G-STRUCTURE ON THE COHOMOLOGY OF HOPF ALGEBRAS

MARCO A. FARINATI AND ANDREA L. SOLOTAR

(Communicated by Martin Lorenz)

Abstract. We prove that \(\text{Ext}^\bullet_{A}(k,k) \) is a Gerstenhaber algebra, where \(A \) is a Hopf algebra. In case \(A = D(H) \) is the Drinfeld double of a finite-dimensional Hopf algebra \(H \), our results imply the existence of a Gerstenhaber bracket on \(H^\bullet_{GS}(H,H) \). This fact was conjectured by R. Taillefer. The method consists of identifying \(H^\bullet_{GS}(H,H) = \text{Ext}^\bullet_{A}(k,k) \) as a Gerstenhaber subalgebra of \(H^\bullet(A,A) \) (the Hochschild cohomology of \(A \)).

Introduction

The motivation of this paper is to prove that \(H^\bullet_{GS}(H,H) \) has a structure of a G-algebra. The G-algebra structure is, roughly speaking, the existence of two products with compatibilities between them: one is associative graded commutative, and the other is a graded Lie bracket. We prove this result when \(H \) is a finite-dimensional Hopf algebra (see Theorem 2.1 and Corollary 2.5). \(H^\bullet_{GS} \) is the cohomology theory for Hopf algebras defined by Gerstenhaber and Schack in [4]. In order to obtain commutativity of the cup product we prove a general statement on Ext groups over Hopf algebras (without any finiteness assumption).

When \(H \) is finite dimensional, the category of Hopf bimodules is isomorphic to a module category, over an algebra \(X \) (also finite dimensional) defined by Cibils and Rosso (see [2]), and this category is also equivalent to the category of Yetter-Drinfeld modules, which is isomorphic to the category of modules over the Hopf algebra \(D(H) \) (the Drinfeld double of \(H \)). In [10], Taillefer has defined a natural cup product in \(H^\bullet_{GS}(H,H) = H^\bullet_{b}(H,H) \) (see [3] for the definition of \(H^\bullet_{b} \)). When \(H \) is finite dimensional, she proved that \(H^\bullet_{b}(H,H) \cong \text{Ext}^\bullet_{X}(H,H) \), and using this isomorphism she showed that it is (graded) commutative. In a later work [11] she extended the result of commutativity of the cup product to arbitrary-dimensional Hopf algebras, and she conjectured the existence (and a formula) of a Gerstenhaber bracket.

Our method for giving a Gerstenhaber bracket is the following: under the equivalence of categories \(\text{X-mod} \cong D(H)^\text{-mod} \), the object \(H \) corresponds to \(H^{\text{co}H} = k \). So \(\text{Ext}^\bullet_{X}(H,H) \cong \text{Ext}^\bullet_{D(H)}(k,k) \) (isomorphism of graded algebras); according to Ştefan [8] one knows that \(\text{Ext}^\bullet_{D(H)}(k,k) \cong H^\bullet(D(H),k) \). In Theorem 1.8 we prove

Received by the editors August 27, 2002 and, in revised form, March 19, 2003.
2000 Mathematics Subject Classification. Primary 16E40, 16W30.
Key words and phrases. Gerstenhaber algebras, Hopf algebras, Hochschild cohomology.
This research was partially supported by UBACYT X062 and Fundación Antorchas (proyecto 14022 - 47). Both authors are research members of CONICET (Argentina).

©2004 American Mathematical Society
that, if A is an arbitrary Hopf algebra, then $H^\bullet(A, k)$ is isomorphic to a subalgebra of $H^\bullet(A, A)$—in particular, it is graded commutative—and the morphisms are defined at the complex level. In Theorem 2.1 we prove that the image of $C^\bullet(A, k)$ in $C^\bullet(A, A)$ is stable under the brace operation (if M is an A-bimodule, $C^\bullet(A, M)$ denotes the standard Hochschild complex whose homology is $H^\bullet(A, M)$); in particular, the image of $H^\bullet(A, k)$ is closed under the Gerstenhaber bracket of $H^\bullet(A, A)$. So, the existence of the Gerstenhaber bracket on $H^\bullet(H; H)$ follows, at least in the finite-dimensional case, by taking $A = D(H)$. We did not know if this bracket coincides with the formula proposed in [11], but Taillefer, in a personal communication, told us that, using arguments as in [7], one can actually prove that the bracket given by us, in the finite-dimensional case, must agree with the bracket proposed by her. Nevertheless, the argument does not give a proof of existence in the infinite-dimensional case. So the problem, in that generality, remains open.

