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1. Introduction

Let f ∈ S2(N) be a newform of weight two and level N . If f(z) =
∑∞
m=1 a(m) qm

where q = e2πiz , and D is a fundamental discriminant, we define the twisted L-

function

L(f,D, s) =

∞∑

m=1

a(m)

ms

(
D

m

)

We will assume that the twisted L-series are primitive (i.e. the corresponding

twisted modular forms are newforms). There is no loss of generality in making this

assumption: if this is not the case, then f would be a quadratic twist of a newform

of smaller level, which we can choose instead.

The question of efficiently computing the family of central values L(f,D, 1), for

fundamental discriminants D, has been considered by several authors (see [Gr],

[Bö-SP], [Pa-To1],[Pa-To2], [MRVT]). By Waldspurger’s formula [Wa] these values

are related to the Fourier coefficients of certain modular forms of weight 3/2.

Gross [Gr] gives a method to construct, for the case of prime level p and provided

that L(f, 1) 6= 0, a weight 3/2 modular form of level 4p, and gives an explicit version

of Waldspurger’s formula for the imaginary quadratic twists. In [Bö-SP] Böcherer

and Schulze-Pillot extend Gross’s method to the case of square free level, but their

method works only for a fraction of imaginary quadratic twists (determined by

quadratic residue conditions). Later in [Pa-To1] the case of level p2 (p a prime)

is considered, and this is used in [Pa-To2], provided p ≡ 3 (mod 4), to compute

central values for real quadratic twists.

2000 Mathematics Subject Classification. Primary: 11F37; Secondary: 11F67.

Key words and phrases. Shimura Correspondence, L-series, Quadratic Twists.

The first author was supported by a CONICET grant.

1



2 ARIEL PACETTI AND GONZALO TORNARÍA

In [MRVT] the non-vanishing condition is removed, and in the case of prime

level two modular forms of weight 3/2 (one giving the imaginary quadratic twists

and another one giving the real quadratic twists) are constructed.

The aim of this paper is to show how some of these ideas can be combined to

handle the case of composite levels. In the case of odd squarefree level N , for

instance, this method constructs 2t modular forms, where t is the number of prime

factors of N , whose coefficients give the central values of all the quadratic twists.

We will focus on examples for levels N = 27, N = 15, and N = 75, which exhibit

our methods for the non-square case. For the square case see [Pa-To1] and [Pa-To2].

2. The curve 27A

Let f be the modular form of level 27, corresponding to the elliptic curve X0(27),

of minimal equation (see [Cr])

y2 + y = x3 − 7 .

The eigenvalue of f for the Atkin-Lehner involution W27 is −1, and the sign of the

functional equation for L(f, s) is +1.

Let B = (−1,−3) be the quaternion algebra ramified at 3 and ∞, and consider

the order R =
〈
1, 3i, 1+3j

2 , i+k2

〉
, a Pizer order of reduced discriminant 27 (see [Pi]

for the basic definitions of quaternion algebras, Brandt matrices and special orders).

The class number of left R-ideals for such order is 2, and representatives for left

R-ideals are {R, I} where I =
〈
4, 12i, 7+6i+3j

2 , 6+13i+k
2

〉
. The eigenvector for the

Brandt matrices which corresponds to f is (1,−1), with height 3.

The ternary quadratic forms associated to their right orders are

Q1(x, y, z) = 4x2 + 27y2 + 28z2 − 4xz ,

and

Q2(x, y, z) = 7x2 + 16y2 + 31z2 + 16yz + 2xz + 4xy ,

respectively.

Note that, since the twist of f by the quadratic character of conductor 3 is f

itself, we have

L(f,−3D, s) = L(f,D, s) ,
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D c(D) L(f,D, 1) D c(D) L(f,D, 1) D c(D) L(f,D, 1)

-4 1 1.529954 -67 -1 0.373827 -139 3 2.335842

-7 -1 1.156537 -79 1 0.344267 -148 1 0.251523

-19 -1 0.701991 -88 -2 1.304749 -151 -1 0.249012

-31 0 0.000000 -91 1 0.320766 -163 -1 0.239670

-40 -2 1.935256 -103 1 0.301502 -184 2 0.902318

-43 2 1.866526 -115 -2 1.141352 -187 -2 0.895051

-52 1 0.424333 -127 -2 1.086092 -199 -3 1.952200

-55 2 1.650392 -136 2 1.049540

Table 1. Coefficients of g and imaginary quadratic twists of 27A

for −3D a fundamental discriminant. We will thus assume that 3 - D.

