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Abstract

Let A4 be an associative k-algebra with involution, where &k is a commutative ring of
characteristic not equal to two. Then the dihedral groups act on the Hochschild complex
and, following Loday, a new homological theory, called dihedral homology. can be defined
generalizing the notion of cyclic homology defined by Connes. Here we give a model
to compute dihedral homology of a commutative algebra over a characteristic zero field.
As, for an involutive algebra, we have a decomposition of Hochschild homology into
a direct sum of two k-modules: ZF,-equivariant and skew Z,-equivariant Hochschild
homologies, we give smoothness criteria in terms of vanishing of some Z,-equivariant
Hochschild homology groups.

1991 Math. Subj. Class.: 14B05, 14F40, 16E40, 18G60

0. Introduction

Let k be a unital commutative ring, where 2 is invertible, and let 4 be an associative
k-algebra with involution. We recall, [5, 14], that the definition of cyclic homology
uses explicitly the action of the cyclic group Z/nZ over the Hochschild complex.

If 4 is involutive, an action of the dihedral groups D, on the Hochschild complex
can be defined as in [14], and it gives two new homological theories called dihedral
homology and skew dihedral homology, see also [6] and [15].

The Hochschild homology of an involutive algebra decomposes into two parts
(Z;-equivariant and skew Z;-equivariant Hochschild homologies), and the Connes’
long exact sequence splits into two long exact sequences relating dihedral homology,
skew dihedral homology, 7,-equivariant and skew Z-equivariant Hochschild
homologies.

*Corresponding author.

0022-4049/96/515.00 © 1996 Elsevier Science B.V. All rights reserved.
SSDI0022-4049(95)00083-6



100 A. Solotar. M. Vigué-Poirrvier | Journal of Pure and Applied Algebra 109 (1996) 97106

Theorem 2.1. Let (A,d ) be a commutative differential graded algebra endowed with an
involution w. Then there exists a free commutative differential graded algebra (AV,8)
and a morphism p:(AV,8) — (A, d,) inducing an isomorphism in homology such that
1 V= @,s_\- V,. on each V,, there exists an involution w, which induces a morphism
of commutative differential graded algebras,
(2) pw = wp.

Such an algebra (AV,d) is called an equivariant model of (A, d ).

Remark. Let 4 be an involutive commutative algebra of finite type, then A4 is
isomorphic to k[x,, ..., x,1/1, where the involution @ of A is the image of @' on
k[xy....,x,] satisfying '(x;) = +x; for all i, and I contains w'(I). So we can
construct an equivariant model of 4, (AV, &), with ¥, =(—B, <i <pkx;and dim ¥, < oo,
for all n.

Proposition 111 2.9 of [8] can be transposed in this context:

Proposition 2.2. Let [:(A,d,) — (B,dg) be an equivariant morphism of invelutive com-
mutative differential graded algebras over a field. If f, is an isomorphism from H (A, d 4)
to H (B,dy). then [ induces isomorphisms between Zj-equivariant (resp. skew Z,-
equivariant) Hochschild homology and dihedral homology.

From now on, we will assume that k& is a field of characteristic zero, and using
Proposition 2.2, we will work with the equivariant model (AV. d).

In the appendix of [12], we define the module of differential forms ' of a com-
mutative graded algebra (A4, ), extending the classical definition, so that 2' is an
(A, &)-differential module with a differential § satisfying dé + dd = 0.

If (A, 2) is endowed with an involution w, we define an involution still denoted @ on
Q1 satisfying wd + do = 0, w6 = dw.

By definition, (2, ;,, 4} is the (4, @ )-commutative differential graded algebra on Q.
So the formula:

wylag aday A -+ ada,) = (— 1\ w(ag)dmla) A - A dola,)
defines an involution @ on (2 ;. 4) which is a morphism of commutative differential
graded algebras satisfying md + dw = 0.

If (4,8)=(AV.8), the algebra (22}, ;. of differential forms has the form
(AV @ AV, 8) with ¥ = dV, and dd + dé = 0.

Now, we recall the main result of [3] (Theorem 2.4).

Proposition 2.3 (Burghelea and Vigue-Poirrier [3]). The map
Upn—p: Cpn—plAV,8) — (2 rAV,e‘-r]n

defined by
O,(ae® --- @a,) = [(— 1)1/ p!-(ao Aday A -+~ Adap),
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where ay e AV, a; e AV k if i = 1, gxla) = |ay| + |ay| + --- satisfies

(1) Gob = 0,008 = 6,0, ,B = dy0;
(2} 0 induces isomorphisms: HH,(AV.d) = H,(0*, a) for all n =0 and HC,(AV,8)
= HC,(Q%,0,8). where HC (Q*, d.d) is the total homalogy of the bicomplex
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Lemma 24. The following diagram commutes
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Proof. Left to the reader.

