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Abstract

We prove that if C is a cocommutative k-coalgebra such that dim .k( .ke ∧ .ke)¡N for all
group-like elements e∈C⊗ .k, then smoothness of C is equivalent to the condition Hoch∗(C) = 0
for all ∗¿N . c© 2002 Elsevier Science B.V. All rights reserved.

MSC: 16W30; 16E65; 13D07; 16E45

0. Introduction

This paper is devoted to the study of the relationship between the functor Hoch∗

de:ned by Doi [5] and the notion of smoothness for coalgebras introduced in [8]. In
[8] we proved, in characteristic zero, that if C is a cocommutative smooth locally :nite
k-coalgebra, where locally :nite means that the dimension of the space of primitive
elements of any irreducible component of the .k-coalgebra C⊗ .k is :nite, then Hoch∗(C)
can be computed in terms of �1

C , and consequently, Hoch∗(C) vanishes for ∗�0. The
C-comodule �1

C is a universal object for coderivations with cosymmetric bicomodules
as source, it can be constructed as the cosymmetric part of the C-bicomodule (C ⊗
C) = �(C) and it is also naturally isomorphic to Hoch1(C) (see [8]).

This characterization of Hoch∗(C) when C is a locally :nite smooth coalgebra can
be seen as the coalgebra version of the Hochschild–Kostant–Rosenberg Theorem that
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says precisely when one can compute Hochschild homology as the exterior algebra on
KKahler diLerentials.

It is known that the condition HH∗(A) = 0 for ∗�0 is suMcient in order to assure
that a commutative algebra A (essentially of :nite type over k) is k-smooth (see for
example [2] or [3]). This reciprocal statement to the Hochschild–Kostant–Rosenberg
theorem for coalgebras (or one should say “Rodicio’s conjecture for coalgebras”) is
true, and this is our main theorem (see Theorem 3.5 and Corollary 3.6). In the coal-
gebra case, this Hochschild cohomological condition for smoothness has the advantage
that it also implies a structure theorem for the original coalgebra. It is well known that
if (A;M) is a commutative k-algebra which is the completion of a local and regu-
lar ring with dimk(M=M2) = n¡∞, then it is (Lipman–Nagata–Zariski Theorem for
char(k) = 0 and a corollary of Cohen’s Theorem for arbitrary characteristic) a ring of
formal power series on n-variables. In the coalgebra case the situation is simpler, we
keep the hypotheses of C being smooth, irreducible (i.e. local), with :nite dimensional
space of primitives (analogous to dimk(M=M2)¡∞) but there are no hypotheses
concerning “completeness”, and we still have that C must be the graded dual of a
polynomial algebra (see [8] for an explicit map in characteristic zero and Theorem 1.7
here for arbitrary characteristic).

The main results of this work can be summarized in the following theorem.

Theorem A. If k be an algebraically closed 8eld of arbitrary characteristic and C
is a cocommutative k-coalgebra such that; for all e∈G(C) = {c∈C |S(c) = c ⊗ c};
dimk(k:e ∧ k:e) =de ¡N + 1 for a 8xed integer N; then the following assertions are
equivalent:
1. C is smooth.
2. C ∼= ⊕e∈G(C) B((k:e ∧ k:e)=k:e).
3. Hoch∗(C; C) = 0 for ∗¿N .
4. Hoch∗(M;C) = 0 for ∗¿N and all C-bicomodules M .

Here we use Sweedler’s notation B(V ) for the biggest cocommutative subcoalgebra
of the cofree coalgebra on the vector space V . If V is :nite dimensional, B(V ) is the
graded dual of the symmetric algebra on V ∗.

The contents of this work are organized as follows:
In Section 1 we recall the notion of smoothness for coalgebras introduced in [8],

we also recall some of the fundamental properties and we prove a generalization to
arbitrary characteristic of a structure theorem for smooth coalgebras.

In Section 2 we use a KKunneth formula in order to compute easily Hoch∗(M;C),
for C a smooth irreducible coalgebra, and M an arbitrary bicomodule.

In Section 3 we prove, following Tate, that given any irreducible cocommutative
coalgebra there exists a diLerential graded cofree coalgebra quasi-isomorphic to it.
This is the key point of the proof of Theorem 3.5. Before the proof of Theorem 3.5,
we make the computation for a small dimensional example illustrating the methods to
be used in the proof of this theorem.
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Unless stated otherwise, k will be an algebraically closed :eld of arbitrary char-
acteristic, all coalgebras will be cocommutative (or eventually graded-cocommutative)
k-coalgebras.

