Abstract

Let A be an associative k-algebra with involution, where k is a commutative ring of characteristic not equal to two. Then the dihedral groups act on the Hochschild complex and, following Loday, a new homological theory, called dihedral homology, can be defined generalizing the notion of cyclic homology defined by Connes. Here we give a model to compute dihedral homology of a commutative algebra over a characteristic zero field. As for an involutive algebra, we have a decomposition of Hochschild homology into a direct sum of two k-modules: \mathbb{Z}_2-equivariant and skew \mathbb{Z}_2-equivariant Hochschild homologies. We give smoothness criteria in terms of vanishing of some \mathbb{Z}_2-equivariant Hochschild homology groups.

1991 Math. Subj. Class.: 14B05, 14F40, 16E40, 18G60

0. Introduction

Let k be a unital commutative ring, where 2 is invertible, and let A be an associative k-algebra with involution. We recall, [5,14], that the definition of cyclic homology uses explicitly the action of the cyclic group $\mathbb{Z}/n\mathbb{Z}$ over the Hochschild complex.

If A is involutive, an action of the dihedral groups D_8 on the Hochschild complex can be defined as in [14], and it gives two new homological theories called dihedral homology and skew dihedral homology, see also [6] and [15].

The Hochschild homology of an involutive algebra decomposes into two parts (\mathbb{Z}_2-equivariant and skew \mathbb{Z}_2-equivariant Hochschild homologies), and the Connes’ long exact sequence splits into two long exact sequences relating dihedral homology, skew dihedral homology, \mathbb{Z}_2-equivariant and skew \mathbb{Z}_2-equivariant Hochschild homologies.
Theorem 2.1. Let \((A, d_A)\) be a commutative differential graded algebra endowed with an involution \(\omega\). Then there exists a free commutative differential graded algebra \((AV, \partial)\) and a morphism \(\rho: (AV, \partial) \to (A, d_A)\) inducing an isomorphism in homology such that

1. \(V = \bigoplus_{n \in \mathbb{N}} V_n\), on each \(V_n\), there exists an involution \(\omega\), which induces a morphism of commutative differential graded algebras,
2. \(\rho \omega = \omega \rho\).

Such an algebra \((AV, \partial)\) is called an equivariant model of \((A, d_A)\).

Remark. Let \(A\) be an involutive commutative algebra of finite type, then \(A\) is isomorphic to \(k[x_1, \ldots, x_p]/I\), where the involution \(\omega\) of \(A\) is the image of \(\omega'\) on \(k[x_1, \ldots, x_p]\) satisfying \(\omega'(x_i) = \pm x_i\) for all \(i\), and \(I\) contains \(\omega'(I)\). So we can construct an equivariant model of \((A, \partial)\), with \(V_0 = \bigoplus_{1 \leq i \leq p} k x_i\) and \(\text{dim } V_n < \infty\), for all \(n\).

Proposition III. 2.9 of [8] can be transposed in this context:

Proposition 2.2. Let \(f: (A, d_A) \to (B, d_B)\) be an equivariant morphism of involutive commutative differential graded algebras over a field. If \(f_*\) is an isomorphism from \(H_*(A, d_A)\) to \(H_*(B, d_B)\), then \(f\) induces isomorphisms between \(\mathbb{Z}_2\)-equivariant (resp. skew \(\mathbb{Z}_2\)-equivariant) Hochschild homology and dihedral homology.

From now on, we will assume that \(k\) is a field of characteristic zero, and using Proposition 2.2, we will work with the equivariant model \((AV, \partial)\).

In the appendix of [12], we define the module of differential forms \(\Omega^1\) of a commutative graded algebra \((A, \partial)\), extending the classical definition, so that \(\Omega^1\) is an \((\partial, \cdot)\)-differential module with a differential \(\delta\) satisfying \(\delta c + c \delta = 0\).

If \((A, \partial)\) is endowed with an involution \(\omega\), we define an involution still denoted \(\omega\) on \(\Omega^1\) satisfying \(\omega d + d \omega = 0\), \(\omega \delta = \delta \omega\).

By definition, \((\Omega^*_{(\partial, \cdot)}, \delta)\) is the \((A, \partial)\)-commutative differential graded algebra on \(\Omega^1\). So the formula:

\[
\omega^\delta(a_0 \land da_1 \land \cdots \land da_n) = (-1)^n \omega(a_0) d\omega(a_1) \land \cdots \land d\omega(a_n)
\]

defines an involution \(\omega\) on \((\Omega^*_{(\partial, \cdot)}, \delta)\) which is a morphism of commutative differential graded algebras satisfying \(\omega d + d \omega = 0\).

