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Abstract

In this paper we prove the invariance of positive Hochschild ho-
mology and dihedral homology with respect to hermitian Morita e-
quivalence between involutive algebras. We also define the notion of
hermitian k-congruence and prove some results on Morita invariance
of HH+

∗ and HD∗ in this context.

1 Introduction

Let us consider two rings A and B. They are Morita equivalent if and only if
their module categories are equivalent. The Morita invariance of HH∗ was
proved by Dennis-Igusa [2].

If A and B are equipped with involutions ωA and ωB, we may consider
their positive Hochschild homology HH+

∗ and their dihedral homology HD∗
as well as the notion of hermitian Morita equivalence.

One of the main purposes of this paper is to show thatHH+
∗ andHD∗ are

invariant under hermitian Morita equivalence, which is proved in Theorem
2.7.

If A and B are Morita equivalent and A is involutive, it is always possible
to define an involution on B such that the equivalence is an hermitian one.
Also, it may happen that HH+

∗ (A) 6= HH+
∗ (B) even when they are Morita

equivalent in the usual sense, so, for involutive algebras, HH+
∗ and HD∗ are

finer invariants than HH∗ and HC∗.
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In the second part of this paper, we consider the following fact: for a
given A, the functor H∗(A,−) (resp. H+

∗ (A,−)) is applied at the catego-
ry of A-bimodules (resp. compatible A-bimodules). The proof of Morita
invariance of Hochschild homology makes explicit use of the isomorphisms
given by the Morita equivalence . So we study what happens under a weaker
condition: the equivalence of the bimodule categories.

We use, after Schack [8], the notion of k-congruence, and we define
the notion of hermitian k-congruence. We show, in Theorem 3.6, that
HH∗ and HH+

∗ are also invariant under k-congruences (resp. hermitian
k-congruences). Finally, we show that if A is an involutive B- Azumaya al-
gebra , where B is a commutative involutive k-algebra, then HH+

∗ (A/k) =
HH+

∗ (B/k).
We want to thank M. Vigué and the referee for helpful comments.
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2 Hermitian Morita invariance

We first recall some definitions and fix notation. Let k be an arbitrary
commutative ring with 1, A and B two unital k-algebras. We will denote
with Amod the category of left A-modules, modA the category of right A-
modules, AmodB the category of bimodules (with left action of A and a right
action of B) and Abimod the category of A-bimodules.

Definition 2.1 A and B are Morita equivalent if and only if there exist
two bimodules APB and BQA such that P ⊗B Q ∼= A and Q ⊗A P ∼= B as
bimodules, with the usual bimodule structure of A and B.

This definition is equivalent to the following facts:

• The categories Amod and Bmod are equivalent.

• The categories modA and modB are equivalent.

The equivalences are given by:

Q⊗A − :A mod→B mod

−⊗A P : modA → modB

As a consequence,Abimod and Bbimod are equivalent, by the functor:

P ⊗B −⊗B Q :B bimod→A bimod

Remark(on Def. 2.1): If Amod and Bmod are equivalent by a functor
F , then take Q = F (A) and P = F−1(B).

It is well known that if A and B are Morita equivalent, then H∗(A,M) ∼=
H∗(B,Q⊗AM ⊗B P ) and HC∗(A) ∼= HC∗(B) (idem for cohomology). Sup-
pose now that A and B are equipped with involutions of algebras ωA and
ωB, and let M be an A-bimodule which has an involution ωM compatible
with the involution of A, namely, ωM : M → M is an additive map such
that ω2

M = idM and ωM (ama′) = ωA(a′)ωM (m)ωA(a), for m ∈M , a, a′ ∈ A.
Example: M = A⊗Aop is a compatible A-bimodule, where

ωM : A⊗Aop → A⊗Aop is defined by ωM (a⊗ a′) = ωA(a′)⊗ ωA(a).
The A-bimodule M is equivalent to a left Ae = A ⊗k Aop-module, via

