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Abstract Let U and V be convex and balanced open subsets of the Banach spaces X
and Y respectively. In this paper we study the following question: Given two Fréchet
algebras of holomorphic functions of bounded type on U and V respectively that
are algebra-isomorphic, can we deduce that X and Y (or X∗ and Y ∗) are isomor-
phic? We prove that if X∗ or Y ∗ has the approximation property and Hwu(U) and
Hwu(V ) are topologically algebra-isomorphic, then X∗ and Y ∗ are isomorphic (the
converse being true when U and V are the whole space). We get analogous results for
Hb(U) and Hb(V ), giving conditions under which an algebra-isomorphism between
Hb(X) and Hb(Y ) is equivalent to an isomorphism between X∗ and Y ∗. We also
obtain characterizations of different algebra-homomorphisms as composition oper-
ators, study the structure of the spectrum of the algebras under consideration and
show the existence of homomorphisms on Hb(X) with pathological behaviors.

Introduction

J.C. Dı́az and S. Dineen in [12, p. 95] raised the following question: If X and Y are
complex Banach spaces and X∗ ∼= Y ∗ (i.e., X∗ and Y ∗ are topologically isomorphic)
does this imply that the spaces of continuous m-homogenous polynomials P (mX)
and P (mY ) are also topologically isomorphic for all m? They gave a partial positive
answer. Several authors have recently obtained more partial positive answers to this
question. S. Lassalle and I. Zalduendo in [21, Thorem 4] proved that the question
has a positive answer if X and Y are symmetrically regular Banach spaces and
X∗ ∼= Y ∗. In [7, Theorem 1] an analogous result is proved when X is a regular
Banach space and X∗ ∼= Y ∗ (see below for the required definitions); moreover, it
is also proved ([7, Corollary 2]) that, under the same hypothesis on X and Y , the
spaces of holomorphic functions of bounded type Hb(X) and Hb(Y ) are topologically
isomorphic as Fréchet algebras. This kind of results have been recently extended for
other Fréchet algebras of vector-valued holomorphic functions in [9]. In this article
we study a kind of converse problem. Given two open sets U ⊂ X and V ⊂ Y
and F(U) and F(V ) two Fréchet algebras of holomorphic functions of bounded
type on U and V respectively, the question that we face is the following: If F(U)
and F(V ) are topologically isomorphic algebras, can we conclude that X and Y (or
X∗ and Y ∗) are topologically isomorphic? We are also interested in knowing if it is
possible to establish a biholomorphic function between the open sets U and V , to be
able to characterize when these topological algebra-isomorphisms are composition
operators.

Cartan in the forties proved that given two complete Reinhardt domains U and
V in Cn (i.e., two balanced and n-circled open sets U and V in Cn) the spaces
of holomorphic functions H(U) and H(V ) are topologically algebra-isomorphic if
and only if there exists f : U −→ V a bijective biholomorphic function. But in
1960 Aizenberg and Mityagin proved in [6] that given any two bounded complete
Reinhardt domains U and V , thenH(U) andH(V ) are topologically isomorphic. It is
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well known that the euclidean unit ball and the unit polydisc in Cn are two bounded
complete Reinhardt domains that are not biholomorphically equivalent. This is the
main reason to restrict ourselves to consider only topological algebra-isomorphisms.

In section one we solve completely our questions in the case that we consider the
Fréchet algebras Hwu(U) and Hwu(V ) for U and V convex and balanced open sub-
sets of X and Y respectively, when either X∗ or Y ∗ has the approximation property.
As a particular case, we show that Hwu(X) and Hwu(Y ) are topologically algebra-
isomorphic if and only if X∗ and Y ∗ are isomorphic Banach spaces. We derive our
results from a more general solution to our problems: the case of Hw∗u(U) and
Hw∗u(V ) for U and V convex and balanced boundedly-regular open subsets of X∗

and Y ∗, when either X or Y has the approximation property. We obtain character-
izations of the homomorphisms as composition operators.

In the second section we study the case of Hb(U), obtaining positive answers, for
example, when every polynomial on the bidual of one of the spaces involved is ap-
proximable. In this case, if Hb(U) and Hb(V ) are topological algebra-isomorphic
then X∗ and Y ∗ are isomorphic Banach spaces, the converse being true when the
domains are the whole spaces. We also show that without the hypothesis of approx-
imability the situation is very complex, even if we deal with entire functions. Every
homomorphism on an algebra induces a mapping on the spectrum of the algebra. We
find that for a wide class of Banach spaces X there are homomorphisms on Hb(X)
whose induced mappings have pathological (and unexpected) behaviours. In both
sections we study the structure of the spectra of the algebras under consideration.

Throughout the paper X and Y will be complex Banach spaces. For the definitions
an basic properties of polynomials and holomorphic functions we refer to [15].

If A is a subset of a Banach space X, Γ(A) will denote the smallest convex and
balanced set in X that contains A. Let U ⊂ X be open. We say that B ⊂ U is a
U-bounded set if it is bounded and dist(B,X \U) > 0. We say that B = (Bn)∞n=1 is
a fundamental sequence of U-bounded sets if it satisfies the two following conditions:
(i) Bn is U -bounded for all n and given B a U -bounded set there exists n such
that B ⊂ Bn. (ii) There exits a sequence of positive numbers (rn)∞n=1 such that
Bn +rnBX ⊂ Bn+1 for all n. The fundamental family of U -bounded sets that we use
throughout the paper is (Un)∞n=1 where Un = {x ∈ U : ‖x‖ ≤ n and dist(x,X \U) ≥
1
n
}, n ∈ N (see Remark 2 below). We will denote by Hb(U) the space of holomorphic

functions f : U → C that are bounded on U -bounded sets, i.e., ‖f‖B := sup{|f(x)| :
x ∈ B} <∞ for all U -bounded set B.Hb(U) is a Fréchet algebra when endowed with
the topology of the uniform convergence on U -bounded subsets of U . The sequence
of seminorms (‖f‖Un)∞n=1 gives the Fréchet structure of Hb(U). Given F a Fréchet
algebra, its spectrum, that we denote by M(F), is the set of all non null continuous
linear and multiplicative mapping ϕ : F −→ C.
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1 Homomorphisms in Hw∗u(U) and Hwu(U)

Let U ⊂ X∗ be open. We will denote by Hw∗u(U) the space of holomorphic functions
f : U → C that are uniformly w(X∗, X)-continuous on U -bounded sets. As Hw∗u(U)
is a closed subalgebra of Hb(U), it is again a Fréchet algebra endowed with the
topology of the the uniform convergence on U -bounded subsets of U . LetMw∗u(U) be
the spectrum of Hw∗u(U). For x∗ ∈ U we have δx∗ ∈Mw∗u(U), where δx∗(f) := f(x∗)
for f ∈ Hw∗u(U). Since X is contained in Hw∗u(U), we can define a projection
π : Mw∗(U) → X∗ as π(ϕ) = ϕ|X .

Proposition 1 Let U be an open subset of X∗. We have

⋃
n

Un
w∗ ⊂ π(Mw∗u(U)) ⊂

⋃
n

Γ(Un)
w∗

.

In particular, if U is a convex and balanced open set of X∗, then π(Mw∗u(U)) =⋃
n Un

w∗
.

PROOF. Every f ∈ Hw∗u(U) is uniformly weak-star continuous in each Un, hence it

extends uniquely to a weak-star continuous function f̃ : Un
w∗ −→ C with ‖f̃‖Un =

‖f‖
Un

w∗ . Thus, for each x∗ ∈ Un
w∗

, the mapping δx∗ : Hw∗u(U) −→ C given by

δx∗(f) = f̃(x∗) (f ∈ Hw∗u(U)) is a continuous homomorphism.

Therefore,
⋃

n{δx∗ : x∗ ∈ Un
w∗} ⊂ Mw∗u(U) and, since π(δx∗) = x∗, we have⋃

n Un
w∗ ⊂ π(Mw∗u(U)). For the second inclusion, let ϕ ∈ Mw∗u(U) and x∗ = π(ϕ).

Since ϕ is continuous, there exists n ∈ N such that |ϕ(f)| ≤ ‖f‖Un for all f ∈
Hw∗u(U). In particular,

|x∗(x)| = |δx∗(x)| ≤ sup
y∗∈Un

|y∗(x)|.