If \((A, \partial) = (AV, \partial)\), the algebra \((\Omega^*_{(\partial, \cdot)}, \delta)\) of differential forms has the form \((AV \otimes AV, \partial)\) with \(\partial = dV\), and \(\delta d + d \delta = 0\).

Now, we recall the main result of [3] (Theorem 2.4).

Proposition 2.3 (Burghelea and Vigué-Poirrier [3]). The map

\[
\theta_{p, n-p}: C_{p, n-p}(AV, \partial) \to (\Omega^p_{(AV, \partial)})_n
\]

defined by

\[
\theta_p(a_0 \otimes \cdots \otimes a_p) = [(-1)^{p(n-p)}]^{p!} (a_0 \land da_1 \land \cdots \land da_p),
\]

is an isomorphism.
where $a_0 \in AV, a_i \in AV/k$ if $i \geq 1$, $\varepsilon_p(a) = |a_1| + |a_3| + \ldots$ satisfies

1. $\theta_0 b = 0, \theta_0 \delta = \delta_0 \theta, \theta_0 B = d_0 \theta$;
2. θ induces isomorphisms: $HH_n(AV, \delta) \cong H_n(\Omega^*, \delta)$ for all $n \geq 0$ and $HC_n(AV, \delta) \cong HC_n(\Omega^*, \delta, \delta)$, where $HC_*(\Omega^*, \delta, \delta)$ is the total homology of the bicomplex

\[\begin{array}{cccccccccccc}
\cdots & \searrow & \searrow & \cdots \\
(\Omega^*)_n & \xleftarrow{d} & (\Omega^*)_{n-1} & \xleftarrow{d} & (\Omega^*)_{n-2} & \xleftarrow{d} & \cdots \\
\delta & \downarrow & \delta & \downarrow & \delta & \downarrow & \delta \\
(\Omega^*)_{n-1} & \xleftarrow{d} & (\Omega^*)_{n-2} & \xleftarrow{d} & (\Omega^*)_{n-3} & \xleftarrow{d} & \cdots \\
\end{array} \]

Lemma 2.4. The following diagram commutes

\[\begin{array}{ccc}
C_p(AV, \delta) & \xrightarrow{\theta_p} & \Omega^p_{(AV, \delta)} \\
\downarrow u & & \downarrow \omega_p \\
C_p(AV, \delta) & \xrightarrow{\theta_p} & \Omega^p_{(AV, \delta)} \\
\end{array} \]

Proof. Left to the reader.

We have a decomposition $\Omega^*_{(AV, \delta)} = (\Omega^*)^+ \oplus (\Omega^*)^-$ where $(\Omega^*)^+ = \{x/\omega(x) = x\}$ and $(\Omega^*)^- = \{x/\omega(x) = -x\}$.

From Proposition 2.3 and Lemma 2.4, we have directly:

Theorem 2.5. We have explicit isomorphisms, induced by θ, for each $n \geq 0$.

\[\begin{align*}
HH_n(A) & \cong HH_n^*(AV, \delta) \cong H_n((\Omega^*)^+, \delta) = \bigoplus_i H_n^{(i)}((\Omega^*)^+, \delta) \\
HD_n(A) & \cong HD_n(AV, \delta) \cong HC_n((\Omega^*)^+, \delta, d) = \bigoplus_i HC_n^{(i)}((\Omega^*)^+, \delta, d),
\end{align*} \]

where $H_n^{(i)}((\Omega^*)^+, \delta) = H_n((\Omega^*)^+ \cap (\Omega^i, \delta))$.

$HC_n^{(i)}((\Omega^*)^+, \delta, d)$ is the total homology of the bicomplex

\[\begin{array}{cccccccccccc}
\cdots & \searrow & \searrow & \cdots \\
(\Omega^i_n)^+ & \xleftarrow{d} & (\Omega^i_{n-1})^- & \xleftarrow{d} & (\Omega^i_{n-2})^- & \xleftarrow{d} & \cdots \\
\delta & \downarrow & \delta & \downarrow & \delta & \downarrow & \delta \\
(\Omega^i_{n-1})^+ & \xleftarrow{d} & (\Omega^i_{n-2})^- & \xleftarrow{d} & (\Omega^i_{n-3})^- & \xleftarrow{d} & \cdots \\
\end{array} \]
Since \(H_n(\Omega^+_n, d) = (\Omega^+_n \cap \text{Ker } d)/d(\Omega^+_n) \) and
\[
H_n(\Omega^-_n, d) = (\Omega^-_n \cap \text{Ker } d)/d(\Omega^-_n)
\]
for all \(n > 0 \), we have a similar result to Theorem 2.1 of [3].