(a ⊗ a′)m = ama′. The category of compatible A-bimodules is actually
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a category of modules over a certain ring R defined as follows: R is the
twisted group algebra R = Z/2ZoAe, where the generator σ of Z/2Z acts
by σ(a⊗b) = ωAb⊗ωAa. Precisely, R = k[Z/2Z]⊗Ae = Ae⊕Aeσ equipped
with the following multiplication: (e1 + f1σ)(e2 + f2σ) = (e1e2 + f1σ(f2)) +
(e1f2+f1σ(e2))σ The fact that Rmod = ((compatibleA−bimodules)) follows
from the observation that R is the endomorphism ring of the projective
generator Ae ⊕ Ae with involution (e, f) → (σ(f), σ(e)). Explicitly, any
compatible A-bimodule M is an R-module by (e+ fσ)m = em+ fωM (m).

At this step there are at least three questions to answer:

• Is H+
∗ (A,M) isomorphic to H+

∗ (B,Q⊗AM ⊗A P ) ?

• Is HD∗(A) isomorphic to HD∗(B) ?

• If M is a compatible A-bimodule, can we define an involution on Q⊗A
M ⊗A P so that we obtain a compatible B-bimodule?

Remark: It is necessary to talk about bimodules because if not, the
compatibility condition with the involution of the ring makes no sense.

An hermitian Morita theory for algebras with involution was introduced
in [3] and generalized by Hahn in [5].

According to the definitions of Hahn, and fixing notation, we have:

Definition 2.2 A and B are hermitian Morita equivalent , if they are
Morita equivalent (in the usual sense) and (with the notations of definition
2.1):

1. P and Q are k-symmetric (i.e. λp = pλ ∀λ ∈ k, p ∈ P , idem for Q)

2. There exist µ : P ⊗B Q → A and τ : Q ⊗A P → B isomorphisms of
A-bimodules and B-bimodules respectively such that:

(a) µ(p⊗ q)p′ = pτ(q ⊗ p′) and

(b) τ(q ⊗ p)q′ = qµ(p⊗ q) ∀p, p′ ∈ P , q, q′ ∈ Q

3. There exists an additive bijection Θ : P → Q such that

(a) µ(p⊗Θ(p′)) = ωA(µ(p′ ⊗Θ(p)))

(b) τ(Θ(p)⊗ p′) = ωB(τ(Θ(p′)⊗ p)) and

(c) Θ(apb) = ωB(b)Θ(p)ωA(a) ∀a ∈ A, b ∈ B, p, p′ ∈ P, q, q′ ∈ Q
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A pair of bimodules APB and BQA satisfying these properties will be
called invertible bimodules.

Hahn shows that under these hypothesis the categories ((hermitian Amod))
and ((hermitian Bmod)) are equivalent, where ((hermitian Amod)) is the cat-
egory whose objects are A-modules equipped with a ωA-sesquilinear form.

Another interpretation of this definition will be given by proposition 2.3.
We will now fix some notation.

Let
FA :A mod→Aop mod = modA

FB :B mod→Bop mod = modB

be the functors induced by the involutions ωA and ωB. Namely, if M is
a left A-module then FA(M) = M as abelian group, and the right A-action
is given by:

m.a = ωA(a).m ∀m ∈M , a ∈ A

If f :A M →A N then FA(f) = f .
Now, if A and B are Morita equivalent we then have two possible functors

from Amod to Bmod. One is the usual Q ⊗A −, and the other one is the
composition:

Amod
FA // modA

−⊗AP // modB
FB //

Bmod

Proposition 2.3 The following facts are equivalent:

1. ∃Θ : P → Q Z-isomorphism such that

Θ(a.p.b) = ωB(b)Θ(p)ωA(a) ∀a ∈ A, p ∈ P , b ∈ B

2. The functors Q⊗A − and FB(−⊗A P )FA are naturally equivalent.

Proof:
1.⇒ 2.
We observe that Θ(apb) = ωB(b)Θ(p)ωA(a) ∀a ∈ A, b ∈ B and p ∈ P if

and only if Θ−1(bqa) = ωA(a)Θ−1(q)ωB(b) ∀a ∈ A, b ∈ B and q ∈ Q.
Let ηM : Q⊗AM → FB(FA(M)⊗A P ) defined by

ηM (q ⊗A m) = m⊗A Θ−1(q)
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ηM is a well-defined B-module morphism because of the properties of Θ
with respect to scalars.

