manifold into an intrinsic one by considering the isometric (distance-preserving)
Kuratowski embedding into an infinite dimensional Banach space. A closed riemannian manifold
M (or more generally, a compact metric space) admits a canonical isometric embedding K in
the space L∞(M) of bounded Borel maps M → R endowed with the supremum norm, which
sends a point x ∈ M to the distance function dx : M → R from x. Now, the filling radius of a
closed riemannian manifold M is defined relative to this embedding, that is,

FillRad(M) := inf{r > 0 : Hn(M)→ Hn(Ur(K(M))) is trivial},

As before, the coefficient ring for homology groups is understood to be Z if the manifold is
orientable and Z2 otherwise.

The following result links the filling radius to the systole of an essential manifold.

Lemma 3.1.3. ([44, Lemma 1.2.B]) Let (M, g) be a closed essential riemannian n-manifold.
Then, 1

6 sys(M, g) ≤ FillRad(M).

Proof. Let us assume first thatM is aspherical instead of only essential. Suppose by contradiction
that FillRad(M) < 1

6 sys(M, g), so that there is a chain C with support in UR(K(M)) ⊆ L∞(M)
which bounds K(M) for some R < 1

6 sys(M, g). Triangulate C in such a way that K(M) = ∂C
is a subpolyhedron and every simplex of the subdivision has diameter at most δ, for some small
δ > 0 to be fixed later. The strategy of the proof consists of constructing a map f : C → K(M)
extending the identity K(M) → K(M), which leads to a contradiction because [M ] 6= 0 in
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Hn(M). Since M is aspherical, we only need to show that the identity can be extended to the
2-skeleton of C. We proceed, as usual, skeleton by skeleton. For a vertex v of C not in K(M),
define f(v) to be any point x ∈ K(M) such that d∞(v, x) < R. If v and w form an edge e, by
the previous step and the triangular inequality, d∞(f(v), f(w)) < 2R + δ. Hence, there exists
a geodesic segment in K(M) of length less than 2R + δ joining f(v) to f(w). Extend f to e
by sending the edge homeomorphically to this segment. Now, if σ is a 2-simplex in C, the loop
f(∂σ) has length less than 6R + 3δ in K(M). Since 6R < sys(M, g), we can choose δ > 0
sufficiently small so that 6R+ 3δ < sys(M, g). In that case, the loop f(∂σ) is null-homotopic in
K(M) and so we can extend f to σ by using any homotopy σ → K(M) that contracts f(∂σ)
to a point. The extensions of f to the k-skeletons of C for k > 2 can be performed analogously,
observing that since M is aspherical, the restrictions of f to the boundary of a k-simplex are
null-homotopic.

For the general case, notice that if M is an essential manifold, the natural map g from
M to an Eilenberg-MacLane space X = K(π1(M), 1) induces a non-trivial map in homology
Hn(M) → Hn(X). The strategy of the proof is completely analogous to the aspherical case,
with the difference that now we have to extend the map K(M) → X instead of the identity
K(M) → K(M). More concretely, if K(M) ⊆ L∞(M) is the boundary of an n + 1-chain C
in a R-neighborhood for R < 1

6 sys(M, g), it is possible to extend the map g : K(M) → X to
f : C → X skeleton by skeleton employing the technique described above. This contradicts the
fact that M is essential, since the non-trivial map Hn(M) → Hn(X) would factor through the
zero map Hn(M)→ Hn(C).

The second estimate needed is an upper bound for the filling radius of a riemannian mani-
fold by a function of its volume. When interpreted using Gromov’s language, an inequality of
that kind for submanifolds of euclidean spaces is a consequence of the classical Federer-Fleming
isoperimetric inequality [32].

Theorem 3.1.4 (Federer and Fleming). Let M be an n-dimensional submanifold (or more
generally, an n-cycle) of an euclidean space RN . Then, FillRad(M ⊆ RN ) ≤ CN Vol(M)

1
n ,

where CN > 0 depends only on the ambient dimension N .

The first obstacle to extend this estimate to a general closed riemannian manifold is that
the statement holds only for submanifolds of a finite dimensional euclidean space. This can be
surmounted by approximating the Kuratowski isometric embedding for a manifold M by finite
dimensional embeddings ofM in `∞N = (RN , ‖ ·‖∞). More concretely, one may take a finite δ-net
x1, . . . , xN for some δ > 0 in M and consider the map F : M → `∞N which in each coordinate is
defined as the distance function from the corresponding point of the net. As sketched by Guth
(see [48, Lemma 2]) and proved by Katz and Katz (see [62, Theorem 3.1]), provided δ > 0 is
chosen sufficiently small, F approximates the Kuratowski embedding up to an arbitrary error.

Theorem 3.1.5. Let (M, g) be a closed riemannian manifold. Given ε > 0, there exists an
embedding F : M → `∞N for a sufficiently large N such that

(1− ε)d(x, y) ≤ ‖F (x)− F (y)‖∞ ≤ d(x, y)

for every x, y in M , where d denotes the riemannian distance in M .
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In order to work with these finite dimensional embeddings instead of the Kuratowski em-
bedding for a manifold, one would also need to extend the bi-Lipschitz constants from Theorem
3.1.5 to the chains bounding the manifold. This can be accomplished by the well-known Lipschitz
extension property of L∞ spaces.

Lemma 3.1.6. Let X be a metric space, Y ⊆ X a subspace and let f : Y → `∞(S) a Lipschitz
function (here, S is a set). Then, there is an extension f̃ : X → `∞(S) of f with the same
Lipschitz constant as f .

See [48, Lemma 3] for a proof.
As a consequence, given an arbitrary ε > 0, for a closed riemannian manifold M there is

a bi-Lipschitz embedding F : M → `∞N for which the relative filling radius FillRad(F (M) ⊆
`∞N ) lies between (1 − ε) FillRad(M) and FillRad(M). Although the Federer-Fleming estimate
from Theorem 3.1.4 applies in principle only to submanifolds of euclidean spaces, after a slight
adjustment it may be used to bound the filling radius of F (M) ⊆ `∞N . Indeed, recall that for a
riemannian manifold M of dimension n, the n-dimensional Hausdorff measure, which depends
only on the riemannian distance function, coincides with Vol(M). Hence, since the supremum
norm ‖ · ‖∞ is bi-Lipschitz equivalent to the usual euclidean norm ‖ · ‖2 on RN , up to changing
the dimensional constant CN the Federer-Fleming estimate implies that

FillRad(F (M) ⊆ `∞N ) ≤ CN Vol(F (M))
1
n ,

where Vol(F (M)) is to be interpreted as the n-dimensional Hausdorff measure of F (M).
However, there is still a considerable gap between this estimate and the required

FillRad(M) ≤ Cn Vol(M)
1
n ,

since we do not control how large the N needs to be taken and the constants CN go to infinity
as N → ∞. The main technical result in [44] is precisely a remarkable generalization of the
Federer-Fleming Theorem 3.1.4 to Banach spaces, with a constant that depends only on the
dimension of the manifold (or cycle) involved.

Theorem 3.1.7. ([44, §4.3.B]) Let M be an n-dimensional submanifold (or more generally, an
n-cycle) of an L∞ space L. Then,

FillRad(M ⊆ L) ≤ Cn Vol(M)
1
n ,

for some constant Cn < (n+ 1)nn
√

(n+ 1)!.

The proof, which exploits the Federer and Fleming estimate as well as the techniques for
settling it, is generally regarded as the most complicated part of the article [44]. We refer the
reader to the Guth’s notes [48] and the original work [44, §3.2 and §4.3] for the proof.

3.2 Systolic area

In this section we focus on the study of the systolic volume (or better, systolic area) of 2-
dimensional spaces. Recall that for an individual manifold M , or more generally, a piecewise
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riemannian polyhedron of dimension n, the systolic volume σ(M) is the best constant C = C(M)
for which the inequality

C(M) sys(M, g)n ≤ Vol(M, g)

holds for any riemannian metric on g on M . As it is easy to check, all closed surfaces different
from the sphere (either orientable or not) are essential, so that Gromov’s systolic inequality
guarantees that the systolic area of such surfaces is strictly positive. However, it is possible to
obtain better estimates through arguments different from Gromov’s filling techniques.

As we mentioned at the start of the chapter, there are three surfaces for which the exact
value of the systolic area is known. These are the torus T2, the projective plane RP 2 and the
Klein bottle K. The systolic area of the torus is σ(T2) =

√
3
2 by the Loewner’s inequality, whose

proof was sketched in the previous section. We show below that σ(RP 2) = 2
π , a result due to

Pu [74]. The argument can be easily adapted to give a proof of Loewner’s inequality. Finally,
Bavard proved that σ(K) = 2

√
2

π in [8] with the optimum attained at a non-smooth riemannian
metric.

Theorem 3.2.1. For every riemannian metric g on RP 2,

sys(RP 2, g)2 ≤ π

2
Area(RP 2, g).

Moreover, equality holds only for metrics of constant curvature 1.

Proof. By the uniformization theorem, there is a positive function f : RP 2 → R (a conformal
factor) such that g = fg0, where g0 is the metric of constant curvature 1 on RP 2 determined by
the standard round metric dθ2 + sin(φ)dφ2 on the unit sphere. Consider the function f̄ obtained
by averaging the conformal factor over the isometry group G of (RP 2, g0):

f̄
1
2 (x) =

∫
G
f(ξx)

1
2dξ,

where dξ is the normalized Haar measure of the group G, that is, the unique left invariant
measure that integrates 1.

Let us compare the systole and the area of the metric f̄g0 to that of g. For the systole, we
take a non-trivial loop γ and compute:

length(γ, f̄g0) =

∫
γ

∫
G
f(ξγ(t))

1
2 dξ g0(γ̇(t), γ̇(t)) dt

=

∫
G

∫
γ
f(ξγ(t))

1
2 g0(γ̇(t), γ̇(t)) dt dξ

=

∫
G

∫
γ
f(ξγ(t))

1
2 g0( ˙ξγ(t), ˙ξγ(t)) dt dξ

=

∫
G

length(ξγ, g) dξ

≥
∫
G

sys(RP 2, g) dξ = sys(RP 2, g),
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where we have used Fubini’s theorem in the first step, that the ξ are isometries in the second
and that γ is non-trivial in the last step. By taking γ as a systolic loop for the metric f̄g0, we
see that sys(RP 2, f̄g0) ≥ sys(RP 2, g).

With respect to the area, we perform a similar computation, letting ω0 be the area form of
g0:

Area(RP 2, f̄g0) =

∫
RP 2

f̄2 dω0

=

∫
RP 2

(∫
G
f(ξx)

1
2 dξ

)2

dω0

≤
∫
RP 2

(∫
G
f(ξx) dξ

)
dω0

=

∫
G

∫
RP 2

f(ξx) dω0 dξ

=

∫
G

Area(RP 2, g) dξ = Area(RP 2, g),

where the inequality in the third line is a consequence of the Cauchy-Schwarz inequality. Thus,

Area(RP 2, g)

sys(RP 2, g)2
≥ Area(R2, f̄g0)

sys(RP 2, f̄g0)2
.

It remains to notice that, since the group of isometries G is transitive, the function f̄ is constant,
say f̄ ≡ c. Hence, sys(RP 2, f̄g0) = c sys(RP 2, g0) = π and Area(RP 2, f̄g0) = c2 Area(RP 2, g0) =
2πc2, half the area of the standard sphere of radius c. The desired estimate follows.

To analyze the equality case, notice that the inequality in the area estimation(∫
G
f(ξx)

1
2 dξ

)2

≤
∫
G
f(ξx) dξ

should be an equality. But this can only happen if f is a constant function, i.e. g is a scalar
multiple of the metric of constant curvature 1.

Actually, the inequality σ(S) ≥ 2
π is valid for all essential closed surfaces S by an inequality

of Gromov. To prove it, Gromov exploited the topology of the universal coverings of aspherical
surfaces, which are, as is well known, homeomorphic to the plane R2.

Let us make a preliminary observation about the metric on a covering S̃ (not necessarily
universal) of a riemannian surface (S, g). We shall always consider a covering space S̃ endowed
with the unique riemannian metric g̃ that makes the covering map p : (S̃, g̃) → (S, g) a local
isometry. Using this metric it is possible to prove quantitatively that the covering projections
are local homeomorphisms, a fact that was explicitly observed in [63].

Lemma 3.2.2. Let p : (M̃, g̃) → (M, g) be a covering projection of a riemannian manifold
(M, g). Then, p maps injectively balls of radius less than 1

2 sys(M, g).

Proof. Let B be a ball of radius r < 1
2 sys(M, g) in the covering space M̃ . Suppose that p(y) =

p(z) for certain y, z in B. In particular, d(y, z) < 2r, so that there is a curve λ that joins y to z
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and has length at most 2r. Then, the length of the loop p◦λ is less or equal than 2r < sys(M, g),
from where it follows that it is null-homotopic. However, the loop does not lift to a loop in S̃, a
contradiction. Hence, p is injective on B.

This fact was exploited by Gromov in his sharp systolic inequality for aspherical surfaces.
Recall that given a point x in a riemannian manifold (M, g), B(x, r) denotes the open ball of
radius r > 0 around x with respect to the distance determined by the riemannian tensor.

Theorem 3.2.3. ([44, Theorem 5.2.A]) Let (S, g) be a closed aspherical riemannian surface and
γ ⊆ S a systolic loop. Then, given r < sys(S,g)

2 there exists a point x ∈ γ such that

AreaB(x, r) ≥ 3r2.

In particular, σ(S) ≥ 3
4 .

Proof. Consider the average area of the balls of radius r centered at points of γ

1

sys(S, g)

∫
γ

AreaB(v, r) dγ.

In order to show that at least one of those balls has area greater or equal to 3r2, in view of the
coarea inequality applied to balls:

AreaB(v, r) ≥
∫ s

0
length(∂B(v, s)) ds,

it is enough to check that the average length of the spheres ∂B(v, s) over γ is at least 6s for each
0 < s < r. To do this, notice first that the lift γ̃ ⊆ S̃ is an infinite geodesic, homeomorphic to
a straight line in S̃. Fix 0 < s < r and mark an infinite sequence of points (wk)k∈Z on γ̃ such
that dS̃(wi, wj) = s|i− j|. We show that the average length of the spheres ∂BS̃(wi, s) is at least
6s. The sphere ∂BS̃(wi, s) intersects on segments of length at least 2s with each of the balls
BS̃(wi−1, s), BS̃(wi+1, s). The remaining two segments λ+i , λ

−
i that conform ∂BS̃(wi, s) lie each

on a different side of the separating geodesic γ̃. For indices k < l, consider the path between
wl and wk formed by joining all the segments λ+j in the upper side of the spheres ∂BS̃(wj , s)
for k ≤ j ≤ l together with segments inside BS̃(wk, s) and BS̃(wl, s) that join its centers to an
endpoint of λ+k and of λ+l , respectively (see Figure 3.1). As the distance between wk and wl is
s|k − l| by hypothesis, we have for the length of that path the estimate

l∑
j=k

length(λ+j ) + 2s ≥ s|k − l|.

Hence, if we let n = |k − l| tend to infinity, we see that

lim inf
n

1

n

∑
j

length(λ+j ) ≥ s,

from where it follows that the average length of the spheres ∂BS̃(wi, s) is bounded from below
by 6s. Since p maps all these balls injectively to S by Lemma 3.2.2, the average length of the
spheres ∂B(v, s) in S is greater than or equal to 6s, which finishes the proof.

52



Chapter 3. Systolic geometry

Figure 3.1: In the upper half of the plain, the path that joins wl to wk is marked in bold face.