1. Smooth coalgebras

We begin by recalling the de:nition of smooth coalgebra given in [8] and some of
their properties proved in the same article.

De�nition 1.1. Given a cocommutative k-coalgebra C, a square zero extension of C
is a cocommutative coalgebra D together with a monomorphism of coalgebras C → D,
such that the quotient D=C is a C-bicomodule.

In other words, a square zero extension of C is a cocommutative coalgebra D con-
taining C such that the wedge of C with itself viewed as a subspace of D is the whole
space D, we write C∧DC =D. We recall from [12] that if V and W are two subspaces
of a coalgebra D, the subspace V ∧W of D is de:ned by V ∧W = {d∈D such that
�(d)∈V ⊗ D + D ⊗ W}=Ker((pV ⊗ pW ) ◦ �), where pV (respectively pW ) is the
canonical projection D→ D=V .

Remark. Of course this de:nition can be made in the context of general coalgebras
omitting the word ‘cocommutative’, but in this work we will use only cocommutative
extensions and mapping extensions properties with respect to cocommutative exten-
sions. Mapping extension property with respect to general extensions would correspond
to the notion of ‘quasi-free’ instead of smooth.

The de:nition of smoothness is then given in terms of an extension property with
respect to square zero extensions.

De�nition 1.2. Let C be a cocommutative coalgebra, we call C smooth if for any
square zero extension D → E and any morphism of cocommutative coalgebras
f :D→ C, then there exists a morphism of coalgebras f̂ :E → C extending f.

This de:nition can also be written in cohomological terms. We know after [5] that
the class of coalgebra extensions

0→ C → D→ M → 0
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(where C → D is a coalgebra map and M is a C-bicomodule, the projection D → M
being D-bicolinear) is in 1–1 bijection with H 2(M;C). If we are interested in square
zero extensions of cocommutative coalgebras, then D must be cocommutative and
consequently M must be cosymmetric. Let us call as in [8], H 2(M;C)sym or H 2

Har(M;C)
the subgroup of H 2(M;C) consisting on symmetric cocycles, then it is proved easily in
[8] that C is smooth if and only if H 2

Har(M;C) = 0 for all cosymmetric C-comodules
M . If 1

2 ∈ k, then H 2
Har(M;C) is a direct summand of H 2(M;C).

Proposition 1.3. Let C and D be cocommutative coalgebras:
1. If C is smooth; then �1

C is an injective C-comodule (Proposition 3:4 of [8]).
2. If C is smooth; then C[S] is smooth for all multiplicative subsets S ⊂ C∗ (Propo-

sition 1:6 of [8]).
3. C ⊗ D is smooth if and only if C and D are smooth (part 2 of Lemma 2:8 and

Lemma 2:9 of [8] for the “if” part and the “only if” part; respectively).
4. If C =

⊕
i∈I Ci and C is smooth; then Ci is smooth for all i∈ I (Proposition 3:4:3

of [6]; also a consequence of 2).
5. If K is any subcoalgebra of C; then there is an exact sequence

0→ �1
K → �1

C C K → K ∧C K
K

and if one assumes K smooth; then the last morphism of the above sequence is a
split epimorphism (Proposition 3:5 and 3:6 of [8]):

It is evident that Property 4 is only a half of what we wanted, as a good de:nition
of smoothness should be checked locally. We want to prove that if C is a coalgebra
such that every localization at maximal ideals of C∗ is smooth, then C is smooth.

Proposition 1.4. If C =
⊕

i Ci is a k-coalgebra with every Ci smooth; then C is
smooth.

Proof. It is enough to prove that given a square zero extension

0→ C → E → M → 0

there exists % :E → C a coalgebra morphism splitting the inclusion C ,→ E.
Considering such an extension, and denoting by G(−) the set of group-like elements

of a given coalgebra, it is clear that G(C) =
∐
i G(Ci) and that G(C) ⊆ G(E). We

claim that G(C) =G(E), because if not, considering e∈G(E)−G(C), �(e) = e⊗ e �∈
C ⊗ E + E ⊗ C and so C ∧E C �=E.