ηM is an isomorphism with inverse m⊗A p 7→ Θ(p)⊗A m.
The naturality of ηM is easily checked.

2.⇒ 1.
We remark that ωA : FA(A)→ A is an isomorphism of A-bimodules:

ωA(a′.a.a′′) = ωA(ωA(a′′).a.ωA(a′)) = a′.ωA(a).a′′

where the action on the first term is the action on FA(A), and the usual
one on the others.

When M = A, the natural transformation gives us a morphism:

ψ ηA FB(ωA ⊗A idP ) FB(φ) = φ
Q → Q⊗A A → FB(FA(A)⊗A P ) −→ FB(A⊗A P ) → FB(P )

= ωA ⊗A idP

We define Θ−1 as the composition:

Θ−1 = φ(ωA ⊗A idP )ηAψ : Q→ FB(P )

Θ−1 is composition of isomorphisms ofB-modules, then aZ-isomorphism
with the property Θ−1(bq) = bΘ−1(q) = Θ−1(q)ωB(b) (the action is on
FB(P )).

If a ∈ A we have the following:

Θ−1(qa) = φ(ωA ⊗A idP )ηAψ(qa) = φ(ωA ⊗A idP )ηA(q ⊗A a) =

= φ(ωA ⊗A idP )ηA(idQ ⊗A ×a)(q ⊗A 1)

where ×a is the right multiplication by a. By the naturality of ηA, the
following diagram is commutative:

Q⊗A A
idQ⊗A×a //

ηA
��

Q⊗A A
ηA

��
FB(FA(A)⊗A P )

×a⊗AidP
// FB(FA(A)⊗A P )

Then:

φ(ωA⊗A idP )ηA(idQ⊗A×a)(q⊗A1) = φ(ωA⊗A idP )(×a⊗A idP )ηA(q⊗A1) =
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= φ(ωA ⊗A idP )(×a⊗A idP )(ωA ⊗A idP )−1(ωA ⊗A idP )ηA(q ⊗A 1) =

= φ(ωA × aω−1
A ⊗A idP )(ωA ⊗A idP )ηA(q ⊗A 1)

but ωA(×a)ω−1
A (a′) = ωA(ωA(a′).a) = ωA(a).a′ then ωA(×a)ω−1

A =
ωA(a)× where ωA(a)× : A→ A, (a′ 7→ ωA(a).a′).

So:

Θ−1(qa) = φ(ωA(a)×⊗AidP )(ωA ⊗A idP )ηA(q ⊗A 1) =

= φ(ωA(a)×⊗AidP )φ−1φ(ωA⊗AidP )ηA(q⊗A1) = φ(ωA(a)×⊗AidP )φ−1Θ−1(q) =

= φ(ωA(a)×⊗AidP )(1⊗A Θ−1(q)) = φ(ωA(a)⊗A Θ−1(q)) = ωA(a)Θ−1(q)

We obtain Θ(apb) = ωB(b)Θ(p)ωA(a) ∀a ∈ A, b ∈ B and p ∈ P .

Lemma 2.4 If M is an A-bimodule which has an involution ωM compatible
with the involution ωA of A, then Q⊗AM ⊗A P has, in a natural way, an
involution compatible with the involution ωB of B.

Proof:
Let ω : Q⊗AM ⊗A P → Q⊗AM ⊗A P be defined by:

ω(q ⊗m⊗ p) = Θ(p)⊗ ωM (m)⊗Θ−1(q)

It is easy to verify that ω satisfies the required properties.