Since all closed surfaces (orientable or not) apart from the sphere and the projective plane
are aspherical, we conclude the following universal estimate for the systolic area of surfaces.

Corollary 3.2.4. Let S be a closed surface different from the sphere. Then,

σ(S) ≥ 2

π
.

Moreover, the equality is attained only at the projective plane with its standard round metric.

Another feature of the systolic area of surfaces which is completely understood is its asymp-
totic behavior as the genus γ goes to infinite. The best current result in this direction is the
following.

Theorem 3.2.5. (cf. [65, Remark 4.2]) Let Sγ denote a closed surface of genus γ. Then,

π ≤ lim
γ→∞

γ

log(γ)2
σ(Sγ) ≤ 9π

4
.

The upper bound is due to Buser and Sarnak [27], who constructed hyperbolic surfaces with
the required (asymptotically) systolic area as coverings of an arithmetic Riemann surface. The
asymptotically correct lower bound was first established by Gromov in [44, §6.4] through a kind
of averaging process over measurable chains known as diffusion of chains developed in [43].
The constant π, better than the 1

4 obtained by Gromov’s techniques, was settled by Katz and
Sabourau in [65, Theorem 4.1] using Katok’s estimate on the entropy volume (or asymptotic
volume) for hyperbolic surfaces.

We close this brief survey about the systolic area of surfaces mentioning some open problems.
By analogy with the inequality from Corollary 3.2.4, one may ask if all surfaces of genus ≥ 1

satisfy Loewner’s inequality, that is, if σ(S) ≥
√
3
2 for S of genus at least 1. By a result of Katz

and Sabourau [65, Theorem 5.1], the inequality holds for all surfaces of genus at least 20. Even
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more ambitiously: is the systolic area σ an increasing function of the genus of the surfaces? The
motivation for this question comes from the intuition that the systolic area of a surface S gives
a geometric measure of how difficult is to construct a riemannian manifold with the topology of
S and the fact that the topology of surfaces becomes more complex as the genus increases.

We shift now our attention to the systolic geometry of 2-dimensional polyhedra. A piecewise
riemannian polyhedron (X, g) consists of a polyhedron X together with a triangulation in which
every simplex is endowed coherently with a smooth riemannian metric. This means that whenever
two simplices σ and τ intersect, the corresponding riemannian metrics gσ and gτ coincide in the
intersection: gσ|σ∩τ = gτ |σ∩τ . The piecewise riemannian structure over X determines in the
natural way a length structure for X, while the volume of X is defined, as expected, as the
sum of the volumes over the simplices of maximum dimension. Hence, it is clear how to define
the systolic volume for compact polyhedra. As Gromov proved in [44, Appendix 2] his systolic
inequality (Theorem 3.1.2) applies also to essential polyhedra (although with a worse constant),
and hence the systolic volume is positive for a considerable class of spaces.

Theorem 3.2.6. Let X be an n-dimensional compact essential polyhedron. Then, there exists a
constant Cn > 0 only depending on the dimension n such that

sys(X, g)n ≤ Cn Vol(X, g)

for every piecewise riemannian metric g on X.

Here, following Gromov we call an n-dimensional polyhedron X essential if there exists an
aspherical polyhedron K and a continuous map X → K that does not contract to the (n − 1)-
skeleton of K. The intuition is that in an essential polyhedron X, analogously as in essential
manifolds, the 1-dimensional topology detects the non-triviality of the n-dimensional topology
of X. The difference is that in a general polyhedron there is no fundamental class to accomplish
that and hence one uses the n-skeleton of the polyhedron for that purpose.

The strategy to prove Theorem 3.2.6 is similar to the manifold case. Gromov defined a
metric invariant for piecewise riemannian polyhedra called contractibility radius, which acts as
the filling radius in this context. Namely, the n−1 contractibility radius of a piecewise riemannian
polyhedron X measures how large needs to be taken a neighborhood U of X in L∞(X) to
guarantee that the inclusion map X ↪→ U factors through an (n − 1)-dimensional polyhedron.
Both Lemma 3.1.3 and Theorem 3.1.7 generalize to this context, replacing the filling radius by
the n− 1 contractibility radius. See [44, Appendix 2] for more details.

The main reason we are interested in the systolic geometry of 2-dimensional polyhedra is for
its connection with groups. It is not difficult to check that the essential polyhedra in dimension
2 are exactly those with non-free fundamental group. For such polyhedra X, Gromov’s Theorem
3.2.6 implies that the systolic area σ(X) is bounded from below by 1

104
. In [77], Rudyak and

Sabourau significantly improved this estimate for a class of groups that the authors call of zero
Grushko free index. Recall that according to Grushko’s Theorem [80], a finitely presentable group
G admits a decomposition

G = Fk ∗H1 ∗ · · · ∗Hn,

where Fk is the free group of rank k and the groups Hi are non-free and freely indecomposable
groups. Moreover, such decomposition is unique up order and taking conjugates. The number k
is referred to as the Grushko free index of G in [77, §1].
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Theorem 3.2.7. ([77, Theorem 3.5]) Let (X, g) be a piecewise riemannian polyhedron of di-
mension 2. Suppose that its fundamental group π1(X) is of zero Grushko free index. Then, if x
belongs to a systolic loop of x,

AreaB(x, r) ≥ r2,

for every 0 < r < 1
2 sys(X, g). In particular, σ(X) ≥ 1

4 .

The argument of the proof relies in a careful analysis of the topology of the spheres ∂B(x, r)
(that is, the level curves of the distance function from x), from which a bound on the area of the
balls is obtained via the coarea inequality. Through the use of another topological argument,
this time concerning covering theory, the estimate was extended to all essential polyhedra in [63,
Theorem 3.1].

Theorem 3.2.8. ([63, Theorem 3.1]) Let (X, g) be an essential piecewise riemannian polyhedron
of dimension 2. Then, there is a point x in X such that

AreaB(x, r) ≥ r2,

for every 0 < r < 1
2 sys(X, g). In particular, σ(X) ≥ 1

4 .

Proof. Since X is essential, its fundamental group is not free and hence X admits a cover X̃ with
zero Grushko free index fundamental group. Notice that the covering map p : (X̃, g̃) → (X, g)
is a local isometry and induces a monomorphism in fundamental groups. Therefore, sys(X̃, g̃) ≥
sys(X, g). By Theorem 3.2.8 there exists a point x̃ ∈ X̃ such that

AreaBX̃(x̃, r) ≥ r2,

for every 0 < r < 1
2 sys(X, g). This implies the claim by Lemma 3.2.2.

As we explained in the introduction of the chapter, the systolic geometry of 2-dimensional
polyhedra extends to finitely presentable groups via the well known correspondence between the
two categories. Recall that the systolic area σ(G) of a finitely presentable group G is defined as
the best systolic area σ(X) among its triangulations X. It is easy to see that the systolic area
of free groups is trivial, since such groups admit triangulations with no 2-dimensional material.
On the other hand, the inequality from Theorem 3.2.8 implies that the systolic area of any
finitely presentable non-free group G is greater than or equal to 1

4 (compare to Corollary 3.2.4).
In the next section we improve this lower bound by a factor of 2 for a certain class of groups
which includes the surface groups. The intuition behind this refinement is that, while certainly
σ(π1(S)) ≤ σ(S) for closed surfaces S, there should be some stronger relations between those
two quantities. In particular, the universal lower bounds for the systolic area of surfaces and
surface groups should be closer (if not equal).

Another elementary observation about the systolic area of groups is that σ(G ∗H) ≤ σ(G) +
σ(H) for finitely presentable groups G, H. Indeed, take near optimal triangulations (X1, g1) and
(X2, g2) for G and H respectively, normalized so that sys(X1, g1) = sys(X2, g2) = 1. Clearly, the
area of the wedge sum X1 ∨ X2 endowed with the obvious piecewise riemannian metric is the
sum of the areas of X1 and X2 and the systole equals 1. On the other hand, it seems difficult to
imagine more economic models for a free product of groups, especially when one of the two is free
(cf. [77, Question 1.2]). However, at the time of writing, the question of whether σ(G∗Z) = σ(G)
remains wide open. We discuss this problem in the last section of the chapter.
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3.3 An extension of Guth’s systolic inequality

In the present section we generalize to piecewise riemannian polyhedra of dimension 2 a systolic
inequality of Guth [49] for riemannian manifolds. Our principal interest in the inequality is that
it allows to refine the lower bound for the systolic area of a considerable class of groups which
contains in particular the surface groups.

We start with the statement of Guth’s systolic inequality.

Theorem 3.3.1. Let M be a closed smooth n-manifold. Suppose that there are cohomology
classes α1, . . . , αn ∈ H1(M,Z2) with α1 ∪ · · · ∪αn 6= 0 in Hn(M,Z2). Then, given a riemannian
metric g on M , there exists a point x ∈M such that for every r < sys(M,g)

2

VolB(x, r) ≥ Cn(2r)n,

where Cn is a positive constant that depends only on the dimension. In particular, it follows that
σ(M) ≥ Cn.

Explicitly, according to a refinement due to Nakamura [73] the constant may be taken as
Cn = 1

n! , which is a considerable improvement over the constant

Cn =
1

(6(n+ 1) · nn ·
√
n+ 1!))n

that may be deduced from the proof of Gromov’s systolic inequality.
Let us compare both systolic inequalities further. The topological condition regarding the

cup-length with coefficients in Z2 in Guth’s inequality is more restrictive than Gromov’s essen-
tialness, but, in the same spirit, it applies to manifolds for which the 1-dimensional topology (in
this case, the cohomology) generates in some sense the fundamental class. On the other hand,
besides providing tighter constants, Guth’s inequality has the advantage of being local, in the
sense that it shows that the volume of balls of radii comparable to the systole are relatively
large instead of estimating the volume of the whole manifold. As for the methods of the proof,
while definitely not trivial, the inequality of Guth avoids most of the technical difficulties of
Gromov’s argument, particularly the generalization of Federer-Fleming isoperimetric inequality
to infinite dimensional Banach spaces. For the same reason, the proof of Guth’s inequality does
not provide the additional new information about the filling radius and isoperimetric inequalities
in infinite-dimensional Banach spaces produced by Gromov’s techniques.

The main novelty of the argument in Guth’s proof is the use of (near) minimal hypersurfaces.
To explain this point, consider a closed manifold M in the conditions of Theorem 3.3.1. By
Thom’s theorem [81], the Z2-homology class Poincaré dual to αn may be represented by a
smooth hypersurface (i.e., a codimension 1 submanifold) of M , which is easily seen to be of
maximal cup-length with coefficients in Z2 as well. Suppose for the time being that there exists
a hypersurface Z of minimum volume representing that homology class. The technical heart of
the proof is a stability estimate, similar to estimates for minimal surfaces in [78], that controls
the volume of balls of small radii in Z. More concretely, to prove this estimate, Guth exploited
the following relatively intuitive fact: if one takes a ball B(z, r) of an adequately small radius r
centered at a point z ∈ Z and cuts from Z the intersection Z ∩ B(z, r) to fill the hole by one
of the hemispheres of the sphere ∂B(z, r), one obtains another hypersurface Z ′ homologous to
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the original (see Figure 3.2). Hence, by the minimality of Z, the n − 1 dimensional volume of
Z ∩ B(z, r) is comparable to the n− 1 dimensional volume of the sphere ∂B(z, r). Inductively,
the n− 1 dimensional volume of Z ∩B(z, r) (and hence, of ∂B(z, r)) is relatively large for all r
in a small interval. The final estimate on the volume of balls B(z, r) is obtained by integrating
the bounds for the n − 1 dimensional volume of each sphere ∂B(z, s), s < r, that is, using the
coarea inequality.

Figure 3.2: The hypersurface Z with a hemisphere of the sphere ∂B(z, r).

To give the actual proof, we will need to state some preliminary lemmas and fix some no-
tations. If x is a point in a riemannian manifold (or piecewise riemannian polyhedron) (X, g),
the closed (metric) ball of radius r around x will be denoted, as expected, by B̄(x, r). For a
non-trivial homology class [γ] in H1(X,Z2), the length of [γ], denoted length([γ]), is the infimum
of the lengths over 1-cycles representing [γ]. Following Guth [50], the definition of length is
extended to a non-trivial cohomology class α by duality:

length(α) := inf{length([γ]) : [γ] ∈ H1(X,Z2), α([γ]) 6= 0}.

Observe that length(α) ≥ sys(X, g) for any non-trivial α ∈ H1(X,Z2). Also, if X is a closed
manifold and Z a hypersurface representing a Z2 homology class in Hn−1(X,Z2), Z will be called
δ-minimizing if the n − 1 dimensional volume of any other smooth submanifold Z ′ in the same
homology class verifies the inequality Voln−1(Z

′) ≥ Voln−1(Z)− δ.
We will also use the following homological version of a lemma by Gromov [47, p. 290], due

to Guth [50, Curve-factoring Lemma].

Lemma 3.3.2. Let (M, g) be a complete riemannian manifold. Let γ be a 1-cycle contained in
a ball B(x, r) for x ∈ M , r > 0. Then, for any given ε > 0, γ is homologous to a finite sum∑

i γi, where each γi is a 1-cycle of length at most 2r + ε.

Proof. It is enough to prove the lemma for the case when γ is homeomorphic to a circle. Subdivide
γ in a finite number of intervals σi, each of length less than ε. Now, join the i-th vertex of the
subdivision to x by a shortest geodesic segment λi, where the numbering is cyclic. Then γ is
homologous to

∑
i γi where we set γi = λi + σi − λi+1. This concludes the proof, because the

length of each segment λi is at most r.
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Instead of Guth’s original version, we reproduce here an improvement of the stability lemma
by Nakamura [73, Lemma 2.1].

Lemma 3.3.3. Let (M, g) be a closed riemannian manifold. Let α ∈ H1(M,Z2) be a non-trivial
class of length 2R. For δ > 0, let Z be a δ-minimizing embedded hypersurface in M representing
the Poincaré dual homology class to α. Then, if r < R,

Voln−1(∂B̄(z, r)) ≥ 2 Voln−1(Z ∩ B̄(z, r))− 2δ,

for every z ∈ Z.

Proof. As we explained above, the key to prove this result is showing that the hypersurface
formed by removing Z ∩ B̄(z, r) from Z and adding an appropriate “hemisphere” from ∂B̄(z, r)
is homologous to Z. To accomplish this, notice in first place that the relative (n − 1)-cycle
Z ∩ B̄(z, r) in the pair (B̄(z, r), ∂B̄(z, r)) is null-homologous. Indeed, if it was not the case,
by Poincaré-Lefschetz duality the cap product between Z ∩ B̄(z, r) and some (absolute) 1-cycle
γ ⊆ B̄(z, r) would be non-trivial. Since r < R, by Lemma 3.3.2 γ is homologous to a sum∑

i γi where we can make the length of each γi to be less than 2R = length(α) by choosing a
conveniently small ε > 0. Thus α([γ]) =

∑
i α([γi]) = 0 by the definition of the length of α,

which contradicts the fact that the cap product between Z ∩ B̄(z, r) and γ is non-trivial.
Hence, the relative cycle Z∩B̄(z, r) bounds a relative chain Q1. Since the cycle is embedded,

this chain must be the sum of some components of B̄(z, r) \Z. Moreover, since the cycle is null-
homologous and the coefficient field is Z2, it also bounds the complementary chain Q0. It follows
that ∂B̄(z, r) is decomposed along Z ∩ ∂B̄(z, r) into the chains Q0 ∩ ∂B̄(z, r) and Q1 ∩ ∂B̄(z, r).
Thus, Z is homologous to the cycle Z ′ formed by cutting out Z ∩ B̄(z, r) from Z and gluing
in the smallest “hemisphere” between Q0 ∩ ∂B̄(z, r) and Q1 ∩ ∂B̄(z, r). Since it is possible to
smooth Z ′ near the intersection to become a smooth embedded hypersurface without increasing
its volume and Z is δ-minimizing, we deduce that Voln−1(Z

′) ≥ Voln−1(Z)− δ. Now Z and Z ′

coincide outside B̄(z, r), so that this amounts to the inequality

Voln−1(∂B̄(z, r) ≥ 2 min{Voln−1(Q0 ∩ ∂B̄(z, r)),Voln−1(Q1 ∩ ∂B̄(z, r))}
≥ 2 Voln−1(Z ∩ B̄(y, r))− 2δ,

as desired.