This means that x∗ ∈ Γ(Un)
w∗

. 2

Remark 2 With the above notation, we set Ũ :=
⋃

n U
w∗

n , and δ : Ũ −→Mw∗u(U),

δ(x∗) := δx∗ . We have that δ(Ũ) ⊂ Mw∗u(U). Note that Ũ := ∪{Bw∗
: B is U −

bounded}. Also, Ũ is an open subset of X∗ contained in U
w∗◦

, the ‖.‖∗-interior of

U
w∗

. Indeed, if x∗ ∈ Un
w∗

, there exists a net (x∗α)α ⊂ Un such that x∗α
w∗−→ x∗. For

y∗ ∈ 1
2n(n+1)

BX∗ , we have that (x∗α + y∗)α is contained in Un+1 and w∗-converges to

x∗ + y∗. Therefore, x∗ + 1
2n(n+1)

BX∗ ⊂ Un+1
w∗

for all x∗ ∈ Un
w∗

and we obtain

Un
w∗

+
1

2n(n+ 1)
BX∗ ⊂ Un+1

w∗ ⊂ U
w∗

(1.1)
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for all n ∈ N.

In order to clarify the properties of the extension f̃ of any f ∈ Hw∗u(U), we
are going to introduce a new class of Fréchet algebras. Let U be an open sub-
set of X∗ and B = (Bn)∞n=1 a countable family of weak-star closed U -bounded
sets satisfying ∪∞n=1Bn = U and such that for each n there is εn > 0 with Bn +
εnBX∗ ⊂ Bn+1. We define the Frechét algebra HBw∗u(U) := {f ∈ H(U) : f |Bn

is weak-star uniformly continuous on Bn for all n = 1, . . .}, endowed with the fam-
ily of seminorms (‖.‖Bn)∞n=1. If B is a fundamental sequence of U -bounded sets then
HBw∗u(U) = Hw∗u(U) algebraically and topologically.

Proposition 3 (i) Let U be a balanced open subset of X∗ and B = (Un
w∗

)∞n=1. Every
f ∈ Hw∗u(U) extends uniquely to an f̃ ∈ HBw∗u(Ũ) and the mapping i : Hw∗u(U) −→
HBw∗u(Ũ), i(f) := f̃ is an topological algebra-isomorphism.

(ii) If U is a convex balanced open subset of X∗ and X has the approximation
property then Mw∗(U) = δ(Ũ).

PROOF. (i) Let U be a balanced open set. If f ∈ Hw∗u(U) and
∑∞

m=1 Pm is the
power series expansion of f at 0, then it converges to f inHw∗u(U) and, by [3, Lemma
2.1], Pn ∈ Hw∗u(X) for all n. Since there exists rn > 1 such that rnUn ⊂ Un+1 for
every n, we have

rm
n ‖Pm‖Un

w∗ = rm
n ‖Pm‖Un = ‖Pm‖rnUn ≤ ‖Pm‖Un+1 ≤ ‖f‖Un+1 , (1.2)

for all n. Thus
∑∞

m=0 Pm converges absolutely and uniformly on Un
w∗

for all n and
f̃ =

∑∞
m=0 Pm ∈ HBw∗u(Ũ).

(ii) By Proposition 1, π(Mw∗u(U)) = Ũ and by part (i) (and its proof), f̃ ∈ HBw∗u(Ũ)
and the polynomials in Hw∗u(X

∗) are dense in HBw∗u(Ũ). Every polynomial of that
class can be approximated uniformly on the bounded sets by weak-star finite type
polynomials [5, Thm. 2]. This means that the algebra spanned by X is dense in
HBw∗u(Ũ) and therefore, ϕ(f) = (i−1)∗(ϕ)(f̃) = f̃(π(ϕ)) = δπ(ϕ)(f) for all f ∈
Hw∗(U) and all ϕ ∈Mw∗u(U). 2

The above proposition is a generalization of [5, theorem 3], where the authors show
that if X is a Banach space with the approximation property, then Mw∗(X) = {δx∗ :
x∗ ∈ X∗}. Next example shows that the result cannot be extended to an arbitrary
open set, even in the finite dimensional case.

Example 4 Let U = {z ∈ C2 : 1
2
< ‖x‖∞ < 1}. We have U = Ũ . But it is known

[20, Remark and Example, p. 91] that every holomorphic function f ∈ H(U) extends
uniquely to a function f̃ ∈ H(W ), where W = {z ∈ C2 : ‖x‖∞ < 1} and moreover,
the mapping i : H(U) −→ H(Ũ) defined as i(f) := f̃ is an algebra topological
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isomorphism. Therefore, M(H(U)) = Mw∗u(U) = Mw∗u(W ). Since W is a convex
and balanced open set, by above proposition we have M(H(U)) = {δx : x ∈ C2 :
‖x‖∞ < 1}.

In the previous example, next remark and the examples following it we exhibit some
characteristics of the relationship between U , Ũ and Mw∗u(U). This characteristics
relay not only in the holomorphic nature of the involved functions (as in the previous
proposition) but also in topological and geometrical aspects of the open set U .

Remark 5 (i) If U is the polar of a bounded open set in X, then Ũ = U . Indeed,
U is the dual unit ball of an equivalent norm in X. In this case, we have that the
w∗-closure of each Un coincides with its norm closure and then Ũ = U .

(ii) On the other hand it is natural to ask about the relationship between Ũ and U
w∗◦

,

the ‖.‖∗-interior of U
w∗

. If U is a bounded, convex and balanced open set in X∗, then

Ũ = U
w∗◦
. This is a consequence of the fact that we can take Un = n

n+1
U n ∈ N and

hence Ũ = ∪∞n=1
n

n+1
U

w∗
= U

w∗◦
. Moreover, the sequence (Un

w∗
)∞n=1 = ( n

n+1
U

w∗
)∞n=1

is a fundamental sequence of Ũ -bounded sets. Another trivial case in which the

equality in Ũ = U
w∗◦

holds is whenever U = X∗. But we do not know if Ũ coincides

with U
w∗◦

in general. This is equivalent to say that any x∗ ∈ U
w∗◦

is the w∗-limit of
a U -bounded net in U . In [8] we have constructed, in any infinite dimensional X∗,

a balanced open set U and an element x∗ ∈ U
w∗

which is not the w∗-limit of any
bounded net in U . Also we give an example of an absolutely convex open set in `1
with the same property. In both examples, we follow some ideas from [10, Lemma
1].

Example 6 shows that the equality Ũ = U is not true in general, even if U is bounded
and absolutely convex.

Example 6 Let U = {x ∈ `1 : p(x) :=
∑∞

k=1 |xk| + 2|∑∞
k=1 xk| < 5

2
}. Since p(e1 −

em + x) ≤ 2 + 3‖x‖ for all x ∈ `1, we have that e1 − em + 1
6
B`1 ⊂ U for all m ∈ N.

Hence, ∪∞m=1e1 − em + 1
7
B`1 is a U -bounded set. But p(e1 + x) ≥ 3(1 − ‖x‖) for

all x ∈ `1, and e1 − em + x converges to e1 + x in the weak-star topology. Thus,
e1 + 1

7
B`1 ⊂ Ũ \ U and we conclude that U  Ũ .

Another natural question raised by Proposition 3 is the following: given U an open

set in X∗ and (Un) a fundamental sequence of U -bounded sets, is (Un
w∗

) a funda-
mental sequence of Ũ -bounded sets? Whenever the answer is positive we call U a
boundedly-regular open set. The whole dual space X∗ and every convex, balanced
and bounded open set are examples of boundedly-regular open sets (see Remark
5(ii)). By Proposition 3, if U a balanced boundedly-regular open set then the map-
ping Φ : Hw∗u(Ũ) −→ Hw∗u(U) defined as Φ(f) := f |U for all f ∈ Hw∗u(Ũ) is a
topological algebra-isomorphism. But, in general, neither all balanced open sets are
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boundedly-regular nor Φ is a topological algebra-isomorphism, as the next example
shows.

Example 7 This is an example of a balanced open set U ⊂ X∗ which is not
boundedly-regular. Moreover, we will see that the spaces HBw∗u(Ũ) and Hw∗u(Ũ)

do not coincide for B = {Un
w∗

: n ∈ N}, where {Un : n ∈ N} is a fundamental
sequence of U -bounded sets in U . We consider X∗ = `1.

For each k > 4 and x ∈ `1 we set

pk(x) = k
∑
i6=k

|x2i+1|+ |
∑

i

x2i + kx2k+1|.