2.1. Imaginary quadratic twists. Let D < 0 be a fundamental discriminant. If
(
D
3

)
= +1, the sign of the functional equation for L(f,D, s) is −1, so its central

value vanishes trivially. Hence we can restrict to the case where
(
D
3

)
= −1. In this

case we can follow Gross’s method, using classical theta series

Θ(Qi) :=
1

2

∑

(x,y,z)∈Z3

qQi(x,y,z) ;

we obtain a weight 3/2 modular form of level 4 · 27, namely

g = Θ(Q1)−Θ(Q2) = q4 − q7 − q19 + q28 − 2q40 + 2q43 + · · · .

Table 1 shows the values of the Fourier coefficients c(D) of g and of L(f,D, 1),

where −200 < D < 0 is a fundamental discriminant such that
(
D
3

)
= −1. The

Gross type formula

L(f,D, 1) = k
|c(D)|2√
|D|

, D < 0 ,

is satisfied, where c(D) is the |D|-th Fourier coefficient of g, and

k =
1

3
· (f, f)

L(f, 1)
= 2L(f,−4, 1) ≈ 3.059908074114385749826388345 .

2.2. Real quadratic twists. Let D > 0 be a fundamental discriminant. In this

case, if
(
D
3

)
= −1 the sign of the functional equation for L(f,D, s) will be −1,

and its central value will vanish trivially. For
(
D
3

)
= +1, we will employ a method

similar to the one used in [MRVT] for prime levels. We need to choose an auxiliary
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prime l ≡ 3 (mod 4) such that
(−l

3

)
= −1 and such that L(f,−l, 1) 6= 0, for

example l = 7. Following [MRVT] we define a generalized theta series

Θ−7(Qi) :=
1

2

∑

(x,y,z)∈Z3

ω
(i)
7 (x, y, z) ω

(i)
3 (x, y, z) qQi(x,y,z)/7 ,

where ω7 and ω3 are the two kinds of weight function introduced in §2.2 and §2.3 of

[MRVT], respectively. The superscript in ω
(i)
3 and ω

(i)
7 indicates that we are writing

the weight functions in the basis corresponding to the quadratic form Qi.

The weight function of the first kind can be computed as

ω
(1)
7 (x, y, z) =





0 if 7 - Q1(x, y, z),

(
x
7

)
if 7 - x,

(
5z
7

)
otherwise;

and

ω
(2)
7 (x, y, z) =





0 if 7 - Q2(x, y, z),

(
3y+5z

7

)
if 7 - 3y + 5z,

(
6x
7

)
otherwise.

The weight function of the second kind can be computed as

ω
(1)
3 (x, y, z) =

(
x+ z

3

)
, and ω

(2)
3 (x, y, z) =

(
2x+ y + 2z

3

)
.

The generalized theta series will be

Θ−7(Q1) = −2q4 + 2q13 + 4q16 − 4q25 + 2q28 − 2q37 − 4q40 + · · · ,

and

Θ−7(Q2) = q − q4 − q13 + 2q16 − 3q25 − q28 + q37 + 2q40 + · · · .

Note that Θ−7(Q1) + 2Θ−7(Q2) = 2q − 4q4 + 8q16 − 10q25 + · · · , corresponding to

the Eisenstein eigenvector for the Brandt matrices, has nonzero Fourier coefficients

only at square indices. Since Θ−7(Q1)+2Θ−7(Q2) ≡ Θ−7(Q1)−Θ−7(Q2) (mod 3),

this explains the fact that the coefficients in Table 2, with the exception of c−7(1),

are all divisible by 3.

Thus we obtain a modular form of weight 3/2, namely

g−7 = Θ−7(Q1)−Θ−7(Q2) = q+ q4− 3q13− 2q16 + q25− 3q28 + 3q37 + 6q40 + · · · ,
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D c−7(D) L(f,D, 1) D c−7(D) L(f,D, 1) D c−7(D) L(f,D, 1)

1 1 0.588880 76 -3 0.607942 136 6 1.817856

13 -3 1.469932 85 0 0.000000 145 6 1.760536

28 -3 1.001590 88 -6 2.259892 157 6 1.691917

37 3 0.871301 97 -3 0.538125 172 0 0.000000

40 6 3.351961 109 0 0.000000 181 -9 3.545457

61 3 0.678585 124 6 1.903786 184 -6 1.562860

73 -3 0.620308 133 -3 0.459561 193 3 0.381496

Table 2. Coefficients of g−7 and real quadratic twists of 27A

and the formula is now

L(f,D, 1) = k−7
|c−7(D)|2√
|D|

, D > 0 ,

where c−7(D) is the D-th Fourier coefficient of g−7, and

k−7 =
1

3
· (f, f)

L(f,−7, 1)
√

7
= L(f, 1) ≈ 0.5888795834284833191045631668 .

Table 2 shows the values of the Fourier coefficients c−7(D) of g−7 and of L(f,D, 1),

where 0 < D < 200 is a fundamental discriminant such that
(
D
3

)
= 1.