We are now ready to prove the Nakamura’s refinement of Guth’s systolic inequality.

Theorem 3.3.4. Let (M, g) be a closed riemannian manifold of dimension n. Let α1, . . . , αn ∈
H1(S,Z2) be not necessarily distinct classes such that α1 ∪ · · · ∪ αn 6= 0 in Hn(M,Z2) and let
2R := mini{length(αi)} > 0. Then, there exists x ∈M such that for any r ∈ (0, R),

VolB(x, r) ≥ (2r)n

n!
.

In particular, σ(M) ≥ 1
n! .

Proof. We proceed by induction in the dimension n, the case n = 1 being trivial. For n ≥ 2,
take a δ-minimizing hypersurface Z representing the Poincaré dual homology class to αn. The
relation between the cup and the cap product implies that

α1 ∪ · · · ∪ αn−1[Z] = α1 ∪ · · · ∪ αn[M ] 6= 0.
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Hence, we obtain, by restriction to Z, cohomology classes α′1, . . . , α′n−1 ∈ H1(Z,Z2) with non-
trivial cup product and whose length is no less than the length of the corresponding classes in
H1(M,Z2). By induction, there is a point z ∈ Z such that

Voln−1(BZ(z, r)) ≥ (2r)(n−1)

(n− 1)!

whenever r < R, where the subscript Z in BZ(z, r) indicates that the ball is with respect to the
induced riemannian metric in Z. Since clearly BZ(z, r) ⊆ Z ∩ B̄(z, r), by Lemma 3.3.3 and the
coarea inequality,

VolB(z, r) ≥
∫ r

0
Voln−1(∂B̄(z, s)) ds ≥

∫ r

0
2 Voln−1(Z ∩ B̄(z, r))− 2δ ds

≥
∫ r

0
2 Voln−1(BZ(z, r))− 2δ ds ≥

∫ r

0
2

(2s)n−1

(n− 1)!
− 2δ ds =

(2r)n

n!
− 2rδ.

Notice that although it is possible to get this estimate for every δ > 0, the point z belongs to a
δ-minimizing hypersurface embedded in M , which therefore depends on δ. To finish the proof,
take a sequence of positive numbers (δk) converging to 0 and form a corresponding sequence of
points (zk) ⊆ M , picking zk from a δk-minimizing hypersurface representing the class [Z]. By
continuity, the limit x ∈M of a convergent subsequence of (zk) verifies the estimate

VolB(x, r) ≥ (2r)n

n!

for r ∈ (0, R). The bound for the systolic volume of M follows immediately from the fact that
2R ≥ sys(M, g).

This theorem applies, among others, to tori and projective spaces of any dimension, as well
as to closed essential surfaces. For manifolds with maximal cup-length with coefficients in Z2 of
dimension n ≥ 3, it gives the best known lower bound to the systolic volume as Nakamura remarks
in [73, §1.4]. In contrast, there are better systolic inequalities in dimension 2, since Theorem
3.3.4 implies only that σ(S) ≥ 1

2 for closed surfaces S. However, its conclusion is stronger in one
respect: the lower bound for the area of a surface follows only from the existence of two “long”
cohomology classes with non-trivial cup product regardless of the size of the systole. This is the
crucial observation that allows to extend the inequality to polyhedra of dimension 2. Take a
piecewise riemannian 2-polyhedron (X, g) with maximal cup-length. This X has a distinguished
Z2-homology class [C] of dimension 2, namely, the one that detects the non-trivial cup product
of 1-dimensional cohomology classes. It can be proved that the class [C] is represented by a
(possibly singular) surface embedded in X. Although the systole of S may be arbitrarily small
(i.e. it is in general not controlled by the systole of (X, g)), since the class [C] is generated by
cohomology classes of length greater than the systole of (X, g), Theorem 3.3.4 applies to give a
lower bound for the area of S, hence of X.

Let us formalize the argument sketched above. The first point is describing how to realize
2-dimensional homology classes as singular surfaces, or more precisely, as the continuous image
of surfaces in a controlled way. Again by Thom’s results, a Z2-homology class of any dimension
in a polyhedron can be represented as the image of the fundamental class of a closed manifold
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through a continuous map. We record here an explicit construction for the case of 2-dimensional
Z2-homology classes of simplicial complexes similar to the one described in ([52, pp. 108-109]).
Recall that a simplicial map is non-degenerate if it preserves the dimension of the simplices.

Lemma 3.3.5. Let X be a simplicial complex and let [C] ∈ H2(X,Z2) be a non-trivial homol-
ogy class. Then, there exists a triangulated closed surface S (possibly non-orientable and not
connected) together with a non-degenerate simplicial map h : S → X such that h∗[S] = [C],
where [S] ∈ H2(S,Z2) denotes the fundamental class. Moreover, h does not identify 2-simplices,
meaning that h(σ) 6= h(η) for different 2-simplices σ, η of S.

Notice in particular that if we equip the 2-complex X with a piecewise riemannian structure
g, this construction allows to readily relate the length and the area of subspaces of X to those
of subspaces of S endowed with the piecewise riemannian pullback metric through the map
h : S → X. More concretely, in this situation the map h preserves lengths and areas.

Proof. Take a 2-cycle Z =
∑

i σi in C2(X,Z2) representing the homology class [C] and form
a disjoint union of 2-simplices σ̃i, one for each σi in the support of Z. Since the algebraic
boundary of Z is trivial, the edges of the simplices σi cancel in pairs. Choose a maximal set of
such canceling pairs and identify the edges of σ̃i accordingly. It is clear that the quotient space
obtained from

∐
i σ̃i by performing these identifications is a closed surface S and that it gives

rise to a simplicial map h : S → X with the desired properties.

Remark 3.3.6. In general, for a Z2-homology class of dimension n ≥ 2 the construction from
the proof gives a realization by a pseudo-manifold whose singularities are of codimension at least
3 (cf. [52, p. 109]). Thus, a different argument is required to extend the inequality in dimensions
n ≥ 3.

Theorem 3.3.7. Let (X, g) be a connected piecewise riemannian polyhedron of dimension 2.
Suppose that there exist classes α, β in H1(X,Z2) such that α ∪ β 6= 0 in H2(X,Z2) and let
2R = min{length(α), length(β)} > 0. Then, there is a point x ∈ X such that for every r ∈ (0, R),

AreaB(x, r) ≥ (2r)2

2
.

Proof. Since by hypothesis there are classes α, β ∈ H1(X,Z2) such that α ∪ β 6= 0, there exists
a homology class [C] ∈ H2(X,Z2) with α∪ β[C] 6= 0. By applying Lemma 3.3.5 to the class [C],
we obtain a triangulated closed surface S together with a simplicial map h : S → X representing
[C]. Endow S with the pullback metric h∗(g), where g is the piecewise riemannian metric on X.
By the naturality of the cup product, we have

h∗(α) ∪ h∗(β)[S] = (α ∪ β)h∗[S] = α ∪ β[C] 6= 0.

If S is not connected, the previous computation implies that for some connected component of
S the corresponding components of h∗(α) and h∗(β) have non-trivial cup product. By a slight
abuse of notation, we will still call S such a component. We claim that both the length of
h∗(α) and h∗(β) are at least sys(X, g). Indeed, if γ is a 1-cycle in S such that h∗(α)γ 6= 0,
since h∗(α)γ = α(h∗γ) and h is length preserving it follows that length(h∗(α)) ≥ length(α),
and, analogously, that length(h∗(β)) ≥ length(β). Although in principle Theorem 3.3.4 does not
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formally apply to (S, h∗(g)) because the riemannian metric h∗(g) is only piecewise smooth, one
may approximate up to an arbitrarily small error such a metric by a smooth one. Hence, by
Theorem 3.3.4 for these smooth approximations and continuity, there is a point y in S such that
for every r ∈ (0, R)

AreaBS(y, r) ≥ (2r)2

2
,

where BS(y, r) stands for the ball of radius r centered at the point y ∈ S. Since h preserves
areas we have for x = h(y) that

AreaB(x, r) ≥ (2r)2

2
.

Notice that the inequality applies also to non-compact complexes, as long as the length of
the cohomology classes involved is positive. This remark is especially relevant when dealing
with covering spaces. As we proved in Lemma 3.2.2 after [63], covering projections of piecewise
riemannian polyhedra map injectively balls of radius less than half the systole of the base space.
Since on the other hand the systole of a non-simply connected covering space is clearly greater
than or equal to the systole of the base space, we obtain the following corollary.

Corollary 3.3.8. Let (X, g) be a compact connected polyhedron of dimension 2 equipped with a
piecewise riemannian metric g and let (X̂, ĝ) be a covering of X. Suppose that there exist classes
α, β in H1(X̂,Z2) such that α ∪ β 6= 0 in H2(X̂,Z2) and let 2R := min{length(α), length(β)}.
Then, there exists x ∈ X̂ such that AreaB(x, r) ≥ (2r)2

2 for all r ∈ (0, R). In particular
Area(X, g) ≥ 1

2 sys(X, g)2.

3.3.1 Systolic area of groups

In this section we show how to derive an inequality for the systolic area for the class of surface-
like groups from the generalization of Guth’s systolic inequality. We recall the definition of
surface-like groups from the Introduction.

Definition 3.3.9. Let G be a group. We say that G is surface-like if there exist classes α, β in
H1(G,Z2) such that α ∪ β 6= 0 in H2(G,Z2).

The cohomological condition in the definition of surface-like groups is of course the translation
to the context of groups of the property of having maximal cup-length with coefficients in Z2 for
2-polyhedra. Likewise, the property that a group contains a surface-like subgroups translates in
the context of 2-polyhedra as admitting a covering space of maximal cup-length with coefficients
in Z2. Thus, we obtain a systolic inequality for groups containing a surface-like subgroup through
Corollary 3.3.8.

Theorem 3.3.10. Let G be group which contains a surface-like subgroup T . Then, σ(G) ≥ 1
2 .

Proof. Let (X, g) be a piecewise riemannian 2-complex with fundamental group G and let
(X̂, ĝ) be the covering of X with fundamental group T endowed with the pullback metric
ĝ. By Corollary 3.3.8, the proof reduces to verifying that under the hypothesis on its fun-
damental group, X̂ must have maximal cup-length with coefficients in Z2. Notice that the
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complex X̂ includes as the 2-skeleton of an aspherical CW-complex K (possibly infinite di-
mensional). Thus K is an Eilenberg-MacLane space K(T, 1) and so its Z2-cohomology ring
H∗(K,Z2) is isomorphic to the cohomology ring H∗(T,Z2) of T . By construction, the inclusion
X̂ ↪→ K induces an isomorphism H1(K,Z2) = H1(T,Z2) → H1(X̂,Z2) and a monomorphism
H2(K,Z2) = H2(T,Z2)→ H2(X̂,Z2). Since T is surface-like, this implies that X̂ has maximal
cup-length with coefficients in Z2.

There are many classes of groups to which the bound from Theorem 3.3.10 applies. To
begin with, all surface groups are surface-like by Poincaré Duality, as are free abelian groups
of rank at least 2, elementary abelian 2-groups and also groups isomorphic to direct and free
products of a group with a surface-like group. Examples of groups containing a surface-like
subgroups include among others, non-free Artin groups, groups containing an element of order
2 (in particular, to Coxeter groups) and infinite fundamental groups of closed irreducible 3-
manifolds. Indeed, Artin groups contain a copy of Z ⊕ Z unless they are free, while groups
with an element of order 2 contain a copy of Z2. As for the irreducible 3-manifold groups, recall
that the surface subgroup conjecture states that every closed, irreducible 3-manifold with infinite
fundamental group contains an immersed π1-injective closed surface. This conjecture was settled
in the affirmative by Kahn and Markovic in [59] and thus, by Theorem 3.3.10 the systolic area
of infinite fundamental groups of closed irreducible 3-manifolds also admits 1

2 as a lower bound.
Although the estimate from Theorem 3.3.10 constitutes an improvement upon the general

bound 1
4 for the systolic area of non-free groups, there is still a gap between it and the conjectured

optimum 2
π . We end this section by showing that this gap can be closed for fundamental groups of

non-orientable surfaces if we assume a strengthened version of Gromov’s Filling Area Conjecture.
A riemannian manifold (Mn+1, gM ) is an isometric filling of a riemannian manifold (Nn, gN ) if
∂M = N and the restriction to N ×N of the distance function dgM determined by gM coincides
with dgN . As it will become more clear in the next section, estimates on the volume of such
fillings could play an important rôle in systolic geometry. The Filling Area Conjecture states
that the minimum area among orientable isometric fillings of the circle equipped with its standard
riemannian metric of length 2` is attained at the standard hemisphere of area 2

π `
2.

Let (X, g) be a piecewise riemannian 2-polyhedron with fundamental group isomorphic to
the fundamental group of a non-orientable surface and suppose that h : S → X represents
the relevant homology class of H2(X,Z2) with S a connected surface. By the naturality of
the exact sequence from the universal coefficient theorem, S must be non-orientable. Now we
proceed as in the proof of [57, Proposition 3.1]. Take the shortest loop γ ∈ S such that h∗[γ]
is non-trivial in π1(X) and open up S along γ. The resulting riemannian surface (Σ, g̃) is an
isometric filling (possibly non-orientable) of a circle of twice the length of γ and of the same
area as S. If we assume that the conclusion of Filling Area Conjecture holds (also for non-
orientable isometric fillings), we have Area(Σ, g̃) ≥ 2

π (length(γ))2 ≥ 2
π (sys(X, g))2. Hence, since

Area(X, g) ≥ Area(Σ, g̃) we conclude that σ(X, g) ≥ 2
π . In particular, this would imply that

σ(Z2) = 2
π .

3.4 Systolic area of a free product of groups

One of the fundamental open problems about the systolic area of groups is understanding the way
the systolic area transforms a free product of groups in terms of its free factors. We have already
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seen that, given finitely presented groups G and H, the inequality σ(G ∗ H) ≤ σ(G) + σ(H)
holds. It would be interesting to know if there is a stronger relation between the systolic area of
G ∗H and the systolic area of its free factors. More concretely: does the inequality σ(G ∗H) ≥
C(σ(G) + σ(H)) hold for some universal constant C > 0? While we are not able to answer that
question, we intend to describe in this section a possible approach to relate the systolic area of
a free product of groups to the systolic area of its free factors.