Since E=
∧∞
E kG(E) =

⊕
i

∧∞
E kG(Ci), we have, denoting Ei:=

∧∞
E kG(Ci), that

Ci ,→ Ei and Ci ∧E Ci =Ci ∧Ei Ci =Ei. So the extension C ,→ E is a direct sum of
square zero extensions

⊕
Ci ,→

⊕
Ei; each Ci is smooth, so the inclusions Ci ,→ Ei

split by %i :Ei → Ci. If we consider the map %=
⊕

i %i : ⊕Ei → ⊕Ci, it has the desired
properties.
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We will recall an immediate consequence of Lemma 12:1:1 from [12] that will be
used in the proof of the Structure Theorem 1.7 and also when constructing models for
coalgebras and in the proof of our main results.

Given a local k-algebra A essentially of :nite type it can be always written as a
quotient R=I where R is a local regular algebra with maximal ideal M and I is an ideal
of R verifying I ⊆ M2 (see for example [3, Lemma 1.1.2]). On the coalgebra side,
the local coalgebras are the irreducible ones and there is an analogous description.

Lemma 1.5. If C is a pointed cocommutative irreducible k-coalgebra and e is its
unique group-like element; then there is a monomorphism of coalgebras denoted by
i :C ,→ B(P(C)) where P(C) = {x∈C |�(x) = x ⊗ e + e ⊗ x}.

Remark. The restriction of i to P(C) is the identity.

Corollary 1.6. With the above notations; ke ∧B(P(C)) ke ⊆ C.

Remark. As we said before the lemma, in the algebra case we write A=R=I where
R is local and regular and I ⊆ M2. For coalgebras, C is embedded in the smooth
coalgebra B(P(C)). Dualizing the exact sequence

0→ C → B(P(C))→ Coker → 0

we obtain

0←− A←− B(P(C))∗ ←− I ←− 0∥∥∥∥ ∥∥∥∥
C∗ C⊥

Then I ⊆M2 = (k:e⊥)2 = (ke ∧ ke)⊥ ⇔ ke ∧ ke ⊆ I⊥ =C.

Next, we shall prove a structure theorem for smooth coalgebras in arbitrary charac-
teristic. The corresponding result for algebras is a corollary of Cohen’s Theorem (see
for example [11, Corollary 28.J]).

Theorem 1.7. If C is an irreducible smooth k-coalgebra such that dimk(P(C))¡∞;
then C ∼= B(P(C)).

Proof. By the previous lemma there is a monomorphism of coalgebras i :C → B(P(C)).
Next, identifying C with i(C), consider the short exact sequence (see Proposition 1.3)
for the inclusion C → B(P(C)):

0→ �1
C → C B(P(C))�1

B(P(C)) →
C ∧B(P(C)) C

C
→ 0:
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C is smooth, so �1
C is an injective C-comodule, and, since C is irreducible, it is free

(see for example [13], Appendix 2). In order to compute its rank, we shall use the
same short exact sequence for the inclusion k:e ,→ C (remark that k:e is also a smooth
coalgebra), then we have

0→ �1
k:e → k:e C �1

C →
k:e ∧C k:e

k:e
→ 0:

It is clear that �1
k:e = 0, so if �1

C is a C-comodule of rank n, then n=dimk(k:e C �1
C) =

dimk(k:e ∧C k:e=k:e) =dimk(P(C)).
Note that dimk(P(C)) =dimk(P(B(P(C)))). Using again the :rst short exact se-

quence we obtain

0 −→ �1
C −→ C B(PC))�1

B(P(C)) −→ C ∧B(P(C))C
C −→ 0∥∥∥∥ ∥∥∥∥ ∥∥∥∥

0 −→ Cn −−→ jC B(P(C)) B(P(C))n −→ C ∧B(P(C))C
C −→ 0:

This sequence splits, then there is a split epimorphism p :Cn ∼= C B(P(C))B(P(C))n →
Cn such that p◦j= idCn . Since both p and j restrict to the socle soc(Cn) ∼= kn, the iden-
tity p|soc◦j|soc = idsoc implies that p|soc is an isomorphism of vector spaces, in particular
p|soc is injective. This means that Ker(p) ∩ soc(Cn) = soc(Ker(p)) =Ker(p|soc) = 0,
and so Ker(p) = 0.

On the other hand, Ker(p) identi:es with Coker(j), as a consequence, (C ∧B(P(C))

C)=C = 0, or equivalently C∧B(P(C))C =C. Inductively, it follows that C = (
∧n
B(P(C)) C)

∧B(P(C)) C =
∧n+1
B(P(C)) C for all n∈N. However,

B(P(C)) =
∞∧

B(P(C))

k:e=
⋃
n

n∧
B(P(C))

k:e ⊆
⋃
n

n∧
B(P(C))

C =C

from where we obtain C =B(P(C)).