3. The curve 15A

Let f be the modular form of level 15, corresponding to the elliptic curve X0(15),

of minimal equation

y2 + xy + y = x3 + x2 − 10x− 10 .

The eigenvalues of f for the Atkin-Lehner involutions W3 and W5 are +1 and −1,

and the sign of the functional equation for L(f, s) is +1.

The method of Gross, as extended by Böcherer and Schulze-Pillot to the case of

square-free levels, requires that the ramification of the quaternion algebra agrees

with the Atkin-Lehner eigenvalues. In this case, it would be necessary to work

with the quaternion algebra ramified at 5 and ∞. To exhibit the generality of our

method, we will work with the quaternion algebra ramified at 3 and ∞ instead.

Let B = (−1,−3) be such a quaternion algebra; an Eichler order of level 15

(index 5 in a maximal order) is given by R =
〈

1, i, 1+5j
2 , 1+i+3j+k

2

〉
. The number
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of clases of left R-ideals is 2, and a set of representatives of the classes is given

by {R, I} where I =
〈

2, 2i, 3+2i+5j
2 , 3+i+3j+k

2

〉
. The eigenvector for the Brandt

matrices corresponding to f is (1,−1), with height 4, and the ternary quadratic

forms associated to R and I are

Q1(x, y, z) = Q2(x, y, z) = 4x2 + 15y2 + 16z2 − 4xz .

3.1. Imaginary quadratic twists. Let D < 0 be a fundamental discriminant.

We say that D is of type (s1, s2) if
(
D
3

)
= s1 and

(
D
5

)
= s2. We need the sign of

the functional equation for L(f,D, s) to be +1, so that its central value does not

vanish trivially. For this to hold we need D to be of type (−,+), (+,−), (+, 0),

(0,−), or (0, 0) (see [At-Le]).

Note that the linear combination of classical theta series Θ(Q1)−Θ(Q2) is triv-

ially zero, since Q1 = Q2; this reflects the fact that the ramification does not match

the Atkin-Lehner eigenvalues. Instead we set

Θ1(Qi) :=
1

4

∑

(x,y,z)∈Z3

ω
(i)
3 (x, y, z) ω

(i)
5 (x, y, z) qQi(x,y,z) ,

where ω3 and ω5 are weight functions of the second kind as in [MRVT, §2.3]. We

have Θ1(Q1) = −Θ1(Q2), and hence we obtain a modular form of weight 3/2 and

level 4 · 152, namely

g1 = 2 Θ1(Q1) = q4 + q16 + 2q19 + 2q31 + q64 + · · · .

The corresponding formula is

L(f,D, 1) = k1
|c1(D)|2√
|D|

, D < 0 of type (−,+),

where c1(D) is the |D|-th Fourier coefficient of g1, and

k1 =
1

4
· (f, f)

L(f, 1)
= 2L(f,−4, 1) ≈ 3.192484444263567020297938143 ,

c.f. Table 3 (top).

To obtain the other 4 types of negative D, we need to choose an auxiliary prime

l ≡ 1 (mod 4) such that
(
l
3

)
=
(
l
5

)
= −1, and such that L(f, l, 1) 6= 0, e.g. l = 17.

We then define the generalized theta series

Θ17(Qi) :=
1

4

∑

(x,y,z)∈Z3

ω
(i)
17 (x, y, z) qQi(x,y,z)/17 ,
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D c1(D) L(f,D, 1) D c1(D) L(f,D, 1) D c1(D) L(f,D, 1)

-4 1 1.596242 -91 -4 5.354613 -184 -4 3.765649

-19 2 2.929625 -136 -4 4.380053 -199 -2 0.905237

-31 2 2.293549 -139 -2 1.083132

-79 -2 1.436730 -151 2 1.039203

D c17(D) L(f,D, 1) D c17(D) L(f,D, 1) D c17(D) L(f,D, 1)

-3 2 0.921591 -83 4 0.350421 -152 8 1.035779

-8 -4 1.128714 -87 4 0.684541 -155 8 2.051412

-15 -2 0.824296 -95 0 0.000000 -167 4 0.247042

-20 4 1.427722 -107 4 0.308629 -168 8 1.970444

-23 4 0.665679 -120 -4 1.165730 -183 0 0.000000

-35 -4 1.079257 -123 -4 0.575713 -195 -4 0.914474

-47 -4 0.465672 -132 -8 2.222961

-68 0 0.000000 -143 -8 1.067876

Table 3. Coefficients of g1 and g17, and imaginary twists of 15A

where ω17 is the weight function of the first kind defined in [MRVT, §2.2]. Now

g17 = 2 Θ17(Q1) = 2q3 − 4q8 − 2q15 + 4q20 + 4q23 + · · ·

is a weight 3/2 modular form of level 4 · 15. As expected by the multiplicity one

theorem of Kohnen [Ko], this form turns out to be the same as the one constructed

by Böcherer and Schulze-Pillot. The formula in this case is

L(f,D, 1) = ? k17
|c17(D)|2√
|D|

, D < 0 of type (+,−), (+, 0), (0,−), or (0, 0) ,

and ? = 1, 2, 2, or 4 respectively; where c17(D) is the |D|-th Fourier coefficient of

g17, and

k17 =
1

4
· (f, f)

L(f, 17, 1)
√

17
≈ 0.1995302777664729387686211340 ,

c.f. Table 3 (bottom).

