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Abstract

We study how Hilbert bimodules correspond in the algebraic case to hermitian

Morita equivalences and consequently we obtain a description of the hermitian Picard

group of a commutative involutive algebra A as the semidirect product of the clas-

sical hermitian Picard group of A and the automorphisms of A commuting with the

involution. We also obtain similar decomposition results on hermitian Picard groups

of involutive coalgebras (C,ωC), which show, at least in the cocommutative case, that

this hermitian Picard group differs considerably from the non hermitian one.
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1 Introduction

The Picard group of a k-algebra A (k a field) has been studied in detail from different
points of view, principally when A is commutative (e.g. algebraic geometry, fiber
bundles). For example, when X is a paracompact space and A = C(X) is the algebra
of complex valued continuous functions on X, then an element of the Picard group
of A (over C) corresponds to a line bundle over X ([1]). On the other hand, we know
from [6] that the elements of the Picard group of a k-algebra A are isomorphism
classes of A-bimodules providing a Morita equivalence between A and A itself, called
invertible A-bimodules.
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Being interested in the situation described in [1], our first aim was to describe
an analogous situation in the algebraic context, over an arbitrary field k. In fact, we
found that the data provided by the inner products when A = C(X) and k = C was
not reflected by Morita equivalences but by hermitian Morita equivalences. This fact
led us to the definition of algebraic Hilbert bimodules. Once this established, the
definiton of hermitian Picard group of a k-algebra A (not necessarily commutative)
is natural and is equivalent to the definition given by [8].

We then prove explicitely the following result:
Theorem (3.11): Let A be a commutative involutive k-algebra. Then there

exists an split exact sequence of groups

1 // hCPick(A,ωA) // hPick(A,ωA) // hAutk(A) // 1

where hAutk(A) = {α ∈ Autk(A) commuting with the involution of A } and
hCPick(A,ωA) is the subgroup of hPick(A,ωA) consisting of (isomorphism classes
of) A-symmetric A-bimodules. In other words,
hPick(A,ωA) ∼= hCPick(A,ωA)ohAutk(A).

As examples show, this result provides an important tool to compute explicitely
the Picard group of some algebras.

The situation relating the (hermitian) Picard group of a k-coalgebra C with the
(hermitian) Morita - Takeuchi equivalence of C itself is similar. Of course, this is
clear in the finite dimensional case, as the (hermitian) Picard groups of C and C∗ are
isomorphic. However, the analogy also holds for infinite dimensional k-coalgebras
[10]. We define the hermitian Picard group of an involutive coalgebra, and we prove
that in the cocommutative case, the following result holds:

Theorem (4.6): If C is a cocommutative involutive k-coalgebra, then
hPick(C,ωC) ∼= hCPick(C,ωC)ohAutk(C).

This theorem, analogous to theorem 3.11 remarks an important difference be-
tween Pick(C,ωC) and hPick(C,ωC). Torrecillas and Zhang proved in [10] that if
C is cocommutative k-coalgebra, then Pick(C) ∼= Autk(C). Here, in the involu-
tive case, the classes of the C-cosymmetric bicomodules are not trivial, explicitely,
hCPick(C,ωC) ∼= UZ(C∗)+/UZ(C∗).UZ(C∗) (Proposition 4.5) so, they depend on
the dual algebra C∗. This fact suggests that in many infinite dimensional cases,
the difference between hPick(C,ωC) and hPick(C∗, ωC∗) depends on the respective
automorphisms groups.

The contents of this work are the following:
In section 2 we recall definitions and properties of hermitian Morita theory from

a point of view that will be useful afterwards.
The aim of section 3 is to introduce the notion of Hilbert bimodule, whose name

comes from the fact that these modules play the role of Hilbert bimodules in the C∗-
algebra context. We also provide an alternative definition of the hermitian Picard
group of an involutive algebra. After having obtained some technical results, we
prove Theorem 3.11.

We also prove in Proposition 3.14 that the subgroup of the hermitian Picard
group of an algebra consisting of elements that are symmetric over the hermitian
center is invariant under hermitian Morita equivalences.



Section 4 is devoted to coalgebras. After recalling the definition of hermitian
Morita - Takeuchi equivalences from [4], we define hPicR(C,ωC), where C is an
R-coalgebra, and describe its relation with PicR(C,ωC) (Proposition 4.5). Finally
we prove Theorem 4.6.

k will denote a commutative unital ring, A and B will denote associative unital
k-algebras with involutions ωA and ωB, i.e. k-linear antimultiplicative morphisms
such that ω2

A = IdA, and the same for B. C and D will be involutive k-coalgebras,
with involutions ωC and ωD.

We want to thank Beatriz Abadie, Marivi Reyes Sanchez and Peter Verhaeghe,
for discussions and comments on [1], [8] and [11].

2 Hermitian Morita theory

We first focus our attention on hermitian Morita equivalence. The given definition
is not the same as Hahn’s one [6], but it is equivalent to it [3]. Our purpose in
changing it is to emphasize the role played by the k-linear bijection Θ of Hahn’s
definition.

We begin by recalling the basic definition of Morita equivalence:

Definition 2.1 A and B are Morita equivalent if and only if the categories Amod
and Bmod are equivalent.

It is well-known (see [7]) that A and B are Morita equivalent if and only if modA
and modB are equivalent categories, and this fact corresponds to the existence of
a progenerator bimodule APB = APEndA(P ) provided of bimodule isomorphisms
µ : P ⊗B P ∗A → A (the trace map) and τ : P ∗A ⊗A P → B (defined by τ(f ⊗ p)p′ =
f(p′)p ∀p, p′ ∈ P and f ∈ P ∗A). From now on, we will consider only Morita
equivalence contexts of this type, and we will write P ∗ = Q = P ∗A .

Remark: Choosing µ : P ⊗B Q → A and τ : Q ⊗A P → B as above, the
following equalities hold:

1. µ(p⊗ q)p′ = pτ(q ⊗ p′) and

2. τ(q ⊗ p)q′ = qµ(p⊗ q) ∀p, p′ ∈ P , q, q′ ∈ Q

Now suppose that (A,ωA) and (B,ωB) are two k-involutive algebras which are
Morita equivalent and, with the notations as above, that we also have a k-linear
isomorphism Θ : P → Q satisfying

Θ(a.p.b) = ω(b).Θ(p).ωA(a) ∀a ∈ A, b ∈ B, p ∈ P

As in every Morita equivalence, there are k-algebra isomorphisms EndA(P ) ∼= B
and EndB(Q) ∼= A given by the compositions

EndB(Q) = EndB(P ∗) ∼= P ⊗B P ∗ = P ⊗B Q ∼=µ A



where the first isomorphism is (p ⊗ φ) 7→ (φ′ 7→ φφ′(p)) and the others are the
canonical ones.

EndA(P ) ∼= P ∗ ⊗A P = Q⊗A P ∼=τ B

Using µ, τ and Θ it is possible to define non-degenerated (in fact non-singular)
sesquilinear forms in P and Q as follows:

< p, p′ >L:= µ(p⊗Θ(p′))

< q, q′ >L:= τ(q ⊗Θ−1(q′))

As a consequence EndA(P ) and EndB(Q) are provided of involutions (both denoted
by (−)∗) which are adjoint to the above sesquilinear forms, i.e. if f ∈ EndA(P ), f∗

is defined as the unique element in EndA(P ) satisfying

< f(p), p′ >L=< p, f∗(p′) >L ∀p, p′ ∈ P

and if g ∈ EndB(Q), g∗ is defined respectively as the unique element in EndB(Q)
satisfying

< g(q), q′ >L=< q, g∗(q′) >L ∀q, q′ ∈ Q
Note: although in the examples of this paper the adjoint morphism correspond-

ing to the sesquilinear forms will always be isomorphism and that in this case the
usual term is non-singular or regular, we keep the name non-degenerated because
the definition of A−B-Hilbert bimodule still makes sense when the inner products
are not necessarily surjective emphasizing then the relation with Hilbert bimodules
in the context of C∗ algebras, where the usual term is non-degenerated, and in many
examples the sesquilinear forms are non surjective [1].