Let Vk = {x ∈ `1 : pk(x) < 2}. Now we define U as:

U =
⋃
k>4

Vk +
1

4
B`1 .

In order to see that U is not boundedly-regular, we construct a Ũ -bounded set D

such that there is no bounded set B ⊂ U with D ⊂ B
w∗

. We fix k > 4. If m ∈ N,
pk(e2k+1−ke2m) = 0 and therefore, e2k+1−ke2m belongs to Vk. Moreover, if ‖x‖ < 1

8
,

dist(e2k+1 − ke2m + x, `1 \ U) > 1
8

and we have that {e2k+1 − ke2m + x : m ∈ N} is
U -bounded. Since

w∗ − lim
m→∞

(e2k+1 − ke2m + x) = e2k+1 + x,

we have that e2k+1 +x ∈ Ũ whenever ‖x‖ < 1
8
. In other words, dist(e2k+1, `1\ Ũ) ≥ 1

8

and consequently the set D := {e2n+1 : n > 4} is Ũ -bounded.

Suppose there exists a bounded B ⊂ U such that D ⊂ B
w∗

. For each n > 4,

e2n+1 ∈ B
w∗

and there exists yn ∈ B such that |yn
2n+1| > 1 − 1

4
. We will see that

(yn)n is not bounded.

Let k > 4 such that yn ∈ Vk + B(0, 1
4
) and let xn ∈ Vk with ‖yn − xn‖ < 1

4
. Note

that |xn
2n+1| > 1

2
.

First, we see that n and k coincide: if n 6= k,

pk(x
n) = k

∑
i6=k

|xn
2i+1|+ |

∑
i

xn
2i + kxn

2k+1| ≥ k|xn
2n+1| >

k

2
> 2,

which means that xn is not in Vk, a contradiction. Therefore, k = n.
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Now, we estimate ‖xn‖. Since xn ∈ Vn,

2 > |pn(xn)| ≥ |
∑

i

xn
2i + nxn

2n+1| ≥
∣∣∣∣∣|∑

i

xn
2i| − n|xn

2n+1|
∣∣∣∣∣

Therefore,

|
∑

i

xn
2i| > n|xn

2n+1| − 2 >
n

2
− 2. (1.3)

Since |∑i x
n
2i| ≤ ‖xn‖, we obtain that ‖xn‖ > n

2
− 2.

Finally, we observe that ‖yn‖ > n
2
− 2− 1

4
and yn ∈ B for all n to conclude that B

cannot be bounded.

Now we define gh(x) := (5
4
x2h+1)

h, x ∈ `1 and h = 1, 2, . . .. Clearly the set {gh : h ≥
2} is contained in Hw∗u(`1). As

gh(e2h+1) = (
5

4
)h

for all h ≥ 2, {gh : h ≥ 2} is not bounded on B (which is Ũ -bounded). Hence
{gh : h ≥ 2} is not a bounded subset of Hw∗u(Ũ).

On the other hand, we are going to check that {gh : h ≥ 2} is a bounded subset
of Hw∗u(U) and, consequently, of HBw∗u(Ũ). Let C be U -bounded and M > 0 such
that ‖x‖ < M − 1

4
for all x ∈ C. We take h ∈ N such that h > (M + 2)2. If x ∈ C,

we write x = y + z, with ‖z‖ < 1/4 and y ∈ Vk for some k ≥ 5. We have two
possibilities:
(i) If k 6= h, we have that k|y2h+1| < 2 and then |y2h+1| < 2

5
. Thus

|gh(x)| = |(5
4
(y2h+1 + z2h+1))

h < (
5

4
(
2

5
+

1

4
))h = (

13

16
)h < 1

(ii) If k = h, we claim that |y2h+1| ≤ 1
2
. Indeed if |y2h+1| > 1

2
, equation (1.3) applied

to y gives ‖y‖ > h
2
− 2. But ‖y‖ < M and hence h < (M + 2)2, a contradiction.

Thus

|gh(x)| = |(5
4
(y2h+1 + z2h+1))

h < (
5

4
(
1

2
+

1

4
))h = (

15

16
)h < 1,

and we obtain
sup{|gh(x)| : x ∈ C, h > (M + 2)2} ≤ 1.

Since sup{|gh(x)| : x ∈ C, 2 ≤ h ≤ (M + 2)2} < ∞, then {gh : h ≥ 2} is a
bounded subset of Hw∗u(U). As a consequence the spaces HBw∗u(Ũ) and Hw∗u(Ũ)
are topologically different. We also have that HBw∗u(Ũ) is in fact a proper subset
of Hw∗u(Ũ). This can be deduced from the open mapping theorem or, directly, by
noting that

g(x) =
∑
h

(
8

9
)hgh(x)

belongs to HBw∗u(Ũ) but not to Hw∗u(Ũ).
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The following result (see also [5, prop. 5] and its proof) states rather general condi-
tions under which all (continuous) homomorphisms from Hw∗u(U) to Hw∗u(V ) are
composition operators.

Proposition 8 Let U be a convex and balanced open subset of X∗, suppose X has
the approximation property and let V ⊂ Y ∗ be a balanced open set. If A : Hw∗u(U) →
Hw∗u(V ) is a continuous multiplicative operator, then there exists g : Ṽ −→ Ũ
holomorphic such that the restriction of g to any V -bounded subset of V is weak-
star to weak-star uniformly continuous and Ãf(y∗) = f̃ ◦ g(y∗) for all f ∈ Hw∗u(U)
and y∗ ∈ Ṽ .

PROOF. Let y∗ ∈ Ṽ ⊂ Mw∗u(V ). Since A is multiplicative, δy∗ ◦ A is an element
of Mw∗u(U) = δ(Ũ). Therefore, we can define g(y∗) as the element in Ũ such that

δy∗ ◦ A = δg(y∗). By definition, Ãf(y∗) = f̃ ◦ g(y∗) for all f ∈ Hw∗u(U) and y∗ ∈ Ṽ .
Since we can identify X with a subset of Hw∗u(U), we have

(x ◦ g)(y∗) = Ãx(y∗), (1.4)

for all y∗ ∈ Ṽ and x ∈ X. We take (Vn)∞n=1 a fundamental system of V -bounded

sets and B = (Vn
w∗

)∞n=1. Since V is balanced, by applying Proposition 3, we get
x◦g ∈ HBw∗u(Ṽ ) for all x ∈ X. By a classical result of Dunford [16] and Grothendieck
[19] on weak-star holomorphic mappings, g is holomorphic on Ṽ . From (1.4) it is
straightforward to check that the restriction of g to any V -bounded set is weak-star
to weak-star uniformly continuous. 2

The next theorem answer our question for spaces Hw∗u.

Theorem 9 Let X and Y be Banach spaces, one of them having the approximation
property. Let U ⊂ X∗ and V ⊂ Y ∗ be convex and balanced open sets. If Hw∗u(U) and
Hw∗u(V ) are topologically algebra-isomorphic, then X and Y are isomorphic Banach
spaces.

PROOF. Suppose X has the approximation property and let A : Hw∗u(U) →
Hw∗u(V ) be the algebra-isomorphism. We consider g : Ṽ −→ Ũ obtained in Propo-
sition 8.

Consider the mappings θA : Mw∗u(V ) → Mw∗u(U) and θA−1 : Mw∗u(U) → Mw∗u(V )
given by θA(ϕ) = ϕ ◦ A and θA−1(ψ) = ψ ◦ A−1. Since they are the restrictions of
A∗ and (A−1)∗, the transposes of A and A−1, to the corresponding sets of homo-
morphisms, we have θA−1(θA(ϕ)) = ϕ for all ϕ ∈ Mw∗u(V ). By Proposition 3, we
can define h : Ũ → Ṽ by h = π ◦ θA−1 ◦ δ. Since we can identify Y as a subset of
Hw∗u(V ), we have

(y ◦ h)(x∗) = h(x∗)(y) = π(θA−1(δx∗))(y) = π(δx∗ ◦ A−1)(y) = A−1(y)(x∗), (1.5)
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for all y ∈ Y and x∗ ∈ Ũ . Hence y◦h ∈ HBw∗u(Ũ) for all y ∈ Y , where B = (Un
w∗

)∞n=1.
Analogously to (1.4), we obtain that h is holomorphic on Ũ and that h|U is weak-
star to weak-star uniformly continuous on U -bounded sets. For y∗ ∈ Ṽ , we have
that (h ◦ g) (y∗) = θA−1(θA(δy∗)) |Y = δy∗ ◦ A ◦ A−1 |Y = y∗. Since h ◦ g = idṼ ,
differentiating at 0 we have that dh(g(0)) ◦ dg(0) = idY ∗ and Y ∗ can be identified
with a complemented subspace of X∗. We know that for x ∈ X, x◦g ∈ Hw∗u(V ) and
then x ◦ dg(0) = d (x ◦ g) (0) is weak-star continuous on bounded sets [3, Lemma
2.2]. This means that dg(0) is weak-star to weak-star continuous on bounded sets.