2. Hochschild cohomology of C =B(V )

The cohomology groups Hoch∗ are easily computable for cocommutative cofree
coalgebras. We recall that, for a k-coalgebra C and a bicomodule M , the groups
Hoch∗(M;C) can be computed by means of a standard complex, but they are also the
values of the right derived functors of a cotensor product (see [5]):

Hoch∗(M;C) =Cotor∗Ce(M;C) =R(− CeC)∗(M)

where Ce =C⊗Cop, and we identify the category of right Ce-comodules with the cate-
gory of (k-symmetric) C-bicomodules. Fixing a coalgebra C over a :eld, the category
of C-comodules has enough injectives and the cotensor product is de:ned as a kernel,
so it is right exact, and the de:nition of right derived functor is the classical one.
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We will now show inductively that if V is a :nite dimensional k-vector space,
then Hochr(B(V )) ∼= B(V )( dimk (V )

r ) for all r¿ 0. Suppose :rst that dimk(V ) = 1. Then
C =B(k:x) = sh(k:x) (see [7]),

Hoch∗(C) =

{
C if ∗= 0; 1;

0 otherwise:

If M is an arbitrary C-bicomodule, Hoch∗(M;C) = 0 for ∗¿ 2 because C admits the
following short injective resolution:

0→ C → C ⊗ C → C ⊗ k:x ⊗ C → 0:

If dimk(V ) = n, then we can compute Hoch∗(B(V )) using induction on the dimen-
sion, because if C and D are arbitrary coalgebras and E=C ⊗ D, then Hoch∗(E) =
Hoch∗(C) ⊗ Hoch∗(D) (see for example [8]). So, if V is a k-vector space with
dimk(V ) = n, choose a basis {x1; : : : ; xn} of V , then B(V ) =B(kx1 ⊕ · · · ⊕ kxn) ∼=⊗n

i=1 B(kxi). It is immediate to compute inductively that Hochr(B(V )) =B(V )( nr ) for
all r¿ 0. In particular, Hochr(B(V )) vanishes for r ¿dimk(V ).

More generally, if we are interested in computing Hoch∗ with coeMcients, we can
use induction on the dimension of V in order to :nd a “co-Koszul” type resolution:

0→ C → C ⊗ C → C ⊗ V ⊗ C →
C ⊗ ,2V ⊗ C → · · · → C ⊗ ,dim(V )V ⊗ C → 0:

So we can conclude that Hoch∗(M;C) = 0 for all ∗¿dimk(V ) and all C-bico-
modules M .

The structure theorem of the previous section tells us that if C is a smooth irreducible
coalgebra with dimk(P(C))¡∞ then C is isomorphic to B(P(C)). As a consequence,
we have proved the following theorem generalizing Theorem 7:1 of [8] to arbitrary
characteristic.

Theorem 2.1. If C is a smooth irreducible k-coalgebra such that dimk(P(C))¡∞;
then Hoch∗(M;C) = 0 for ∗¿dimk(P(C)) and all C-bicomodules M .

One of the main results of this work is to prove the reciprocal statement that we
have conjectured in [8] for k a :eld of characteristic zero. In order to do it, we shall
next construct models for cocommutative coalgebras.

3. Models and cohomology

The theory of Tate models [14] for commutative :nitely generated k-algebras is a
useful tool for the computation of homology and cohomology. The idea is to replace
a commutative algebra A by its minimal model, i.e. a commutative diLerential graded
algebra of type (,V; d) = (Ã; d) such that Ã0=d(Ã1) ∼= A, Hi(Ã; d) = 0 for i¿ 0, and
d(V ) ⊆ V:Ã+

. Even if it seems to be a more complicated object, in practice this method
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can be used to isolate the diMculties. The algebra Ã is of type ,V where V is a graded
vector space V =

⊕
n¿0 Vn, ,V = S(

⊕
n¿0 V2n)⊗E(

⊕
n¿0 V2n+1) and E(−) and S(−)

are, respectively, the exterior and the symmetric algebra functors for char(k) = 0, and
the divided power versions in positive characteristic. More concretely:

Lemma 3.1. If A and B are two commutative noetherian k-algebras and f :A → B
is an algebra epimorphism; then there is a graded k-vector space V =

⊕
n¿1 Vn such

that dimk(Vn)¡∞ for all n¿ 1; a di?erential d of degree −1 on A ⊗ ,V; and a
quasi-isomorphism of algebras f̃ :A ⊗ ,V → B. Even more; if (B;MB) is local; one
can always 8nd a local and smooth algebra A and an epimorphism f :A → B such
that the di?erential graded algebra (A ⊗ ,V; d) veri8es d(V1) ⊆ M2 and d(Vp) ⊆
M:Vp−1+((,+V:,+V ):A⊗,V )p−1; where ,+V is the augmentation ideal of ,V → k.