We also provide a proof that the algebra $\text{Ext}^\bullet_C(k, k)$ is graded commutative when C is a braided monoidal category satisfying certain exactness hypotheses (see Theorem 1.4). This gives an alternative proof of the commutativity of the cup product in the arbitrary-dimensional case by taking $C = H_\text{YD}$, the category of Yetter-Drinfeld modules.

In this paper A will denote a Hopf algebra over a field k.

1. Cup products

This section has two parts. First we prove a generalization of the fact that the cup product on group cohomology $H^\bullet(G, k)$ is graded commutative. The general abstract setting is that of a braided (abelian) category with enough injectives satisfying an exactness condition (see Definition 1.2 below). The other part will concern the relation between self extensions of k and Hochschild cohomology of A with coefficients in k.

Let us recall the definition of a braided category:

Definition 1.1. The data $(\mathcal{C}, \otimes, k, c)$ is called a braided category with unit element k if

1. \mathcal{C} is an abelian category.
2. \otimes is a bifunctor, bilinear, associative, and there are natural isomorphisms $k \otimes X \cong X \otimes k$ for all objects X in \mathcal{C}.
3. For all pair of objects X and Y, $c_{X,Y} : X \otimes Y \to Y \otimes X$ is a natural isomorphism. The isomorphisms $c_{X,k} : X \otimes k \cong k \otimes X$ agree with the isomorphism of the unit axiom, and for all triples X, Y, Z of objects in \mathcal{C}, the Yang-Baxter equation is satisfied:

$$\text{id}_Z \otimes c_{X,Y} \circ (c_{X,Z} \otimes \text{id}_Y) \circ (\text{id}_X \otimes c_{Y,Z}) = (c_{Y,Z} \otimes \text{id}_X) \circ (\text{id}_Y \otimes c_{X,Z}) \circ (c_{X,Y} \otimes \text{id}_Z).$$

A data $(\mathcal{C}, \otimes, k)$ satisfying axioms 1 and 2, but not necessarily axiom 3 is called a monoidal category.

We will use the notion of exact functor for a monoidal structure.

Definition 1.2. Let $(\mathcal{C}, \otimes, k)$ be an abelian monoidal category. We say that \otimes is exact if and only if the canonical morphism

$$H_\ast(X \ast d_X) \otimes H_\ast(Y \ast d_Y) \to H_\ast(X \otimes Y \ast d_X \otimes d_Y)$$

is an isomorphism for all pairs of complexes in \mathcal{C}.
Example 1.3. Let H be a Hopf algebra over a field k. Then $\mathcal{C} = \mathcal{H} \text{-mod}$ is a monoidal category with $\otimes = \otimes_k$, and this functor is clearly exact.

Theorem 1.4. Let $(\mathcal{C}, \otimes, k, c)$ be a braided category with enough injectives and exact tensor product. Then $\text{Ext}^{\bullet}_{\mathcal{C}}(k, k)$ is graded commutative.

Proof. We proceed as in the proof that $H^\bullet(G, k)$ is graded commutative (see for example [1], page 51, Vol. 1). The proof is based on two points: first a definition of a cup product using the bifunctor \otimes, and second a lemma relating this construction and the Yoneda product of extensions.