As Ũ = ∪∞n=1Un
w∗

, there exists n ∈ N such that g(0) ∈ Un
w∗

. By (1.1) the open set

g(0)+ 1
2n(n+1)

BX∗ is included in Un+1
w∗

. Thus, h ∈ Hw∗u(g(0)+ 1
2n(n+1)

BX∗). Just as

above, we get that dh(g(0)) is weak-star to weak-star continuous on bounded sets.

Consequently, there are operators α : X → Y and β : Y → X such that dg(0) = α∗

and dh(g(0)) = β∗. Since α◦β = idY , Y is a complemented subspace of X, it inherits
the approximation property and so Mw∗u(V ) = δ(Ṽ ). Now we can proceed as above
to show that g ◦ h = idŨ , which ends the proof. 2

Corollary 10 Let X and Y be Banach spaces, one of them having the approxima-
tion property. Hw∗(X

∗) and Hw∗(Y
∗) are topologically algebra-isomorphic if and only

if X and Y are isomorphic Banach spaces.

To simplify the notation we will write g ∈ Hw∗u(Ṽ , Ũ) if g is holomorphic, g is weak-
star to weak-star uniformly continuous on Ũ -bounded sets and such that g maps
Ũ -bounded sets into Ṽ bonded sets.

If U ⊂ X∗ is open, V ⊂ Y ∗ is a balanced boundedly-regular open set and A :
Hw∗u(U) −→ Hw∗u(V ) is a continuous multiplicative operator, then the mapping

Ã : Hw∗u(Ũ) −→ Hw∗u(Ṽ ) defined as Ã(f) := Ã(f |U), for all f ∈ Hw∗u(Ũ) is also
an homomorphism. If in addition U is balanced and boundedly-regular then A is an
algebra-isomorphism if and only if Ã is an algebra-isomorphism.

Theorem 11 Let X and Y be Banach spaces, one of them having the approximation
property. Let U ⊂ X∗ and V ⊂ Y ∗ be convex, balanced, boundedly-regular open sets.
A mapping A : Hw∗u(U) −→ Hw∗u(V ) is a continuous homomorphism if and only
if there exists a function g ∈ Hw∗u(Ṽ , Ũ) such that the operator Ã : Hw∗u(Ũ) −→
Hw∗u(Ṽ ) is the composition operator generated by g (i.e., Ãf = f ◦ g for all f ∈
Hw∗u(Ũ)).

PROOF. Let A : Hw∗u(U) −→ Hw∗u(V ) be a continuous homomorphism. The
hypotheses on U and V imply that Hw∗u(U) and Hw∗u(Ũ) are topologically algebra-
isomorphic, as well as Hw∗u(V ) and Hw∗u(Ṽ ), and that Ã : Hw∗u(Ũ) → Hw∗u(Ṽ )

is a continuous homomorphism too. It follows that
˜̃
U = Ũ and

˜̃
V = Ṽ . Applying

Proposition 8 we obtain a holomorphic function g : Ṽ −→ Ũ such that Ãf = f ◦g for

10



all f ∈ Hw∗u(Ũ)) and such that the restriction of g to Ṽ -bounded sets is weak-star
to weak-star uniformly continuous. We need to prove that given a Ṽ -bounded set B,
then g(B) is Ũ -bounded set. We can assume B to be weak-star closed and therefore,
g(B) is weak-star compact and thus is bounded. If dist(g(B), X∗ \ Ũ) = 0, since

(Un
w∗

)∞n=1 is a fundamental sequence of Ũ -bounded sets, we can find a sequence

(y∗n) ⊂ B such that g(y∗n) 6∈ Un+1
w∗

. By the Hahn-Banach theorem applied to the
weak-star topology, there exists a sequence (xn) ⊂ X such that, xn(g(y∗n)) > 1 and

|xn(x∗)| ≤ 1 for all x∗ ∈ Un+1
w∗

and all n ∈ N. But, given n, there exists a Rn > 1

such that RnUn
w∗ ⊂ Un+1

w∗
. Hence

|Rnxn(x∗)| ≤ 1 ∀x∗ ∈ Un
w∗
.

Let (αn) a sequence of positive numbers such that limnR
αn
n = +∞. We consider

hn := (Rnxn)αn ∈ Hw∗u(Ũ). Given m ∈ N we have ‖hn‖Um
w∗ ≤ 1 for all n ≥ m.

Hence
sup
n∈N

‖hn‖Um
w∗ ≤ max{1, ‖h1‖Um

w∗ , . . . , ‖hm−1‖Um
w∗} <∞,

for all m ∈ N, and the family (hn)∞n=1 is bounded in Hw∗u(Ũ). Thus (Ãhn)∞n=1 is
bounded in Hw∗u(Ṽ ). In particular,

sup{|Ãhn(y∗)| : n ∈ N, y∗ ∈ B} <∞.

But Ahn(y∗n) = hn ◦ g(y∗n) > Rαn
n for all n ∈ N. A contradiction.

For the converse it is enough to observe that if B : Hw∗u(Ũ) −→ Hw∗u(Ṽ ) is a
continuous linear operator then A : Hw∗u(U) −→ Hw∗u(V ) defined by A(f) :=
B(f̃)|V , f ∈ Hw∗u(U) is again an homomorphism and Ã = B. 2

Corollary 12 Let X and Y be Banach spaces, one of them having the approxima-
tion property. Let U ⊂ X∗ and V ⊂ Y ∗ be convex, balanced boundedly-regular open
sets. There exists A : Hw∗u(U) −→ Hw∗u(V ) a topological algebra-isomorphism if and
only if there exists a biholomorphic function g ∈ Hw∗u(Ṽ , Ũ) with g−1 ∈ Hw∗u(Ũ , Ṽ ),
such that the operator Ã : Hw∗u(Ũ) −→ Hw∗u(Ṽ ) is the composition operator gener-
ated by g (i.e Ãf = f ◦g for all f ∈ Hw∗u(Ũ)). In that case, X and Y are isomorphic
Banach spaces.

PROOF. The result follows from Theorem 11 and the proof Theorem 9. 2

Remark 13 We now consider U a balanced open subset of X and define

Û :=
⋃
n

U
w∗

n =
⋃
n

U
w(X∗∗,X∗)
n ⊂ X∗∗.

By uniform continuity, given f ∈ Hwu(U) there exists a unique f̂ : Û −→ C such

that f̂ |U = f , it is weak-star uniformly continuous when restricted to U
w∗

n and

11



‖f‖
Un

w∗ = ‖f‖Un for all n ∈ N. Hence, given z ∈ Û , the mapping δz(f) := f̂(z) for all

f ∈ Hwu(U) is a continuous homomorphism and we can define δ : Û −→Mwu(U) as

δ(z) := δz. The Aron-Berner extension implies that f̂ ∈ H(Û). We consider U
w∗◦
, the

‖.‖∗∗-interior of U
w∗

. In [17, Remark 1.4 and the proof of Theorem 1.5], it is shown

that if U is a convex and balanced open set, for each U
w∗◦
- bounded set D ⊂ U

w∗◦
there

exists a U -bounded set C ⊂ U such that D ⊂ C
w∗

. Hence Û = U
w∗◦
, (U

w∗

n )∞n=1 is a
fundamental sequence of Û -bounded sets and Û is a convex and balanced boundedly-

regular open set in the dual space (X∗)∗. Moreover,
˜̂
U =

⋃
n Un

w∗w∗

= U
w∗◦

= Û .

Consequently, if U is a convex and balanced open set, Hwu(U) and Hw∗u(U
w∗◦
) are

topologically algebra-isomorphic and the above results can be translated to these
algebras of holomorphic functions on convex and balanced open sets:

Corollary 14 Let U be an open convex and balanced open subset of X, then

π(Mwu(U)) = U
w∗◦
. Moreover, if X∗ has the approximation property, Mwu(U) =

δ(U
w∗◦
).