The purpose of next proposition is to make clear the role of Θ: (we keep the
notations of the above paragraph)

Proposition 2.2 Let A and B be Morita equivalent, and let let Θ : P → Q be a k-
isomorphism such that Θ(a.p.b) = ωB(b)Θ(p)ωA(a), ∀a ∈ A b ∈ B p ∈ P . Suppose
in addition that µ and τ satisfy the following compatibility conditions:

1. µ(p⊗Θ(p′)) = ωA(µ(p′ ⊗Θ(p))) and

2. τ(Θ(p)⊗ p′) = ωB(τ(Θ(p′)⊗ p)) ∀p, p′ ∈ P

Then, considering EndA(P ) and EndB(Q) with involutions defined as above, the
isomorphisms EndA(P ) ∼= A and EndB(Q) ∼= B are morphisms in the category of
involutive k-algebras, i.e. they commute with the respective involutions.

Proof: we make the computation for B ∼= EndA(P ), the other is similar.
Identifying EndA(P ) with P ∗⊗AP it is enough to prove the assertion for elements

f ∈ EndA(P ) of the form f = φ ⊗ p with φ ∈ P ∗ and p ∈ P , where (φ ⊗ p)(x) =
φ(x).p = µ(x⊗ φ).p. If x, y ∈ P :

< x, f(y) >L = µ(x⊗Θ((φ⊗ p)(y))) = µ(x⊗Θ(µ(y ⊗ φ).p))
= µ(x⊗Θ(p)ωA(µ(y ⊗ φ))) = µ(x⊗Θ(p)µ(Θ−1(φ)⊗Θ(y)))
= µ(x⊗Θ(p))µ(Θ−1(φ)⊗Θ(y)) = µ(µ(x⊗Θ(p))Θ−1(φ)⊗Θ(y))
= µ((Θ(p)⊗Θ−1(φ))(x)⊗Θ(y)) =< (Θ(p)⊗Θ−1(φ))(x), y >L



which proves that f∗ = (φ⊗ p)∗ = Θ(p)⊗Θ−1(φ) = τ−1(ωA(τ(φ⊗ p)).

Now we recall from [6] the definition of hermitian Morita equivalence.

Definition 2.3 A and B are hermitian Morita equivalent , if they are Morita
equivalent, i.e. there exist bimodules APB and BQA such that

1. P and Q are k-symmetric (i.e. λp = pλ ∀λ ∈ k, p ∈ P , idem for Q)

2. There exist µ : P⊗BQ→ A and τ : Q⊗AP → B isomorphisms of A-bimodules
and B-bimodules respectively such that:

(a) µ(p⊗ q)p′ = pτ(q ⊗ p′) and

(b) τ(q ⊗ p)q′ = qµ(p⊗ q) ∀p, p′ ∈ P , q, q′ ∈ Q

and in addition

3. There exists a k-linear bijection Θ : P → Q such that

(a) µ(p⊗Θ(p′)) = ωA(µ(p′ ⊗Θ(p)))

(b) τ(Θ(p)⊗ p′) = ωB(τ(Θ(p′)⊗ p)) and

(c) Θ(apb) = ωB(b)Θ(p)ωA(a) ∀a ∈ A, b ∈ B, p, p′ ∈ P

A set of data (A,B, P,Q, µ, τ,Θ) satisfying these conditions will be called an her-
mitian Morita equivalence context.

Examples:

1. Let (A,ωA) be an algebra with involution, then (A,ωA) and (Mn(A), ωMn(A)),
where
(ωMn(A)(m))ij = ωA((m)ji) (m ∈ Mn(A)) are hermitian Morita equivalent.
To see this, take e ∈ Mn(A) the idempotent defined as (e)ij = δ1iδ1j , P =
eMn(A), Q = Mn(A)e, µ : P ⊗Mn(A) Q → eMn(A)e = A and τ : Q ⊗eMn(A)e

P →Mn(A) the multiplication, and Θ = ωMn(A) : P → Q.

2. Let A be an algebra with involution and let G be a finite group of k-algebra
automorphisms of A commuting with the involution such that A|AG is a Galois
extension. Then AG and AoG are hermitian Morita equivalent. The Morita
equivalence context is described in [2], using P = Q = A. If we take Θ = ωA :
P → Q it turns out that this Morita context is in fact an hermitian Morita
context.

3 Algebraic Hilbert bimodules and the hermitian Pi-
card group

This section consists of two parts. In the first one we define the notion of algebraic
Hilbert bimodule (or simply Hilbert bimodule). Although our motivation for this



definition comes from the C∗-algebra case [1], it turns out that the notion of Hilbert
bimodule coincides with the compatible hermitian bimodules of [11].

In the second part we recall from [11] the definition of hermitian Picard group
of an involutive k-algebra and, after defining the classical hermitian Picard group,
we establish the relation between this group, the hermitian Picard group, and the
automorphisms of the involutive algebra A for A commutative.

We begin with the notion of algebraic Hilbert bimodule, which is, as we shall
see, closely related to the construction of the hermitian Picard group of an algebra
with involution.

Definition 3.1 A bimodule M ∈ AmodB together with two k-bilinear maps <,>L:
M ×M → A and <,>R: M ×M → B will be called an algebraic Hilbert A−B-
bimodule if and only if the maps <,>L and <,>R verify the following properties:

1. <,>L is A-linear in the first variable and A-antilinear in the second variable,
namely

• < ax, y >L= a < x, y >L and
• < x, ay >L=< x, y >L ωA(a) for all a ∈ A, x, y ∈M .

2. <,>R is B-linear in the second variable and B-antilinear in the first variable,
namely

• < xb, y >R= ωB(b) < x, y >R and
• < x, yb >R=< x, y >R b for all b ∈ B, x, y ∈M .

3. < x, y >L= ωA(< y, x >L) and < x, y >R= ωB(< y, x >R) ∀x, y ∈M .

4. The sesquilinear forms <,>L and <,>R are non-degenerated.

5. < x, y >L z = x < y, z >R ∀x, y, z ∈M

In an analogous way to the case when A and B are C∗-algebras, <,>L and <,>R
will be called respectively left and right inner products.

If in addition we have (with the notation as above) < xb, y >L=< x, yωB(b) >L
we say that <,>L is B-balanced and analogously for <,>R and A.

An interesting consequence of the relations between items 1. 3. and 5. of the
previous definition is the following:
Remark: If we consider a Hilbert A − B-bimodule M with surjective right inner
product, then <,>L is B-balanced.

Proof: Given x, y ∈ M and b ∈ B, let xb, yb ∈ M such that < xb, yb >R= b.
Then

< xb, y >L= < x < xb, yb >R, y >L= (5)
= << x, xb >L yb, y >L= (1)
= < x, xb >L< yb, y >L= (3)
= < x, xb >L ωA(< y, yb >L) = (1)
= < x,< y, yb >L xb >L= (5)
= < x, y < yb, xb >R>L= (3)
= < x, yωB(b) >L



The same assertion interchanging left and right inner product and B by A is
also true.