Let $0 \to M \to X_p \to \cdots X_1 \to N \to 0$ and $0 \to M' \to X'_q \to \cdots X'_1 \to N' \to 0$ be two extensions in \mathcal{C}. Then $N_* := (0 \to M \to X_p \to \cdots X_1 \to 0)$ and $N'_* := (0 \to M' \to X'_q \to \cdots X'_1 \to 0)$ are two complexes, quasi-isomorphic to N and N' respectively. By the K"{u}nneth formula, $N_* \otimes N'_*$ is a complex quasi-isomorphic to $N \otimes N'$. So "completing" this complex with $N \otimes N'$ (more precisely considering the mapping cone of the chain map $N_* \otimes N'_* \to N \otimes N'$) one has an extension in \mathcal{C}, beginning with $M \otimes M'$ and ending with $N \otimes N'$.

So, we have defined a cup product:

$$\text{Ext}^p_{\mathcal{C}}(N, M) \times \text{Ext}^q_{\mathcal{C}}(N', M') \to \text{Ext}^{p+q}_{\mathcal{C}}(N \otimes N', M \otimes M').$$

We will denote this product by \otimes and the Yoneda product by \triangleright. The lemma relating this product and the Yoneda one is the following:

Lemma 1.5. If $\eta \in \text{Ext}^p_{\mathcal{C}}(M, N)$ and $\xi \in \text{Ext}^q_{\mathcal{C}}(M', N')$, then

$$\eta \otimes \xi = (\eta \otimes \text{id}_{N'}) \triangleright (\text{id}_M \otimes \xi).$$

Proof of the Lemma. Interpreting the elements η and ξ as extensions, it is clear how to define a morphism of complexes $(\eta \otimes \text{id}_{N'}) \triangleright (\text{id}_M \otimes \xi) \otimes \eta \otimes \xi$, and by the K"{u}nneth formula, it is a quasi-isomorphism.

In the particular case that $M = M' = N = N' = k$, the lemma implies that $\eta \otimes \xi = \eta \triangleright \xi$ for all η and ξ in $\text{Ext}^p_{\mathcal{C}}(k, k)$. Now the theorem is a consequence of the isomorphism $(X_\ast \otimes Y_\ast, d_{X \otimes Y}) \cong (Y_\ast \otimes X_\ast, d_{Y \otimes X})$, valid for every pair of complexes in \mathcal{C}, defined by

$$(-1)^{pq}c_{X,Y} : X_p \otimes Y_q \to Y_q \otimes X_p.$$

Note that the differentials are morphisms in the category \mathcal{C}. So the map defined above commutes with the differentials because of the bifunctoriality of the braiding.

Example 1.6. Let H be a cocommutative Hopf algebra. Then $\mathcal{H} \text{-mod}$ is braided with c the usual flip. When $H = k[G]$ we recover that $H^\bullet(G, k)$ is graded commutative. The other typical example is $H = U(g)$, the enveloping algebra of a Lie algebra g. It is known that $\text{Ext}_{U(g)}^{\bullet}(k, k) = \Lambda^\bullet(g)$, is graded commutative.

Example 1.7. Let H be an arbitrary Hopf algebra with bijective antipode and $\mathcal{C} = \mathcal{H} \mathcal{YD}$ the category of Yetter-Drinfeld modules over H. It is well known (see [6], p. 214) that the map $M \otimes N \to N \otimes M$ defined by $m \otimes n \mapsto m_{-1} n \otimes m_0$ is a braiding on $\mathcal{H} \mathcal{YD}$. So $\text{Ext}_{\mathcal{H} \mathcal{YD}}^\bullet(k, k)$ is graded commutative.

Theorem 1.8. If A is a Hopf algebra, then $\text{Ext}^\bullet_{\mathcal{H} \mathcal{YD}}(k, k) \cong H^\bullet(A, k)$. Moreover, $H^\bullet(A, k)$ is isomorphic to a subalgebra of $H^\bullet(A, A)$.

Proof. After Stefan [8], since A is an A-Hopf Galois extension of k, $H^\bullet(A, M) \cong \text{Ext}^\bullet_A(k, M_{ad})$ for all A-bimodules M.

Here, M_{ad} denotes the left H-module with underlying vector space M, but with structure $h_{-ad}m := h_1 m S(h_2)$. The notation $(S$ for the antipode, and the Sweedler-type summation) is the standard one.