This Lemma is a classical result [14], so we are just going to comment the :rst step
of the proof:

Since A is noetherian, Ker(f) is :nitely generated, so take a set {a1; : : : ; an} spanning
(as A-module) the kernel of f. Take V1 =

⊕n
i=1 k:ei and de:ne the diLerential on

A⊗ ,∗(V1) as the unique derivation verifying

d1(a) = 0 ∀a∈A; d1(ei) = ai; i= 1; : : : n:

The homology of A ⊗ ,∗(V1) is A=〈a1; : : : ; an〉=B in degree zero. The homology of
A⊗ ,∗(V1) in higher degrees may be zero or not; in the next steps this procedure is
iterated adding Vi with i¿ 2 in order to kill higher homology classes and extending d1.

The second part of the lemma comes from the fact that every noetherian local algebra
(B;MB) may be presented as a quotient A=I with (A;MA) noetherian local smooth,
and I ⊆M2

A (see for example [10]).
The importance of this method for Hochschild homology computation has been ex-

tensively proved. For example, it is the key of the proof of the reciprocal of the
Hochschild–Kostant–Rosenberg Theorem for algebras (namely Rodicio’s conjecture,
see [2] or [3]).

For coalgebras, the situation is as follows:

Proposition 3.2. If C is an irreducible k-coalgebra with dimk(P(C))¡∞ and group-
like element e; then there is a graded k-vector space W =

⊕
n¿1Wn with dimk(Wn)

¡∞ for all n and a quasi-isomorphism

C → (B(P(C))⊗ ,W; d);

where ,W is as coalgebra the graded dual of the exterior algebra on
⊕

n¿1W
∗
n . The

di?erential d comes from a di?erential d′ : k[|P(C)∗|] ⊗ ,(
⊕
W ∗
n ) → C∗ which is a

derivation satisfying d′(P(C)∗) ⊆ (k:e⊥)2 and d′(W ∗
p ) ⊆ ke⊥:W ∗

p−1+((,+W ∗:,+W ∗):
C∗ ⊗ ,W ∗)p−1. Here ,+W ∗ denotes the augmentation ideal of ,W ∗ → k.
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Proof. From Lemma 1.5, we have a monomorphism C → B(P(C)) extending the
identity of P(C). This map induces an epimorphism k[|U |]→ C∗, where U =P(C)∗.
Since k[|U |] is a noetherian k-algebra (see for example [1]), we are able to use the
previous lemma, which says that there is a graded k-vector space V =

⊕
n¿1 Vn and a

quasi-isomorphism

q̃ : (k[|U |]⊗ ,V; d′)→ C∗:

This map induces in turn, a morphism q

q :C =C∗0 → ((k[|U |]⊗ ,V )0; (d′)0) = k[|U |]0 ⊗ ,V ∗ =B(P(C))⊗ ,V ∗;

where V ∗ is the graded dual vector space
⊕

n¿1 V
∗
n = : W . The map d′ is a deriva-

tion, so d:=(d′)0 is a coderivation. Also, q̃ is a morphism of diLerential graded al-
gebras, so q is a morphism of diLerential graded coalgebras, and its transpose is the
quasi-isomorphism q̃; as a consequence, q is also a quasi-isomorphism.

We know that d is a degree +1 map (d′ is of degree −1), and by the remark after
Corollary 1.6 we have that d′(V1) ⊆ (ke⊥)2, the rest is a formal consequence of this
fact (see [14]).

Remark. Taking W0 =P(C) and W =
⊕

n¿0 Wn, there is a quasi-isomorphism between
C and (,W; d).

The above proposition may be used to compute Hochschild cohomology groups of
coalgebras thanks to the following fact:

Theorem 3.3 (Proposition 7:7:1 together with Theorem 9:1:4 of [6]). Given two di?er-
ential positively graded k-coalgebras C and D; if f :C → D is a quasi-isomorphism
then (via f) Hoch∗(C) ∼= Hoch∗(D).