A morphism f : (M,<,>ML , <,>
M
R )→ (N,<,>NL , <,>

N
R ) of Hilbert bimodules

is a bimodule map preserving inner products, i.e. < f(m), f(m′) >NL =< m,m′ >ML
for all m,m′ ∈M and similarly for <,>R.

Examples:

1. Let A be a k-algebra with involution ωA. Then AMA = A with < a, a′ >L=
aωA(a′) and < a, a′ >R= ωA(a)a′ is a Hilbert A−A-bimodule.

2. Let (APB,B QA, µ, τ,Θ) be a set of hermitian Morita equivalence data between
(A,ωA) and (B,ωB), we shall see below that P (resp Q) can be provided of a
<,>L and <,>R, obtaining then an A−B (resp B −A) Hilbert bimodule.

3. Let A,B,C be algebras with involution, let (AMB, <,>
M
L , <,>

M
R ) and

(BNC , <,>
N
L , <,>

N
R ) be two Hilbert bimodules with surjective inner products,

then M ⊗B N is a Hilbert bimodule with (surjective) left and right inner
products defined by

< m⊗ n,m′ ⊗ n′ >R=< n,< m,m′ >MR n′ >NR

< m⊗ n,m′ ⊗ n′ >L=< m < n, n′ >NL ,m
′ >ML

The hypothesis of surjectivity is used in order to verify that the inner products
are well-defined (explicitely we need the inner products being balanced) and
their non degeneracy. For example, for the left inner product, which gives
a map M ⊗B N → (M ⊗B N)∗A (m ⊗ n 7→< −,m ⊗ n >L), one identifies
(M ⊗B N)∗A ∼= N∗B ⊗B M∗A whose inverse is explicitely constructed as the
tensor product of the inverses of m 7→< −,m >ML and n 7→< −, n >NL . Notice
also that the identification (M ⊗B N)∗A ∼= N∗B ⊗B M∗A can be done for
example when M is finitely generated and projective as B-module, which is
our case, because the Morita context induced between A and B by (M,<,>L,
<,>R) has surjective trace maps, and so the projectivity of M is a consequence
of the Morita theorems.

4. Let A and B be algebras with involution, (AMB, <,>L, <,>R) a Hilbert bi-
module with surjective inner products, then M∗A and M∗B are Hilbert bimod-
ules. We explicite the inner products in M∗A :

Let f, g ∈ M∗A, as <,>L: M ×M → A is non-singular, there exist unique
elements xf and xg in M such that f =< −, xf >L and g =< −, xg >L. The
inner products in M∗A are defined by:

< f, g >R:=< xf , xg >L

< f, g >L:=< xf , xg >R

As a straight consequence of the non-degeneracy of the inner products in a
Hilbert bimodule, we have the first parts of the following lemma:



Lemma 3.2 Let (AMB, <,>L, <,>M ) be a Hilbert bimodule, x ∈ M, a ∈ A and
b ∈ B.

1. If < y, x >R= 0 ∀y ∈M then x = 0.

2. If < x, y >L= 0 ∀y ∈M then x = 0.

3. Suppose that <,>L (resp. <,>R) is surjective, then a.y = 0 ∀y ∈ M (resp.
y.b = 0 ∀y ∈M) implies a = 0 (resp. b = 0).

Proof: 3. <,>L being surjective, there exists a finite set {xi, yi}i∈I ⊆ M such
that∑
i∈I < xi, yi >L= 1A.Then:

a = a.1 =
∑
i∈I

a < xi, yi >L=
∑
i∈I

< axi, yi >L=
∑
i∈I

< 0, yi >L= 0

The assertion concerning b is analogous.

The existence of an hermitian Morita equivalence (P, P ∗A , µ, τ,Θ) between two
involutive k-algebras A and B provides P with the structure of a A − B-Hilbert
bimodule where <,>R and <,>L are defined by:

< p, p′ >L= µ(p⊗Θ(p′)) ; < p, p′ >R= τ(Θ(p)⊗ p′)

and they are surjective.
Conversely, the existence of an A − B-Hilbert bimodule M , with <,>R and

<,>L surjective, allows us to construct an hermitian Morita equivalence between A
and B as follows:

Consider Θ : M →M∗A mapping x ∈M into < −, x >L.
Θ verifies Θ(amb) = ωB(b)Θ(m)ωA(a), ∀a ∈ A, b ∈ B, m ∈ M , one uses the fact
that
< x, ay >L=< x, y > ωA(a) ∀x, y ∈ M, a ∈ A. If b ∈ B then Θ(xb) =< −, xb >L.
We want to show that Θ(xb) = ωB(b)Θ(x).

As the right and left inner products are compatible, < x, yb >L z = x < yb, z >R
∀x, y, z ∈M . As <,>R is right B-linear the last expression equals xωB(b) < y, z >R,
and this is < xωB(b), y >L z.
The A-action on M being faithful (surjectivity of <,>L plus lemma 3.2), this implies
that < xωB(b), y >L=< x, yb >L, ∀x, y ∈M, b ∈ B (as we have already seen after
the definition of Hilbert bimodules with a different argument). Then Θ(xb)(y) =<
y, xb >L= < yωB(b), x >L= Θ(x)(yωB(b)) = (ωB(b)Θ(x))(y).

Then define µ : M ⊗B M∗A → A by µ(x ⊗ f) =< x,Θ−1(f) >L and τ :
M∗A⊗AM → B by τ(f⊗x) =< Θ−1(f), x >R. It is clear that they are isomorphisms
of A − A-bimodules (resp. B − B-bimodules) and that these constructions are
reciprocal.

Remark: We could have begun the construction by taking Θ̃ : M →M∗B

(x 7→< x,− >R) instead of Θ. This situation shows that, in fact, in an hermitian
Morita equivalence M∗A ∼= M∗B .



Proposition 3.3 Let A and B be k-algebras with involution. Suppose that for every
b ∈ B, bωB(b) = 0 implies b = 0. Then if (AMB, <,>L, <,>R) is any Hilbert
bimodule and m ∈M , < m,m >L= 0 implies m = 0.

Proof: < m,m >L= 0 ⇒< m,m >L x = 0 ∀x ∈ M , then 0 =< m,m >L x =
m < m,x >R and also

0 =< x,m < m,x >R>R=< x,m >R< m,x >R=< x,m >R ωB(< x,m >R)

then < x,m >R= 0, which holds for every x ∈M , and so, by Lemma 3.2 m = 0.

Remark: 1) If A and B are involutive k-algebras which are hermitian Morita
equivalent, and B has the property of the previous proposition, then A doesn’t need
to share it, take for example (A,ωA) = (C, id) and (B,ωB) = (M2(C), ( )t).

Remark: 2) Given an involutive k-algebra (A,ωA), one can ask if there exists
an involutive k-algebra B hermitian Morita equivalent to A such that B has the
property of the previous proposition. The answer is ”not necessarily”, consider for
example A = k × k with coordinate-wise product and involution ωA(x, y) = (y, x).
As it is commutative, every k-algebra B Morita equivalent to A contains A in its
center.

From now on, A will be a k-algebra with involution denoted by ωA(a) = a∗

(a ∈ A). A definition of the hermitian Picard group of an algebra with involution can
be found in [8] and in [11], we will give here an alternative (and clearly equivalent)
definition, using the notion of Hilbert bimodule.