We have a decomposition Qb= (2%) @ (2*%)" where (Q%)" = {x/m(x) = x)

and (2%)” = {x/o(x) = —x),
From Proposition 2.3 and Lemma 2.4, we have directly:

Theorem 2.5. We have explicit isomorphisms, induced by 0, for each n = 0.
HH; (A) = HH, (AV,0) = H,(2*)*,6) = @:HY(2%)",0)

HD,(4) = HD\(AV,d) = HC,(@*)",6.d) = B, HCY((2*)*, 5, d),
Wh(’r{l?
H(Q%)7,0) = H,(@%) ~(2',5))

HC2((@*)*,5,d) is the total homology of the bicomplex
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Since H,(Q].d) = (2, nKerd)/d(, ) and
H, Q. .d)=((Q, nKerd)/d((£2,;) foralln=0,

we have a similar result to Theorem 2.1 of [3]

Theorem 2.6. The map ¢:Q, @R, & - = Q. nd(R,),8) defined by
Pl ooz ... ) =(— 1)"de, for ¢, 2, €82, _ 5, is a morphism of complexes and induces an
isomorphism between HD (AV,8) = HD (AV,8)/HD (k) and H, . (2, nd(2,).).
Analogously, we have an isomorphism between HSD, (AV,8) = HSD(AV,8)/HSD, (k)
and H, . ,(Q nd(2).0).

The famous Hochschild-Kostant-Rosenberg theorem implies that if 4 is smooth,
then the 7;-equivariant Hochschild homology groups HH, (A4) are zero for n suffi-
ciently large.

For graded algebras, we can prove a converse of this result, using the theory
developed in the present paragraph. This is, in fact, the proof of a refinement of
a conjecture by Rodicio [16].

Theorem 2.7. Let A be a graded algebra over a characteristic zero field, and « an
involution on A. If there exists three integers i, j, k such that i — j, j — k and i — k are not
divisible by 4, and

HH(A)=HH;(A)= HH,(4)=0
then A is a polynomial algebra.

Proof. The proof relies on Theorem 2.6 and the existence of a minimal model for
a graded algebra. Then, we proceed as in the proofs of theorems 1 and 2 of [18]. If A is
not a polynomial algebra, we write 4 = k[x,. ..., x,]/I, with I # 0, and we consider
the elements Z,, 4 1, = (dx, ... dx,){dy)", and their images by the involution m. Since
A is graded, we have short exact sequences:

0— HSD,_,(4.d,) - HH, (4,d,) = HD,(A,d ) =0
0—HD,_ (A, d,) - HH, (A,d,) — HSD,(A,d4) =0

The elements Z,, , », define nonzero classes in HD,, , 5, ; or HSD,, . 5, ;. depending
on the actions of . This allows us to determine when the groups HH, (A4) are not
ZETO,

Remark. In [18], it is proven that il 4 is not a polynomial algebra, then HC,(A4) # 0
for infinitely many n. Here we cannot prove the same result for dihedral homology or
skew dihedral homology, but instead, it is valid for £;-equivariant Hochschild
homology.
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3. Localization of 7 ;-equivariant Hochschild homology. Applications

Let A be a commutative algebra. One of the most important properties of Hoch-
schild homology, specially for geometrical applications, is that it is well-behaved with
respect to localization. Explicitly, if § is a multiplicatively closed subset of 4, and
As = 5 'A, then by a result of Brylinski [2]

HHtlAS} = HH*{A}®A As

If A is provided with an involution . and 4 is the subalgebra of the
A fixed by e, then HH, (4) is no more an 4-algebra but an A " -algebra.

Let § be a multiplicatively closed subset of 4, stable by the involution (i.e. m(5) is
included in 5), and let §* = {se5/wi(s) = s}.

Then 18", and §" is also a multiplicatively closed subset of 4.

If a,aeAd, s55€eS, then a/s=a'/s’ in Ag if and only il 3teS such that
t{as’ — a's’) = 0. In this case, wia)/w(s) = w(a')/w(s') in Ag.

So, the formula wia/s) = wla)/em(s) makes sense and defines an involution on Ag.

1 its of

Lemma 3.1. The inclusion i: As. — As: ila/s) = a/s is an isomorphism of algebras, such
that i = i,

Proof. It is clear that i is a morphism of algebras which is injective.
It is also surjective because if a/s € Ay, then a/s = a.e(s)/s.(s) in Ag, and s.(s)e§*.

As a consequence of this lemma, from now on we can suppose § = §°.

Consider now an A-bimodule M, which is A" -symmetric (i.e. rm = mr, for
reA”,me M), provided with an involution my, compatible with .

More explicitly, @y is k-linear, wi =idy. and il abed,meM, then
wyla.m.b) = @(b)- ay(m) m(a). We denote by MY = {me M/wy(m) =m}.

As in the previous sections, the Hochschild complex €, (A, M) can be decomposed
into C, (A, M) and C, (A, M), whose homologies are, respectively, H, (4, M) and
H (A, M) [14].

H (A M). (resp. H, (4, M)) has a natural structure of symmetric A-bimodule (resp.
A*-bimodule).