Theorem 9:1:4 of [6] states that if there is a ‘derived Morita equivalence’ between C
and D, then Hoch∗(C) ∼= Hoch∗(D), and Proposition 7:7:1 says precisely that if there is
a quasi-isomorphism f : C → D, then taking Cf ∈D(C ⊗Dop) and fC ∈D(D⊗Cop),
there are isomorphisms fC R

CCf ∼= D (isomorphism in D(D⊗Dop)) and Cf R
D fC ∼= C

(isomorphism in D(C ⊗ Cop)), and hence a derived Morita equivalence. The notation
fC (resp. Cf) means that we view C as right (resp. left) C-comodule and left (resp.
right) D-comodule via f.

Since our purpose is to obtain Hoch∗((B(P(C) ⊗ ,W; d)), we shall next show that
there exists a co-Koszul-type resolution for this coalgebra as comodule over its en-
veloping coalgebra.

Let us denote (D; d) = (,W; d) a diLerential graded coalgebra coming from the con-
struction given in Proposition 3.2. Here W =

⊕
n¿0 Wn and W0 =P(C). As usual,

De =D ⊗ Dop. The procedure is divided into :ve steps:
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Step 1: Suppose that W =
⊕

n¿0 W2n, (D; d) = (,W; 0) = (S(W ); 0) and dimk(W )
¡∞. Forgetting the grading, S(W ) is isomorphic to B(W ), and so it has a resolution
of type

0→ B(W )→ B(W )e → B(W )⊗W ⊗ B(W )→ B(W )⊗ E2W ⊗ B(W )→ · · · :
This fact is clear if dimk(W ) = 1 (since in this case B(V ) is the tensor coalgebra
on W = k:x). For dimk(W )¿ 1 and {x1; : : : ; xn} a k-basis of W , by tensoring the
resolutions of B(k:xi), 16 i6 n (see example of Section 2), we obtain a complex
of B(W )e-comodules which is, using a KKunneth formula, a resolution of B(W ). This
resolution has on degree j free B(W )e-comodules of rank dimk(EjW ).

Step 2: Suppose now W =
⊕

n¿0 W2n+1, (D; d) = (,W; 0) = (E(W ); 0) and dimk(W )
¡∞. If dimk(W ) = 1, then E(W ) = (k[x]=x2)∗ and it has the following resolution:

0 −→ E(W ) −→ E(W )e −→ E(W )e −→ E(W )e −→ · · ·
i.e. the dual complex of the periodic complex

: : :
:(1⊗x−x⊗1)−−−−−−→(k[x]=x2)e

:(1⊗x+x⊗1)−−−−−−→(k[x]=x2)e
:(1⊗x−x⊗1)−−−−−−→(k[x]=x2)e m−−−→k[x]=x2 → 0:

If dim(W )¿ 1, we tensorize the resolutions as we did in the :rst case.
Step 3: Suppose (D; d) = (,(

⊕
n¿0 Wn); 0) with dimk(W )¡∞.

In this case, we obtain a resolution by tensoring those of the previous cases since
(,W; 0) = (S(

⊕
n¿0 W2n); 0)⊗ (E(

⊕
n¿0 W2n+1); 0).

Step 4: Suppose (D; d) = (,W; d) and dimk(W )¡∞.
The resolution is now the complex which, as graded vector space, is the same as

above. We shall now construct the diLerential. In order to do so, since dimk(W )¡∞,
we shall take the graded dual of the complex, considering then the (local) algebra
A= k[|W ∗

0 |]⊗ ,W ∗
¿1.

Using Tate’s Lemma 3.1, there is a model for HH∗(A; d′) [4]. This model may be
obtained by tensoring the resolution (A⊗, .V ⊗A; /) of A as Ae-module over Ae by A,
where Vn =W ∗

n , .Vn ∼= Vn ( .v �→ v) but with diLerent grading, we set | .v|= |v|+ 1. The
diLerential / is de:ned by

/(a⊗ v1 ∧ · · · ∧ vn ⊗ b)

= (−1)n
(
d′(a)⊗v1∧· · ·∧vn ⊗ b+(−1)|a⊗v1∧···∧vn|a⊗ v1 ∧ · · · ∧ vn ⊗ d′(b)

+
n∑
i=1

(−1)|v1∧···∧vi−1|:|vi|ad′(vi)⊗ v1 ∧ · · · v̂i · · · ∧ vn ⊗ b

+
n∑
i=1

(−1)|vi+1∧···∧vn|:(|vi|−1)a⊗ v1 ∧ · · · v̂i · · · ∧ vn ⊗ d′(vi)b
)
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+
n∑
i=1

(−1)|v1∧···∧vi−1|:|vi|avi ⊗ v1 ∧ · · · v̂i · · · ∧ vn ⊗ b

+
n∑
i=1

(−1)|vi+1∧···∧vn|:(|vi|)a⊗ v1 ∧ · · · v̂i · · · ∧ vn ⊗ vib:

This complex is a resolution because of the following argument:
Consider the :ltration induced by V; and the associated graded complex (C∗; ./∗).