Definition 2.5 In the conditions of definition 2.2, we shall say that

(A,Θ :A PB →B QA, B) is an hermitian set of equivalence data
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Lemma 2.6 If Θ, µ, τ satisfy conditions 1. 2. and 3. of definition 2.2, then
µ and τ are compatible with the involutions,
i.e.: µ(ω(p⊗ q)) = ωA(µ(p⊗ q)) and τ(ω′(q ⊗ p)) = ωB(τ(q ⊗ p)).

where:
ω : P ⊗A Q→ P ⊗A Q ω(p⊗ q) = Θ−1(q)⊗Θ(p)
ω′ : Q⊗B P → Q⊗A P ω′(q ⊗ p) = Θ(p)⊗Θ−1(q)

Proof: Immediate.
Examples:

1. Let B = Mn(A) with (ωB(m))ij = ωA(mji) if m ∈ Mn(A), P = A1×n

(row vectors), Q = An×1 (column vectors) and Θ : P → Q given by
Θ(a1, ..., an) = (ωA(a1), ..., ωA(an))t.

The conditions of definition 2.2 are easily verified.

2. Let A be a k-algebra with involution, B = A, ωB(a) = γωA(a)γ where
γ ∈ A is such that γ2 = 1, Θ : A→ A, Θ(x) = γωA(x).

3. Let(A,ωA) be an involutive k-algebra, P a finitely generated projective
A-module, B = EndA(P ). Then P ∈A modB and if B is equipped
with the involution induced by the involution of Mn(A) we have an
hermitian set of equivalence data.

4. Let M be a C∞ locally compact manifold, and G a discrete group,
acting on M without fixed points.

Let A = C∞(M/G) be the algebra of complex-valued C∞-functions that
vanish at the infinity. B = C∞(M)oG.

We consider the involution ωA in A given by complex conjugation, and
the involution ωB in B given by:

ωB(φ, g) = (g−1φ∗, g−1)

Where φ ∈ C∞(M), g ∈ G, and if m ∈M : φ∗(m) = φ(m)∗ (the complex
conjugation). The action of G in C∞(M) is given by (hφ)(m) = φ(h−1m)
∀m ∈M , h ∈ G.

We take P = Q = C∞(M), equipped with the following structure:

1. Left A-module by: (fφ)(m) = f([m])φ(m)

2. Right B-module by: (φ(φ1, g))(m) = φ(gm)φ1(gm)
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3. Right A-module as in 1.

4. Left B-module by: ((φ1, g)φ)(m) = φ1(m)φ(g
−1m)

where f ∈ C∞(M/G); φ1, φ ∈ C∞(M); m ∈ M , g ∈ G and [m] denote the
class of m in M/G.

We consider the additive morphism Θ : P → Q = P given by complex
conjugation. We check that Θ(apb) = ωB(b)Θ(p)ωA(a) ∀a ∈ A, b ∈ B,
p ∈ P .

Finally we define the bimodule isomorphisms µ : P ⊗B Q → A and
τ : Q⊗A P → B by:

τ(φ, ψ) =
∑
x∈G

(Fx, x) where Fx ∈ C∞(M), Fx(m) = φ(m)ψ(x−1m)

and
µ(φ, ψ)([m]) =

∑
x∈G

φ(x−1m)ψ(x−1m) (φ, ψ ∈ C∞(M))

1. τ(Θ(p)⊗ p′) = ωB(τ(Θ(p′)⊗ p))

2. µ(p⊗ q)p′ = pτ(q ⊗ p′) and

3. τ(q ⊗ p)q′ = qµ(p⊗ q′) ∀p, p′ ∈ P , q, q′ ∈ Q

Then it will follow from next Theorem and 2.8 thatHH+
∗ (A) ∼= HH+

∗ (B)
and HD∗(A) ∼= HD∗(B).

Remarks:

1. These last equalities show the usefulness of computations of HH+
∗ and

HD∗ of crossed products.

2. The last example is a particular case of the notion of ”Strong Morita
equivalence” for C∗-algebras defined by Rieffel [7].

Theorem 2.7 In the conditions of Def.2.2 and Lemma 2.6, if 1/2 ∈ k :

H+
∗ (A,M) ∼= H+

∗ (B,Q⊗AM ⊗A P )

Proof: During this proof, we will write ⊗ instead of ⊗A or ⊗B when
the meaning of ⊗ is clear by the context.