A first natural attempt to compare the systolic area of a group of the form G ∗ H to that
of G and H would go as follows. Take a piecewise riemannian polyhedron (Y, g) that almost
realizes the systolic area σ(G∗H), that is, such that the ratio Area(Y,g)

sys(Y,g)2
does not exceed σ(G∗H)

by more than ε for a fixed, arbitrary ε > 0. Fix also triangulations XG, XH of the groups G
and H, respectively. Since all the polyhedra involved are 2-dimensional and the fundamental
group of Y is isomorphic to that of XG ∨XH , there is a piecewise linear map g : XG ∨XH → Y
inducing an isomorphism in fundamental groups (see for example [79, Lemma 1.5]). Then, one
expects to be able to estimate the systolic area of XG∨XH endowed with the pullback piecewise
riemannian metric via the map g (strictly speaking, such metric could be degenerated but may
be approximated by a non-degenerate one) in terms of the systolic area of Y . Unfortunately,
there is no way to reasonably control the number of preimages of each 2-simplex in Y via g, at
least to the best of our knowledge. Thus, the area of XG ∨XH with the metric induced from g
could potentially be arbitrarily larger than that of Y .

In view of this, we start with the same setup but instead of g, we use a map in the reverse
direction. That is, we take a piecewise linear map f : Y → XG ∨XH which induces an isomor-
phism on fundamental groups. Essentially, the idea now is to split Y in f−1(XG) and f−1(XH)
and try to estimate the systolic area of these two subpolyhedra of Y . Let us make this construc-
tion more explicit. Fix triangulations of Y , XG and XH (which we still denote Y , XG and XH)
such that the map f : Y → XG ∨XH is simplicial. Let YG be the subcomplex of Y defined as
YG := f−1(XG) and YH the simplicial closure of the complement of YG, that is, the subcomplex
of Y generated by those simplices s such that f(s) 6⊆ XG. Notice that the union of YG and YH
covers Y and that the intersection YG∩YH is a (possibly not connected) 1-dimensional complex.
This last feature is the main reason of the lack of symmetry in the definition of YG and YH ;
later on we will attach cones on YG ∩ YH and we will need to keep our constructions in the
2-dimensional world. The first objective is obtaining complexes with fundamental group G and
H from YG and YH . In order to do this, we start by recording two topological properties of the
decomposition Y = YG ∪ YH in the next lemma.

Lemma 3.4.1. Let YG and YH be as above. Then,

• for every connected component C of YG ∩ YH the inclusion ιC : C ↪→ Y induces the trivial
morphism π1(C)→ π1(Y ), and

• every connected component of YG (symmetrically, of YH) contains at least one connected
component of YG ∩ YH .

Proof. For the first point, denote v the wedge point of XG ∨ XH and notice that f(C) = {v}
for every component C of YG ∩ YH . Hence, f ◦ ιC induces the trivial morphism π1(C)→ π1(X).
Since f induces an isomorphism π1(Y ) → π1(XG ∨ XH), it follows that ι∗ : π1(C) → π1(Y ) is
trivial. As for the second statement, let a and b be vertices of YG and YH respectively. Since Y
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is connected, there is a path in the 1-skeleton of Y joining a to b. If there is a first edge in that
path not belonging to YG, one of its endpoints is in YG ∩ YH . In the opposite case, b belongs to
the intersection YG ∩ YH and we are done.

As a consequence, in the case that YG ∩ YH is connected, it is not difficult to construct
complexes with fundamental group G and H departing from YG and YH .

Lemma 3.4.2. Suppose that YG ∩ YH is connected. Then, the groups π1(YG/(YG ∩ YH)) and
π1(YH/(YG ∩ YH)) are isomorphic to G and H respectively.

Proof. Notice that YG and YH are connected by Lemma 3.4.1 and that Y/(YG ∩ YH) is home-
omorphic to YG/(YG ∩ YH) ∨ YH/(YG ∩ YH), where the wedge point is the class of YG ∩ YH
in the quotient space Y/(YG ∩ YH). Since f(YG ∩ YH) = v, the map f factors through a
continuous map g : YG/(YG ∩ YH) ∨ YH/(YG ∩ YH) → XG ∨ XH . By the first statement of
Lemma 3.4.1, the quotient map q : Y → Y/(YG ∩ YH) induces an isomorphism on funda-
mental groups. Now, since f∗ is an isomorphism, the induced map on fundamental groups
g∗ : π1(YG/(YG ∩ YH)) ∗ π1(YH/(YG ∩ YH)) → G ∗ H is an isomorphism. Since g∗ restricts to
morphisms π1(YG/(YG∩YH))→ G and π1(YH/(YG∩YH))→ H, it follows that π1(YG/(YG∩YH))
is isomorphic to G and likewise, that π1(YH/(YG ∩ YH)) is isomorphic to H.

Although it is possible to coherently metrize the CW-complex YG/(YG ∩ YH), the systole of
such space is potentially arbitrarily small, since points that are far in YG may become very close
in the quotient space. Instead, we can attach for example a cone on the intersection YG ∩ YH
and work with the complex YG∪C(YG∩YH), which is homotopy equivalent to YG/(YG∩YH) by
standard algebraic topology facts. The next result deals with the general case, in which YG∩YH
is not necessarily connected.

Lemma 3.4.3. Let YG and YH be the simplicial complexes defined above. Then, there exists a
2-dimensional CW-complex Ỹ containing Y , together with an extension f̃ : Ỹ → XG ∨XH of f
that also induces isomorphism on fundamental groups such that Ỹ decomposes as the union of
subcomplexes ỸG, ỸH that intersect in a connected graph. Moreover, the inclusion ỸG ∩ ỸH ↪→ Ỹ
induces the trivial morphism on fundamental groups.

Proof. This was essentially proved by Stallings in [80, Theorem 3.2]. We show how to adapt his
arguments to our context. Suppose that YG ∩ YH is not connected and take a simplicial path γ
in Y joining two different connected components of YG ∩ YH . Note that f ◦ γ determines a loop
based at v in XG ∨ XH (v being the wedge point). Since the map f∗ induced on fundamental
groups by f is surjective, there is a (simplicial) loop α in Y based at γ(0) so that [f ◦γ] = [f ◦α]
in π1(XG ∨XH , v). Hence, if we let λ = α−1 ∗ γ, the loop f ◦ λ is null-homotopic in XG ∨XH .
Clearly, we can write λ as a concatenation λ = λ1∗λ2∗· · ·∗λr, where each λi is a path completely
contained in YG or YH and no two consecutive paths are contained in the same subcomplex. In
particular, f maps the endpoints of these paths to v and so each f ◦λi defines a loop in XG∨XH .
Since [f ◦ λ] = [f ◦ λ1] ∗ [f ◦ λ2] ∗ · · · ∗ [f ◦ λr] in π1(XG ∨XH , v) = G ∗H, there exists an index
i such that f ◦ λi is null-homotopic in XG or XH according to whether λi is contained in YG or
YH . If both endpoints of λi happen to be in the same connected component of YG ∩ YH we may
replace it by another path λ′i contained in YG∩YH and append it to λi+1 to get a decomposition
λ = λ1 ∗ · · · ∗λi−1 ∗ (λ′i ∗λi+1) ∗ · · · ∗λr. By induction on r, there exists some path λj joining two
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different connected components of YG∩YH such that f ◦λj is a null-homotopic loop in XG∨XH .
Consider the mapping cylinder Mλ of the map λ : I → Y . Since f ◦ λ is homotopic to the
constant map v in XG ∨XH , we may extend f to Mλ using the null-homotopy of λ in the added
cylinder 2-cell e = I×I. In particular, the image of e under the extension is completely contained
in XG or XH and is constantly v in the free part of the boundary `, that is, ` = ∂(I× I)\ (I×0)
(see Figure 3.3). Set ỸG as YG ∪ e or YG ∪ `, according to whether λi ⊆ YG or not and define ỸH

Figure 3.3: Schematic illustration of the mapping cylinder of λ.

analogously. By construction, ỸG∩ ỸH = (YG∩YH)∪`. After a finite number of steps, we obtain
a CW-complex Ỹ of dimension 2, a continuous extension f̃ : Ỹ → XG ∨XH of the map f and
subcomplexes ỸG, ỸH which cover Ỹ and intersect in a connected 1-dimensional subcomplex.
Since the inclusion Y ↪→ Ỹ is a homotopy equivalence, we see that f̃ induces an isomorphism
on fundamental groups. Finally, for the last part of the statement notice that f̃(ỸG ∩ ỸH) = {v}
and since f̃∗ is an isomorphism and the inclusion induced morphism π1(ỸG ∩ ỸH) → π1(Ỹ ) is
trivial. The conclusion follows by the argument in the proof of Lemma 3.4.1.

Of course, we also need to take care of the area and the systole of the resulting complex Ỹ .
Let us define the systolic area σ(X, g) of a piecewise riemannian polyhedron (X, g) of dimension
2 as the quotient

σ(X, g) :=
Area(X, g)

sys(X, g)2
.

We show next how to endow of a piecewise riemannian metric the mapping cylinders that appear
in the proof of the last lemma in a way that the systolic area is almost preserved.

Lemma 3.4.4. Let (Y, g) be a compact piecewise riemannian polyhedron of dimension 2. Let
λ : I → Y be a piecewise linear, non-degenerate map (that is, a map that preserves the dimension
of the simplices). Then, given ε > 0, there is a piecewise riemannian metric g′ on the mapping
cylinder Mλ such that σ(Mλ, g

′) ≤ σ(Y, g) + ε.

Proof. We need to define a convenient piecewise riemannian metric on the square I × I which
is glued at I × 0 to Y via the map λ : I → Y . To do this, start by fixing a sufficiently fine
triangulation of Y so that the inclusion of the simplices in Y is an isometric embedding (see [23,
Lemma 7.9]). Triangulate I = I × 0 accordingly and endow its 1-simplices with the riemannian
metric of their images in Y under λ. Extend this triangulation to I× I and consider the product
metric determined by declaring the interval corresponding to the second coordinate to have the
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standard metric of an euclidean interval of length δ for some δ < ε
length(λ) . Thus we obtain a

piecewise riemannian metric on I × I in such a way that Area(I × I) < ε. Consider now the
equivalence relation in I × I generated by identifying (x, 0) ∼ (y, 0) whenever λ(x) = λ(y).
Since λ is non-degenerate by hypothesis, the quotient map q : I × I → I × I/ ∼ preserves the
dimension of the simplices as well. We declare each simplex q(σ) ∈ I × I/ ∼ to be isometric to
σ ∈ I × I, so that q is a local isometry. Now, endow Mλ with the piecewise riemannian metric
obtained from I × I/ ∼ and Y . It is clear that for that metric, Area(Mλ) < Area(Y ) + ε. It
remains to estimate the systole of Mλ. First, notice that Mλ is obtained from identifying by
a bijective local isometry the subspaces I × {0}/ ∼ of I × I/ ∼ and λ(I) of Y . Hence, the
resulting piecewise riemannian metric g′ on Mλ restricts to the original metric in the interior of
each space, that is, in the complement of the subspace where the identification is made (see [23,
Chapter I.5] for more on quotient metrics). Let γ be a non-trivial loop in Mλ. Let p : Mλ → Y
be the canonical strong deformation retract. Then p ◦ γ is a non-trivial loop in Y and hence
length(p◦γ, g) ≥ sys(Y, g). Suppose that η is a portion of λ contained in (I×I/ ∼)\(I×{0}/ ∼).
Then there is a continuous lift η̃ of η to I × I. Since the map q : I × I → I × I/ ∼ is a local
isometry, length(η̃) = length(q ◦ η̃) = length(η). But length(η̃) ≥ length(pr(η̃)), where pr is the
projection map to the base of the cylinder. It follows that length(γ, g′) ≥ length(p ◦ γ, g) and
hence sys(Mλ, g

′) ≥ sys(Y, g). This shows that σ(Mλ, g
′) ≤ σ(Y, g) + ε, as desired.

In conclusion, given an ε > 0, by Lemmas 3.4.3 and 3.4.4 there exists a piecewise riemannian
polyhedron (Y, g) that triangulates G ∗ H with σ(Y, g) < σ(G ∗ H) + ε and such that the
subpolyhedra YG and YH defined as above intersect in a connected graph. As we remarked in
the paragraph following Lemma 3.4.2, under such conditions the complex obtained from YG by
attaching a cone on YG ∩ YH has fundamental group isomorphic to G. The difficulty resides
in endowing the cone C(YG ∩ YH) of a piecewise riemannian metric in such a way that both
the area and the systole of the resulting piecewise riemannian polyhedron YG ∪ C(YG ∩ YH) are
controllable. We describe next a condition over the piecewise riemannian metric on the cone
that allows to estimate the systole of the whole space.

Call dYH the distance induced by the piecewise riemannian metric g on YH and consider
dYH |YG∩YH . This distance function on the graph YG ∩ YH is typically non-riemannian, meaning
that is not induced by any piecewise riemannian metric (to see this, consider for example the
distance induced in the 1-sphere by the standard flat riemannian metric on the disk). Let
us say that a piecewise riemannian metric h on the cone C(YG ∩ YH) is homotopy filling for
(YG ∩ YH , dYH |YG∩YH ) if the induced distance dh satisfies dh|YG∩YH ≥ dYH |YG∩YH . Notice that
such metrics exist. Indeed, notice in first place that the intrinsic distance determined by the
piecewise riemannian metric on YG ∩ YH is greater or equal to the induced dYH |YG∩YH . This is
simply because there may be paths in YH not entirely contained in YG ∩YH that join two points
in the intersection and are shorter than the shortest path within YG ∩ YH . Now, to construct a
homotopy filling metric on the cone it is enough to endow its 2-simplices with a round metric
that does not introduce shortcuts. For example, if YG ∩ YH were a topological circle, the cone
with this metric would be isometric to the standard round hemisphere. It is not difficult to
extend this idea to any finite graph, see [77, Appendix A].

Lemma 3.4.5. Let h be a homotopy filling piecewise riemannian metric on C(YG ∩ YH) for
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(YG ∩ YH , dYH |YG∩YH ). Then, for the resulting piecewise riemannian metric g′,

sys(YG ∪ C(YG ∩ YH), g′) ≥ sys(Y, g).

Proof. Let γ be a non-trivial loop in YG∪C(YG∩YH). After a small perturbation, we may suppose
that γ intersects transversally YG ∩ YH . Let η be a portion of γ contained in C(YG ∩ YH), with
distinct endpoints (it they were the same, we could ignore this part and obtain a shorter non-
trivial loop γ′) in YG ∩ YH . Since by hypothesis the distance function on the cone is no less
than dYH |YG∩YH , there exists a path η̃ in YH of length ≤ length(η, h). After a finite number of
steps, we obtain in this manner a loop γ̃ in Y = YG ∪ YH of length at most length(γ, g′) such
that the restrictions of γ and γ′ to YG coincide. We have to show that γ′ is a non-trivial loop in
π1(Y ). Notice that the quotient spaces Y/YH and YG ∪C(YG ∩YH)/C(YG ∩YH) are canonically
homeomorphic. Moreover the loops q◦γ in YG∪C(YG∩YH)/C(YG∩YH) and p◦γ̃ in Y/YH coincide
after applying the canonical homemomorphism Y/YH → YG ∪C(YG ∩YH)/C(YG ∩YH), where q
and p are, respectively, the quotient maps q : YG ∪C(YG ∩YH)→ YG ∪C(YG ∩YH)/C(YG ∩YH)
and p : Y → Y/YH . Since q induces an isomorphism on fundamental groups because C(YG∩YH)
is simply connected, q ◦ γ and in consequence, p ◦ γ̃ are non-trivial loops. It follows that the
class of γ̃ is non-trivial in π1(Y ) and therefore, sys(Y, g) ≤ length(γ̃, g) ≤ length(γ, g′). The
conclusion follows.