Definition 3.4 Let A be a k-algebra with involution ωA, the hermitian Picard
group of (A,ωA) is the set of isomorphism classes of invertible Hilbert A-bimodules,
i.e. isomorphism classes of triples [(M,<,>L, <,>R)] where M is an A-bimodule,
<,>L and <,>R are respectively left and right inner products with values in A, such
that M is invertible as A-bimodule (hence <,>L and <,>R are surjective). This
set will be denoted by hPic(A,ωA).

Remark: As in the nonhermitian case, hPic(A,ωA) is a group with product
induced by tensor product over A, unit [(A,<,>L, <,>R)] and inverse [(M,<,>ML
, <,>MR )]−1 = [(M∗, <,>M

∗
L , <,>M

∗
R )] (see examples above).

A better understanding of the situation may be obtained, as in the nonhermi-
tian case, by considering the categories HCk and HMCk, where HCk has involutive
k-algebras as objects and isomorphisms commuting with involutions as morphisms,
and HMCk has the same objects while the morphisms are hermitian Morita equiv-
alences between objects.

Both HCk and HMCk are monoidal categories. In the first case, hAutk(A) is the
group of automorphisms of the object A, while in the second one, it is hPick(A,ωA).

So hPick(−) is a functor from the category HMCk into groups.
Given involutive k-algebras A and B and a k-algebra isomorphism f : A → B

commuting with ωA, ωB we obtain a morphism from A to B in HMCk, namely:



consider the isomorphism class of the Hilbert B − A-bimodule Bf , where if a ∈
A, x, b ∈ B the bimodule action on Bf is given by b.x.a := bxf(a), the inner
products are:

< x, y >R:= f−1(ωB(x)y) = ωA(f−1(x))f−1(y)

< x, y >L:= xωB(y)

(Bf ⊗A Af−1
∼= B and Af−1 ⊗B Bf ∼= A as Hilbert bimodules). We have then

a functor from HCk to HMCk, and so, for any involutive k-algebra A, a map
hAutk(A)→ hPick(A,ωA).

Taking A = B we can generalize this construction for Hilbert bimodules. Let
α ∈ hAutk(A) and (M,<,>ML , <,>

M
R ) a A − A-Hilbert bimodule, and denote by

(Mα, <,>
Mα
L , <,>Mα

R ) the A−A-Hilbert bimodule with the right A-action twisted
by α, that is:

a.m.a′ := amα(a′) ∀a, a′ ∈ A m ∈M

and with right and left inner products defined by

< x, y >Mα
L :=< x, y >ML

< x, y >Mα
R := α−1(< x, y >MR )

Proposition 3.5 If M = A (with the usual inner products, see first example in
Section 3.) and α, β ∈ hAutk(A), consider the Hilbert A-bimodules (Aα, <,>AαL
, <,>AαR ), (Aβ, <,>

Aβ
L , <,>

Aβ
R ) and Aα ⊗A Aβ with the inner products as in the

third example of Section 3. Then we have the following isomorphisms of Hilbert
bimodules:

1. Aα ⊗A Aβ ∼= (Aαβ <,>
Aαβ
L , <,>

Aαβ
R ) by the map x⊗ y 7→ xα(y).

2. A∗α ∼= Aα−1

The kernel of the map hAutk(A) → hPick(A,ωA) consists of elements α in
hAutk(A) such that Aα is isomorphic to A as A−A-Hilbert bimodule. Denoting by
φ : A→ Aα this isomorphism, if a ∈ A

φ(a) = φ(a1) = a.φ(1) = aφ(1)

but also
φ(x) = φ(1x) = φ(1).x = φ(1)α(x)

So α(x) = (φ(1))−1(x)φ(1) i.e. α is inner. Using the fact that φ is a Hilbert
morphism, we have

1 =< 1, 1 >AL=< φ(1), φ(1) >AαL = φ(1)ωA(φ(1))

Conversely, given a ∈ U(A) such that aωA(a) = 1, then taking α(x) := axa−1 =
axωA(a) we obtain an isomorphism of A-bimodules φa : A→ Aα defined by φa(x) =
ax. The fact that aωA(a) = 1 implies that φa preserves inner products.

We have then proved :



Proposition 3.6 If A is an involutive k-algebra, then there is an exact sequence

1 // Inn1(A) // hAutk(A) // hPick(A,ωA)

where Inn1(A) is the subgroup of hAutk(A) consisting of inner automorphisms x 7→
axa−1 such that aω(a) = 1.

We next define a subgroup of hPick(A,ωA) for A commutative, recalling that in
this case an A-bimodule M is A-symmetric if and only if the right and left actions
on M agree, i.e. if am = ma ∀m ∈M, a ∈ A.

Definition 3.7 Let A be a commutative involutive k-algebra, then the classical
hermitian Picard group of A, denoted by hCPick(A,ωA), is the subset of
hPick(A,ωA) of isomorphism classes of A-symmetric invertible bimodules.

Remark: As A is A-symmetric and A-symmetry is preserved by tensor product
over A, so hCPick(A,ωA) is in fact a subgroup of hPick(A,ωA).

Taking into account the exact sequence of Proposition 3.6 we see that if A is
commutative, hAutk(A) is a subgroup of the hermitian Picard group.

If one doesn’t take care of the involution of A and considers it simply as a
k-algebra, the above discussion is consistent with Theorem 2 of [5]. However, as
we shall see in the examples, the existence of an involution strongly changes the
elements of the decomposition of the usual Picard group.

The aim of the following lemma is to show that hPick(A,ωA) is the semidirect
product of the classical hermitian Picard group hCPick(A,ωA) and the automor-
phisms commuting with the involution, i.e. hAutk(A).

Lemma 3.8 1. Given an invertible A − B-bimodule M , there is a unique iso-
morphism
αM : Z(B)→ Z(A) of k-algebras such that

αM (c)m = mc ∀m ∈M, c ∈ Z(B)

2. If in addition there exists an antiisomorphism Θ : M → M∗A satisfying the
conditions 3 (a-c) of Definition 2.3 (in particular M can be provided of a
structure of A−B-Hilbert bimodule), then αM commutes with involutions.

Proof: 1. see [5].
2. Consider the antiisomorphism Θ : M → M∗A as above. M is αM -central,

i.e. mb = αM (b)m ∀b ∈ Z(B), m ∈ M . Then if f ∈ HomA(M,A), b ∈ Z(B) and
m ∈M , as αM (b) ∈ Z(A):

(bf)(m) = f(mb) = f(αM (b)m)
= αM (b)f(m) = f(m)αM (b)
= (fαM (b))m

i.e. bf = fαM (b) ∀b ∈ Z(B), f ∈ HomA(M,A).



Using the antiisomorphism Θ we have for m ∈M and b ∈ Z(B)

Θ(m)ωA(αM (b)) = Θ(αM (b)m) = Θ(mb)
= ωB(b)Θ(m) = Θ(m)αM (ωB(b))

As this holds for anym ∈M and the action is faithful, then αM (ωB(b)) = ωA(αM (b))

Corollary 3.9 For A commutative, every invertible A-bimodule M is α-central for
some (unique) α ∈ Autk(A). If in addition, M has the structure of a Hilbert A−A-
bimodule, then α ∈ hAutk(A).

Let us introduce another definition:

Definition 3.10 Let (M,<,>L, <,>R) be a Hilbert A − A-bimodule and A com-
mutative. We define (M s, <,>sL, <,>

s
R) (the symmetrization of M) as

(Mα−1 , <,>
Mα−1

L , <,>
Mα−1

R ) where α = αM is the automorphism of the above corol-
lary.