At the beginning, the proof is similar to the proof of Morita invariance
of Hochschild homology. Namely, we know that there exist
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{p1, ...ps} ⊂ P , {p′1, ..., p′m} ⊂ P , {q1, ..., qs} ⊂ Q, {q′1, ..., q′m} ⊂ Q such
that:

µ(
s∑
i=1

pi ⊗ qi) = 1A τ(
m∑
j=1

q′j ⊗ p′j) = 1B

Then we define a morphism of complexes:

ψ : M ⊗A⊗∗ → (Q⊗AM ⊗A P )⊗B⊗∗

φ : (Q⊗AM ⊗A P )⊗B⊗∗ →M ⊗A⊗∗

as in ([6],p.19).
For ψ (the other is similar), one has:

ψn(m⊗a1⊗...⊗an) =
∑

1≤ji≤s
(qj0⊗m⊗pj1τ(qj1⊗a1⊗pj2)⊗...⊗τ(qjn⊗an⊗pj0))

ω(ψn(m⊗ a1 ⊗ ...⊗ an)) =

= (−1)n(n+1)/2
∑

1≤ji≤s

ω(qj0 ⊗m⊗pj1)⊗ωB(τ(qjn ⊗an⊗pj0))⊗ ...⊗ωB(τ(qj1 ⊗a1⊗pj2))

= (−1)n(n+1)/2
∑

1≤ji≤s

Θ(pj1)⊗ωM (m)⊗Θ−1(qj0)⊗τω(qjn⊗an⊗pj0))⊗...⊗τω(qj1⊗a1⊗pj2)

= (−1)n(n+1)/2
∑

1≤ji≤s

Θ(pj1)⊗ωM (m)⊗Θ−1(qj0)⊗τ(Θ(anpj0)⊗Θ−1(qjn))⊗...⊗τ(Θ(a1pj2)⊗Θ−1(qj1))

= (−1)n(n+1)/2
∑

1≤ji≤s

Θ(pj1)⊗ωM (m)⊗Θ−1(qj0)⊗τ(Θ(pj0)ωA(an)⊗Θ−1(qjn))⊗...⊗τ(Θ(pj2)ωA(a1)⊗Θ−1(qj1))

If (m⊗ a1 ⊗ ...⊗ an) ∈ (M ⊗A⊗∗)+, then

(m⊗ a1 ⊗ ...⊗ an) = (−1)n(n+1)/2ωM (m)⊗ ωA(an)⊗ ...⊗ ωA(a1)

and then:

ψn(ω(m⊗ a1 ⊗ ...⊗ an)) = ψn((−1)n(n+1)/2ωM (m)⊗ ωA(an)⊗ ...⊗ ωA(a1))

So,
∑

1≤ji≤s
(qj0 ⊗m⊗ pj1 ⊗ τ(qj1 ⊗ a1pj2)⊗ ...⊗ τ(qjn ⊗ anpj0)) =

= (−1)n(n+1)/2
∑

1≤ji≤s

(qj0 ⊗ωM (m)⊗ pj1)⊗ τ(qjn ⊗ωA(an)pj0))⊗ ...⊗ τ(qj1 ⊗ωA(a1)pj2)
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As τ(
∑s
i=1 qji ⊗ pji) = 1B, then 1B = τ(

∑s
i=1 Θ(pji)⊗Θ−1(qji))

And as τ is an isomorphism,
∑s
i=1 qji ⊗ pji =

∑s
i=1 Θ(pji)⊗Θ−1(qji).