Notice that the only property about the cone C(YG ∩ YH) we required in the proof of the
lemma is that it is simply connected. Hence, we could consider different piecewise riemannian
polyhedra Z of dimension 2 to “fill” the graph YG∩YH , as long as these Z contain a homeomorphic
copy of the graph, are simply connected and their metric satisfy the property of homotopy filling
metrics. We formalize this idea by stating a kind of homotopy Plateau problem.

Let P be a finite 1-dimensional complex with a distance d, not necessarily piecewise rieman-
nian. We say that a piecewise riemannian polyhedron (X, g) of dimension 2 is a homotopy filling
of (P, d) if there is an embedding ι : P → X inducing the trivial morphism on fundamental
groups such that

d(x, y) ≤ dg(ι(x), ι(y))

for every x, y ∈ P , where dg is of course the distance induced on X by the piecewise riemannian
structure g. By using for instance the mentioned round metric on the cone of P , we see that the
minimum area of a homotopy filling (or even of a simply connected homotopy filling) of (P, d) is
finite.

In this language, in order to usefully apply Lemma 3.4.5 to estimate the systolic area of
G ∗H, we would need to estimate the area of the minimum simply connected homotopy filling
of (YG ∩ YH , dYH |YG∩YH ). Since the goal is to relate the area of the resulting space to that of
Y = YG ∪ YH , the round metric on the cone is in general prohibitively large, since its area is
proportional to the length of the graph. We do not have an effective bound for the area of (simply
connected) homotopy fillings; we speculate below how such an estimate could be established.

The homotopy filling property is related to the filling volume of manifolds, a notion defined
by Gromov in [44, §2.2]. Let V be a compact null-cobordant manifold with a distance function d
(not necessarily riemannian). The filling volume FillVol(V ) of V is the minimal volume among
the riemannian manifolds (W, g) such that ∂W = V and dg|V ≥ d, that is to say,

dg(x, y) ≥ d(x, y)
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for all x, y ∈ V . Let us call a manifold W a filling of V if its boundary is homeomorphic to
V . The fillings in the definition should be orientable if the manifold V is orientable. It is shown
in [44, Appendix 2] that the filling volume of a null-cobordant manifold of dimension n ≥ 2 is
independent of the topology of the filling. This means that the infimum is realized within the
topological type of each filling of V . In contrast, in dimension 1 the filling volume may depend
on the topology of the filling (see [44, §2.2.B Counterexamples]).

The value of the filling volume is not known for any riemannian manifold. The long-standing
Filling Area Conjecture of Gromov that we stated towards the end of §3.3.1, asserts that the round
hemisphere has the minimum area among the fillings of the circle with its standard riemannian
metric. It was proved by Gromov that the round hemisphere is the optimal filling of the standard
riemannian circle if one restricts to simply connected fillings (this is a consequence of Pu’s
inequality, Theorem 3.2.1, for the projective plane). This was later extended to fillings of genus
at most 1 in [7], but the techniques there do not apply to general surfaces of genus ≥ 2. However,
interestingly, the round hemisphere is known to be coarsely the optimal filling for the standard
riemannian circle, as the following result by Ivanov and Katz shows.

Proposition 3.4.6. ([57, Proposition 3.1]) Let (Σ, g) be a (not necessarily orientable) filling of
S1 such that its distance function dg restricted to the boundary ∂Σ = S1 is greater or equal to
the distance function dg0, where g0 is the standard riemannian metric on S1. Then,

Area(Σ, g) ≥ π

4
Area(H),

where H is the round hemisphere.

Proof. We may assume that the filling (Σ, g) is isometric, that is, that the distance function
dg|S1 coincides with dg0 . Indeed, we can proceed as in [30, Remark 6.4] to show this. For an
arbitrary ε > 0, consider the following riemannian metric gε in the collar S1 × I:

gε := tg0 + (1− t)g|S1 + ε2 dt2.

Thus, gε restricts to g0 on S1×{1} and to g|S1 on S1×{0}, and the area of the collar (S1×I, gε)
clearly tends to 0 as ε→ 0. Moreover, since g|S1 ≥ g0 by hypothesis, we have that gε ≥ g0+ε2 dt2,
from where it follows that the curves in the collar between points x and y in S1 × {1} are of
length greater than or equal to dg0(x, y). By gluing the collar to Σ, we obtain an isometric filing
(Σ ∪ S1 × I, ḡε) of area arbitrarily close to Area(Σ, g).

Now, fix two points x0, x1 in S1 with dg0(x, y) = π
2 . Consider the map f : Σ → `∞2 =

(R2, ‖ · ‖`∞) defined as f(x) = (dg(x, x0), dg(x, x1)). The idea of the proof is that, since the map
f is distance non-increasing, the area of the image of f should be bounded by the area of Σ.
There is however a subtlety here, because (R2, ‖ · ‖`∞) is a Finsler manifold and there are several
natural but non-equivalent ways to define volumes for such manifolds [56, §4]. Here, we will
understand that the area of a Finsler surface is its Ivanov’s inscribed riemannian volume (see
[56, Example 4.4]), which coincides with the usual notion of volume for riemannian manifolds
and subsets of euclidean spaces. We compute now the image of the map f . Notice that, since dg
is isometric to the standard riemannian distance on S1, the image of ∂Σ = S1 is the boundary
of an `1 ball centered at

(
π
2 ,

π
2

)
of radius π

2 . Since the 1-chain ∂Σ is a boundary in Σ and f is
continuous, also the 1-chain f(∂Σ) is a boundary in f(Σ) ⊆ R2. Suppose that there is a point y of
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the `1 ball of center
(
π
2 ,

π
2

)
and radius π

2 not contained in f(Σ). Then, the map f : Σ→ R2 \{y}
sends the 1-chain ∂Σ to a generator of H1(R2 \ {y}) = Z, which is a contradiction. It follows
that f(Σ) contains the interior of f(∂Σ) and so

Area(Σ, g) ≥ Area f(Σ) ≥ π2

2
=
π

4
Area(H).

Interpreted in terms of homotopy fillings, Lemma 3.4.6 states that, if we restrict the fillings
to be manifolds, there exists a universal constant C > 0 (more precisely, C ≥ π

4 ) such that for
every (manifold) homotopy filling (X, g) of S1 with its standard riemannian metric,

Area(X, g) ≥ C inf Area(Z, h),

where the infimum is taken over the simply connected (manifold) homotopy fillings (Z, h) of S1.
By analogy, one may ask if there exists a positive constant relating the area of a minimum

simply connected homotopy filling to that of general homotopy fillings for other 1-dimensional
complexes and distances. If this was valid in greater generality, for instance, since the inclusion
YG ∩ YH → Y is trivial on fundamental groups, the area of Y would bound up to a constant the
area of a minimum simply connected homotopy filling of (YG ∩ YH , dY |YG∩YH ). Suppose for a
moment that the same conclusion could be obtained for the metric space (YG ∩ YH , dYH |YG∩YH ).
Then, for a certain simply connected homotopy filling of (YG ∩ YH , dYH |YG∩YH ), say, (Z, h), we
would have

Area(Y, g) ≥ C Area(Z, h),

for a universal constant C > 0. By the argument in Lemma 3.4.5, the systolic area of the space
YG ∪ Z with the resulting piecewise riemannian metric g′ would satisfy the inequality

σ(YG ∪ Z, g′) ≤ (1 + C)σ(Y, g), (3.1)

and hence, σ(G) ≤ C ′σ(G ∗H) for C ′ = 1 + C.
However, even if the coarse comparison result between the area of homotopy fillings and

simply connected homotopy fillings of the same 1-dimensional space could be established, the
proof of inequality (3.1) would still require some work. Namely, the bound from Lemma 3.4.5
applies in principle to YG∩YH with the distance induced from YH instead of the one induced from
Y , which is in general smaller, that is, dY |YG∩YH ≤ dYH |YG∩YH . A possible way to solve this is
finding a subgraph L ≤ YG ∩YH such that the inclusion L→ Y is trivial on fundamental groups
and the fundamental group of YG/L is isomorphic to G. This would intuitively correspond to
killing only some of the homotopy classes of loops in π1(YG) coming from the inclusion YG∩YH ↪→
YG, the ones needed to quotient out from π1(YG) to obtain G.
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Chapter 4

A discrete approximation for the
systolic area

The simplicial complexity is a combinatorial invariant for finitely presentable groups that was
recently introduced by Babenko, Balacheff and Bulteau in [4]. Its definition is motivated by
the study of the systolic area of groups. As it is shown by the authors in the cited work, the
simplicial complexity κ(G) of a group G constitutes a good approximation of the systolic area
σ(G) for large values of κ(G). In view of this result, it makes sense to attack problems about the
systolic area by analyzing the analogue questions for the simplicial complexity. For instance, one
may estimate the systolic area of groups by computing their simplicial complexity or even try to
obtain information about structural aspects of the systolic area, such as its behavior under free
product of groups, by studying the problem in the context of simplicial complexity.

In the first section we give an introduction to the simplicial complexity of groups and some
of its basic properties. The bulk of the chapter is devoted to the partial solution of two problems
raised by Babenko, Balacheff and Bulteau, which takes the next three sections. In first place,
we compute the simplicial complexity of all surface groups, both in the orientable and in the
non-orientable case. Then, using the same techniques we show that κ(G ∗ Z) = κ(G) for any
surface group G. Philosophically, this result says that an optimal topological model for a group
of the form π1(S) ∗ Z, where S is a closed surface, is given by the wedge sum of S with S1. It
also provides the first partial evidence in favor of the conjecture of the stability of the simplicial
complexity under free product with free groups. The general stability problem, however, remains
wide open. In the last section of the chapter we discuss a potential strategy to approach another
instances of the problem, departing from a construction similar to the one described in the final
section of Chapter 3.

4.1 The simplicial complexity of groups

Recall that given a group G, we call a simplicial complex a triangulation of G if its fundamental
group is G. The simplicial complexity κ(G) of a finitely presented group G is the minimum num-
ber of 2-simplices in a triangulation of G (see [4, Definition 2.1]). Here, κ(G) should be thought
of as a discrete version of area for the group G. Indeed, one may regard a minimal triangulation
of G as a geometrical object by declaring each 2-simplex to be the euclidean equilateral triangle
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of area 1. In this section, we cover the basic properties of the simplicial complexity of groups
and give estimations of the invariant for some classes of groups.

The first interesting aspect to explore is the way in which the simplicial complexity measures
the complexity of groups. In this sense, the free groups are the simplest groups with respect to
this invariant. Indeed, it is clear that κ(F ) = 0 for every finite rank free group F since a bouquet
of the appropriate number of 1-spheres triangulates F without using 2-simplices. On the other
hand, the simplicial complexity of non-free groups is strictly positive, since the fundamental
groups of 1-dimensional complexes are always free. In this aspect, the simplicial complexity
is completely analogous to the systolic area. Another salient feature is the subadditivity with
respect to the free product of groups: given finitely presentable groups G1 and G2, we have

κ(G1 ∗G2) ≤ κ(G1) + κ(G2).

For, if K1, K2 are triangulations of G1 and G2 respectively, the wedge sum K1∨K2 triangulates
G1 ∗G2. In contrast to the case of the systolic area, it is known that this wedge sum is not, in
general, the most effective way to produce a model for G1 ∗ G2 with respect to the simplicial
complexity. To see it, suppose that G1 and G2 are not free and consider the model for G1 ∗G2

obtained by gluing K1 and K2 in a 2-simplex (or more generally, in any simply connected
subcomplex of both); this complex has strictly less than κ(G1) + κ(G2) 2-simplices. However, if
one of the groups is free it is an open question whether the inequality is strict. In other words:
does the identity κ(G ∗ Z) = κ(G) hold for any finitely presentable group G? A positive answer
for this question would imply that the natural way of extending an optimal triangulation of a
group G to a triangulation of G ∗ Z without adding 2-simplices is the optimal one. In §4.4 we
show that this is indeed the case when G is the fundamental group of a closed surface.

The computation of the precise value of the simplicial complexity, as it may be suspected
from the definition, is hard even for specific groups. In this respect, there are a few groups for
which the simplicial complexity was known, due to Bulteau [25].

Theorem 4.1.1. The following formulae hold:

κ(Z2) = 10, κ(Z⊕ Z) = 14, κ(K2) = 16, κ(Z3) = 17,

where K2 denotes the fundamental group of the Klein bottle. Moreover, the simplicial complexity
of the surface groups Z2, Z⊕Z and K2 is attained at optimal triangulations of the corresponding
surfaces.

This result is obtained by a combination of some remarks on the local structure of optimal tri-
angulations of groups and an exhaustive analysis of the 2-complexes with at most 17 2-simplices.
Bulteau conjectured in [25] that, as it happens in the cases of the projective plane RP 2, the
torus T2 and the Klein bottle, a minimal triangulation of a closed surface S is also an optimal
triangulation for its fundamental group π1(S). We verify this conjecture in §4.4.

Although there are, to the best of our knowledge, no other groups for which the simplicial
complexity is computed, some estimates for certain classes of groups are available. For example,
the precise order of growth of the simplicial complexity of free abelian groups κ(Zn) with respect
to the rank n is known to be n2 [4, Example 2].

Lemma 4.1.2. For the simplicial complexity of the group Zn, the following estimate holds:
1

2
n(n− 1) ≤ κ(Zn) ≤ 7n(n− 1).
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Proof. Notice that the n-dimensional torus Tn is a K(Zn, 1) space. For the lower bound, let K
be a 2-dimensional triangulation of Zn. Since K is the 2-skeleton of an aspherical CW-complex,
we see that the free abelian group H2(K,Z) has rank at least

(
n
2

)
, which is the rank of H2(Tn,Z).

It follows that K must have at least
(
n
2

)
2-simplices. To prove the upper bound, it is enough to

observe that the 2-skeleton of Tn is formed by the union of
(
n
2

)
2-dimensional tori T2. Since it is

possible to triangulate T2 using 14 2-simplices, the result follows.

The fundamental feature of the simplicial complexity is that it asymptotically approximates
the systolic area for non-free groups.

Theorem 4.1.3. ([4, Theorem 1.2]) Let G be a non-free group. Then,

2πσ(G) ≤ κ(G) ≤ 625(502 · σ(G))
1+

2(1+ln 5)√
ln(502·σ(G)) .

We will show the argument for the lower bound, which is elementary. The proof of the upper
bound is more involved and it exploits Gromov’s covering argument [44, §5.3] (from which the
constants in the right-hand side are derived) and some results from [77]. We refer the reader to
the original work for that estimate [4, §3].

Proof of Theorem 4.1.3 (lower bound). Let K be a triangulation of G that realizes the simplicial
complexity. Endow K with a piecewise riemannian metric h making each edge a segment of
length 2π

3 and each 2-simplex a hemisphere of radius 1 with the standard round metric. Thus,
the area of (K,h) equals 2πκ(G), since the area of the hemisphere is 2π. Since the arcs of
length less than π in the equator of the standard hemisphere are geodesic segments, it is possible
to homotope every path in the interior of a 2-simplex to its boundary without increasing the
length. Hence, there exists a systolic loop in (K,h) contained in the 1-skeleton and therefore,
sys(K,h) ≥ 2π. Now,

σ(G) ≤ σ(K,h) ≤ κ(G)

2π
,

as desired. We remark that the choice of the round metric for the 2-simplices of K is not really
essential. It would be possible to obtain a similar inequality for instance endowing each 2-simplex
with the metric of the euclidean equilateral triangle of area 1, at the cost however of developing a
slightly more difficult argument to estimate the length of paths in K in terms of paths contained
in the 1-skeleton.