In particular, $H^\bullet(A, k) = \text{Ext}^\bullet_A(k, k)$. But one can give, for this particular case, an explicit morphism at the complex level. In order to do this, we will choose a specific resolution of k as a left A-module. Notice that, in particular, our argument will give an alternative proof of Stefan’s result for this case.

Let $C_n(A, b')$ be the standard resolution of A as an A-bimodule, namely $C_n(A, b') = A \otimes A^n \otimes A$ and $b'(a_0 \otimes \ldots \otimes a_{n+1}) = \sum_{i=0}^{n}(1)^i a_0 \otimes \ldots \otimes a_i a_{i+1} \otimes \ldots \otimes a_{n+1}$ ($a_i \in A$). This resolution splits on the right. So $(C_n(A) \otimes A k, b' \otimes id_k)$ is a resolution of $A \otimes_A k = k$ as a left A-module. Using this resolution, $\text{Ext}^\bullet_A(k, k)$ is the cohomology of the complex $(\text{Hom}_A(C_n(A) \otimes_A k), (b' \otimes id_k)^*) \cong (\text{Hom}(A^{op}, k), \partial)$. Under this isomorphism, the differential ∂ is given by

$$(\partial f)(a_1 \otimes \ldots \otimes a_n) = \epsilon(a_1) f(a_2 \otimes \ldots \otimes a_n) + \sum_{i=1}^{n-1}(1)^i f(a_1 \otimes \ldots \otimes a_i a_{i+1} \otimes \ldots \otimes a_n) + (-1)^n f(a_1 \otimes \ldots \otimes a_{n-1}) \epsilon(a_n),$$

which is precisely the formula of the differential of the standard Hochschild complex computing $H^\bullet(A, k)$.

One can easily check that the cup product on $\text{Ext}^\bullet_A(k, k)$ which, by Lemma 1.5 equals the Yoneda product, corresponds to the cup product on $H^\bullet(A, k)$. So this isomorphism is an algebra isomorphism.

Now we will give two multiplicative maps $H^\bullet(A, k) \to H^\bullet(A, A)$ and $H^\bullet(A, A) \to H^\bullet(A, k)$. Consider the counit $\epsilon : A \to k$. It is an algebra map, and so the induced map $\epsilon_* : H^\bullet(A, A) \to H^\bullet(A, k)$ is multiplicative. We will define a multiplicative section of this map.

Let $f : A^{op} \to k$ be a Hochschild cocycle, and define $\hat{f} : A^{op} \to A$ by the formula

$$\hat{f}(a^1 \otimes \ldots \otimes a^p) := a_1^1 \ldots a_1^p f(a_2^1 \otimes \ldots \otimes a_2^p)$$

where we have used the Sweedler-type notation with summation symbol omitted: $a_1^1 \otimes a_2^1 = \Delta(a^1)$, for $a^1 \in A$.

Let us check that \hat{f} is a Hochschild cocycle with values in A.

$$\partial(\hat{f})(a^0 \otimes \ldots \otimes a^p) = a^0 \hat{f}(a^1 \otimes \ldots \otimes a^p) + \sum_{i=0}^{p-1}(1)^{i+1} \hat{f}(a^0 \otimes \ldots \otimes a^i a^{i+1} \otimes \ldots \otimes a^p) + (-1)^{p+1} \hat{f}(a^0 \otimes \ldots \otimes a^{p-1}) a^p$$

$$= a^0 a_1^1 \ldots a^p_1 f(a_2^1 \otimes \ldots \otimes a_2^p) + (-1)^{p+1} a^0_1 \ldots a^{p-1}_1 f(a_2^0 \otimes \ldots \otimes a_2^{p-1}) a^p$$

$$+ \sum_{i=0}^{p-1}(1)^{i+1} a^0_1 \ldots a^i_1 a^{i+1}_1 \ldots a^p_1 f(a_2^0 \otimes \ldots \otimes a_2^i a_2^{i+1} \otimes \ldots \otimes a_2^p).$$
Using that \(f \) is a Hochschild cocycle with values in \(k \), we know that

\[
0 = \epsilon(a^0)f(a^1 \otimes \ldots \otimes a^p) + \sum_{i=0}^{p-1} (-1)^{i+1}f(a^0 \otimes \ldots \otimes a^i.a^{i+1} \otimes \ldots \otimes a^p) \\
+ (-1)^{p+1}f(a^0 \otimes \ldots \otimes a^{p-1})\epsilon(a^p).
\]