3.2. Real quadratic twists. Let D > 0 be a fundamental discriminant. In order

for the sign of the functional equation of L(f,D, s) to be +1, we need D to be of

type (+,+), (0,+), (−,−), or (−, 0).
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D c−19(D) L(f,D, 1) D c−19(D) L(f,D, 1) D c−19(D) L(f,D, 1)

1 2 0.350151 76 -16 2.570563 141 -8 0.943616

21 -8 2.445093 109 16 2.146455 156 16 3.588416

24 8 2.287175 124 16 2.012446 181 0 0.000000

61 16 2.869261 129 -8 0.986530 184 -16 1.652061

69 -8 1.348902 136 0 0.000000

D c−23(D) L(f,D, 1) D c−23(D) L(f,D, 1) D c−23(D) L(f,D, 1)

5 2 1.252737 77 -8 2.553816 152 0 0.000000

8 -4 1.980752 92 8 2.336367 173 -12 3.833492

17 4 1.358785 113 -4 0.527031 185 4 0.823795

53 4 0.769550 137 -4 0.478646 188 -8 1.634392

65 -4 1.389787 140 8 3.787922 197 12 3.592398

Table 4. Coefficients of g−19 and g−23, and real twists of 15A

For the first two types we need an auxiliary prime l ≡ 3 (mod 4) such that
(−l

3

)
= −1 and

(−l
5

)
= +1, and such that L(f,−l, 1) 6= 0, e.g. l = 19. Again

Θ−19(Qi) :=
1

4

∑

(x,y,z)∈Z3

ω
(i)
19 (x, y, z) ω

(i)
5 (x, y, z) qQi(x,y,z)/19 ,

with ω19 of the first kind and ω5 of the second kind. The modular form

g−19 = 2 Θ−19(Q1) = 2q − 4q4 + 2q9 − 8q21 + 8q24 + · · ·

has level 4 · 15 · 5, and the formula is

L(f,D, 1) = ? k−19
|c−19(D)|2√

|D|
, D > 0 of type (+,+) or (0,+) ,

? = 1 or 2 respectively; c−19(D) is the D-th Fourier coefficient of g−19, and

k−19 =
1

4
· (f, f)

L(f,−19, 1)
√

19
=

1

4
L(f, 1) ≈ 0.08753769014578762644876130241 .

Table 4 (top) shows the values of the coefficients c−19(D) and the central values

L(f,D, 1) for 0 < D < 200 a fundamental discriminant of type (+,+) or (0,+).

For the remaining two types we need an auxiliary prime l ≡ 3 (mod 4) such that
(−l

3

)
= +1 and

(−l
5

)
= −1, and such that L(f,−l, 1) 6= 0, e.g. l = 23. As before
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we define

Θ−23(Qi) :=
1

4

∑

(x,y,z)∈Z3

ω
(i)
23 (x, y, z) ω

(i)
3 (x, y, z) qQi(x,y,z)/23 ,

with ω23 of the first kind and ω3 of the second kind. The modular form

g−23 = 2 Θ−23(Q1) = 2q5 − 4q8 + 4q17 − 4q32 + 4q53 + · · ·

has level 4 · 15 · 3, and the formula is

L(f,D, 1) = ? k−23
|c−23(D)|2√

|D|
, D > 0 of type (−,−) or (−, 0) ,

? = 1 or 2 respectively; c−23(D) is the D-th Fourier coefficient of g−23 and

k−23 =
1

4
· (f, f)

L(f,−23, 1)
√

23
≈ 0.3501507605831505057950452092 .

Table 4 (bottom) shows the values of the coefficients c−19(D) and the central values

L(f,D, 1) for 0 < D < 200 a fundamental discriminant of type (−,−) or (−, 0).

4. The curve 75A

Let f be the modular form of level 75 corresponding to the elliptic curve of

minimal equation

y2 + y = x3 − x2 − 8x− 7 .

The eigenvalue of f for the Atkin-Lehner involution W3 is +1, for W25 is −1, and

the sign of the functional equation for L(f, s) is +1.

Let B = (−1,−3) be the quaternion algebra ramified at 3 and ∞, and consider

the order R =
〈
1, i, 1+5j

2 , i+5k
2

〉
, an Eichler order of level 75 (index 25 in a maximal

order). The class number of left R-ideals is 6, and the eigenvector for the Brandt

matrices which corresponds to f is (1,−1, 1,−1, 0, 0), with height 6.