Remark: It is clear that (M s, <,>sL, <,>
s
R) is an A-symmetric Hilbert A−A-

bimodule, and consequently it defines an element in hCPick(A,ωA).

Summarizing the above results, we obtain the following:

Theorem 3.11 Let A be a commutative involutive k-algebra. Then there exists an
split exact sequence of groups

1 // hCPick(A,ωA) // hPick(A,ωA) // hAutk(A) // 1

The first map is the inclusion and the second is M 7→ αM . where αM is the unique
automorphism associated to M by Lemma 3.8. The splitting is given by
α 7→ (Aα, <,>AαL , <,>AαR ).

This theorem allows us to write the hermitian Picard group of A as the semidi-
rect product hPick(A,ωA) ∼= hCPick(A,ωA)ohAutk(A), the isomorphism given by
M 7→ (M s, αM ).

Examples: 1) hPic(C(T 2), ω) = ZohAut
C

(C(T 2)) ([1]) where C(T 2) is the
algebra of continuous complex valued functions in the torus, with involution given
by complex conjugation.

2) hPic
Q

(Mn(C), id) = Gal(C|Q)
2’) hPic

R
(Mn(C), (−)) = hAut

Q
(C) = Gal(C|R).

3) hPick(k×k, (−)) = hCPick(k×k, (−))ohAutk(k×k) = k∗/(k∗)2
oZ2, where

(x, y) = (y, x).
4) Let G = Zn =< t > and let k be a field such that 1

|G| ∈ k and k contains a
primitive nth-root ξ of 1 , then

k[G] ∼=
{
ke0 × (ke1 × ken−1)× (ke2 × ken−2)× ...× (ke(n−1)/2 × ke(n+1)/2) for n odd

ke0 × (ke1 × ken−1)× (ke2 × ken−2)× ...× (ken/2) for n even



where ei =
∑n−1
l=0 (ξit)l. Taking ωG(g) = g−1 ∀g ∈ G

hPick(k[G], ωG) ∼=



hPick(k, id)× (hPick(k × k, (−)))
n−1

2 ∼=
∼= k∗/(k∗)2 × (k∗/(k∗)2oZ2)

n−1
2 for n odd

hPick(k, id)× (hPick(k × k, (−)))
n−2

2 × hPick(k, id) ∼=
∼= k∗/(k∗)2 × (k∗/(k∗)2oZ2)

n−2
2 × k∗/(k∗)2 for n even

As in the C∗-algebra case, the left and right structures of a Hilbert A − B-
bimodule are closely related even when A and B are not necessarily commutative,
due to the existence of inner products. Next proposition shows explicitly this re-
lation: the right structure is determined by the left one and an automorphism
α ∈ hAutk(A), and can be regarded as an improvement (for the case we are inter-
ested in) of proposition 1.1 [1] for k-algebras with involution instead of C∗-algebras.
Notice that in [1], the Hilbert bimodules considered are A − A-bimodules, but in
fact the proof can be achieved for A−B-bimodules with A not necessarily equal to
B.

Proposition 3.12 If (M,<,>ML , <,>
M
R ) and (N,<,>NL , <,>

N
R ) are Hilbert A−B-

bimodules with surjective right inner products and φ : M → N is an isomorphism
of left Hilbert A-modules, then, there exists a k-algebra automorphism α : B → B
commuting with the involution of B such that φ : Mα → N is an isomorphism of
Hilbert A−B-bimodules.

Proof: α is defined by the equality

α(< φ(x), φ(y) >NR ) =< x, y >MR ∀x, y ∈M

A straightforward computation shows that α is well-defined and multiplicative. It
also commutes with ωB, as:

α(ωB(< φ(x), φ(y) >R)) = α(< φ(y), φ(x) >R) =

=< y, x >R= ωB(< x, y >R) = ωB(α(< φ(x), φ(y) >R))

Considering now φ : Mα → N , we have to show that it is an isomorphism of
A−B-Hilbert bimodules.

To see that it is B-linear, as < M,M >R= B, consider m,x, y ∈ M and let
b =< φ(x), φ(y) >NR , then:

φ(m.αb) = φ(mα(< φ(x), φ(y) >NR )) = φ(m < x, y >MR ) =
= φ(< m,x >ML y) =< m,x >ML φ(y) =
=< φ(m), φ(x) >NL φ(y) = φ(m) < φ(x), φ(y) >NR=
= φ(m)b

In order to finish the proof, we must show that φ is compatible with the new
right product defined in Mα, <,>Mα

R . Consider x, y ∈M , then

< x, y >Mα
R = α−1(< x, y >MR ) =< φ(x), φ(y) >NR

As a corollary we obtain:



Corollary 3.13 Let (M,<,>ML , <,>
M
R ) and (N,<,>NL , <,>

N
R ) be two Hilbert A−

B-bimodules and let φ : M → N be an isomorphism of left Hilbert A-modules. Then
φ is an isomorphism of Hilbert A−B-bimodules if and only if φ preserves the right
inner products or φ is B-linear.

Proof: It is clear that if φ preserves the right inner product then α is the identity
and the isomorphism is an isomorphism of A−B-bimodules.

It follows by the compatibility of the left and right inner products in N that if
φ preserves the right action then so it does with the right inner product and it is in
fact an isomorphism of A−B-bimodules.

The last proposition and corollary show that in fact, the isomorphism class of
a Hilbert A − A-bimodule depends only on its left Hilbert structure (for example)
and on the group hAutk(A).

Given (A,ωA), it is always a Z(A)-algebra. Denote by hZ(A) = {a ∈ Z(A) / a =
a∗}, then hZ(A) is a subalgebra of Z(A) and it is the maximal subalgebra K ⊆ A
such that ωA is K-linear. We define then hPicent(A,ωA) := hPichZ(A)(A,ωA).

Remark: If A is commutative and ωA = idA then
hCPick(A,ωA) = hPicent(A,ωA). But in general, if ωA 6= IdA hZ(A) 6= A and so
the notion of hZ(A)-symmetry does not agree with A-symmetry.

Proposition 3.14 Let (A,ωA) and (B,ωB) be two hermitian Morita equivalent k-
algebras, then

hPicent(A,ωA) ∼= hPicent(B,ωB)

Proof: An element of hPicent(A,ωA) is the isomorphism class of an A − A-
Hilbert bimodule (M,<,>L, <,>R) which is hZ(A)-symmetric. As (A,ωA) and
(B,ωB) are hermitian Morita equivalent by means of bimodules P and Q. We
consider the Hilbert bimodule structure on P and Q given in the example 2 of
Section 3. As (M,<,>L, <,>R) is an A−A-Hilbert bimodule, then Q⊗AM ⊗A P
is a B−B-Hilbert bimodule with the structure obtained as the tensor product of the
Hilbert bimodules (notice that as P,Q and M are invertible, their inner products
are surjective). This procedure gives in fact the isomorphism between hPick(A,ωA)
and hPick(B,ωB). We will now show that Q⊗AM ⊗A P is hZ(B)-symmetric.

The first part of Lemma 3.8 says that there is a unique isomorphism αP : Z(B)→
Z(A) such that pb = α(b)p for all b ∈ Z(B), p ∈ P and the second part of the same
lemma guarantees that α sends the elements of hZ(B) into hZ(A).