Theorem 15 Let U be a convex and balanced open subset of X, suppose X∗ has
the approximation property and let V ⊂ Y be open, convex and balanced. A mapping
A : Hwu(U) → Hwu(V ) is a continuous multiplicative operator, if and only if there

exists g ∈ Hw∗u(V
w∗◦
, U

w∗◦
) such that Af = f̂ ◦ g|U for all f ∈ Hwu(U).

If A : Hwu(U) −→ Hwu(V ) is a continuous multiplicative linear operator we define

Â : Hw∗u(U
w∗◦
) −→ Hw∗u(V

w∗◦
) as Â(f) = Â(f |U) for all f ∈ Hw∗u(U

w∗◦
). By the

above remarks, Â is a continuous multiplicative operator too, and A is a topological
algebra-isomorphism if and only if Â is a topological algebra-isomorphism.

Corollary 16 Let X and Y be Banach spaces, such that X∗ or Y ∗ has the approx-
imation property. Let U ⊂ X and V ⊂ Y be convex and balanced open sets. Then
A : Hwu(U) −→ Hwu(V ) is a topological algebra-isomorphism if and only if there

is a biholomorphic function g ∈ Hw∗u(V
w∗◦
, U

w∗◦
) whose inverse is in Hw∗u(U

w∗◦
, V

w∗◦
)

such that Â(f) = f ◦ g for all f ∈ Hw∗u(U
w∗◦
).

In this case, we have that X∗ and Y ∗ must be isomorphic Banach spaces.

As a consequence of a result of Lassalle and Zalduendo [21, Proposition 6] (see
also [9, Proposition 3.4]), if X∗ and Y ∗ are isomorphic, Hwu(X) and Hwu(Y ) are
isomorphic algebras. Therefore we have:

Corollary 17 Let X and Y be Banach spaces, one of their duals having the approx-
imation property. Then Hwu(X) and Hwu(Y ) are topologically isomorphic algebras
if and only if X∗ and Y ∗ are isomorphic Banach spaces.
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2 Morphisms on Hb(U)

In [1], Aron and Berner showed that any f ∈ Hb(X) can be extended in a natural way
to a function f̄ ∈ Hb(X

∗∗) so that the map AB : Hb(X) −→ Hb(X
∗∗), AB(f) = f̄ ,

is a topological algebra-isomorphism into the image. We state the formula of the
extension for n-homogeneous continuous polynomials. Let P : X → C be a n-
homogeneous continuous polynomial and L : X × · · · × X → C its associated
n−linear symmetric mapping. Then the Aron-Berner extension of P is given by
P̄ (z) = L̄(z, · · · , z) for all z ∈ X∗∗, where L̄ : X∗∗ × · · · ×X∗∗ → C is defined as

L̄(z1, ..., zn) = lim
xα1

w∗−→z1

. . . lim
xαn

w∗−→zn

L(xα1 , ..., xαn)

(w∗ denotes the weak-star topology w(X∗∗, X∗)). These results were extended to
functions in Hb(BX) by Davie and Gamelin [11, Theorem 3] and slightly improved
in [17, Theor. 1.3 and 1.5] where it is shown that given U a convex and balanced open

subset of X there exists a multiplicative extension operator AB : Hb(U) −→ Hb(U
w∗◦
)

such that ‖f̄‖
B

w∗ = ‖f‖B for all f ∈ Hb(U) and all U -bounded set B.

Let Mb(U) denote the spectrum of Hb(U) and π : Mb(U) → X∗∗ the mapping
given by π(ϕ) = ϕ |X∗ . As in Proposition 1, we obtain the following “bounds” for
π(Mb(U)).

Proposition 18 Let U be an open subset of X. Then
⋃

n Un
w∗ ⊂ π(Mb(U)) ⊂⋃

n Γ(Un)
w∗

.

PROOF. If x∗∗ ∈ Un
w∗

, there exists a net (xα)α∈I in Un w
∗-converging to x∗∗. Let

∆ be a cofinal ultrafilter on I and define ϕ(f) = lim∆ f(xα). Note that ϕ is well
defined and continuous since |ϕ(f)| ≤ supα |f(xα)| ≤ ‖f‖Un for f ∈ Hb(U).

For x∗ ∈ X∗, ϕ(x∗) = lim∆ x
∗(xα) = x∗∗(x∗) and then π(ϕ) = x∗∗. Therefore, we

have that
⋃

n Un
w∗ ⊂ π(Mb(U)). The second inclusion follows exactly as in Proposi-

tion 1. 2

In Remark 2 we saw that δ(Ũ) is contained in Mw∗u(U). In Section 1 we set Û :=⋃
n U

w∗

n . For x0 ∈ X, C(U ∪ {x0}) is the algebra of all norm-continuous functions
on U ∪ {x0} endowed with the pointwise topology. Let x0 ∈ X and assume that
there exists a multiplicative and continuous extension operator B : Hb(U) −→
C(U ∪{x0}), with B(g)(x0) = g(x0) for all g ∈ Hb(X). In this case we denote by δx0

the continuous homomorphism δx0(f) := B(f)(x0), where f ∈ Hb(U). The previous
proposition asserts that Û is contained in π(Mb(U)). However, the following example
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shows that for a reflexive X, δ(Û) is not necessarily contained in Mb(U) and that
in general, π(Mb(U)) is strictly larger than Mb(U)

⋂
δ(X).

Example 19 We consider the following open set:

U = {x ∈ `2 : Re (
∑
k

x2
k) >

1

2
}.

First, we see that Û = `2: given x ∈ `2, we can find λ > 0 large enough for the set
{x + λem : m ∈ N} to be U -bounded. Therefore, it is contained in Un for some n

and x ∈ Un
w∗

= Un
w
. By Proposition 18, π(Mb(U)) = `2.

On the other hand, take y 6∈ U . Since Re (
∑

k y
2
k) ≤ 1

2
, the function f(x) =

1

1−e

∑
k

y2
k
−x2

k

is in Hb(U) and the family {fn(x) :=
∑n

m=0 e
m

∑∞
k=0

y2
k−x2

k}∞n=1 is bounded

in Hb(U). If δy ∈ Mb(U), then (δy(fn))∞n=1 would be a bounded sequence. But as
fn ∈ Hb(`2), we would have δy(fn) = fn(y) = n for all n, a contradiction.

If U is convex and balanced, let δ̄ : U
w∗◦
⊂ X∗∗ → Mb(U) be given by δ̄(x∗∗) = δ̄x∗∗ ,

with δ̄x∗∗(f) = f̄(x∗∗), for f ∈ Hb(U) and x∗∗ ∈ U
w∗◦
. Since ‖f̄‖

Un
w∗ = ‖f‖Un for all

n ∈ N we have δ̄(U
w∗◦
) ⊂Mb(U). Therefore, we have the following lemma.

Lemma 20 If U is a convex and balanced open set in X, then π(Mb(U)) = U
w∗◦

and

δ̄(U
w∗◦
) ⊂Mb(U).

If U and V are open sets in the Banach spaces X and Y respectively and A :
Hb(U) → Hb(V ) is a continuous multiplicative operator, we can define the mapping
θA : Mb(V ) →Mb(U) by

θA(ϕ)(f) = ϕ(A(f)).

Note that θA is just is the transpose A∗ restricted to Mb(V ). If in addition U and

V are convex and balanced we define Ā : Hb(U
w∗◦
) → Hb(V

w∗◦
) by Ā(f) := A(f |U).

By Remark 13, Ā is well defined and it is a continuous multiplicative operator too.
Nevertheless, a big difference with the situation of Section 1 is that if X is not
reflexive, Ā is never a topological algebra-isomorphism: if we take υ 6= 0 in X(3), the
topological dual of X∗∗, such that υ|X = 0, then Ā(υ) = 0.

Again to simplify the notation we write g ∈ Hb(V
w∗◦
, U

w∗◦
) if g is holomorphic and

g maps V
w∗◦
-bounded sets into U

w∗◦
-bounded sets. We recall that a n-homogeneous

continuous polynomial on a Banach space X is called approximable if it is in the
norm-closure of the polynomials generated by {x∗1 . . . x∗n : x∗j ∈ X∗, j = 1, . . . n} [15,
Def. 2.1]. The next three results are our first positive answer to our question for the
case of algebras of holomorphic functions of bounded type.

Theorem 21 Let U ⊂ X and V ⊂ Y be convex and balanced open sets and suppose
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that every polynomial on X is approximable. A mapping A : Hb(U) → Hb(V ) is a

continuous multiplicative operator if and only if there exists g ∈ Hb(V
w∗◦
, U

w∗◦
) such

that Ā is the composition operator Af = f ◦ g.