Theorem 2.6. The map \(\phi: \Omega^-_n \oplus \Omega^-_{n-2} \oplus \cdots \to (\Omega^-_{n+1} \cap d(\Omega^+_n), \delta) \) defined by \(\phi(c_n, c_{n-2}, \ldots) = (-1)^n dc_n \) for \(c_{n-2i} \in \Omega^-_{n-2i} \), is a morphism of complexes and induces an isomorphism between \(H\overline{D}_n(AV, \delta) = H\overline{D}_n(AV, \delta)/H\overline{D}_n(k) \) and \(H_{\delta+1}(\Omega^-_n \cap d(\Omega^+_n), \delta) \). Analogously, we have an isomorphism between \(H\overline{D}_n(AV, \delta) = H\overline{D}_n(AV, \delta)/H\overline{D}_n(k) \) and \(H_{\delta+1}(\Omega^-_n \cap d(\Omega^+_n), \delta) \).

The famous Hochschild–Kostant–Rosenberg theorem implies that if \(A \) is smooth, then the \(\mathbb{Z}_2 \)-equivariant Hochschild homology groups \(HH^+_n(A) \) are zero for \(n \) sufficiently large.

For graded algebras, we can prove a converse of this result, using the theory developed in the present paragraph. This is, in fact, the proof of a refinement of a conjecture by Rodicio [16].

Theorem 2.7. Let \(A \) be a graded algebra over a characteristic zero field, and \(\omega \) an involution on \(A \). If there exist three integers \(i, j, k \) such that \(i - j, j - k \) and \(i - k \) are not divisible by 4, and
\[
HH^+_i(A) = HH^+_j(A) = HH^+_k(A) = 0
\]
then \(A \) is a polynomial algebra.

Proof. The proof relies on Theorem 2.6 and the existence of a minimal model for a graded algebra. Then, we proceed as in the proofs of theorems 1 and 2 of [18]. If \(A \) is not a polynomial algebra, we write \(A = k[x_1, \ldots, x_m]/I \), with \(I \neq 0 \), and we consider the elements \(Z_{m+2n} = (dx_1 \ldots dx_m)(dy)^n \), and their images by the involution \(\omega \). Since \(A \) is graded, we have short exact sequences:
\[
0 \to H\overline{D}_n(A, d_A) \to HH^+_n(A, d_A) \to H\overline{D}_n(A, d_A) \to 0
\]
\[
0 \to H\overline{D}_n(A, d_A) \to HH^-_n(A, d_A) \to H\overline{D}_n(A, d_A) \to 0
\]
The elements \(Z_{m+2n} \) define nonzero classes in \(H\overline{D}_m+2n-1 \) or \(H\overline{D}_{m+2n-1} \), depending on the actions of \(\omega \). This allows us to determine when the groups \(HH^+_n(A) \) are not zero.

Remark. In [18], it is proven that if \(A \) is not a polynomial algebra, then \(HC_n(A) \neq 0 \) for infinitely many \(n \). Here we cannot prove the same result for dihedral homology or skew dihedral homology, but instead, it is valid for \(\mathbb{Z}_2 \)-equivariant Hochschild homology.
3. Localization of \(\mathbb{Z}_2 \)-equivariant Hochschild homology. Applications

Let \(A \) be a commutative algebra. One of the most important properties of Hochschild homology, specially for geometrical applications, is that it is well-behaved with respect to localization. Explicitly, if \(S \) is a multiplicatively closed subset of \(A \), and \(A_S = S^{-1}A \), then by a result of Brylinski [2]

\[
HH_*(A_S) = HH_*(A) \otimes_A A_S
\]

If \(A \) is provided with an involution \(\omega \), and \(A^+ \) is the subalgebra of the elements of \(A \) fixed by \(\omega \), then \(HH_*(A) \) is no more an \(A \)-algebra but an \(A^+ \)-algebra.

Let \(S \) be a multiplicatively closed subset of \(A \), stable by the involution (i.e. \(\omega(S) \) is included in \(S \)), and let \(S^+ = \{ s \in S/\omega(s) = s \} \).

Then \(1 \in S^+ \), and \(S^+ \) is also a multiplicatively closed subset of \(A \).

If \(a, a' \in A, s, s' \in S \), then \(a/s = a'/s' \) in \(A_S \) if and only if \(\exists ! s \in S \) such that \(t.(as' - a's) = 0 \). In this case, \(\omega(a)/\omega(s) = \omega(a')/\omega(s') \) in \(A_S \).