Given b ∈ hZ(B), q ∈ Q, p ∈ P and m ∈ M , q ⊗m ⊗ pb = q ⊗m ⊗ α(b)p =
q ⊗ mα(b) ⊗ p. As M is hZ(A)-symmetric, mα(b) = α(b)m, so q ⊗ mα(b) ⊗ p =
qα(b)⊗m⊗ p.

But if P is α-central and Q = P ∗A , then Q is α−1-central, and qα(b)⊗m⊗ p =
bq⊗m⊗p, so Q⊗AM⊗AP is a B−B-Hilbert bimodule which is hZ(B)-symmetric.

Clearly, the construction in the other sense is similar.



4 The hermitian Picard group of an involutive coalge-
bra

Throughout this section we shall make use of such objects as coalgebras, bicomod-
ules and cotensor products. So we begin this section by recalling from [9] some
definitions.

A coalgebra over a field k is a k-vector space C provided of a coproduct
∆ : C → C ⊗ C and a counit ε : C → k which are k-linear and such that ∆ is
coassociative and (1⊗ ε) ◦∆ = (ε⊗ 1) ◦∆ = idC . Cop is the opposite coalgebra of
C and it equals C as k-vector spaces, with same counit and coproduct ∆op : Cop →
Cop ⊗ Cop defined as ∆op = σ12 ◦∆.

C is called cocommutative if C = Cop.
A left C-comodule is a pair (M,ρ−) where M is a k-vector space and ρ− :

M → C ⊗M is a k-linear coaction, i.e. (∆ ⊗ idM ) ◦ ρ− = idC ⊗ ρ−) ◦ ρ−. Right
C-comodules (M,ρ+ : M → M ⊗ C) are defined in a similar way. In general, we
shall omit ρ+ and ρ− in the notation, and say that M is a left or right C-comodule.

C-bicomodules are objects (M,ρ+, ρ−) such that (M,ρ+) and (M,ρ−) are
respectively right and left C-comodules, and both coactions are compatible in the
following sense: (idC ⊗ρ+) ◦ρ− = (ρ−⊗ idC) ◦ρ+. We shall identify C-bicomodules
with Ce = C ⊗ Cop (left) comodules.

Given two left C-comodulesM,N , ComC(M,N) will denote the set of C-colinear
maps from M to N .

If M is now a right C comodule, and N is a left C-comodule, the cotensor
product over C of M and N , denoted by M2CN is the kernel of the map

ρ+
M ⊗ idN − idM ⊗ ρ

−
N : M ⊗N →M ⊗ C ⊗N

The functors −2CN and M2C− are left exact.
From now on, R will be a cocommutative k-coalgebra, and C an R-coalgebra, i.e.

a k-coalgebra C together with a coalgebra map εR : C → R making C a cosymmetric
R-bicomodule. We shall say that C is an R-involutive coalgebra in case there is a
k-linear coalgebra isomorphism ωC : C → Cop such that ω2

C = idC and the following
diagram is commutative:

C
ωC //

εR ��@@@@@@@ Cop

εR}}{{{{{{{{

R

We recall also from [9] the definition of Morita - Takeuchi context.

Definition 4.1 A Morita - Takeuchi context consists of the following set of
data:

• A D−C-bicomodule P and a C −D-bicomodule Q (with coactions denoted by
ρ+
P : P → P ⊗ C, etc.).

• Bicomodule morphisms µ : C → Q2DP and τ : D → P2CQ where P2CQ
denotes the cotensor product



• The compatibility conditions:

P //

��

P2CC

id2
��

Q //

��

Q2DD

id2τ
��

D2DP
τ2id// P2CQ2DP C2CQ

µ2id// Q2DP2CQ

Remark: The kernels of µ and τ are subcoalgebras of C and D respectively. If
both maps are injective, then the context gives an equivalence (see also [9]).

Also we have from [4]:

Definition 4.2 Two involutive k-coalgebras C and D are hermitian Morita -
Takeuchi equivalent if and only if there exist two bicomodules DPC and CQD,
bicomodule isomorphisms
µ : C → Q2DP and τ : D → P2CQ, and a k-isomorphism Θ : P → Q satisfying:

1. (P,Q, µ, τ) is a Morita - Takeuchi context.

2. (a) The following diagram is commutative:

P
ρ+
P ◦ρ

−
P //

Θ
��

D ⊗ P ⊗ C
σ13◦(ωD⊗Θ⊗ωC)

��
Q

ρ+
Q◦ρ

−
Q // C ⊗Q⊗D

We also ask Θ to verify the following compatibility conditions:

(b) (Θ−1 ⊗Θ) ◦ µ = σ12 ◦ µ ◦ ωC
(c) (Θ⊗Θ−1) ◦ τ = σ12 ◦ τ ◦ ωD

A pair (P,Θ : P → Q) giving an hermitian Morita - Takeuchi equivalence between
two k-coalgebras C and D will be called an hermitian invertible bicomodule.

Remark: With the notations of [9], the coalgebraD is isomorphic to the coendo-
morphism coalgebra eC(P ) = hC(P, P ), which is isomorphic to P2CQ. The k-linear
map Θ allows us to define an involution on eC(P ) via

∑
i pi⊗qi 7→

∑
i Θ−1(qi)⊗Θ(pi).

Condition 2 (c) of definition 4.2 guarantees that the coalgebra isomorphism D ∼=
eC(P ) commutes with the respective involutions.

The above remark can be regarded as the analog of Proposition 2.2 for coalgebras.

The definition of the Picard group of a coalgebra was given in [10]. We are
interested not in arbitrary invertible C-bicomodules, but in those ones that have an
additional structure in order to provide an hermitian Morita - Takeuchi equivalence,
as these bicomodules are those ones that play the dual role of Hilbert bimodules
studied in previous sections.



So, two hermitian invertible C-bicomodules (M,ΘM ), (N,ΘN ) will be called
isomorphic if there is a C-bicomodule isomorphism φ : M → N such that the
following diagram is commutative:

M
φ //

ΘM
��

N

ΘN
��

hC(M,C) hC(N,C)
hC(φ,C)
oo

where hC(Y,−) is the left adjoint to Y2C−, that in fact is functorial in both vari-
ables, explicitely hC(Y,X) = lim→µ(ComC(Xµ, Y ))∗ for Y quasifinite and X =
lim→µXµ, each Xµ finite dimensional.

Definition 4.3 The hermitian Picard group of an involutive R-coalgebra (C,ωC)
is the set of isomorphism classes of R-cosymmetric hermitian invertible C-bicomodules.

This set is in fact a group with multiplication induced by the cotensor product.
It is clear that if M and N are invertible C-bicomodules then so is M2CN , we
have only to remark that if M and N have the additional hermitian structure given
by ΘM : M → hC(M,C) and ΘN : N → hC(N,C), then M2CN has ΘM2CN =
ΘM ⊗ΘN |M2CN .

An easy way to see that this morphism is well defined and has the desired “anti-
colinear” properties is observing that condition 2.(a) of the definition involving Θ
in an hermitian Morita - Takeuchi equivalence is the same as saying that Θ : M →
hC(M,C) is C −D-bicolinear (C = D in our case) with the comodule structures on
M obtained from those of M reversing sides by means of involutions. Then we have
a well defined C-bicomodule morphism

M2CN
ΘM2CN // hC(M2CN,C)

N2CM //ΘN2CΘM hC(N,C)2ChC(M,C)

Clearly the identity element is [C,ωC : C → C = hC(C,C)] and the inverse of
an element [M,ΘM : M → hC(M,C)] is [hC(M,C), (ΘM )−1 : hC(M,C) → M =
hC(hC(M,C), C)].