PROOF. Since every polynomial on X is approximable, we have Hb(U) = Hwu(U)

algebraically and topologically and Mb(U) = δ̄(U
w∗◦
). This last fact can be deduced

as in the proof of Proposition 3 (see also [3, Thm. 3.3]). If y∗∗ ∈ V
w∗◦
, we define

g : V
w∗◦
−→ U

w∗◦
by g(y∗∗) = x∗∗ where x∗∗ satisfies δ̄y∗∗ ◦ A = δ̄x∗∗ . Now an argument

analogous to the proof of Proposition 8 shows that g ∈ Hb(V
w∗◦
, X∗∗).

We know that (U
w∗

n )∞n=1 is a fundamental sequence of U
w∗◦
-bounded sets. If there were

a V
w∗◦
-bounded set B such that g(B) is not U

w∗◦
-bounded, we could find (y∗∗n ) ⊂ B,

(x∗n) ⊂ X∗ such that x∗n(g(y∗∗n )) > 1 and |x∗n(x∗∗)| ≤ 1 for all x∗∗ ∈ Un+1
w∗

an all
n ∈ N. Now an argument like the one in Theorem 12 leads to a contradiction. 2

Corollary 22 Let X and Y be Banach spaces. Let U ⊂ X and V ⊂ Y be convex and
balanced open sets and suppose that every polynomial on X∗∗ is approximable. There
exists a topological algebra-isomorphism A : Hb(U) −→ Hb(V ) if and only there

exists a biholomorphic function g ∈ Hw∗u(V
w∗◦
, U

w∗◦
) whose inverse is in Hw∗u(U

w∗◦
, V

w∗◦
)

such that Af = f ◦ g for all f ∈ Hb(U). In this case X∗ and Y ∗ must be isomorphic
Banach spaces.

PROOF. We first prove that every polynomial on Y ∗∗ is approximable by making
suitable modifications of the proofs of Theorems 9 and 12. We consider the mapping

g ∈ Hb(V
w∗◦
, U

w∗◦
) obtained in Theorem 21. We define h : U

w∗◦
→ V

w∗◦
by h = π◦θA−1 ◦ δ̄.

Differentiating, we obtain that Y ∗∗ can be identified with a complemented subspace
of X∗∗. Then every polynomial on Y ∗∗ (and on Y ) is approximable. Hence Hb(V ) =
Hwu(V ) and, since every polynomial on X is approximable, Hb(U) = Hwu(U). Now
the conclusion follows from Corollary 16. There, the approximation property of X∗

or Y ∗ is used only to ensure that under the rest of the conditions, Mwu(U) = U
w∗◦

and Mwu(V ) = V
w∗◦
. This is also true under our present hypotheses. 2

If every polynomial on X∗∗ is approximable and X∗ and Y ∗ are isomorphic Banach
spaces, we have that X∗∗ and Y ∗∗ are isomorphic and then every polynomial on Y ∗∗

is also approximable. It follows that Hb(X) and Hb(Y ) are algebra-isomorphic (see
also [21]). Therefore, in an analogous way to Corollary 17 we obtain the following:

Corollary 23 If every polynomial on X∗∗ is approximable, Hb(X) and Hb(Y ) are
algebra-isomorphic if and only if X∗ and Y ∗ are isomorphic Banach spaces.
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Example 24 The original Tsirelson space T ∗ satisfies the condition of Corollaries
22 and 23. Since T ∗ is reflexive, if U ⊂ T ∗ and V ⊂ Y are convex and balanced open
sets and Hb(U) and Hb(V ) are topologically algebra-isomorphic, then T ∗ and Y are
isomorphic. Moreover, Hb(T

∗) and Hb(Y ) are isomorphic if and only if T ∗ and Y
are isomorphic.

Example 25 The Tsirelson-James space T ∗J is a quasi-reflexive space on which
every polynomial is approximable. By [13, Lemma 19], all polynomials on its bidual
are also approximable. Therefore, for U ⊂ T ∗J and V ⊂ Y as before, if Hb(U)
and Hb(V ) are topologically algebra-isomorphic then T ∗∗J and Y ∗ are isomorphic.
Moreover,Hb(T

∗
J ) andHb(Y ) are isomorphic if and only if T ∗∗J and Y ∗ are isomorphic.

Now we face the far more difficult situation in which we do not assume that every
continuous polynomial on X∗∗ is approximable and we are going to restrict ourselves
to the case of entire functions of bounded type.

A complex Banach space X is said to be (symmetrically) regular if every continuous
(symmetric) linear mapping T : X → X∗ is weakly compact. Recall that T is
symmetric if < Tx, y >=< x, Ty > for all x, y ∈ X. From now on, every Banach
space is assumed to be symmetrically regular. If ϕ ∈ Mb(X) we define the sheet
of ϕ as the set S(ϕ) := {ϕ ◦ τz : z ∈ X∗∗}, where τz(f) = f̄(· + z). We consider
on Mb(X) the Riemann analytic manifold structure on X∗∗ given in [4, Corollary
2.2]. With this structure, π : Mb(X) → X∗∗ is the local homeomorphism over X∗∗,
so that each sheet is an analytic copy of X∗∗ and Mb(X) is the disjoint union of
those sheets (the sheets being the connected components of Mb(X)). Our starting
point is Theorem 30, hence it is for us relevant to know if θA produces a continuous
mapping when the spectra are endowed with this analytic structure. The answer is,
in general, negative as we show in Theorems 32 and 35.

It can be seen that for fixed ϕ ∈ Mb(X) and f ∈ Hb(X), the mapping x∗∗ 7−→
ϕ ◦ τx∗∗(f), x∗∗ ∈ X∗∗ is an analytic function of bounded type [15, Proof of Prop.
6.30]. In particular, for x∗ ∈ X∗ ⊂ X(3), the mapping x∗∗ 7→ x∗(π ◦ θA(ϕ ◦ τx∗∗)) =
π ◦ θA(ϕ ◦ τx∗∗)(x∗) = ϕ ◦ τx∗∗(A(x∗)) is analytic. As this happens for each x∗ ∈ X∗,
x∗∗ 7→ π ◦ θA(ϕ ◦ τx∗∗) is analytic [18] (see also [15, Prop. 3.7, Ex. 3.8g]). Since π
is the local homeomorphism which gives the analytic structure on each sheet, if θA

maps the sheet S(ϕ) into a single sheet in Mb(X) then θA is continuous (in fact it is
analytic) on S(ϕ). Note that in this case, S(ϕ) is mapped into the sheet S(θA(ϕ)).
On the other hand, continuous functions map connected sets into connected sets, so
the next lemma holds.

Lemma 26 θA is continuous on S(ϕ) if and only if θA(S(ϕ)) ⊂ S(θA(ϕ)).

In particular, θA is continuous on δ̄(Y ∗∗) if and only if θA(δ̄(Y ∗∗)) lies on a single
sheet of Mb(X). The following lemma gives an equivalent condition.
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Lemma 27 Let X and Y be symmetrically regular Banach spaces, A : Hb(X) →
Hb(Y ) be a homomorphism and ϕ0 ∈ Mb(X). Then θA(δ̄(Y ∗∗)) ⊂ S(ϕ0) if and
only if there exists g ∈ Hb(Y

∗∗, X∗∗) such that A(f)(y∗∗) = ϕ0 ◦ τg(y∗∗)(f) for all
f ∈ Hb(U) and all y∗∗ ∈ Y ∗∗.

PROOF. Assume that θA(δ̄(Y ∗∗)) ⊂ S(ϕ0). Given y∗∗ ∈ Y ∗∗ there exists a unique
x∗∗ ∈ X∗∗ such that θA(δ̄y∗∗) = ϕ0 ◦ τx∗∗ . Define g : Y ∗∗ → X∗∗ by g(y∗∗) = x∗∗.
We have that A(f)(y∗∗) = δ̄y∗∗(A(f)) = θA(δ̄y∗∗)(f) = ϕ0 ◦ τg(y∗∗)(f). To see that

g ∈ Hb(Y
∗∗, X∗∗) note that if x∗ ∈ X∗, then A(x∗)(y∗∗) = ϕ0 ◦ τg(y∗∗)(x

∗) = ϕ0(x
∗)+

g(y∗∗)(x∗). Therefore, the mapping y∗∗ 7→ x∗ ◦ g(y∗∗) belongs to Hb(Y
∗∗) for any

x∗ ∈ X∗, which means that g ∈ Hb(Y
∗∗, X∗∗) [18] (see also [15, Prop. 3.7 or Ex.