4.2 A homological simplification method

The purpose of this section is the proof of a technical lemma which will be used to establish a
lower bound of the simplicial complexity for groups of the form G ∗ T , where G, T are finitely
presentable groups and the cohomology of G satisfies property (A) (see below). The ultimate
goal is the computation of the simplicial complexity when G is a surface group and T is a (not
necessarily non-trivial) free group. The strategy to achieve this is essentially the same as the one
employed in Chapter 2 to find optimal triangulations of the homotopy type of surfaces. The main
components of the proof are a version of the Euler characteristic computation in Lemma 2.1.2
(see also the proof of the lower bound in Theorem 2.1.1) and a homological technique that allows

73



4.2. A homological simplification method

to apply this estimate. With this in mind, we develop in this section a homological simplification
method for triangulations of groups of the form G ∗ T along the lines of Proposition 2.3.6.

We start by specifying what it means for a group to satisfy property (A). By the cohomology
ring of a group G we will refer to its cohomology as a discrete group, i.e. the cohomology of
an Eilenberg-MacLane space K(G, 1), while H∗(G,Z2) denotes the (reduced) cohomology of G
with coefficients in Z2, as usual. We say that the cohomology ring of a group satisfies property
(A) whenever the cohomology ring of a K(G, 1) space does (see Definition 2.3.2).

Example 4.2.1. Analogously to the case of surfaces, surface groups (orientable or non-orientable)
satisfy property (A) by Poincaré Duality. More generally, any one-relator groupG withH2(G,Z2) =
Z2 and with a non-degenerate cup product form H1(G,Z2)×H1(G,Z2)→ H2(G,Z2) = Z2, sat-
isfies property (A). Using the computation of the cohomology ring of one-relator groups of [75],
one may obtain many additional examples of such groups. As concrete examples, the Baumslag-
Solitar groups BS(m,n) satisfy property (A) whenever m and n are odd.

Suppose thatK is a 2-dimensional triangulation of G∗T , that is, π1(K) = G∗T . By standard
algebraic topology arguments, K includes as the 2-skeleton of an aspherical CW-complex X,
which is possibly infinite dimensional. Since the fundamental group of X is isomorphic to G ∗T ,
X is an Eilenberg-MacLane space K(G ∗ T, 1). By a theorem of Whitehead (see for example
[24, Theorem 7.3]), the wedge sum of a K(G, 1) space KG and a K(T, 1) space KT is aspherical,
which implies that X is homotopy equivalent to KG ∨KT . As stated before, we aim to estimate
the number of 2-simplices of triangulations of G ∗ T for G a surface group and T a free group.
Hence, since informally speaking G should be responsible for the complexity of the triangulation
(that is, the number of 2-simplices), the first objective is to isolate a subcomplex of K containing
only the 2-dimensional homology classes of K that correspond to classes in H2(G,Z2). We give
a definition to formalize this idea.

Definition 4.2.2. Let X be a CW-complex of dimension at least 2, together with a homotopy
equivalence h : X → KG ∨KT , where KG, KT are defined as above. Suppose that its 2-skeleton
X(2) has the structure of a finite simplicial complex. LetM ≤ X(2) be a (simplicial) subcomplex
satisfying the following properties:

1. The inclusion i : M ↪→ X induces isomorphisms i∗ : Hn(M,Z2)→ Hn(X,Z2) for n < 2.

2. The composition H2(M,Z2)
i∗−→ H2(X,Z2) ≡ H2(KG,Z2) ⊕H2(KT ,Z2)

p−→ H2(KG,Z2) is
an epimorphism, where p is the projection and the isomorphism H2(X,Z2) ≡ H2(KG,Z2)⊕
H2(KT ,Z2) is induced by h.

We will say that such a subcomplex M is homologically G-full with respect to h, or simply
homologically G-full if the homotopy equivalence h is clear from the context.

The next result states, roughly, that we can kill the “extra” homology classes in H2(X,Z2)
one at a time (compare to Proposition 2.3.6).

Lemma 4.2.3. Let X be a CW-complex of dimension at least 2 homotopy equivalent to a space of
the form KG∨KT and such that its 2-skeleton X(2) is a finite simplicial complex. Let M ≤ X(2)

be a homologically G-full subcomplex. If dimH2(M,Z2) > dimH2(G,Z2), there exists a 2-simplex
σ ∈M such thatM\σ is homologically G-full. Moreover, dimH2(M\σ,Z2) = dimH2(M,Z2)−1.
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Proof. Since by hypothesis dimH2(M,Z2) > dimH2(KG,Z2) there is a non-trivial class B in
the kernel of the linear map p ◦ i∗ : H2(M,Z2)→ H2(KG,Z2). Let σ be a 2-simplex of M in the
support of B. The topological boundary ∂σ viewed as a chain in C1(M \σ,Z2) is the boundary of
the 2-chain B−σ. Hence the inclusion induces the zero morphism H1(∂σ,Z2)→ H1(M \σ,Z2).
It follows that the inclusion M \ σ ↪→M induces isomorphisms Hn(M \ σ,Z2)→ Hn(M,Z2) for
n < 2. It remains to verify the surjectivity of p ◦ j∗ : H2(M \ σ,Z2) → H2(KG,Z2), where j is
the inclusion j : M \ σ ↪→ X. Let [Z] be a class in H2(KG,Z2). By hypothesis, there is some
class C ∈ H2(M,Z2) such that p ◦ i∗[C] = [Z]. If σ does not belong to the support of C, when
viewed as a class in H2(M \σ,Z2) we have p◦j∗[C] = [Z]. In the other case, consider the 2-chain
C + B. Since the coefficients are taken in Z2, this chain is a well defined 2-cycle in M \ σ and
p ◦ j∗[C +B] = p ◦ i∗[C] + p ◦ i∗[B] = p ◦ i∗[C] = [Z]. Hence, in any case p ◦ j∗ : H2(M \σ,Z2)→
H2(KG,Z2) is an epimorphism. The fact that dimH2(M \ σ,Z2) = dimH2(M,Z2) − 1 follows
immediately from the Euler characteristic, since χ(M \ σ) = χ(M)− 1.

We introduce some convenient notation before moving on.

Notation. Given a finitely presentable group G, we will denote by χ(G) the 2-truncated Euler
characteristic of G, that is χ(G) := dimH2(G,Z2)− dimH1(G,Z2) + dimH0(G,Z2).

It remains now to combine the homological simplification method with the control provided
by the property (A) to obtain, given a triangulation of a group of the form G ∗ T , a subcomplex
to which the Euler characteristic estimate applies. The next result accomplishes this task.

Lemma 4.2.4. Let K be a (finite) connected simplicial complex of dimension 2 with fundamental
group isomorphic to G ∗ T , and suppose that the cohomology ring of G satisfies property (A).
Then, there is another simplicial complex L of dimension at most 2 with no more 2-simplices
than K such that χ(L) ≤ χ(G), dimH2(L,Z2) = dimH2(G,Z2) and every edge of L is the face
of at least two 2-simplices.

Proof. Let X be an Eilenberg-MacLane space K(G ∗ T, 1) such that X(2) = K. Then there is a
map i : K → KG ∨KT inducing an isomorphism in Hn for n = 0, 1 and an epimorphism in H2,
where KG and KT are respectively a K(G, 1) and a K(T, 1) space as before. Since the projection
H2(X,Z2) ≡ H2(KG,Z2)⊕H2(KT ,Z2)→ H2(KG,Z2) is surjective, K is a homologically G-full
subcomplex of X. By applying inductively Lemma 4.2.3, we obtain a subcomplex M of K that
is homologically G-full and such that dimH2(M,Z2) = dimH2(G,Z2). After collapsing the free
faces of M , we may assume that M has no edge that is the face of a unique 2-simplex. Suppose
there is a maximal edge e = {a, b} in M (otherwise we are done, since we may take the desired
complex L as M). If there is no path between a and b in M \ e, the quotient M/e has a natural
structure of simplicial complex with one less maximal edge than M . If, on the contrary, a and
b are joined by some path in M \ e, M is homotopy equivalent to a CW-complex of the form
Z ∨ S1, where Z is the complex M \ e and the S1 results from attaching a 1-cell by a map
that sends both vertices to a ∈ Z. After applying, if needed, finitely many of these moves, we
get a CW-complex of the form L ∨

∨m
i=1 S

1 homotopy equivalent to M , where L is a simplicial
complex formed by the 2-simplices of M (and hence, with no more 2-simplices than K) in which
every edge is the face of at least two 2-simplices. It remains to verify the bound on the Euler

75



4.3. A lower bound for simplicial complexity

characteristic of L. Since L ∨
∨m
i=1 S

1 is homotopy equivalent to M , clearly

χ(M) = χ(L ∨
m∨
i=1

S1) = χ(L)−m.

On the other hand, by construction χ(M) = χ(G) − dimH1(T,Z2), since dimH2(M,Z2) =
dimH2(G,Z2) and the first homology group ofM is isomorphic toH1(KG∨KT ,Z2) = H1(G,Z2)⊕
H1(T,Z”). Now, by composing with the homotopy equivalence L ∨

∨m
i=1 S

1 ' M we obtain a
map f : L∨

∨m
i=1 S

1 → KG∨KT which induces an isomorphism in Hn for n = 0, 1, and such that
p ◦ f∗ : H2(L∨

∨m
i=1 S

1) = H2(L,Z2)→ H2(KG,Z2) is an epimorphism. In particular, dualizing
we get an isomorphism

H1(KG ∨KT ,Z2) = H1(G,Z2)×H1(T,Z2)→ H1(L∨
m∨
i=1

S1,Z2) = H1(L,Z2)×H1(
m∨
i=1

S1,Z2).

Let (0, a) ∈ H1(L,Z2) × H1(
∨m
i=1 S

1,Z2) be a non-trivial class and suppose that (α, δ) ∈
H1(G,Z2) × H1(T,Z2) is the unique class such that f∗(α, δ) = (0, a). We claim that α = 0.
Indeed, suppose that it was not the case. Then, since the cohomology ring of G satisfies property
(A) there is a class β ∈ H1(G,Z2) with α∪β 6= 0. Consider the class f∗((α, δ)∪ (β, 0)) = f∗(α∪
β, 0) ∈ H2(L,Z2) = H2(L,Z2) ×H2(

∨m
i=1 S

1,Z2). It is non-trivial: take a class λ ∈ H2(G,Z2)
such that (α ∪ β)λ 6= 0 (here we use the identification H2(G,Z2) = Hom(H2(G),Z2)). Since M
is homologically G-full, there is some class γ ∈ H2(L,Z2) ≡ H2(M,Z2) such that f∗(γ) = (λ, η),
for some η ∈ H2(T ). Then,

f∗(α ∪ β, 0)γ = (α ∪ β, 0)f∗(γ) = (α ∪ β, 0)(λ, η) 6= 0.

On the other hand, from the identity

f∗((α, δ) ∪ (β, 0)) = (0, a) ∪ f∗(β, 0) = 0

we obtain a contradiction, proving the claim. We conclude that the inverse of the map

f∗ : H1(G,Z2)×H1(T,Z2)→ H1(L,Z2)×H1(
m∨
i=1

S1,Z2)

restricts to a monomorphism H1(
∨m
i=1 S

1,Z2) → H1(T,Z2). Hence, m ≤ dimH1(T,Z2) and,
since χ(L) = χ(G)− (dimH1(T,Z2)−m), the result follows.

4.3 A lower bound for simplicial complexity

In this short section we employ the previous results to prove the announced lower bound on the
simplicial complexity for groups of the form G ∗ T , where G, T are finitely presentable groups
and G satisfies property (A).

The same argument that shows that 2-complexes with a dense triangulation admit a lower
bound on the number of vertices in terms of its Euler characteristic may be applied to obtain
a bound on the number of 2-simplices. In what follows we will understand that a simplicial
complex of dimension 2 is of strict dimension 2, i.e. it has at least one 2-simplex.
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Lemma 4.3.1. (cf. Lemma 2.3.1). Let L be a connected simplicial complex of dimension 2 in
which every edge is the face of at least two 2-simplices. Then, if χ(L) ≤ 2, the complex L has at
least ρ(L) vertices and at least 2ρ(L)− 2χ(L) 2-simplices.

Recall that here ρ(L) stands for ρ(χ(L)) =

⌈
7+
√

49−24χ(L)
2

⌉
as defined in Notation 2.1.

Proof. The lower bound ρ(L) = ρ(χ(L)) for the number of vertices is precisely the conclusion of
Lemma 2.3.1. For the estimate on the number of 2-simplices, notice that the Euler characteristic
formula for L together with the inequality 3α2(L) ≥ 2α1(L) imply that

2χ(L) ≥ 2α0(L)− 2α2(L),

from where the claimed bound α2(L) ≥ 2ρ(L)− 2χ(L) follows immediately.

An explicit formula for the lower bound on the simplicial complexity of groups of the form
G ∗ T with G satisfying property (A) follows almost directly from Lemmas 4.2.4 and 4.3.1.

Theorem 4.3.2. Let G, T be finitely presentable groups. If G satisfies property (A), χ(G) ≤ 2,
and dimH2(G) > 0, then κ(G ∗ T ) ≥ 2ρ(χ(G))− 2χ(G).

Proof. Let K be a simplicial complex of dimension 2 with fundamental group isomorphic to
G ∗ T . Since G satisfies property (A), from Lemma 4.2.4 we obtain a simplicial complex L with
α2(L) ≤ α2(K), χ(L) ≤ χ(G) and such that every edge of L is in at least two 2-simplices.
Furthermore, there is an epimorphism H2(L)→ H2(G), so that dimH2(L) > 0 and hence L is of
dimension 2. By Lemma 4.3.1, L has at least 2ρ(L)−2χ(L) 2-simplices. Now, since χ(L) ≤ χ(G)
and ρ is a non-increasing function, we conclude that α2(L) ≥ 2ρ(χ(G))− 2χ(G), as desired.

We may apply Theorem 4.3.2 to the one-relator groups from Example 4.2.1. For instance,
the theorem gives the lower bound κ(BS(m,n)) ≥ 14 for Baumslag-Solitar groups with m, n
odd since χ(BS(m,n)) = 0. We know that this bound is not sharp except for the fundamental
group of the torus Z⊕Z = BS(1, 1). But one would expect stronger lower bounds for one-relator
groups with a large number of generators (and hence, small Euler characteristic). As we will see
in the next section, the lower bound from Theorem 4.3.2 is sharp for the fundamental groups of
surfaces.

4.4 The simplicial complexity of surface groups

This section contains the main result of the chapter: the computation of the simplicial complexity
κ(π1(S)∗F ), where S is a closed surface and F is a finite rank free group (possibly trivial). Recall
that δ(S) denotes the number of 2-simplices in a minimal triangulation of a closed surface S and
that an explicit formula for these numbers was given by Jungerman and Ringel (see Theorem
2.1.1). Concretely, for non exceptional surfaces, the following identity holds

δ(S) = 2ρ(χ(S))− 2χ(S).

For the exceptional cases M2, N2 and N3, it is necessary to replace δ(S) by δ(S) − 2 in the
formula.
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As it was observed in Example 4.2.1, the fundamental group of a non-simply connected
closed surface S satisfies property (A). Hence, we may apply Theorem 4.3.2 to groups of the
form π1(S) ∗ T obtaining the following corollary.

Proposition 4.4.1. Let S be a non-simply connected closed surface. Then κ(π1(S) ∗ T ) ≥
2ρ(χ(S))− 2χ(S). In particular, if S is non-exceptional, then κ(π1(S) ∗ T ) ≥ δ(S).