The ternary quadratic forms associated to the right orders of the choosen ideal

class representatives are

Q1(x, y, z) = Q2(x, y, z) = 4x2 + 75y2 + 76z2 − 4xz ,

Q3(x, y, z) = Q4(x, y, z) = 16x2 + 19y2 + 79z2 + 4xy + 16xz + 2yz ,

and

Q5(x, y, z) = Q6(x, y, z) = 24x2 + 31y2 + 39z2 + 24xy + 12xz + 6yz ,
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respectively.

We will assume that 5 - D. Indeed, the twist of f by the quadratic character of

conductor 5 is another modular form f ′ of level 75, thus we have

L(f, 5D, 1) = L(f ′, D, 1),

for 5D a fundamental discriminant. By applying the same procedure to the modular

form f ′ we can compute the central values for these twists. So, we actually need 8

different modular forms of weight 3/2 to compute all the twisted central values.

4.1. Imaginary quadratic twists. Let D < 0 be a fundamental discriminant. If

the sign of the functional equation for L(f,D, s) is +1, the type of D has to be

either (−,+) or (−,−).

For the first case we look at the generalized theta series

Θ1(Qi) :=
1

4

∑

(x,y,z)∈Z3

ω
(i)
3 (x, y, z) ω

(i)
5 (x, y, z) qQi(x,y,z) ;

we obtain the modular form

g1 = 2Θ1(Q1)− 2Θ1(Q3) = q4 − 2q16 − q19 − q31 − 2q64 + 3q76 + 4q79 − q91 + · · · .

The formula

L(f,D, 1) = k1
|c1(D)|2√
|D|

, D < 0 of type (−,+) ,

is satisfied (c.f. Table 5, top), where c1(D) is the |D|-th Fourier coefficient of g1

and

k1 =
1

6
· (f, f)

L(f, 1)
= 2L(f,−4, 1) ≈ 4.669532748718719327951206761 .

In the second case we need to choose an auxiliary prime l ≡ 1 (mod 4) such that
(
l
3

)
= +1,

(
l
5

)
= −1 and L(f, l, 1) 6= 0, for example l = 13, and define

Θ13(Qi) :=
1

4

∑

(x,y,z)∈Z3

ω
(i)
13 (x, y, z) ω

(i)
3 (x, y, z) ω

(i)
5 (x, y, z) qQi(x,y,z)/13 .

We obtain the modular form

g13 = 2Θ13(Q1)− 2Θ13(Q3) = 3q7 + 3q28 + 3q43 + 3q52 − 3q67 − 6q88 + · · · ,

and the formula

L(f,D, 1) = k13
|c13(D)|2√
|D|

, D < 0 of type (+,+) ,
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D c1(D) L(f,D, 1) D c1(D) L(f,D, 1) D c1(D) L(f,D, 1)

-4 1 2.334766 -91 -1 0.489500 -184 2 1.376970

-19 -1 1.071264 -136 2 1.601637 -199 -5 8.275360

-31 -1 0.838673 -139 -2 1.584258

-79 4 8.405816 -151 5 9.500030

D c13(D) L(f,D, 1) D c13(D) L(f,D, 1) D c13(D) L(f,D, 1)

-7 3 5.294752 -88 -6 5.973286 -163 3 1.097238

-43 3 2.136291 -103 -6 5.521233 -187 0 0.000000

-52 3 1.942643 -127 -6 4.972248

-67 -3 1.711423 -148 0 0.000000

Table 5. Coefficients of g1 and g13, and imaginary twists of 75A

is satisfied (c.f. Table 5, bottom), where c13(D) is the |D|-th Fourier coefficient of

g13 and

k13 =
1

6
· (f, f)

L(f, 13, 1)
√

13
≈ 1.556510916239573109317068920 .

4.2. Real quadratic twists. Let D > 0 be a fundamental discriminant. The only

possibilities so that the sign of the functional equation for L(f,D, s) is +1 are the

discriminants D of types (+,+), (0,+), (+,−), and (0,−).

For the first two cases we can use the generalized theta series

Θ−19(Qi) :=
1

2

∑

(x,y,z)∈Z3

ω
(i)
19 (x, y, z) ω

(i)
5 (x, y, z) qQi(x,y,z)/19 .