Apply the functor (−)0. The complex obtained is acyclic since the second part of
Tate’s Lemma implies that the ‘internal’ diLerential on the associated graded is zero,
so we are in the situation of (,W; 0). As a consequence, the original complex was
acyclic, and hence a resolution.
Step 5: Suppose (D; d) = (,W; d) with W a graded k-vector spaces with arbi-

trary dimension. We can write W = lim→ Wi with Wi :nite dimensional, consequently

(D; d) = lim
→i

(,Wi; di). For each coalgebra (,Wi; di), we have already constructed a

resolution, in such a way that they :t together into an inductive system of resolutions.
The functor lim→ commutes with homology, so the direct limit of the resolution is a

resolution of (D; d).

Lemma 3.4. If C is a cocommutative irreducible k-coalgebra with dimk(P(C))¡∞
and n∈N such that HHn(C∗) �= 0; then Hochn(C; C) �= 0 as well.

Proof. Since dimk(P(C))¡∞, C admits a diLerential graded model of type
(B(P(C))⊗,W; d) with dimk(Wn)¡∞ for all n and consequently, C∗ has (k[|P(C)∗|]
⊗,W ∗; d′) as diLerential graded model.

If we use the Koszul type resolution for the models of C and C∗, the complex
computing HH∗(C∗; C∗) is the graded dual of the one computing Hoch∗(C; C). By the
universal coeMcients theorem, (Hochn(C))∗ =HHn(C∗), and so the Lemma is proved.

In order to describe Hoch∗(C) when C is not a smooth coalgebra, let us :rst
deal with an example. Suppose then that C has a model of type (B(W0) ⊗ ,W1; d)
where dimk(W0) =dimk(P(C)) = 2, dimk(W1) = 1, and k is a characteristic zero :eld.
Next we write the double complex whose total complex is used to compute HH∗(C∗).
Keeping the notation V =W ∗, the bicomplex C∗∗ = (,V ⊗ , .V ; @) is obtained after
identi:cation ,V ⊗ , .V ∼= (,V ⊗ , .V ⊗ ,V )⊗(, .V )e , .V . It has components

Cpq =
⊕

s; j; i=i+j=p;s+i+2j=q

k[|V0|]⊗ Es(V1)⊗ Ei( .V 0)⊗ Sj( .V 1);
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C∗∗ =

0 ←−�
0 ←− k[|V0|]⊗ V1 ⊗ S2 .V 1 ←−� �

0 ←− k[|V0|]⊗ V1 ⊗ .V 1 ←−
(

k[|V0|]⊗ S2 .V 1⊕
k[|V0|]⊗ V1 ⊗ .V 1 ⊗ .V 0

)
←−� � �

k[|V0|]⊗ V1 ←−
(

k[|V0|]⊗ .V 1⊕
k[|V0|]⊗ V1 ⊗ .V 0

)
←− k[|V0|]⊗ V1 ⊗ E2 .V 0 ←−� � �

k[|V0|] ←− k[|V0|]⊗ .V 0 ←− k[|V0|]⊗ E2 .V 0 ←−

0�
k[|V0|]⊗ V1 ⊗ S3 .V 1�(
k[|V0|]⊗ S3 .V 1⊕

k[|V0|]⊗ V1 ⊗ S2 .V 1 ⊗ .V 0

)
�

k[|V0|]⊗ S2 .V 1 ⊗ .V 0�
k[|V0|]⊗ .V 1 ⊗ E2 .V 0�

0

where |V0|= 0, |V1|= 1 and | .V i|= |Vi| + 1. The vertical maps are induced by the
diLerential in (k[|V0|] ⊗ E(V1)) ⊗ E( .V 0) ⊗ S( .V 1), i.e. @ is a derivation satisfying
@(v) =d′(v) and @( .v) =−3(d′(v)) where 3 is also a derivation, such that 3(v) = .v and
3( .v) = 0.