Proof. By Theorem 4.3.2, we have that κ(π1(S) ∗ T ) ≥ 2ρ(χ(π1(S))) − χ(π1(S)). Hence, it is
enough to see that χ(π1(S)) = χ(S) for all non-simply connected closed surfaces S. The identity
is clear for surfaces S different from the real projective plane RP 2 since these surfaces are
aspherical. For RP 2, notice that the infinite real projective space RP∞ is an Eilenberg-MacLane
space for π1(RP 2) = Z2, so we have χ(π1(S)) = χ(S) also for S = RP 2.

Remark 4.4.2. It can actually be proved for a group G in the conditions of Theorem 4.3.2 that
the equality

κ(G) = 2ρ(χ(G))− 2χ(G)

holds only for G the fundamental group of a non-exceptional surface. Indeed, take an optimal
triangulation K of G, that is, one with exactly κ(G) = 2ρ(χ(G))− 2χ(G) 2-simplices. We know
that 3α2(K) ≥ 2α1(K) and χ(K) ≥ χ(G). Hence,

κ(G) = α2(K) ≤ 2α0(K)− 2χ(K) ≤ 2ρ(χ(G))− 2χ(G) = κ(G).

It follows that all the intermediate inequalities are actually identities and in particular, 3α2(K) =
2α1(K). This implies that K is a pseudosurface and so G = π1(K) is isomorphic to the free
product of π1(S) with a free group F for some surface S. Since G satisfies property (A), the free
part F is trivial and so G = π1(S) as we wanted to show.

It remains to handle the exceptional cases. Observe that for an exceptional surface S (i.e.
S = N2, N3 orM2), Proposition 4.4.1 provides the lower bound κ(π1(S)∗T ) ≥ 2ρ(χ(S))−2χ(S),
which is slightly weaker than required because δ(S) = 2ρ(χ(S))− 2χ(S) + 2 in these cases. So,
for the exceptional surfaces, we will need to refine the proof of the lower bound of Theorem 4.3.2.

Lemma 4.4.3. Let S be an aspherical closed surface (either exceptional or non-exceptional) and
let K be a connected simplicial complex of dimension 2 with fundamental group isomorphic to
π1(S) ∗T . Let L be the simplicial complex obtained from K by applying Lemma 4.2.4. If χ(L) =
χ(S), then there is a continuous map L→ S that induces an isomorphism in (co)homology.

Proof. From the proof of Lemma 4.2.4 applied to K, we obtain a continuous map f : L ∨∨m
i=1 S

1 → Kπ1(S)∨KT ' S∨KT (since S is aspherical) which induces an isomorphism in Hn for
n = 0, 1 and an epimorphism p◦f∗ : H2(L∨

∨m
i=1 S

1,Z2) = H2(L,Z2)→ H2(S,Z2), and such that
dimH2(L,Z2) = dimH2(S,Z2). Consider the natural map g : L→ S defined as the composition
L ↪→ L ∨

∨m
i=1 S

1 f−→ S ∨KT → S, where the first map is the inclusion and the last one is the
projection to the quotient. Since the quotient map S∨KT → S induces the projectionH∗(S,Z2)⊕
H∗(KT ,Z2)→ H∗(S,Z2) in homology, g induces an isomorphism in H2 and so it suffices to show
g∗ : H1(L,Z2)→ H1(S,Z2) is an isomorphism. Note that from the proof of Lemma 4.2.4 it follows
that the inverse of f∗ : H1(Kπ1(S),Z2) ×H1(KT ,Z2) → H1(L,Z2) ×H1(

∨m
i=1 S

1,Z2) restricts
to a monomorphism h : H1(

∨m
i=1 S

1,Z2) → H1(KT ,Z2). More concretely, the monomorphism
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h sends a class a ∈ H1(
∨m
i=1 S

1,Z2) to the unique class α ∈ H1(KT ,Z2) such that f∗(0, α) =
(0, a). On the other hand, χ(L) = χ(S) − (dimH1(KT ,Z2) − m) and since χ(L) = χ(S) by
assumption, m = dimH1(KT ,Z2) and so h is an isomorphism. It is clear then that also f∗

restricts in an analogous way to an isomorphism H1(KT ,Z2) → H1(
∨m
i=1 S

1,Z2). Now, the
morphism induced by g between the first cohomology groups coincides with the composition
H1(S,Z2) ↪→ H1(S,Z2) ×H1(KT ,Z2)

f∗−→ H1(L,Z2) ×H1(
∨m
i=1 S

1,Z2) → H1(L,Z2), the first
arrow being the inclusion and the last one the projection on the first coordinate. Using the
fact that f∗ restricts to an isomorphism between the second factors, it is not difficult to check
that the described map between the first factors H1(S,Z2) → H1(L,Z2) is an isomorphism.
Since H1(L,Z2) and H1(S,Z2) are vector spaces of finite dimension over Z2, we conclude that g
induces an isomorphism in (co)homology as desired.

From this point, the arguments are very similar to the ones employed to deal with the covering
type of the exceptional surfaces. The biggest difference is that there is not enough room to have
an exceptional case for the simplicial complexity.

Proposition 4.4.4. Let S = N2, N3 or M2. Then κ(π1(S) ∗ T ) ≥ δ(S).

Proof. LetK be a triangulation of π1(S)∗T . From Lemma 4.2.4, and keeping the notations of the
proof of Theorem 4.3.2, we obtain a complex L with α2(L) ≤ α2(K), χ(L) ≤ χ(π1(S)) = χ(S)
and such that every edge of L is in at least two 2-simplices. By Lemma 4.3.1, this implies that
L has at least ρ(L) ≥ ρ(S) vertices and at least 2ρ(L) − 2χ(L) 2-simplices. Note that if any of
the strict inequalities α0(L) > ρ(S), χ(L) < χ(S) holds, we have

α2(L) ≥ 2ρ(S)− 2χ(S) + 2 = δ(S)

and there is nothing to prove. In view of this, in what follows we will suppose that α0(L) = ρ(S)
and χ(L) = χ(S). Observe that the homology of L is isomorphic to the homology of S via a
continuous map L→ S by Lemma 4.4.3. Also, since 3α2(L) ≥ 2α1(L), by the Euler characteristic
formula for L we have

3(α0(L)− χ(L)) ≤ α1(L) ≤
(
α0(L)

2

)
.

We solve first the case S = N2. By our assumption, we have that χ(L) = χ(N2) = 0 and
α0(L) = ρ(N2) = 7. Hence, from the above inequality we learn that α1(L) = 21 and, since
χ(L) = 0, α2(L) = 14. Thus 3α2(L) = 2α1(L) = 42, from where it follows that every edge of L
is the face of exactly two 2-simplices. Since there is a map L → S inducing an isomorphism in
homology, by Proposition 2.4.1 L would be homeomorphic to N2 contradicting Theorem 2.1.1.
Hence, α0(L) > ρ(N2) or χ(L) < χ(S) and consequently α2(L) ≥ δ(N2).

For the surface S = N3, we know that χ(L) = χ(N3) = −1 and α0(L) = ρ(N3) = 8. Hence,

3(α0(L)− χ(L)) = 27 ≤ α1(L) ≤ 28 =

(
α0(L)

2

)
.

Suppose first that α1(L) = 27, so that α2(L) = 18. Hence every edge of L is the face of exactly
two 2-simplices and from Proposition 2.4.1, L is homeomorphic toN3 in contradiction to Theorem
2.1.1. Then, α1(L) = 28. In that case, α2(L) = 19 and since 57 = 3α2(L) = 2α1(L) + 1, every
edge of L is in two 2-simplices except for one that is the face of three 2-simplices of L. The link
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of a vertex of this edge is a graph in which every vertex has degree two except for one that has
degree three. This is impossible because the sum of the degrees of an undirected graph is even.
Therefore, α0(L) > ρ(N3) or χ(L) < χ(N3) and hence α2(L) ≥ δ(N3) as claimed.

Finally, when S = M2 we have that χ(L) = χ(M2) = −2 and α0(L) = ρ(M2) = 9. In this
case, we know that α2(L) ≥ 22 = δ(M2)−2 and we want to show that L has at least δ(M2) = 24
2-simplices. We will see that the cases α2(L) = 22, α2(L) = 23 are not possible. Suppose first
that α2(L) = 22. Then, by the Euler characteristic formula, α1(L) = 33. Therefore, every
edge of L is the face of exactly two 2-simplices of L and so, by Proposition 2.4.1 L should be
homeomorphic to M2, which contradicts Theorem 2.1.1. If α2(L) = 23, it is α1(L) = 34, whence
69 = 3α2(L) = 2α1(L) + 1. It follows that every edge of L is the face of exactly two 2-simplices
except for one which is the face of three 2-simplices. The same argument as before shows that
this is impossible. We conclude that α2(L) ≥ δ(M2).

The main results of the section follow as corollaries to this last proposition.

Corollary 4.4.5. Let S be a non-simply connected closed surface. Then κ(S) = δ(S).

Proof. The upper bound κ(π1(S)) ≤ δ(S) is clear, while the lower bound follows from Proposi-
tions 4.4.1 and 4.4.4.

Note that, as a consequence of this result, the simplicial complexity of surface groups grows
linearly on the genus. This was observed, in the orientable case, in [4, Example 2].

Corollary 4.4.6. Let S be a non-simply connected closed surface and let T be a finitely pre-
sentable group. Then, κ(π1(S) ∗ T ) ≥ κ(π1(S)). In particular, κ(π1(S) ∗ Z) = κ(π1(S)).

Proof. Let T be a finitely presentable group. By Propositions 4.4.1 and 4.4.4, κ(π1(S)∗T ) ≥ δ(S)
and since κ(π1(S)) = δ(S) by Corollary 4.4.6, the first claim holds. For the second one, it is
enough to observe that the upper bound κ(G ∗ Z) ≤ κ(G) holds trivially for every finitely
presentable group G.

To sum up, we compile the last results about the simplicial complexity of surface groups in
the next theorem.

Theorem 4.4.7. The simplicial complexity κ(π1(S)) of the fundamental group of a non-simply
connected closed surface S coincides with the minimum number of 2-simplices in an optimal
triangulation of S. Furthermore, the simplicial complexity of surface groups is stable under free
product with free groups, that is, κ(π1(S) ∗ Z) = κ(π1(S)).

4.5 The simplicial complexity of a free product of groups

We have just seen that the simplicial complexity is stable under taking free product with free
groups for surface groups. In this section we take another path to study the simplicial complexity
of a free product of general groups, using as a starting point the construction described in §3.4.
Similarly as in the case of the systolic area, it would be desirable to obtain a lower estimate on the
simplicial complexity G ∗H in terms of κ(G) and κ(H). To be more specific, it seems plausible
that the inequality κ(G ∗H) ≥ max{κ(G), κ(H)} holds. Unfortunately, in the general case we
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have no definitive results about the simplicial complexity of a free product of groups. Rather,
we intend to present a possible strategy for proving that inequality, indicating the missing parts.

The initial setup is almost identical to the setup in §3.4. Let G and H be finitely presentable
groups and take a triangulation K of G ∗H that realizes the simplicial complexity κ(G ∗H). As
explained in §3.4, if XG and XH are triangulations of G and H, respectively, there is a simplicial
map f : K ′ → XG ∨XH that induces an isomorphism on fundamental groups for an appropriate
subdivision K ′ of K. Define the subcomplex KG of K ′ as KG := f−1(XG) and let KH be the
simplicial closure of the complement of KG in K ′, so that KG ∪KH = K ′ and KG ∩KH is 1-
dimensional. In Lemma 3.4.3 we showed a way to obtain a subcomplex of K ′ with fundamental
group isomorphic to G formed by KG, the cone on KG ∩KH and certain additional 2-cells. In
the present context we modify the output of that result to avoid the need of attaching extra
2-cells.

Lemma 4.5.1. Let KG and KH be the simplicial complexes defined above. Then, there exists
a 1-dimensional simplicial complex M such that the simplicial complex KG ∪ C(KG ∩KH) ∪M
is connected and has fundamental group isomorphic to G. Here, by C(KG ∩ KH) we mean
the complex formed by a disjoint union of cones, exactly one over each connected component of
KG ∩KH .

Proof. If the intersection of KG and KH is connected, we may apply Lemma 3.4.2 and we are
done. In the opposite case, analogously as in the proof of Lemma 3.4.3, there is a simplicial
path λ in K ′ joining two different connected components of KG ∩ KH whose image f ◦ λ is a
null-homotopic loop based in v and completely contained in XG or XH . Just as in Lemma 3.4.3,
form the mapping cylinder Mλ of λ : I → K ′ and extend f to Mλ using the homotopy that
contracts λ to v. If e is the cylindrical new 2-cell and ` is the part of the boundary of e which
is not identified with λ, define K̃G as KG ∪ e or KG ∪ `, depending on whether λi ⊆ KG or not.
Define K̃H in the same way and notice that K̃G ∩ K̃H = (KG ∩KH) ∪ `.

After a finite number of steps, we obtain a CW-complex K̃ of dimension 2, an extension
f̃ : K̃ → XG ∨ XH of the map f which induces isomorphism on fundamental groups and
subcomplexes K̃G, K̃H which cover K̃ and intersect in a connected 1-dimensional subcomplex.
It is clear from the construction that K̃G (respectively K̃H) is connected and collapses to the
union of KG (respectively KH) with some graph (simply collapse each new 2-cell e in K̃G or K̃H

through the free face `).
Moreover, since f̃∗ is an isomorphism and f̃(K̃G ∩ K̃H) = {v}, the argument in the proof

of Lemma 3.4.2 reveals that π1(K̃G/(K̃G ∩ K̃H)) (and hence, also π1(K̃G ∪ C(K̃G ∩ K̃H)) is
isomorphic to G. Let us analyze the complex K̃G ∪ C(K̃G ∩ K̃H) more closely. We may think
of the process of attaching a cone on K̃G ∩ K̃H as the concatenation of three steps: first we
attach a cylinder (K̃G ∩ K̃H) × I at height 0, then we identify all points at height 1 over the
same connected component of KG ∩ KH and finally we identify all points at height 1 over an
edge in K̃G ∩ K̃H \KG ∩KH . Let L be the CW-complex obtained after applying the first two
steps. Consider the complex obtained from L by collapsing each cylindrical 2-cell over an edge
in K̃G ∩ K̃H \KG ∩KH to its base (see Figure 4.1). After such collapses, the new 2-cells in K̃G,
that is, those 2-cells that are not in K ′ have free faces and can be collapsed. Thus, L collapses
to the union of KG ∪C(KG ∩KH) with a certain graph M . Since the identifications performed
in the third step are homotopy equivalences, we conclude that K̃G ∪ C(K̃G ∩ K̃H) is homotopy
equivalent to KG ∪ C(KG ∩KH) ∪M and the claim follows.
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Figure 4.1: The left arrow is the identification of the upper part of the cylinder to a point, while
the right arrow is the collapse through this edge.

In general, one may not expect the complex KG∪C(XG∩XH)∪M to have at most κ(G∗H)
2-simplices. The objective of the rest of the section is showing how to estimate the number of
2-simplices of (some parts) of the complex.

In what follows, we think of the complex K as a rigid geometric structure (for example, as its
geometric realization in some euclidean space Rn) in which the subdivision K ′ has been marked.
For a 2-simplex σ of K we write σ′ ≤ K ′ to mean the subcomplex of the subdivided complex K ′

given by
σ′ =

⋃
τ⊆σ,τ∈K′

τ.