There is an obvious morphism from the hermitian Picard group hPicR(C,ωC)
into PicR(C,ωC), that is simply to forget the hermitian structure, i.e.: a typical
element of hPicR(C,ωC) (which can be denoted by [Θ : M → hC(M,C)] ), is
mapped to [M ] ∈ PicR(C,ωC). In order to compute the kernel of this map in a
more comfortable way we shall need the following characterization of the algebra
ComCe(C,C).

Proposition 4.4 Under the identification ComC(C,C) ∼= C∗ = Homk(C, k) (f 7→
ε ◦ f), the subalgebra ComCe(C,C) ⊆ ComC(C,C) is sent onto Z(C∗) (the center
of the dual algebra C∗).



Proof: An element φ ∈ ComCe(C,C) is a k-linear morphism φ : C → C such that∑
(c)

c1 ⊗ φ(c2) =
∑
(c)

φ(c1)⊗ c2 =
∑

(φ(c))

φ(c)1 ⊗ φ(c)2 ∀c ∈ C

then, if φ ∈ ComCe(C,C), for every c ∈ C

φ(c) = (ε⊗ 1)∆(φ(c)) =
∑

(c) ε(φ(c1))c2 = (ε ◦ φ⊗ 1)∆(c)
= (ε⊗ 1)∆(φ(c)) =

∑
(c) c1ε(φ(c2)) = (1⊗ ε ◦ φ)∆(c)

For any f ∈ C∗, we have

f

∑
(c)

c1ε(φ(c2))

 = f

∑
(c)

ε(φ(c1))c2


and so ∑

(c)

f(c1)(ε ◦ φ)(c2)) =
∑
(c)

(ε ◦ φ)(c1)f(c2)

Denoting by ∗ the product in C∗, this last equality says that (ε ◦ φ) ∗ f = f ∗ (ε ◦ φ)
for all f ∈ C∗, i.e. ε ◦ φ ∈ Z(C∗).

Suppose conversely that a ∈ Z(C∗). It identifies with φa = (1 ⊗ a) ◦ ∆, φa ∈
ComC(C,C). We want to see that in fact, φa is a bicomodule morphism.

As a ∗ f = f ∗ a ∀f ∈ C∗, then:∑
(x)

a(x1)f(x2) =
∑
(x)

f(x1)a(x2) ∀f ∈ C∗, x ∈ C

⇔ f

∑
(x)

a(x1)x2

 = f

∑
(x)

x1a(x2)

 ∀f ∈ C∗, x ∈ C
⇔
∑
(x)

a(x1)x2 =
∑
(x)

x1a(x2) ∀f ∈ C∗, x ∈ C

and then ∑
(c)

c1a(c2)⊗ c3 =
∑
(c)

c1 ⊗ c2a(c3) ∀c ∈ C

But this last equality can be writen as∑
(c)

φa(c1)⊗ c2 =
∑
(c)

c1 ⊗ φa(c2) ∀c ∈ C

i.e. φa ∈ ComCe(C,C).
Once the above characterization obtained, we have:

Proposition 4.5 If C is an involutive R-coalgebra, then there is an exact sequence
of groups

1 // UZ(C∗)+/(UZ(C∗).UZ(C∗)) // hPicR(C,ωC) // PicR(C,ωC)

where UZ(C∗) is the multiplicative subgroup of units of Z(C∗) which are fixed by
ω∗C and
UZ(C∗).UZ(C∗) = {x.x : x ∈ UZ(C∗) and x = x ◦ ωC}



Proof:

Ker (hPicR(C,ωC)→ PicR(C,ωC)) = { [Θ : M → hC(M,C) /[M ] = [C] }
= { [Θ : C → hC(C,C) = C }

Consider Θ ◦ ωC : C → C. It is an element of ComCe(C,C) ∼= Z(C∗). Being an
isomorphism, ε ◦Θ ◦ ωC ∈ UZ(C∗) and, by the commutativity of the diagram:

C
µ //

ωC

��

C2CC

σ12(Θ⊗Θ−1)
��

C
µ // C2CC

ε◦Θ◦ωC = ε◦Θ in C∗, because
∑

(c) c2⊗c1 =
∑

(c) Θ−1(c2)⊗Θ(c1) and so (ε◦Θ)−1 =
ε ◦ (Θ−1). This implies that ε ◦ (ΘωC) = (ε ◦ (ωΘ−1))−1 = (ε ◦ (Θ−1))−1 = ε ◦Θ, i.e.
ε ◦Θ ◦ ωC is fixed by the involution ω∗C .

As the unit of hPicR(C,ωC) is ([C], , ωC), a morphism Θ : C → hC(C,C) = C
is equivalent to ωC : C → C = hC(C,C) if and only if there exists a C-bicomodule
isomorphism φ : C → C such that the following diagram commutes:

C

Θ
��

φ // C

ωC
��

hC(C,C) hC(C,C)
hC(φ,C)oo

Remark that as φ is also an isomorphism then ε ◦ φ ∈ UZ(C∗). We recall that
hC(C,C) = lim→µComC(Cµ, C)∗ where {Cµ} is a directed system of k-finite di-
mensional subcomodules of C such that lim→µCµ = C. As φ : C → C is an
isomorphism, then lim→µCµ = lim→µφ(Cµ), and in order to obtain hC(C,C) we
may use either {Cµ} or {φ(Cµ)}. This is useful to compute hC(φ,C), because taking
limits in the following commutative diagrams and identifying hC(C,C) with C:

ComC(Cµ, C)∗
ComC(φ|Cµ ,C)∗

// ComC(φ(Cµ), C)∗

C∗∗µ

(ε∗)∗

OO

(φ|Cµ )∗∗
// (φ(Cµ))∗∗

(ε∗)∗

OO

Cµ
φ|Cµ // φ(Cµ)

we can conclude that hC(φ,C) : C → C is nothing but φ. Then the condition
[Θ : C → C] = [ωC : C → C] becomes

C

Θ
��

φ // C

ωC
��

C C
φoo



i.e. Θ = φ ◦ ωC ◦ φ. This is the same as Θ ◦ ωC = φ ◦ (ωC ◦ φ ◦ ωC). By identifying
ComCe(C,C) with Z(C∗), the last equality reads ε ◦ Θ ◦ ωC = (ε ◦ φ) ∗ (ε ◦ φ), so
the proof is complete.

The decomposition of hPicR(C,ωC) as a semidirect product of the central her-
mitian Picard group and hAutR(C) will result as a corollary of the existence of the
following diagram:

Theorem 4.6 Let C be an R-coalgebra, then:

1. The following diagram may be completed and commutes

1

��

1

��
1 // Ker(Ψ|K)

��

Ker(Ψ) //

��

1

��
1 // K

� � //

Ψ|K
��

hPicR(C,ωC)

Ψ
��

α̃ //___ hAutR(Z(C))

��
1 // Picent(C) // PicR(C) α // AutR(Z(C))

where Ψ is the map described in Proposition 4.5, the lowest line is the exact se-
quence of Theorem 2.10 of[10], and the map hCPicR(C,ωC)→ hPicR(C,ωC)
is the inclusion. We recall that in [10], the group Picent(C) is defined as the
subgroup of PicR(C) consisting of Z(C)-cosymmetric invertible
C-bicomodules. K = Ker(α̃).

2. If C is cocommutative, then the second line splits and so hPicR(C,ωC) ∼=
KohAutR(C). Also, in this case K ∼= Ker(Ψ|K) = Ker(Ψ) ∼=
UZ(C∗)+/UZ(C∗).UZ(C∗).