So, the formula \(\omega(a/s) = \omega(a)/\omega(s) \) makes sense and defines an involution on \(A_S \).

Lemma 3.1. The inclusion \(i: A_S^+ \to A_S; i(a/s) = a/s \) is an isomorphism of algebras, such that \(i\omega = \omega i \).

Proof. It is clear that \(i \) is a morphism of algebras which is injective. It is also surjective because if \(a/s \in A_S \), then \(a/s = a.\omega(s)/s.\omega(s) \) in \(A_S \), and \(s.\omega(s) \in S^+ \).

As a consequence of this lemma, from now on we can suppose \(S = S^+ \).

Consider now an \(A \)-bimodule \(M \), which is \(A^+ \)-symmetric (i.e. \(rm = mr \), for \(r \in A^+, m \in M \)), provided with an involution \(\omega_M \) compatible with \(\omega \).

More explicitly, \(\omega_M \) is \(k \)-linear, \(\omega^2 = id_M \), and if \(a, b \in A, m \in M \), then \(\omega_M(a.m.b) = \omega(b).\omega_M(m).\omega(a) \). We denote by \(M^+ = \{ m \in M/\omega_M(m) = m \} \).

As in the previous sections, the Hochschild complex \(C_*(A,M) \) can be decomposed into \(C^+_*(A,M) \) and \(C^-_*(A,M) \), whose homologies are, respectively, \(H^+_*(A,M) \) and \(H^-_*(A,M) \) [14].

\(H_*(A,M) \) (resp. \(H^+_*(A,M) \)) has a natural structure of symmetric \(A \)-bimodule (resp. \(A^+ \)-bimodule).

If \(S \) is a multiplicatively closed subset of \(A \), suppose \(S = S^+ \), and define \(M_S = A^+_S \otimes_A^+ M \otimes_A^+ A_S^+ \).

Remark. \((M^+)_S \cong (M_S)^+ \) as \(A_S^+ \)-bimodule.

Theorem 3.2. In the above conditions,

\[
H^+_*(A_S, M_S) \cong [H^+_*(A,M)]_S \quad (and \ analogously \ for \ H^-_*)
\]

Proof. First observe that the functor \(X \to X^+ \) from the category of symmetric \(A \)-bimodules to the category of \(A^+ \)-bimodules is well-defined and exact.
Also, let \(\eta_0: [H_\omega(A, M)]_S \to H_0(A_S, M_S) \) be the natural isomorphism induced by \(\hat{f}: M/[A, M] \to M_S/[A_S, M_S] \); \(\hat{f}(\hat{m}) = c(1 \otimes m \otimes 1) \).

By a theorem of Grothendieck [9], as \(\eta_0 \) is an isomorphism and we also have natural functors \(\eta_n: [H_n(A, M)]_S \to H_n(A_S, M_S) \) for \(n \geq 0 \), then \([H_\omega(A, M)]_S \) is isomorphic to \(H_\omega(A_S, M_S) \).

Also, \(\eta_0 \) commutes with the involution. So, \([H_\omega(A, M)]_S \cong [(H_\omega(A, M))^+]_S \). By the previous remark, this last term is identical with \(([H_\omega(A, M)]_S)^+ \), and by the result of Brylinski, this equals \([H_\omega(A_S, M_S)]^+ = H_\omega(A_S, M_S) \).

Now, we apply Theorem 3.2 to the characterization of smoothness in terms of the nullity of some \(\mathbb{Z}_2 \)-equivariant Hochschild homology groups.

In [16], the author conjectures:

Let \(k \) be a field of characteristic zero and let \(A \) be a \(k \)-algebra of finite type. If \(HH_\omega(A) = 0 \) for \(n \) sufficiently large, then \(A \) is a smooth \(k \)-algebra.

In [4, 1], the authors prove the conjecture, under the less restrictive assumption that there exists two Hochschild homology groups \(HH_2 \) and \(HH_{2j+1} \) which vanish.

Here, we give a similar result for involutive commutative algebras.

Theorem 3.3. Let \(A = \mathbb{C}[x_1, \ldots, x_m]/I \) be a reduced commutative algebra of finite type. We assume that \(A \) is the coordinate ring of an algebraic subset \(V \) containing the origin and symmetric by the origin (so, the involution \(\omega(x_i) = -x_i \) for all \(i \), induces an involution on \(A \)).