The horizontal maps are zero, because of the cocommutativity of C (the algebra
,V is graded commutative and the horizontal diLerential is essentially the graded
commutator).

Remarks. (1) The homology of the total complex is the direct sum of the homologies
of the columns.

(2) Consider the elements of k[|V0|]⊗ .V 1⊗E2( .V 0) (in degree 4), they are all cycles.
Then look at the image of k[|V0|]⊗ S2 .V 1 ⊗ .V 0 by @:

@( .v1 .v′1 .v0) = @( .v1) .v′1 .v0 + .v1@( .v′1) .v0 + .v1 .v′1@( .v0)

=−3(d′v1) .v′1 .v0 − .v13(d′v′1) .v0 + 0:

Using that d′(V1) ⊂ 〈(V0)2〉, we have that 3(d′(V1)) ⊂ k[|V0|]V0 ⊗ .V 0, and so

@( .v1 .v′1 .v0)∈ k[|V0|]V0 ⊗ .V 1 ⊗ E2( .V 0):

This says that the space of cycles is bigger than the image of k[|V0|]⊗ S2 .V 1 ⊗ .V 0 by
@, and hence HH4(C∗) �= 0.

(3) A similar argument proves that HH4+2k(C∗) �= 0 for all k ∈N.
(4) Consequently, Hoch4+2k(C) �= 0 ∀k¿ 0.

Using arguments similar to those in [2,3], the above example can be generalized in
order to obtain the following theorem:

Theorem 3.5. If C is a cocommutative non smooth k-coalgebra with dimk(P(C))¡∞;
then for all n∈N; there exists m¿n such that Hochm(C) �= 0.

Proof. Using Lemma 3.4, it is suMcient to prove that for all n∈N, there exists m¿n
such that HHm(C∗) �= 0. After Proposition 3.2, C admits a diLerential graded model of
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type (B(P(C))⊗,W; d) with W =
⊕

n¿1 Wn. Since C is not smooth, C cannot be iso-
morphic to B(P(C)), and this is the same as saying that W1 �= 0 (the homology in degree
zero of the model is the Kernel of the :rst diLerential B(P(C))→ B(P(C))⊗W1).

In addition, the primitive elements of C can be identi:ed with the primitive elements
of the model. Following Corollary 1.6 and the remark after it, the translation of this
property in the model of C∗ is that d(W ∗

1 ) ⊂ (P(C)∗)2 ⊂ k[|P(C)∗|] ⊗ ,W ∗. This
condition is exactly the one needed in order to construct non zero elements on in:nitely
many degrees in HH∗(C∗) (see [2] or [3]). As a consequence, given n, there exists
m¿n such that Hochm(C) �= 0.

Corollary 3.6. Let k be a 8eld (not necessarily algebraically closed) and C a cocom-
mutative k-coalgebra. If dim .k( .ke∧ .ke)¡∞ for all group-like element e∈C⊗k .k and
C is not k-smooth; then for all n∈N there exists m¿n such that Hochm(C) �= 0.

Proof. One can assume that k = .k because Hoch∗(C|k)⊗ .k =Hoch∗(C⊗ .k| .k). Also we
can suppose that C is irreducible, because if not, write C =

⊕
i Ci with Ci irreducible.

We know (see for example [9]) that Hoch∗(
⊕

i Ci) =
⊕

i Hoch
∗(Ci). If all Ci were

smooth, then (Proposition 1.4) C would be smooth too, so there must be at least one
Ci0 not smooth. Now use the Theorem above and conclude that there exists m¿n
such that Hochm(Ci0 ) �= 0.

Remarks. (1) The proof of Theorem 3.5 relies on the main results of [2,3]. This
says in addition that the nonzero homology groups that one :nds have all the same
parity. As a consequence, if C is a locally :nite coalgebra such that there exists
an odd number i and an even number j with Hochi(C) = 0 =Hochj(C), then C is
smooth.

(2) If C is cocommutative irreducible non smooth, and dim(P(C))¡∞, then the
algebra C∗ is not smooth.

We comment now how the results obtained up to now can be used to give a proof
of Theorem A stated in the introduction.

It is clear that 4 implies 3. The decomposition of a cocommutative coalgebra into
irreducible components plus part 4 of Proposition 1.3 plus the Structure Theorem 1.7
give 1 implies 2.

2⇒ 3 and 2⇒ 4 are the computations of Section 2.
Finally 3⇒ 1 is Theorem 3.5 above.
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