Before proving the theorem, we need the following lemmas:

Lemma 4.7 If M is a C −D-invertible bicomodule f -cocentral (f : Z(C)→ Z(D)
an R-coalgebra isomorphism), then hC(M,C) is a D−C-bicomodule f−1-cocentral.

Proof: Let M be an f -cocentral C −D invertible bicomodule (i.e. for all m ∈ M∑
(m)m0⊗f(π(m−1)) =

∑
(m)m0⊗π(m1), where ρ−(m) =

∑
(m)m−1⊗m0 ∈ C⊗M ,

ρ+(m) =
∑

(m)m0⊗m1 ∈M ⊗D and π denotes both projections on the respective
cocenters).

We recall from [9] that the C-right structure of hC(M,C) is given by comulti-
plicationin C:

hC(M,C)→ hC(M,C ⊗ C) ∼= hC(M,C)⊗ C

and the D-left structure of hC(M,C) is given by the D-right structure of M , as hav-
ing a map hC(M,C)→ D⊗hC(M,C) is equivalent to a map C → D⊗hC(M,C)⊗M ,



and we obtain the last one by means of the identity of hC(M,C) (and so we have
C → hC(M,C)⊗M) and the right structure of M .

The fact that hC(M,C) is f−1-cocentral is equivalent to the commutativity of
the following diagram:

C

ĩdM2

��

C

ĩdM2

��

C

ĩdM2

��

C

(π⊗1)∆

��

C

(1⊗π)∆

��
Z(C)⊗ C

1⊗ĩdM2

��

σ12 // C ⊗ Z(C)

ĩdM2⊗1

��

M2 ⊗M

ρ−⊗1

��

M2 ⊗M

1⊗ρ+

��

M2 ⊗M

1⊗ρ−

��

Z(C)⊗M2 ⊗M

σ12

��
Z(D)⊗M2 ⊗M

σ312 // M2 ⊗M ⊗ Z(D)
σ23(1⊗f)// M2 ⊗ Z(C)⊗M M2 ⊗ Z(C)⊗M

σ23 // M2 ⊗M ⊗ Z(C)

where M2 is a shorthand notation for hC(M,C). The left and right vertical
rectangles commute respectively due to the definitions of the Z(D)-left and Z(C)-
right comodule structures of hC(M,C). The middle ones commute because of the
f -cocentrality of M (left) and right Z(C)-colinearity of ĩdhC(M,N) (right). So if M
is f -cocentral, then hC(M,C) is f−1-cocentral.

Lemma 4.8 The image of Ψ(hPicR(C,ωC)) under the morphism α in the diagram
of Theorem 4.6 is contained in hAutR(Z(C)).

Proof: We know from [10] that given an invertible C-bicomodule M , it determines
an R-automorphism f : Z(C)→ Z(C) such that M is f -cocentral. We want to prove
that if M comes from an hermitian Morita - Takeuchi context then f commutes with
the involution of C.

For this, consider Θ : M → hC(M,C) the k-isomorphism of the hermitian con-
text. By Lemma 4.7, as in the case of algebras, if M is f -cocentral, then hC(M,C)
is f−1-cocentral.

Denoting by ρ− and ρ+ the left and right C-comodule structural morphisms of
hC(M,C), we have, if m ∈M :

1. ρ−(Θ(m)) =
∑

(Θ(m)) Θ(m)−1 ⊗Θ(m)0 =
∑

(Θ(m)) f
−1(Θ(m)1)⊗Θ(m)0.

Also, ρ−(Θ(m)) =
∑

(m) ω(m1)⊗Θ(m0)

2. On the other hand, ρ+(Θ(m)) =
∑

(Θ(m)) Θ(m)0 ⊗Θ(m)1.
And ρ+(Θ(m)) =

∑
(m) Θ(m0)⊗ ω(m−1) =

∑
(m)(Θ⊗ ω)(m0 ⊗m−1) =

= (Θ⊗ ω)
∑

(m)(m0 ⊗ f(m1)) =
∑

(m) Θ(m0)⊗ ωf(m1)).

Then,
∑

(m) ω(m1)⊗Θ(m0) =
∑

(m)(f
−1 ⊗ 1)σ2

12(f ⊗ 1)(ω(m1)⊗Θ(m0)) =
(by 1.) =

∑
(Θ(m))(f

−1 ⊗ 1)σ2
12(f ⊗ 1)f−1(Θ(m)1 ⊗ Θ(m)0) =

∑
(Θ(m))(f

−1 ⊗
1)σ12(Θ(m)0 ⊗Θ(m)1) =
(by 2.) =

∑
(m)(f

−1 ⊗ 1)σ12(Θ(m0)⊗ ωf(m1)) =
∑

(m) f
−1ωf(m1)⊗Θ(m0).

Applying ω ⊗ Θ−1, we obtain
∑

(m) ωf
−1ωf(m1) ⊗ m0 =

∑
(m)m1 ⊗ m0, so

ωf−1ωf = id, i.e. ωf = fω.



So, the lemma allows us to complete the diagram of the theorem by the dashed
arrow.

Proof of the Theorem:
1) Once the maps defined, it is clear that the middle line is exact and, by

Proposition 4.4 we have that Ker(Ψ) ∼= UZ(C∗)+/UZ(C∗)UZ(C∗).
2) If C is a cocommutative R-coalgebra then Z(C) = C and, by [10], Picent(C)

is trivial, so, in this case, K ∼= UZ(C∗)+/UZ(C∗)UZ(C∗).
Then we have an exact sequence

1 // UZ(C∗)+/UZ(C∗)UZ(C∗) // hPicR(C,ωC) α̃ // hAutR(C)

where α̃ = α|hPicR(C,ωC).
The splitting of α̃ is obtained assigning to each morphism β commuting with

the involution of C, the element ([βC1],Θβ) in hPicR(C,ωC) where βC1 is the C-
bicomodule which has the same underlying set and C-right structure of C and C-left
structure twisted by β and, Θβ : C → hC(C,C) ∼= C is the k-isomorphism defined
by Θβ(x) = β(ωC(x)) (x ∈ C), verifying σ13 ◦ (ω ⊗Θβ ⊗ ω) ◦∆C = ∆C ◦Θβ.

It is known that in the finite dimensional case, Pick(C,ωC) is isomorphic to
Pick(C∗, ωC∗), and the same holds for the hermitian Picard groups.

We conclude with an infinite dimensional example:
Example: Let k be a field and C the cocommutative coalgebra k[x] with co-

multiplication xn 7→
∑n
i=0 x

i ⊗ xn−i and involution xn 7→ (−1)nxn. C∗ is the dual
algebra of power series k[[x]].

By Theorem 4.6 hPick(C,ωC) ∼= UZ(C∗)+/UZ(C∗)UZ(C∗)ohAutk(C).
Also, hPick(C∗, ωC∗) ∼= UZ(C∗)+/UZ(C∗)UZ(C∗)ohAutk(C∗) because in this

particular case, as k[[x]] is a principal ideal domain, CPick(C∗, ωC∗) is trivial.
So the difference between the hermitian Picard group of C and of its dual algebra

comes from the respective hermitian automorphism groups. For the coalgebra, it is
isomorphic to k∗, while for the dual algebra it is bigger. For example, we can send
the formal series

∑
i≥0 aix

i to 1
2(
∑
i≥0 ai.(x

i + x3i)).
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