Then, if \(V \) is not smooth at the origin, there exists an integer \(p \) such that \(HH_1^+(A) \neq 0 \) for all \(i < p \), and \(HH_{p+4n}^+(A) \neq 0 \) for all \(n \in \mathbb{N} \).

Proof. We recall that an algebraic subset \(V \) of the affine space \(A_m(\mathbb{C}) \) is defined by the data of a family of polynomials \((P_i)_{i \in I} \in \mathbb{C}[x_1, \ldots, x_m] \) and

\[
V = \{(a_1, \ldots, a_m) \in \mathbb{C}^m/P_i(a_1, \ldots, a_m) = 0, \text{ for all } i\}.
\]

If we denote by \(I(V) \) the ideal generated by the polynomials \(Q \) such that \(Q(a_1, \ldots, a_m) = 0 \), for all \((a_1, \ldots, a_m) \in V \), then \(I(V) \) is equal to the radical of the ideal generated by the family \((P_i)_{i \in I} \). Then \(A = \mathbb{C}[x_1, \ldots, x_m]/I(V) \) is called the coordinate ring of \(V \). From the Nullstellensatz theorem, we have a one-to-one correspondence between reduced commutative algebras of finite type and coordinate rings of algebraic subsets.

Now consider an algebraic set \(V \) containing the origin \(O \). Let \(\sigma \) be the central symmetry of center \(O \) in \(A_m(\mathbb{C}) \), we assume that \(V \) contains \(\sigma(V) \). We denote by \(\omega \) the algebra morphism on \(\mathbb{C}[x_1, \ldots, x_m] \) defined by \(\omega(x_i) = -x_i \) for all \(i \). If \(\sigma(V) \) is a subset of \(V \) we can find generators \(P_1, \ldots, P_r \) of \(I(V) \) such that \(\omega(P_j) = \pm P_j \), for all \(j \in [1, \ldots, r] \). In the following, \(A = \mathbb{C}[x_1, \ldots, x_m]/I(V) \) will be endowed with the image of this involution \(\omega \). Let \(\mathcal{M} = (x_1, \ldots, x_m) \) and \(\mathcal{M} = \mathcal{M}/I \). From Theorem 3.2, we have \(HH_\omega^+(A_{\mathcal{M}}) \cong HH_\omega^+(A) \otimes_{A^+}(A^+)_{\mathcal{S}^+} \), with \(\mathcal{S}^+ = \{s \in \mathbb{C}[x_i] - \mathcal{M}/\omega(s) = s\} \).
So we work with the local ring A_{3R} endowed with the induced involution. Since $\omega(x_i) = -x_i$ for all i, the ideal $3R'$ has a minimal set of generators on which ω operates as $-\text{Id}$. A classical argument [1], shows that we can write $A_{3R} = A_0/J$ with A_0 a local regular ring of maximal ideal $3R$, J is contained in $3R^2$ and A_0 has an involution ω that operates as $-\text{Id}$ on a minimal set of generators (f_1, \ldots, f_p) of $3R$. Furthermore, we have $A_0/3R \cong \mathbb{C}$.

Tate's construction [17], allows us to say that there exists a minimal commutative graded differential algebra $(A_0 \otimes AV, \partial), V = \bigoplus_{n \geq 1} V_n$, and a map from $(A_0 \otimes AV, \partial)$ onto A_0/J which induces an isomorphism in homology.

On the other hand, since A is involutive, we can build this model such that each V_σ is endowed with an involution which is a morphism of commutative differential graded algebras, extending the involution of A_0.

In [7, 19], it is proved that the Hochschild homology of A_0/J is isomorphic to the homology of $(\Omega^*_A \otimes \Omega^*_A, \partial)$ with $\delta d + d\delta = 0$.

A similar argument to those of Section 2 shows that

$$HH^*(A_{3R}) = H^*_*((\Omega^*_A \otimes \Omega^*_A)^+*, \partial)$$

Then the proof is the same as in [1]: if A_{3R} is not local regular, then $J \neq 0$, so we have $V_1 \neq 0$, we can find an element $y \in V_1$ such that $\omega(y) = \pm y$. Since $\omega(f_i) = -f_i$ for all i, we have $\omega(df_i) = df_i$.

For $n \in \mathbb{N}$, we put $Z_{4n+p} = (df_1 \ldots df_p)(dy)^{2n}$, then $\omega(Z_{4n+p}) = Z_{4n+p}$, so $Z_{4n+p} \in (\Omega^*_A \otimes \Omega^*_A)^+$.

We conclude as in [1].

Acknowledgements

We wish to thank Matias Graña who contributed to the proof of Theorem 3.2.

References