If § is a multiplicatively closed subset of A4, suppose § =57, and define
Mg= A @ MR, As .

Remark. (M *)g = (Mg)" as A -bimodule.

Theorem 3.2. In the above conditions,
Hy (A, Mg) =[H(AM)])s (and analogously for H™)

Proof. First observe that the functor X — X7 from the category of symmetric A-
bimodules to the category of A" -bimodules is well-defined and exact.
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Also, let no:[Ho(A, M)]s — HolAs, Ms) be the natural isomorphism induced by
FM/[AM] — Mg/[As. Ms]: f7) = c1(1@m@1).

By a theorem of Grothendieck [9], as n, is an isomorphism and we also have
natural functors n,: [H,(4. M)]s — H,(4s, M) for n = 0, then [H (4, M )]s is isomor-
phic to H (A, Ms).

Also, ng commutes with the involution. So, [H, (A, M)]s = [(H.(A, M))" ]s. By the
previous remark, this last term is identical with ([H,(A. M)]5)", and by the result of
Brylinski, this equals [H, (A5, M5)]™ = H, (A5 M3).

Now, we apply Theorem 3.2 to the characterization of smoothness in terms of the
nullity of some Z;-equivariant Hochschild homology groups.
In [16], the author conjectures:

Let k be a field of characteristic zero and let A be a k-algebra of finite type. If
HH,(A) =0 for n sufficiently large, then A is a smooth k-algebra.

In [4, 1]. the authors prove the conjecture, under the less restrictive assumption that
there exists two Hochschild homology groups HH; and HH ;. which vanish.
Here, we give a similar result for involutive commutative algebras.

Theorem 3.3. Let A = Clxy, ..., x,]/I be a reduced commutative algebra of finite type.
We assume that A is the coordinate ring of an algebraic subset V containing the origin
and symmetric by the origin (so, the involution wix;)= —x; for all i, induces an
involution on A).

Then, if V is not smooth at the origin, there exists an integer p such that HH; (A) # 0
for all i < p, and HH + 4,(A) # 0 for all ne N.

Proof. We recall that an algebraic subset V of the affine space 4,,(C) is defined by the
data of a family of polynomials (P;);.;, P;eC[x. ... .x,] and

V ={ay, ....a,) eC"/Piay, ..., a,) =0, for all i}.

Il we denote by I(V) the ideal generated by the polynomials @ such that
Qlay, ... ,a,) =0, for all (ay, ... ,a,) €V, then I(V') is equal to the radical of the ideal
generated by the family (P;);;. Then A = C[xy, ..., x,]/I(V)is called the coordinate
ring of V. From the Nullstellensatz theorem, we have a one-to-one correspondence
between reduced commutative algebras of finite type and coordinate rings of algebraic
subsets.

Now consider an algebraic set V' containing the origin 0. Let ¢ be the central
symmetry of center O in A,,(C), we assume that V contains ¢(V). We denote by w the
algebra morphism on C[xy, ..., x,] defined by wix;) = —x; for all i. If g(V) is
asubset of ¥ we can find generators P, ..., P, of I(V) such that w(P;) = + P;. for all
je[l,....r]. In the following, 4 = C[x,,....x,]/I{V) will be endowed with the
image of this involution . Let M’ = (xy, ..., x,) and M = M'/I. From Theorem 3.2,
we have HH  (Ay) = HH [ (A) @ ,4+(A" )5+, with §* = {s e C[x;] — M/wl(s) = s}.
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So we work with the local ring Agy endowed with the induced involution. Since
w(x;) = — x; for all i, the ideal M has a minimal set of generators on which @ operates
as -1d. A classical argument [1], shows that we can write Ay, = Ay/J with A, a local
regular ring of maximal ideal M, J is contained in 9* and A, has an involution o that
operates as —Id on a minimal set of generators (f;. .... f,) of 9. Furthermore, we
have A,/ = C.

Tate's construction [17], allows us to say that there exists a minimal commutative
graded differential algebra (4, ® AV, @), V =@,| =1 V. and a map from (4, ® AV, 0)
onto Agy/J which induces an isomorphism in homology.

On the other hand, since 4 is involutive, we can build this model such that each V, is
endowed with an involution which is a morphism of commutative differential graded
algebras, extending the involution of A.

In [7,19], it is proved that the Hochschild homology of A,/ is isomorphic to the
homology of (2% & Q7%y,d) with od + dd = 0.

A similar argument to those of Section 2 shows that

HH{ (Ag) = H, (2% ® Q%v)*.9)

Then the proof is the same as in [17]; il Ay is not local regular, then J # 0, so we
have ¥, # 0, we can find an element y € V', such that m(y) = + y. Since w(f)) = —f;
for all i, we have wi(df;) = df;.

For neN, we put Zy.,=I{df;...df,)(d)*", then o(Zsi,)=Zauip 50O
z.xnpe(ﬂﬁ., ® Q:V}b‘
We conclude as in [1].
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