3.8g]).

Conversely, if y∗∗ ∈ Y ∗∗, θA(δ̄y∗∗)(f) = δ̄y∗∗(A(f)) = A(f)(y∗∗) = ϕ0 ◦ τg(y∗∗)(f),
which belongs to S(ϕ0). 2

We will say that A : Hb(X) → Hb(Y ) is an AB-composition homomorphism if there
exists g ∈ Hb(Y

∗∗, X∗∗) such that A(f)(y∗∗) = f(g(y∗∗)) for all f ∈ Hb(U) and all
y∗∗ ∈ Y ∗∗.

Corollary 28 Let X and Y be symmetrically regular Banach spaces and let A :
Hb(X) → Hb(Y ) be a continuous multiplicative operator.

(1) A is an AB -composition homomorphism if and only if θA(δ̄(Y ∗∗)) ⊂ δ̄(X∗∗).

(2) A is a composition homomorphism if and only if θA(δ(Y )) ⊂ δ(X).

PROOF. Just take ϕ0 = δ(0) in the previous lemma. 2

If g : Y → X is a biholomorphic mapping of bounded type and z ∈ Y ∗∗ \ Y , then
A(f)(x) = f̄ ḡ(x+z) is a topological algebra-isomorphism betweenHb(X) andHb(Y )
which is not an AB-composition homomorphism.

Corollary 29 Let X be a symmetrically regular Banach space. If X∗ has the ap-
proximation property, the following are equivalent:

a) Every polynomial on X weakly continuous on bounded sets.

b) Every homomorphism A : Hb(X) → Hb(Y ) is an AB -composition one, for any
symmetrically regular Banach space Y .

c) Every homomorphism A : Hb(X) → Hb(X) is an AB -composition one.
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PROOF. a) ⇒ b) If every polynomial on X is approximable, then Mb(X) = δ̄(X∗∗)
[3, Thm. 3.3] and b) follows from Corollary 28.

b) ⇒ c) This is clear.

c) ⇒ a) If there is a polynomial which is not weakly continuous on bounded sets,
then by [3, Thm. 3.3] we have that Mb(X) 6= δ̄(X∗∗). If ϕ0 ∈ Mb(X) \ δ̄(X∗∗),
the homomorphism A : Hb(X) → Hb(X) given by A(f)(x) = ϕ0 ◦ τx(f) is not an
AB-composition operator by Corollary 28. 2

Theorem 30 Let X and Y be symmetrically regular Banach spaces and A : Hb(X) →
Hb(Y ) be an isomorphism. Suppose that there exist non-empty open subsets V ⊂
Mb(Y ) and U ⊂Mb(X) such that θA : V → U is an homeomorphism. Then X∗∗ and
Y ∗∗ are isomorphic.

PROOF. We fix ϕ0 ∈ V and define V0 = V ∩ S(ϕ0). We have that U0 := θA(V0) is
an open subset of Mb(X) contained in S(θA(ϕ0)) (this follows from the bicontinuity
of θA and the fact that the sheets are the connected components of the spectrum).
Proceeding as in Lemma 27, we can find open subsets V0 ⊂ Y ∗∗ and U0 ⊂ X∗∗ and
holomorphic functions g ∈ Hb(V0, U0) and h ∈ Hb(U0, V0) such that

θA(ϕ0 ◦ τy∗∗) = θA(ϕ0) ◦ τg(y∗∗) for all y∗∗ ∈ V0

and
θA−1(θA(ϕ0) ◦ τx∗∗) = ϕ0 ◦ τh(x∗∗) for all x∗∗ ∈ U0.

We have that g and h are inverse to each other and in particular, for any y∗∗ ∈ V0

the differential dg(y∗∗) is an isomorphism between Y ∗∗ and X∗∗. 2

Let us consider X = c0 (`n2 ) and Y = c0 (`n2 ) ⊕ `2, the preduals of the examples of
Stegall [23]. It is known that X∗∗ and Y ∗∗ are isomorphic, but X∗ and Y ∗ are not.
The space X has approximation property, the Dunford Pettis property (since X∗

is Schur) and does not contain `1. This means that the finite type polynomials are
dense in Hb(X). Corollary 23 says that Hb(Y ) cannot be isomorphic to Hb(X). This
could also be deduced from the fact that Hb(X) is separable and, since Y contains
a complemented copy of `2, Hb(Y ) is not separable. The density of the finite type
polynomials also show thatX is symmetrically regular (and consequently, Y = X⊕`2
is also symmetrically regular). Note that the isomorphism between the biduals forces
the sheets on Mb(X) and Mb(Y ) to be homeomorphic. However, Mb(X) and Mb(Y )
are not homeomorphic, since Mb(X) = δ̄(X∗∗) while Mb(Y ) consists of infinitely
many sheets.

In light of Lemma 27, θA is continuous on δ̄(Y ∗∗) if and only if there exist ϕ0 ∈Mb(X)
and g ∈ Hb(Y

∗∗, X∗∗) such that A(f)(y∗∗) = ϕ0 ◦ τg(y∗∗)(f) for all f ∈ Hb(X)
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and y∗∗ ∈ Y ∗∗. In particular, if g ∈ Hb(Y,X) and we consider the composition
homomorphism Ag : Hb(X) → Hb(Y ) given by Ag(f)(x) = f ◦ g(x), the mapping
θAg : Mb(Y ) → Mb(X) is continuous on δ̄(Y ∗∗). However, θAg is not necessarily
continuous on Mb(Y ) even if g is a continuous homogeneous polynomial. First we
state the following lemma, the proof of which is straightforward.

Lemma 31 Let X and Y be symmetrically regular Banach spaces. If g ∈ Hb(Y,X)
then:

a) θAg(ϕ ◦ τy∗∗)(f) = ϕ
(
y 7→ f̄ ◦ ḡ(y + y∗∗)

)
b) θAg(ϕ) ◦ τx∗∗(f) = ϕ

(
y 7→ f̄ (ḡ(y) + x∗∗)

)
for all ϕ ∈Mb(Y ), y∗∗ ∈ Y ∗∗, x∗∗ ∈ X∗∗ and f ∈ Hb(X).

We refer to [22, page 48] for the definition of a finite dimensional Schauder decom-
position in a Banach space X.

Theorem 32 Let X be a symmetrically regular Banach space with an unconditional
finite dimensional Schauder decomposition and suppose that there exists a continu-
ous N-homogeneous polynomial which is not weakly sequentially continuous. Then
there exists a (N + 1)-homogeneous polynomial P : X → X such that θAP

is not
continuous.

PROOF. Let Q be a N -homogeneous polynomial that is not weakly sequentially
continuous. Following [14, Prop. 1.6] we can choose ε > 0 and a weakly null semi-
normalized block sequence (uj)

∞
j=1 such that |Q(uj)| > ε for all j. Let σj : X → X

be the projection on the support of uj. By [14, Prop. 1.3], there exists a constant
C > 0 such that

∞∑
j=1

∣∣∣∣∣Q(σj(x))

Q(uj)

∣∣∣∣∣ ≤ C‖x‖N . (2.6)

Choose x∗ ∈ X∗ be such that x∗(u1) = 1 and x∗(uj) = 0 for j > 1. We define the
(N + 1)-homogeneous polynomial P : X → X by

P (x) = x∗(x)
∞∑

j=1

Q(σ2j(x))

Q(u2j)
uj,

which is well defined and continuous by inequality (2.6). Let AP : Hb(X) → Hb(X)
be the composition operator AP (f) = f ◦ P .

We now define ϕ ∈ Mb(X) by ϕ(f) = limΓ f(un), where Γ is any ultrafilter on N
containing {{2n, 2(n+ 1), 2(n+ 2), . . .} : n ∈ N}. Let us see that θAP

is not contin-
uous on S(ϕ). If it were, θAP

(S(ϕ)) should be contained in S(θAP
(ϕ)). In particular,
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there should exist x∗∗ ∈ X∗∗ such that

θAP
(ϕ ◦ τu1) = θAP

(ϕ) ◦ τx∗∗ . (2.7)

Note that, for f ∈ Hb(X), θAP
(ϕ)◦τx∗∗(f) = ϕ

(
y 7→ f̄(P (y) + x∗∗)

)
. Since P (u2n) =

0, f̄(P (u2n) + x∗∗) = f̄(x∗∗) for all n ∈ N, we have

θAP
(ϕ) ◦ τx∗∗(f) = ϕ(f̄(x∗∗)1X) = f̄(x∗∗) (2.8)

for all f ∈ Hb(X), where 1X is the constant one function on X.