If we define ψΘ
n by the same formula but replacing the sets {p1, ..., ps}

and {q1, ..., qs} by {Θ−1(q1), ...,Θ−1(qs)} and {Θ(p1), ...,Θ(ps)} respectively,
we have that:

ωψn = ψΘ
n ω

As a consequence we have the following commutative diagrams:

Cn(A,M)
ψn //

ω

��

Cn(B,Q⊗AM ⊗A P )

ω ⇒
��

Cn(A,M)
ψΘ
n // Cn(B,Q⊗AM ⊗A P )

Hn(A,M)
ψ∗ //

ω∗
��

Hn(B,Q⊗AM ⊗A P )

ω∗
��

Hn(A,M)
ψΘ
∗ // Hn(B,Q⊗AM ⊗A P )

Loday shows that ψφ is homotopic to the identity by defining an explicit
homotopy hi (and the same for φψ), then ψ∗ = φ−1

∗ .
If one considers hΘ

i defined by the same formula as hi but replacing p′i
by Θ−1(qi) and q′i by Θ−1(pi), then ψΘφ is homotopic to the identity, so
ψΘ
∗ = φ−1

∗ . As a consequence ψΘ
∗ = ψ∗.

This proves that

H+
n (A,M) ∼=ψ∗ H+

n (B,Q⊗AM ⊗A P )

Remark: Sometimes we may have Θ(qi) = pi, for all i (for example in
the case B = Mn(A), , see [6]). If this is the case, the hypothesis that 1/2 ∈ k
is not necessary, but the adequate version of positive Hochschild homology
in this case, denoted H inv is the homology of the double complex-called
homotopy colimit- having alll columns equal to the Hochschild complex with
2-periodic row boundary map 1 ± ω. As now the chain map giving Morita
invariance commutes with the operator ω, it follows that Morita invariance
also holds for this homology.

Proposition 2.8 Under the same hypothesis of Theorem 2.7, HD∗(A) ∼=
HD∗(B)
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Proof: We have explicit mapsHD∗(A)→ HD∗(B), HH+
∗ (A)→ HH−∗ (B)

and HH−∗ (A) → HH+
∗ (B) that induce commutative diagrams between the

Connes’s long exact sequence in dihedral homology forA and B. From Theo-
rem 2.7 and a similar version for HH−∗ , we deduce that HD∗(A)→ HD∗(B)
is an isomorphism, using a five-Lemma argument.

3 Equivalences between bimodule categories

The proof of Morita invariance of HH∗ and HC∗ makes use of the existence
of an equivalence between the categories of A-bimodules and B-bimodules,
and the existence of invertible bimodules BPA and AQB allows us to build
explicitly the bimodule equivalence.

The equivalence between the categories Abimod and Bbimod is in general
weaker than the equivalence between Amod and Bmod. In fact, Amod and
Bmod are equivalent if and only if modA and modB are equivalent. Both
imply that Abimod is equivalent to Bbimod, but if for example A is a (non
commutative) ring such that ⊗A is not symmetric, then the converse does
not hold.

Example: Let H denote the quaternionic numbers, i.e. H is the real
algebra generated by i, j, k with relations i2 = j2 = k2 = −1 and ij = k =
−ji ; jk = i = −kj ; ki = j = −ik. Since the set of real numbers is a field,
every ring Morita equivalent to it is a matrix ring with real coefficients. H
has dimension 4 (as a real vector space), if it is Morita equivalent to the
real numbers then it must be isomorphic to M2(R), but that is not possible
because H is a division ring. Nevertheless H ∼= Hop and H⊗

R
H ∼= M4(R)

(isomorphism of real algebras) and M4(R) is Morita equivalent to the real
numbers. That shows that the category ofH-bimodules=H⊗

R
H
op-modules

is equivalent to the category of real vector spaces, but the category of H-
modules is not.

This is a a particular example of the following situation: Consider an
algebraA over a commutative ringR. A is called an Azumaya algebra over
R if the category of A-bimodules is Morita equivalent to the category of R-
modules. Examples of Azumaya algebras are Clifford algebras of even ranked
quadratic modules, in particular the quaternion algebra H. A result due to
Schack [8] and also proved in [1] states that if R is a commutative algebra
over a field k and A is an Azumaya algebra over R, then HH∗(A/k) =
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HH∗(R/k). We shall study this situation for involutive k-algebras at the
end of this Section.