So, the summation term in \(\partial(\hat{f}) \) can be replaced using the equality

\[
\sum_{i=0}^{p-1} (-1)^{i+1}a^0_i a_1^{i+1} \ldots a_p^i . f(a_2^0 \otimes \ldots \otimes a_2^i.a_2^{i+1} \otimes \ldots \otimes a_2^p) \\
= -a^0_1 \ldots a^p_1 \left(\epsilon(a^0_2)f(a^1_2 \otimes \ldots \otimes a^p_2) + (-1)^{p+1}f(a^0_2 \otimes \ldots \otimes a^p_2)\epsilon(a^1_2) \right) \\
= - a^0_1 \ldots a^p_1 . f(a^1_2 \otimes \ldots \otimes a^p_2) + (-1)^{p+1}a^0_1 \ldots a^{p-1}_1 \epsilon(a^p_2)f(a^0_2 \otimes \ldots \otimes a^{p-1}_2)
\]

and this finishes the computation of \(\partial(\hat{f}) \).

Clearly \(\hat{f} = f \); so \(\epsilon_* \) is a split epimorphism. To check that \(f \mapsto \hat{f} \) is multiplicative is straightforward:

Let \(g : A^\otimes q \to k \) be a cocycle and \(\hat{g} : A^\otimes q \to A \) the cocycle with values in \(A \) corresponding to \(g \). We can check the following:

\[
\hat{f} \circ \hat{g}(a^1 \otimes \ldots \otimes a^{p+q}) = a^1_1 \ldots a^{p+q}_1 . (f \circ g)(a^1_2 \otimes \ldots \otimes a^{p+q}_2) \\
= a^1_1 \ldots a^{p+q}_1 . f(a^1_2 \otimes \ldots \otimes a^{p+q}_2)g(a^{p+1}_2 \otimes \ldots \otimes a^{p+q}_2) \\
= (\hat{f} \circ \hat{g})(a^1 \otimes \ldots \otimes a^{p+q}).
\]

\[\square\]

2. **Brace operations**

In this section we prove our main theorem, stating that the map \(H^\bullet(A,k) \to H^\bullet(A,A) \) is “compatible” with the brace operations, and as a consequence with the Gerstenhaber bracket. Note that the map \(H^\bullet(A,k) \to H^\bullet(A,A) \) is defined at the standard complex level. Let us define \(C^p(A,M) := \text{Hom}(A^\otimes p, M) \).

Theorem 2.1. The image of the map \(C^\bullet(A,k) \to C^\bullet(A,A) \) is stable under the brace operation. Moreover, if \(\hat{f} \) and \(\hat{g} \) are the images in \(C^\bullet(A,A) \) of two elements \(f \) and \(g \) belonging to \(C^\bullet(A,k) \), then \(\hat{f} \circ \hat{g} = \hat{f} \circ \hat{g} \).

Proof. Let us recall the definition of the brace operations (see [3]). If \(F : A^\otimes p \to M \) and \(G : A^\otimes q \to A \) and \(1 \leq i \leq p \), then \(F \circ_i G : A^\otimes p+q-1 \to M \) is defined by

\[
(F \circ_i G)(a^1 \otimes \ldots \otimes a^i \otimes b^1 \otimes \ldots \otimes b^q \otimes a^{i+1} \otimes \ldots \otimes a^p) \\
= F(a^1 \otimes \ldots \otimes a^i \otimes G(b^1 \otimes \ldots \otimes b^q) \otimes a^{i+1} \otimes \ldots \otimes a^p).
\]