Let’s now compute θAP
(ϕ ◦ τu1). We have that

θAP
(ϕ ◦ τu1)(f) = ϕ (x 7→ f ◦ P (x+ u1)) .

Since P (u2n + u1) = un, we have that ϕ (x 7→ f ◦ P (x+ u1)) = limΓ f(un) and then

θAP
(ϕ ◦ τu1)(f) = lim

Γ
f(un) (2.9)

for all f ∈ Hb(X).

In particular, if x∗ ∈ X∗, we obtain from equations (2.7), (2.8) and (2.9) that
x∗∗(x∗) = x∗(x∗∗) = limΓ x

∗(un) = 0. Since this happens for any x∗ ∈ X∗, we obtain

that x∗∗ = 0. But if we consider F (x) =
∑∞

j=1
Q(σj(x))

Q(uj)
, limΓ F (un) = 1. This should

be equal to F (0) = 0. From this contradiction we conclude that θAP
is not continuous

on S(ϕ). 2

If A : Hb(X) → Hb(Y ) is not an AB−composition homomorphism, θA may not even
be continuous on δ̄(Y ∗∗).

Corollary 33 Let X be a symmetrically regular Banach space with an unconditional
finite dimensional Schauder decomposition and suppose that there exists a continu-
ous N-homogeneous polynomial which is not weakly sequentially continuous. Then
there exists a continuous homomorphism A : Hb(X) → Hb(X) such that θA is not
continuous in δ̄(X∗∗).

PROOF. Let P and ϕ be defined as in the previous theorem. If we define A :
Hb(X) → Hb(X) by A(f)(x) = ϕ ◦ τx(f), then θA is not continuous over δ(X). To
see this, note that θA(δx)(f) = A(f)(x) = ϕ ◦ τx(f ◦P ) = θAP

(ϕ ◦ τx)(f). Therefore,
θA(δ0) = θAP

(ϕ) and θA(δu1) = θAP
(ϕ ◦ τu1), hence θA(δ(X)) is not contained in a

single sheet of Mb(X). Consequently θA is not continuous on δ̄(X∗∗). 2
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Note that the homomorphism A given in the previous corollary can be written as
Af(x) = limΓ f ◦ P (x + un). If we consider X = `p, 1 ≤ p < ∞, the polynomial P
in Theorem 32 can be chosen to have a much simpler expression. Proceeding as in
the proof of Theorem 32 and taking in the last step F (x) =

∑∞
j=1 x

N
j , with N ≥ p,

we obtain:

Example 34 Let P : `p → `p be given by

P (x) = x1

∞∑
j=1

x2jej.

Then θAP
is not continuous on Mb(`p). Moreover, if A : Hb(`p) → Hb(`p) is defined

by A(f)(x) = limΓ f ◦ P (x+ en), then θA is not continuous over δ(`p).

If the Banach space X has a weakly null symmetric basis {en}n (see [22, Defini-
tion 3.a,.1]) and the N -homogeneous polynomial Q satisfies limQ(en) 6= 0, we can
even obtain a composition isomorphism A : Hb(X) → Hb(X) such that θA is not
continuous.

Theorem 35 Let X be a symmetrically regular Banach space with a weakly null
symmetric basis {en}n and suppose there exists a homogeneous polynomial Q such
that limnQ(en) 6= 0. Then there exists a biholomorphic polynomial g : X → X such
that the composition algebra-isomorphism Ag : Hb(X) → Hb(X) given by Agf = f ◦g
induces a non-continuous θAg .

PROOF. Take ε > 0 and a subsequence (enk
)k such that |Q(enk

)| > ε for all k. We
may suppose that n1 > 1. If x ∈ X, x =

∑
n xnen, we define:

P (x) = x1

∞∑
k=1

xn2k
en2k−1

.

and the projection

Π(x) = x−
∞∑

k=1

xn2k−1
en2k−1

.

Now we set g : X → X by g(x) = x + P (x), x ∈ X. Since P (Π(x)) = P (x) and
Π(P (x)) = 0 for all x ∈ X, it is easy to check that g−1(y) = y− P (y) for all y ∈ X,
which shows that g is biholomorphic.

Let ϕ ∈ Mb(X) be given by ϕ(f) = limΓ f(en2k
), where Γ is any ultrafilter on

N containing {{k, (k + 1), (k + 2), . . .} : k ∈ N}. Let us compute θAg(ϕ ◦ τe1)(f), for
f ∈ Hb(X). First, τe1(f ◦g)(en2k

) = f ◦g(en2k
+e1) = f(en2k

+e1 +en2k−1
). Therefore,

θAg(ϕ ◦ τe1)(f) = ϕ(τe1(f ◦ g)) = lim
Γ
f(en2k

+ e1 + en2k−1
) (2.10)
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On the other hand, let x∗∗ ∈ X∗∗. Since g(en2k
) = en2k

+ P (en2k
) = en2k

, it follows
that (τx∗∗(f) ◦ g)(en2k

) = τx∗∗(f)(en2k
) = f(en2k

+ x∗∗). So we have

θAg(ϕ) ◦ τx∗∗(f) = lim
Γ

(τx∗∗(f) ◦ g)(en2k
) = lim

Γ
f(en2k

+ x∗∗). (2.11)

Suppose there exists x∗∗ ∈ X∗∗ such that θAg(ϕ◦τe1) = θAg(ϕ)◦τx∗∗ . The right-hand
sides of equations (2.10) and (2.11) must coincide, in particular, for any f ∈ X∗.
The basis {en}n is weakly null and then x∗∗ = e1.

Now we set f0(x) = Q(
∑∞

k=1 xn2k−1
en2k−1

). We have f 0(en2k
+ x∗∗) = f0(en2k

+ e1) =
Q(0) = 0. By equation (2.11), θAg(ϕ)◦τx∗∗(f0) = 0. However, |f0(en2k

+e1+en2k−1
)| =

|Q(en2k−1
)| > ε which, by equation (2.10), means that θAg(ϕ ◦ τe1)(f0) 6= 0, a con-

tradiction.

Hence θA(ϕ ◦ τe1) does not belong to S(θA(ϕ)) and therefore θA is not continuous
on S(ϕ). 2

Examples fulfilling the hypotheses of this theorem are the spaces `p for 1 < p <∞
and Q(x) =

∑∞
n=1 x

r
n with r ∈ N, r ≥ p.

Maybe it is not clear at first sight, but above theorem is partially based on Henon
mappings h : C2 → C2, h(z, u) := (f(z) − cu, z) where f(z) is an entire function
and c a nonzero complex constant. We want to thank Lawrence Harris for pointing
out their existence to us.

In the second part of this section we have studied the continuity of mappings on
Mb(X) which were induced by multiplicative linear operators on Hb(X). We now
show an example of a natural mapping θ : Mb(X) →Mb(X) which is continuous on
each sheet but is not associated to any homomorphism A : Hb(X) → Hb(X). Recall
that given ϕ, ψ ∈Mb(X) we can define their convolution ϕ ∗ ψ as

ϕ ∗ ψ(f) = ψ(x 7→ ϕ ◦ τx(f)).

In [4, Example 3.4 and Remark 3.5], the authors present examples of pairs of el-
ements ϕ0, ψ0 in Mb(X) with ϕ0 ∗ ψ0 6= ψ0 ∗ ϕ0. Define θ : Mb(X) → Mb(X) as
θ(ψ) = ψ ∗ ϕ0. Since ψ ◦ τx∗∗ = δx∗∗ ∗ ψ, we have that θ(ψ ◦ τx∗∗) = (δx∗∗ ∗ ψ) ∗ ϕ0 =
δx∗∗ ∗(ψ ∗ ϕ0) = θ(ψ)◦τx∗∗ . This means that θ is continuous (in fact it is analytic) on
each sheet. Suppose now that θ = θA for some homomorphism A : Hb(X) → Hb(X).
In this case, A(f)(x) = θ(δx)(f) = δx ∗ ϕ0(f) = ϕ0 ◦ τx(f) and consequently
θ(ψ0)(f) = θA(ψ0)(f) = ψ0(Af) = ψ0(x 7→ ϕ0 ◦ τx(f)) = ϕ0 ∗ ψ0(f). This is a
contradiction, since by definition θ(ψ0) = ψ0 ∗ ϕ0 6= ϕ0 ∗ ψ0.
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