Thus we obtain a modular form of weight 3/2, namely

g−19 = q + q4 + q9 − q21 − 2q24 − q36 − 4q49 − q61 + · · · ,

and the formula is

L(f,D, 1) = ? k−19
|c−19(D)|2√

|D|
, D > 0 of type (+,+) or (0,+) ,

? = 1 or 2 respectively, c−19(D) the D-th Fourier coefficient of g−19, and

k−19 =
1

6
· (f, f)

L(f,−19, 1)
√

19
= L(f, 1) ≈ 1.402539940216221119844494086 ,

c.f. Table 6 (top).
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D c−19(D) L(f,D, 1) D c−19(D) L(f,D, 1) D c−19(D) L(f,D, 1)

1 1 1.402540 76 1 0.160882 141 2 0.944921

21 -1 0.612119 109 -1 0.134339 156 -1 0.224586

24 -2 2.290338 124 5 3.148795 181 3 0.938250

61 -1 0.179577 129 5 6.174338 184 -2 0.413586

69 2 1.350768 136 -6 4.329605

12 3 2.429270 73 6 1.969859 168 6 2.596999

13 3 1.166984 88 -6 1.794135 172 3 0.320828

28 -3 0.795165 93 -3 0.872620 177 -6 2.530113

33 -6 5.859621 97 9 3.844972 193 9 2.725840

37 0 0.000000 133 -3 0.364847

57 -3 1.114626 157 3 0.335805

Table 6. Coefficients of g−19 and g−7, and real twists of 75A

In the other two cases we can use the generalized theta series

Θ−7(Qi) :=
1

2

∑

(x,y,z)∈Z3

ω
(i)
7 (x, y, z) ω

(i)
5 (x, y, z) qQi(x,y,z)/7 .

We obtain a modular form of weight 3/2

g−7 = 3q12 + 3q13 − 3q28 − 6q33 + 6q48 − 9q52 − 3q57 + 6q73 + · · · ,

satisfying the formula

L(f,D, 1) = ? k−7
|c−7(D)|2√
|D|

, D > 0 of type (+,−) or (0,−) ,

? = 1 or 2 respectively, c−7(D) the D-th Fourier coefficient of g−7, and

k−7 =
1

6
· (f, f)

L(f,−7, 1)
√

7
≈ 0.4675133134054070399481646950 ,

c.f. Table 6 (bottom).

5. Computation

Using the methods of the previous section we computed the coefficients up to

108 for all the theta series of weight 3/2 corresponding to elliptic curves 27A and

15A. The computation of the theta series for the elliptic curve 75A are currently

underway, and will be published online at [CNT]. All the computations were done
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on a cluster of 2.2GHz AMD Opteron processors funded by a NSF SCREMS grant

and run by the Department of Mathematics of the University of Texas at Austin1.

The computation for 27A is quite fast. Indeed, the form g1 is a combination of

classical theta series, and was computed in about 4 cpu-hours using the standard

qfrep function of PARI/GP [GP]. The form g7, on the other hand, requires us-

ing weight functions, and computing it took about 40 cpu-hours using a custom

qfrepmod function written in C for this purpose, together with a collection of GP

scripts to compute weight functions. The strategy is to use the fast qfrepmod

function to compute theta series with congruences where the weight functions are

constant, and combine them together in a GP script.

The computation for 15A is much longer. Indeed, the higher conductor of the

weight functions requires too many congruence theta series except in the case l = 1.

We actually divide the computation of the coefficients of the gi by the congruence

class of its index modulo 60. In particular, we avoid the need to reserve mem-

ory for coefficients that are trivially 0 (namely, only half the indices are actual

discriminants, and from those half correspond to quadratic twists with sign − in

the functional equation). Moreover, each computation requires only a fraction of

the space to keep all the coefficients in main memory while counting vectors. It

also lends itself to a trivial way to parallelize the computation in 30 independent

processes.

The computation used 30 cores in the above mentioned cluster, with a wall time

of 26.5 days (this was the time for the two longest running processes, corresponding

to discriminants congruent to 2 and 8 modulo 60). The accumulated running times

were as follows:

g1 0.30 days

g17 110.19 days

g−19 106.88 days

g−23 131.80 days

TOTAL 349.17 days

We believe the running times for all but g1 are affected by the number of congru-

ences, the combination of which is done by a GP script thus, we expect the times

1http://www.ma.utexas.edu/cluster/
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for the last three computations can be improved quite a lot with a careful rewriting

in C of this code.

Note also that the modular form we are calling here g17 can also be computed

as a difference of two classical theta series by working with the quaternion algebra

ramified at 3 and ∞, and this will be much quicker in all cases. Thus, the totality

of imaginary quadratic twists could be quickly computed.

6. Random Matrix Theory

The purpose of this section is to check some of the various conjectures of [CKRS]

and [CKRS2]. We start by stating the conjectures; we checked each of them nu-

merically with the computation discussed in the previous section.