We distinguish two subcomplexes of KG ≤ K ′ depending on the way they are distributed along
the 2-simplices of K. Let A be the subcomplex of KG generated by the union of those sub-
complexes σ′ such that σ′ ∩KG = σ′, where σ is a 2-simplex of K. That is, A is the union of
the subdivided 2-simplices of K which are completely covered by 2-simplices of KG. Let B be
the complementary subcomplex of KG. Notice that B collapses to a graph: indeed, for each
2-simplex σ of K, the complex B ∩ σ′ is a proper subcomplex of σ′ relative to the subdivision of
the boundary (∂σ)′, that is, the collapse does not use edges belonging to the subcomplex (∂σ)′.
Hence, the collapses inside each original 2-simplex σ ∈ K do not interfere and we see that B
collapses to a graph.

We speculate for that reason that it is maybe possible to prove that the fundamental group
of the union of B with the cone over the edges of KG∩KH that belong to B is free (it should be
noted that without some additional hypotheses this need not be true: for example, triangulations
of the Möbius band collapse to a graph but the cone on the boundary of the band does not have
free fundamental group). Suppose that the fundamental group of B∪C(KG∩KH∩B) is free. If in
addition the connected components of the intersection of this complex with A∪C(KG∩KH ∩A)
are simply connected, by the Seifert-van Kampen theorem the fundamental group of

KG ∪ C(KG ∩KH) ∪M = (A ∪ C(KG ∩KH ∩A)) ∪ (B ∪ C(KG ∩KH ∩B)) ∪M

is isomorphic to the free product of π1(A ∪ C(KG ∩ KH ∩ A)) with a free group. In such
situation, since π1(KG ∪ C(KG ∩ KH) ∪M) is isomorphic to G, the number of 2-simplices in
A ∪ C(KG ∩KH ∩A) bounds the simplicial complexity of G from above.

We will assume in what follows that both the condition over the fundamental group of
B ∪C(KG ∩KH ∩B) and its intersection with A∪C(KG ∩KH ∩A) are true and concentrate in
estimating the number of 2-simplices in the latter complex. We will be able to establish, modulo
those two conditions, a bound from below for the simplicial complexity of G∗H in terms of κ(G).
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Of course, to complete the proof of the bound in full generality one would need to guarantee that
the two mentioned conditions hold, possibly by carrying out some modifications in the spirit of
Lemma 4.5.2 below to gain greater control over the complexes KG and KH and its intersection.

At first sight, it would seem that the number of 2-simplices in A ∪ C(KG ∩KH ∩ A) could
be arbitrarily larger than the number of simplices in K, since we do not control how fine the
subdivision K ′ needs to be taken. However, the first thing to notice is that after erasing the
subdivisions, the complex A may be considered as a subcomplex of the original complex K. To
legitimately clear the subdivisions, we need to ensure that such process does not destroy the
simplicial structure in the cone C(KG ∩ KH ∩ A). Take an edge e in KG ∩ KH ∩ A. Since e
belongs in particular to the intersection of KG and KH , it cannot be in the interior of an original
2-simplex σ of K. Indeed, if this would be the case, e should be the face of some 2-simplex of
the subdivision K ′ whose image under f is contained in XH . But since e ∈ A, f(σ) is contained
in XG. Hence, e is an edge of the subdivision of some edge E of the 1-skeleton of K.

Now, consider the connected component Z of E∩(KG∩KH∩A) containing e. If Z is a proper
subcomplex of the subdivision of E, it means that the edge over some of the two endpoints of Z is
free (that is, the face of only one 2-simplex) in the complex A∪C(KG∩KH ∩A). Thus, the cone
over Z may be collapsed through this edge to a 1-dimensional complex. Thus, after performing
all such collapses and erasing the subdivisions, we arrive at a 2-dimensional complex L in which
the 2-simplices are only of one of two types. On one hand, we have the original 2-simplices of K
which come from forgetting the subdivisions in A and on the other, the 2-simplices of the cone
which are based on 1-simplices of K. To be able to control the number of 2-simplices in L of the
second type, we need to perform a modification to the map f and the subdivision of K at the
start of the construction (in particular, before the definition of the complexes KG and KH).

Lemma 4.5.2. Let σ = {a, b, c} be a 2-simplex of K (before the subdivision) and suppose that
f(σ) 6= {v}. Then, the map f and the subdivision K ′ of K can be modified to send to v at
most one of the edges of ∂σ := {a, b} ∪ {a, c} ∪ {b, c}, while still inducing an isomorphism on
fundamental groups.

Proof. We deal first with the case in which f sends the whole boundary of σ to {v}. Define
g : K → XG ∨XH to be identically v in σ and equal to f outside σ. Since g is simplicial and
coincides with f in the 1-skeleton K(1), it induces the same morphism on fundamental groups as
f and we are done.

Suppose now that f({a, b}) = f({a, c}) = {v}. Then α = f |{b,c} : {b, c} → XG ∨ XH is a
loop in v. Notice that this loop is trivial in the fundamental group π1(XG ∨ XH , v). Indeed,
α is path-homotopic to a loop β that parameterizes f(∂σ). Since [∂σ] is trivial in π1(K), the
class of α in π1(XG ∨XH , v) is trivial. From a path-homotopy between α and the constant path
v in XG ∨ XH , we obtain by the relative simplicial approximation theorem a simplicial map
F : D → XG ∨ XH such that D is a triangulated disk with boundary `1 ∪ `2 where `1, `2 are
intervals triangulated as (the subdivision in K ′ of) {b, c} and F |`1 = α, F |`2 = constv, the map
which is constantly v. Now, for a 2-simplex η of K containing the edge {b, c} consider η ∪ Dη

where Dη is a simplicially isomorphic copy of D and glue Dη to η by the interval `1. We can get
a new subdivision of K by replacing the simplices η in the star (in K) of {b, c} by η ∪Dη, where
we glue η ∪Dη and τ ∪Dτ by the isomorphic copy of `2 in Dη and Dτ . The map defined as f
outside the star of {b, c} in K and as f ∪ F on every η ∪Dη for η in stK({b, c}) clearly defines
the same map as f on fundamental groups.
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As a consequence, we may assume that every 2-simplex of K has at most one edge that gets
mapped entirely to {v} under f . The relevance of this relies in the fact that the edges of K that
are the base of 2-simplices in the cone part of L are mapped to {v} by f since they belong to
the intersection KG ∩KH . It follows that for each 2-simplex of K not in A there is at most one
2-simplex in the cone part of L and hence, the number of 2-simplices in L is at most κ(G ∗H),
the number of 2-simplices in K. Summing up, this argument would show that κ(G∗H) is greater
than or equal to κ(G) if we were able to account for the effect on the fundamental group of the
complex KG ∪ C(KG ∩ KH) corresponding to the subcomplex B without spending additional
2-simplices.
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[37] A. A. Găıfullin. Configuration spaces, bistellar moves, and combinatorial formulas for the
first Pontryagin class. Tr. Mat. Inst. Steklova, 268(Differentsial’nye Uravneniya i Topologiya.
I):76–93, 2010.

[38] I. M. Gel’fand and R. D. MacPherson. A combinatorial formula for the Pontrjagin classes.
Bull. Amer. Math. Soc. (N.S.), 26(2):304–309, 1992.

[39] M. A. Grayson. Shortening embedded curves. Ann. of Math. (2), 129(1):71–111, 1989.

[40] B. Green, N. A. Scoville, and M. Tsuruga. Estimating the discrete geometric Lusternik-
Schnirelmann category. Topol. Methods Nonlinear Anal., 45(1):103–116, 2015.

[41] M. Gromov. Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci.
Publ. Math., 53(1):53–73, 1981.

[42] M. Gromov. Structures métriques pour les variétés riemanniennes, volume 1 of Textes
Mathématiques [Mathematical Texts]. CEDIC, Paris, 1981. Edited by J. Lafontaine and P.
Pansu.

[43] M. Gromov. Volume and bounded cohomology. Inst. Hautes Études Sci. Publ. Math.,
56:5–99 (1983), 1982.

[44] M. Gromov. Filling Riemannian manifolds. J. Differential Geom., 18(1):1–147, 1983.

[45] M. Gromov. Hyperbolic groups. In Essays in group theory, volume 8 of Math. Sci. Res.
Inst. Publ., pages 75–263. Springer, New York, 1987.

[46] M. Gromov. Systoles and intersystolic inequalities. In Actes de la Table Ronde de Géométrie
Différentielle (Luminy, 1992), volume 1 of Sémin. Congr., pages 291–362. Soc. Math. France,
Paris, 1996.

[47] M. Gromov. Metric structures for Riemannian and non-Riemannian spaces. Modern
Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, english edition, 2007. Based
on the 1981 French original, With appendices by M. Katz, P. Pansu and S. Semmes, Trans-
lated from the French by Sean Michael Bates.

87



Bibliography

[48] L. Guth. Notes on Gromov’s systolic estimate. Geom. Dedicata, 123:113–129, 2006.

[49] L. Guth. Metaphors in systolic geometry. In Proceedings of the International Congress of
Mathematicians. Volume II, pages 745–768. Hindustan Book Agency, New Delhi, 2010.

[50] L. Guth. Systolic inequalities and minimal hypersurfaces. Geom. Funct. Anal., 19(6):1688–
1692, 2010.

[51] M. Hachimori. Decompositions of two-dimensional simplicial complexes. Discrete Math.,
308(11):2307–2312, 2008.

[52] A. Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.

[53] J. J. Hebda. Some lower bounds for the area of surfaces. Invent. Math., 65(3):485–490,
1981/82.

[54] C. Hog-Angeloni and W. Metzler, editors. Two-dimensional homotopy and combinatorial
group theory, volume 197 of London Mathematical Society Lecture Note Series. Cambridge
University Press, Cambridge, 1993.

[55] J. F. P. Hudson. Piecewise linear topology. University of Chicago Lecture Notes prepared
with the assistance of J. L. Shaneson and J. Lees. W. A. Benjamin, Inc., New York-
Amsterdam, 1969.

[56] S. V. Ivanov. Volumes and areas of Lipschitz metrics. Algebra i Analiz, 20(3):74–111, 2008.

[57] S. V. Ivanov and M. G. Katz. Generalized degree and optimal Loewner-type inequalities.
Israel J. Math., 141:221–233, 2004.

[58] M. Jungerman and G. Ringel. Minimal triangulations on orientable surfaces. Acta Math.,
145(1-2):121–154, 1980.

[59] J. Kahn and V. Markovic. Immersing almost geodesic surfaces in a closed hyperbolic three
manifold. Ann. of Math. (2), 175(3):1127–1190, 2012.

[60] G. Kalai. Rigidity and the lower bound theorem. I. Invent. Math., 88(1):125–151, 1987.

[61] M. Karoubi and C. Weibel. On the covering type of a space. Enseign. Math., 62(3-4):457–
474, 2016.

[62] K. U. Katz and M. G. Katz. Bi-Lipschitz approximation by finite-dimensional imbeddings.
Geom. Dedicata, 150:131–136, 2011.

[63] K. U. Katz, M. G. Katz, S. Sabourau, S. Shnider, and S. Weinberger. Relative systoles of
relative-essential 2-complexes. Algebr. Geom. Topol., 11(1):197–217, 2011.

[64] M. G. Katz, Y. B. Rudyak, and S. Sabourau. Systoles of 2-complexes, Reeb graph, and
Grushko decomposition. Int. Math. Res. Not., pages Art. ID 54936, 30, 2006.

[65] M. G. Katz and S. Sabourau. Entropy of systolically extremal surfaces and asymptotic
bounds. Ergodic Theory Dynam. Systems, 25(4):1209–1220, 2005.

88



Bibliography

[66] J. M. Lee. Introduction to topological manifolds, volume 202 of Graduate Texts in Mathe-
matics. Springer, New York, second edition, 2011.

[67] L. A. Lusternik and L. G. Schnirelmann. Méthodes topologiques dans les problèmes varia-
tionnels. Hermann, Paris, 1934.

[68] F. H. Lutz. Triangulated manifolds with few vertices and vertex-transitive group actions.
Berichte aus der Mathematik. [Reports from Mathematics]. Verlag Shaker, Aachen, 1999.
Dissertation, Technischen Universität Berlin, Berlin, 1999.

[69] F. H. Lutz. Combinatorial 3-manifolds with 10 vertices. Beiträge Algebra Geom., 49(1):97–
106, 2008.

[70] S. V. Matveev. Complexity theory of three-dimensional manifolds. Acta Appl. Math.,
19(2):101–130, 1990.

[71] J. Milnor and W. Thurston. Characteristic numbers of 3-manifolds. Enseign. Math. (2),
23(3-4):249–254, 1977.

[72] M. Morse. The calculus of variations in the large, volume 18 of American Mathematical
Society Colloquium Publications. American Mathematical Society, Providence, RI, 1996.
Reprint of the 1932 original.

[73] K. Nakamura. On Isosystolic Inequalities for Tn, RPn, and M3. arXiv e-prints, page
arXiv:1306.1617, Jun 2013.

[74] P. M. Pu. Some inequalities in certain nonorientable Riemannian manifolds. Pacific J.
Math., 2:55–71, 1952.

[75] J. G. Ratcliffe. The cohomology ring of a one-relator group. In Contributions to group
theory, volume 33 of Contemp. Math., pages 455–466. Amer. Math. Soc., Providence, RI,
1984.

[76] G. Ringel. Wie man die geschlossenen nichtorientierbaren Flächen in möglichst wenig
Dreiecke zerlegen kann. Math. Ann., 130:317–326, 1955.

[77] Y. B. Rudyak and S. Sabourau. Systolic invariants of groups and 2-complexes via Grushko
decomposition. Ann. Inst. Fourier (Grenoble), 58(3):777–800, 2008.

[78] R. Schoen. Estimates for stable minimal surfaces in three-dimensional manifolds. In Seminar
on minimal submanifolds, volume 103 of Ann. of Math. Stud., pages 111–126. Princeton
Univ. Press, Princeton, NJ, 1983.

[79] P. Scott and C. T. C. Wall. Topological methods in group theory. In Homological group
theory (Proc. Sympos., Durham, 1977), volume 36 of London Math. Soc. Lecture Note Ser.,
pages 137–203. Cambridge Univ. Press, Cambridge-New York, 1979.

[80] J. R. Stallings. A topological proof of Grushko’s theorem on free products. Math. Z., 90:1–8,
1965.

89



Bibliography

[81] R. Thom. Quelques propriétés globales des variétés différentiables. Comment. Math. Helv.,
28:17–86, 1954.

[82] W. Thurston. Geometry and topology of three-manifolds, 1978.

[83] C. T. C. Wall. Finiteness conditions for CW-complexes. Ann. of Math. (2), 81:56–69, 1965.

[84] A. Weil. Sur les théorèmes de de Rham. Comment. Math. Helv., 26:119–145, 1952.

[85] G. W. Whitehead. On mappings into group-like spaces. Comment. Math. Helv., 28:320–328,
1954.

90


	Lusternik-Schnirelmann category and related invariants
	Lusternik-Schnirelmann category
	Discrete versions of L-S type invariants
	Covers of polyhedra by PL collapsible subpolyhedra
	PL geometric category in dimension 2
	The geometry of one-relator presentations
	Inner-connected polyhedra


	Minimal triangulations of homotopy types of surfaces
	Minimal triangulations of surfaces
	The covering type of spaces
	The covering type of surfaces
	The covering type of surfaces: the exceptional cases

	Systolic geometry
	An overview of systolic geometry
	Systolic area
	An extension of Guth's systolic inequality
	Systolic area of groups

	Systolic area of a free product of groups

	A discrete approximation for the systolic area
	The simplicial complexity of groups
	A homological simplification method
	A lower bound for simplicial complexity
	The simplicial complexity of surface groups
	The simplicial complexity of a free product of groups

	Bibliography