In [8] Schack defines the notion of k-congruence (weak and strong) be-
tween two unital k-algebras A and B as follows:

Definition 3.1 An equivalence of categories T :A bimod→B bimod is called
a k-congruence if and only if:

1. (weak) T (A) ∼=γ B (where γ denotes the isomorphism)

2. (strong) T (M ⊗A N) ∼= T (M)⊗B T (N)

Remark: Strong k-congruence implies weak k-congruence.
Schack shows that every Morita equivalence induces a strong

k-congruence, and claims that if A and B are such that there exists a weak
k-congruence between them, then H∗(A,M) ∼= H∗(B, T (M)) (where M is
any A-bimodule).

Let now (A,ωA) and (B,ωB) be two unital involutive k-algebras. We
are interested in the bimodule equivalences T which preserve involutions.

We know that every equivalence between Abimod =Ae mod and Bemod is
obtained by tensoring with a module R ∈ BemodAe , where R = T (Ae). Let’s
suppose that R is equipped with an involution ωR compatible with A and
B (i.e. ωR(ara′) = ωA(a′)ωR(r)ωA(a) and ωR(brb′) = ωB(b′)ωR(r)ωA(b)
∀a, a′ ∈ A, b, b′ ∈ B and r ∈ R); then if M is a compatible Ae-module,
T (M) = R⊗AeM has a well-defined involution ωR⊗AeM = ωR⊗Ae ωM that
makes T (M) into a compatible Be-module.

In this context we make the following:

Definition 3.2 T is an involutive k-congruence if and only if it is a
(weak) k-congruence and ωB(b) = γ(ωA(a)⊗Ae ωR(r)) ∀b ∈ B, where
γ(a⊗Ae r) = b. We write then T ((A,ωA)) = (B,ωB), (γ is the isomorphism
of the definition 3.1).

Proposition 3.3 Every hermitian equivalence T :A mod→B mod
induces an involutive k-congruence
T : ((compatible Abimod)) → ((compatible Bbimod)). i.e. a k-congruence
T :

Z/2ZoAe
−mod→

Z/2ZoBe
−mod

Proof: An hermitian Morita equivalence is given by a pair of invertible
bimodules APB and BQA and an additive map Θ : P → Q satisfying the
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conditions of 2.2. Then we can take R = Q⊗k P with the involution
ωR : Q⊗kP → Q⊗kP , ωR(q⊗p) = Θ(p)⊗Θ−1(q). The induced equivalence
is then T (M) = R⊗Ae M = (Q⊗k P )⊗Ae M ∼= Q⊗AM ⊗A P .

T (A) ∼= Q ⊗A A ⊗A P ∼= Q ⊗A P ∼= B, and we can easily check that
T (A,ωA) = (B,ωB).

As Schack has already remarked, every k-linear functor
T :A bimod →B bimod defines a morphism between the Yoneda extensions
Ext∗Ae(−,−) and Ext∗Be(T (−), T (−)), applying T to every bimodule in each
class of extension, which is clearly an isomorphism when T is an equivalence.
In particular, when A and B are k-projective and T (A) ∼= B we have
H∗(A,M) ∼= H∗(B, T (M)) for every A-bimodule M . In the case of invo-
lutive k-algebras we want to show that H∗+(A,M) ∼= H∗+(B, T (M)) for
every compatible A-bimodule M , and analogously for homology.

We will suppose, until the end of this section, that A and B are both
k-projective, and if T is an equivalence between the categories of Aemod
and Bemod, let BeRAe and AeSBe be bimodules such that R ⊗Ae S ∼= Be,
S⊗Be R ∼= Ae (bimodule isomorphisms) and T = R⊗Ae (−). The condition
that T is a k-congruence implies that R ⊗Ae A ∼= B as Be-module.Now we
require also that A⊗Ae S ∼= B.