An important comment should be made: in [CKRS] and [CKRS2], the conjec-

tures are stated and checked, in case of non-prime level, only for a fraction of all

quadratic twists, namely those that can be computed without weight functions us-

ing the methods of [Gr] and [Bö-SP]. In the case of the real quadratic twists they

have been checked using the methods in [Pa-To1], [Pa-To2]. In both cases this

has been based on a massive computation of classical theta series that was done

in [CKRS2], using ternary quadratic forms data that was computed by the second

author with aid from the first author [To], first published in december 2003, and in

its final form since january 2004.

In this paper we have shown how to compute, in a few examples, enough weight

3/2 modular forms so as to be able to compute the central values for all the qua-

dratic twists. Hence we state the conjectures for all the quadratic twists for which

the sign of the functional equation is +, and give numerical evidence for the con-

jectures for all such twists. The task remains of doing a massive computation like

the one done in [To] and [CKRS2] to check these conjectures for a very large and

not partial set of quadratic twists for a large number of different elliptic curves.

In order to state the conjectures, fix an elliptic curve E defined over Q. We let

S(X) be the set of fundamental discriminants, of absolute value up to X , such that

the corresponding quadratic twist of E has positive sign in the functional equation.
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We will refine the conjectures of [CKRS] sorting the discriminats by sign and

congruence classes: for M a positive integer and a an integer, we let

S(X ; a,M) := {d ∈ S(X) : d ≡ a (mod M), ad > 0}.

Among those, we consider the subset Sp(X ; a,M) of prime discriminants, i.e.

Sp(X ; a,M) = {d ∈ S(X ; a,M) : d is prime}.

We are interested in the subsets

S0(X ; a,M) = {d ∈ S(X ; a,M) : L(E, d, 1) = 0},

and

S0
p(X ; a,M) = {d ∈ Sp(X ; a,M) : L(E, d, 1) = 0},

of discriminants with twisted central value vanishing (for non-trivial reasons, and

to order at least 2, since the sign of the functional equation is +).

Conjecture 1. There are constants cpE(a,M) ≥ 0 such that

#S0
p(X ; a,M)

#Sp(X ; a,M)
∼ cpE(a,M) ·X−1/4 (logX)3/8

We remark that the constant cpE(a,M) could be 0, as noted by [De]. In contrast,

we believe that the constants cE(a,M) in the next conjecture should always be

positive.

Conjecture 2. There are constants cE(a,M) ≥ 0 such that

#S0(X ; a,M)

#S(X ; a,M)
∼ cE(a,M) ·X−1/4 (logX)11/8

In table 7 we give the experimental numerics for

cE(X ; a,M) :=
#S0(X ; a,M)

#S(X ; a,M)
·X1/4 (logX)−11/8

for the elliptic curve 27A, with M = 12 and X = 108. Only the values of a that

lead to discriminants in S(X) are displayed. In table 8 we show the corresponding

numerics for prime discriminants, where

cpE(X ; a,M) :=
#S0(X ; a,M)

#S(X ; a,M)
·X1/4 (logX)−3/8.
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a #S0(X ; a, 12) #S(X ; a, 12) cE(X ; a, 12)

1 295819 7599045 0.07087151

4 145496 3799561 0.06971437

-7 226182 7599088 0.05418776

-4 110886 3799541 0.05313127

Table 7. Numerics for 27A, all discriminants.

a #S0
p(X ; a, 12) #Sp(X ; a, 12) cpE(X ; a, 12)

1 23700 1440021 0.55193748

-7 18233 1440496 0.42447923

Table 8. Numerics for 27A, prime discriminants.

a #S0(X ; a, 60) #S(X ; a, 60) cE(X ; a, 60)

1 103871 1583103 0.11945101

49 103201 1583109 0.11868006

4 56689 791596 0.13037667

16 57272 791596 0.13171749

9 53190 1055442 0.09174878

21 53325 1055430 0.09198269

24 45765 527715 0.15788421

36 46085 527707 0.15899059

17 62882 1583163 0.07231117

53 63276 1583149 0.07276489

8 56117 791553 0.12906816

32 55560 791565 0.12778513

5 70561 1266445 0.10143389

20 46229 633300 0.13289532

Table 9. Numerics for real quadratic twists of 15A, with X = 108.

In tables 9 and 10 we investigate the dependence on a of the constants cE(a,M),

for the elliptic curve 15A and M = 60. An interesting phenomenon can be observed
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a #S0(X ; a, 60) #S(X ; a, 60) cE(X ; a, 60)

-19 75626 1583138 0.08696751

-31 75333 1583128 0.08663111

-4 62536 791570 0.14382867

-16 62999 791558 0.14489573

-23 67381 1583166 0.07748465

-47 67794 1583158 0.07795997

-8 61142 791545 0.14062700

-32 60724 791565 0.13966207

-3 64191 1055419 0.11072710

-27 64178 1055408 0.11070583

-12 41844 527727 0.14435391

-48 41589 527728 0.14347394

-35 72803 1266486 0.10465345

-20 53586 633266 0.15405289

-15 50383 844328 0.10863694

-60 42661 422192 0.18396098

Table 10. Numerics for imaginary quadratic twists of 15A, with

X = 108.

in these tables: the constants cE(a,M) seem to only depend on the square class of

a mod M .