Assume now that \(f : A^\otimes p \to k \), \(g : A^\otimes q \to k \) and \(F = \hat{f} \) and \(G = \hat{g} \), namely

\[
F(a^1 \otimes \ldots \otimes a^p) = a^1_1 \ldots a^p_i . f(a^2_1 \otimes \ldots \otimes a^p_2)
\]
and similarly for G and g. Then (denoting $(a \otimes b)$ by (a, b)),

\[
(F \circ_i G)(a, b) = F(a, G(b)) = F(a_1, \ldots, a_i, G(b_1, \ldots, b_{i+1})) = F(a_1, \ldots, a_i, b_1, \ldots, b_{i+1}, g(b_1, \ldots, b_{i+1}, a)) = a_1 \ldots a_i b_1 \ldots b_{i+1} a \cdot f(a_1, \ldots, a_i, b_1, \ldots, b_{i+1}, g(b_1, \ldots, b_{i+1}, a_{i+1}, \ldots, a_p))
\]

Recall that the brace operations define a “composition” operation $F \circ G = \sum_{i=1}^{p} (-1)^{i(i-1)} F \circ_i G$, where $F \in C^p(A, A)$ and $G \in C^i(A, A)$. The Gerstenhaber bracket is defined as the commutator of this composition. So we have the desired corollary:

Corollary 2.2. If A is a Hopf algebra, then $H^\bullet(A, k)$ is a Gerstenhaber subalgebra of $H^\bullet(A, k)$.

Example 2.3. Let A be a Hopf algebra. Then $\text{Ext}^1_A(k, k) \cong \text{Der}(A, k) = \text{Prim}(A^*)$, where $\text{Prim}(A^*) = \{x \in A^* \mid m^*(x) = x \otimes 1 + 1 \otimes x\}$. It is easy to check that the Lie bracket given in the above theorem coincides with the commutator of the convolution product, viewing $\text{Der}(A, k)$ as a subset of A^*.

Example 2.4. Let G be a connected affine algebraic group and $\mathfrak{g} := \ker(\epsilon)/\ker(\epsilon)^2$ its tangent Lie algebra. One has that $HH^\bullet(O(G), \mathcal{O}(G)) = \Lambda^\bullet(\mathcal{O}(G)) = \text{Der}(\mathcal{O}(G)) \cong O(G) \otimes \Lambda^\bullet \mathfrak{g}$, where the Gerstenhaber structure here is the Schouten-Nijenhuis bracket. Also $\text{Ext}^\bullet_{\mathcal{O}(G)}(k, k) = \Lambda^\bullet \mathfrak{g}$, and it is generated (as an algebra) in degree one. So the bracket is determined by its values on $\text{Ext}^1_{\mathcal{O}(G)}(k, k) = \mathfrak{g}$, which is the bracket of \mathfrak{g} as a Lie algebra. This G-algebra structure is also well known.

Consider H a finite-dimensional Hopf algebra and $X = X(H)$ the algebra defined by Cibils and Rosso (see [2]). We can prove, at least in the finite-dimensional case, the conjecture of [11] that $H_{GS}^\bullet(H, H)$ is a Gerstenhaber algebra:

Corollary 2.5. Let H be a finite-dimensional Hopf algebra. Then $H_{GS}^\bullet(H, H)$ is a Gerstenhaber algebra.

Proof. The isomorphism $H_{GS}^\bullet(H, H) \cong \text{Ext}^\bullet_X(H, H)$ was proved in [10].

Let A denote $D(H)$, the Drinfeld double of H. One knows that χ-mod $\cong A$-mod via $M \mapsto M^{coH}$. Then $\text{Ext}^\bullet_X(H, H) \cong \text{Ext}^\bullet_A(H^{coH}, H^{coH}) = \text{Ext}^\bullet_A(k, k)$, and this a Gerstenhaber subalgebra of $H^\bullet(A, A)$.

References

Departamento de Matemática Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab I. 1428, Buenos Aires, Argentina

E-mail address: mfarinat@dm.uba.ar

E-mail address: asolotar@dm.uba.ar