The condition of projectivity of A and B over k allows us to compute
H∗(A,M) as TorA

e

∗ (A,M), using Ae-projective resolutions of A.
If (Pn, dn)n≥0 is an Ae-projective resolution of A, the fact that −⊗Ae S

is also an equivalence implies that (Pn⊗Ae S, dn⊗ idS)n≥0 is a Be-projective
resolution of A ⊗Ae S ∼= B. Then H∗(B, T (M)) = TorB

e

∗ (B,R ⊗Ae M) is
the homology of the complex
(Pn ⊗Ae S ⊗Be R⊗Ae M,dn ⊗ idS ⊗ idR ⊗ idM )n≥0

∼=
∼= (Pn⊗Ae Ae⊗AeM,dn⊗ idAe ⊗ idM )n≥0

∼= (Pn⊗AeM,dn⊗ idM )n≥0. The
homology of this last complex computes TorA

e

∗ (A,M). So we have proved
the following:

Proposition 3.4 With the notations as above, if A and B are k-projective
and A⊗Ae S ∼= B as a B-bimodule, then H∗(A,M) ∼= H∗(B, T (M))

Let us now return to the case where A and B are involutive algebras and
T is an involutive k-congruence.

Suppose we have an Ae-projective resolution of A (Pn, dn)n≥0 such that
every Pn is a compatible Ae-module, equipped with an involution such that
ωP .d = d.ωP . In this situation we will say that we have an involutive
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projective resolution, which is the same thing that a projective resolution
in the category of Z/2ZoAe-modules.

Lemma 3.5 If M is a compatible A-bimodule, then:

H inv
∗ (A,M) = Tor

Z/2ZoAe

∗ (A,M)

Proof: Let C ′(A) be the Hochschild resolution of A as an Ae-module.
Define y′ : C ′n(A)→ C ′n(A) as y′(a⊗a1⊗. . .⊗an⊗a′) = (−1)n(n+1)/2(ωAa′⊗
ωAan ⊗ . . .⊗ ωAa1 ⊗ ωAa). Let Z/2Z act on C ′∗(A)⊕ C ′∗(A) by (x1, x2)→
(y′(x2), y′(x1)), and form the corresponding homotopy colimit as in Sec-
tion 2. The result is a double complex whose total complex is a projective
Z/2ZoAe-module in each degree. Moreover, tensoring the latter complex
over Z/2ZoAe with M is exactly the complex that computes H inv

∗ (A,M)
as defined before. This concludes the proof.

Theorem 3.6 Under the same notations and hypothesis as in 3.5:

H inv
∗ (A,M) ∼= H inv

∗ (B, T (M))

Proof: It is enough to remark the following facts:

• The standard Hochschild resolution of A, equipped with the involution
y′ defined in the previous lemma is a Z/2ZoAe- projective resolution.

• H inv
∗ (A,M) = Tor

Z/2ZoAe

∗ (A,M).

• With the same argument as in proposition 3.4, one obtains an involu-
tive Be-projective resolution of B.

So, the theorem is a corollary of the above discussion.

Remarks

1. An analogous proof shows that the same holds for cohomology.

2. If A is a commutative k-projective algebra, we can define an explicit
morphism f∗ : HH∗(A) → HH∗(B) such that f0 is an isomorphism
and f∗ makes the long exact sequences commutative as follows.
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Let r0 ∈ R be such that γ(r0 ⊗Ae 1A) = 1B, and let
fn : HHn(A)→ HHn(B) be defined by
fn([a0 ⊗ ...⊗ an]) = [γ(r0 ⊗ a0)⊗ ...⊗ γ(r0 ⊗ an)]
fn is well-defined because γ(r0 ⊗ a)γ(r0 ⊗ a′) − γ(r0 ⊗ aa′) is in general a
linear combination of terms of the type γ(ri ⊗ a′′i ) with a′′i ∈ [A,A], but A
is commutative.

Then, since in the above situation HH∗ is an universal functor, we know
that HH∗(A) ∼= HH∗(B), and the commutativity of f∗ with the involutions
shows that HH+

∗ (A) ∼=f∗ HH+
∗ (B).

Finally, looking at the case of involutive Azumaya algebras, we remark
that, as a corollary of 3.6 and Schack’s Theorem 3 [8], we have:

Proposition 3.7 Let B be an involutive and commutative k-algebra, and
let A be an Azumaya B-algebra Then any hermitian B-congruence T :B
bimod→A bimod induces an isomorphism

H inv
∗ (B,−)→ H inv

∗ (A, T (−))
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