Conjecture 3. Let a and b be integers in the same square class modulo M , i.e.

ab > 0 and there is an integer x relatively prime to M such that a ≡ bx2 (mod M).

Then cE(a,M) = cE(b,M).

The case of conjectures 1 and 2 stated in [CKRS] correspond to the case M = 1,

with a = ±1, and moreover restricted to partial subsets of discriminants. In figures

1 and 2 we show the numerics for the elliptic curve 27A in the case of prime

discriminants (Conjecture 1), and in figures 3 and 4 we show the numerics in the

case of all discriminants (Conjecture 2).
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0.5534

0.42247
1e+05 1e+08

Figure 1. Value of cpE(X ; +1, 1) for 27A.

0.42453

0.35122
1e+05 1e+08

Figure 2. Value of cpE(X ;−1, 1) for 27A.

For the elliptic curve 15A we have the corresponding figure 5 for the case of

prime discriminants, figures 6 and 7 for the case of all discriminants. By the work

of Delaunay (see [De]), we know that the constant cpE(−1, 1) is 0, thus we only

show positive prime discriminants for this curve. On the other hand, the graphs of

cE(X ;±1, 1) for this curve seem to be too smooth, as if they had e.g. logarithmic

growth. We do not have an explanation for this.
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0.070488

0.06566
1e+05 1e+08

Figure 3. Value of cE(X ; +1, 1) for 27A.

0.053852

0.047872
1e+05 1e+08

Figure 4. Value of cE(X ;−1, 1) for 27A.

We recall another conjecture from [CKRS]: let q be a prime, and consider the

ratios

R±q (X) =
#
{
d ∈ S0(X ;±1, 1) :

(
d
q

)
= +1

}

#
{
d ∈ S0(X ;±1, 1) :

(
d
q

)
= −1

} .

Let

Rq :=

√
q + 1− aq
q + 1 + aq

,

where aq = q + 1−#E(Fq).
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0.59044

0.48199
1e+05 1e+08

Figure 5. Value of cpE(X ; +1, 1) for 15A.

Conjecture 4. Suppose E has good reduction modulo q. Then

lim
X→∞

R±q (X) = Rq .

As noted in [CKRS], the conjectural value of Rq is the square root of the ratio

of #E(Fq) to #Eχ(Fq), where χ is a quadratic character such that χ(q) = −1.

In figures 8 and 9 we plot, for the elliptic curve 27A, and for each prime number

q = 2, . . . , 3571 the value R+
q (108)−Rq and R−q (108)−Rq respectively. In figures 10

and 11 we do the same for the elliptic curve 15A. It can be seen on the graphics

that these values are close to 0 (the expected limit as X goes to infinity).

In figures 12 and 13 we plot the distribution of non-zero central values of the

twisted L-series of the elliptic curve 27A by positive and negative fundamental

discriminants, respectively. The same graphs for the elliptic curve 15A appear in

figures 14 and 15.

The Central Limit Conjecture (see Conjecture 3.3 of [CKRS2]) states that the

distribution of non-zero central values of the twisted L-series (scaled in a reasonable

way) behaves like a standard Gaussian; concretely for any pair of real numbers α <

β the percentage of discriminants d ∈ S(X ;±1, 1) with α <
log(L(E,d,1))+ 1

2 log log |d|√
log log |d|

<

β tends to 1√
2π

∫ β
α exp(−t

2

2 )dt as X tends to infinity. In figure 16 we plot the value
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0.10925

0.081438
1e+05 1e+08

Figure 6. Value of cE(X ; +1, 1) for 15A.

0.11095

0.079695
1e+05 1e+08

Figure 7. Value of cE(X ;−1, 1) for 15A.

distribution of the twisted L-series of the elliptic curves 27A and 15A by positive

and negative fundamental discriminants compared to the standard Gaussian.
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0.045918

-0.028209
2 3571

Figure 8. The values R+
q (108)−Rq for the elliptic curve 27A and

2 ≤ q ≤ 3571 prime

0.043458

-0.032361
2 3571

Figure 9. The values R−q (108)−Rq for the elliptic curve 27A and

2 ≤ q ≤ 3571 prime

[CNT] Computational Number Theory: http://www.ma.utexas.edu/cnt/.

[CKRS] Conrey, J. and Keating, J. and Rubinstein, M. and Snaith, N.: On the frequency of

vanishing of quadratic twists of modular L-functions. Number theory for the millennium, I

(Urbana, IL, 2000), 301–315.

[CKRS2] Conrey, J. and Keating, J. and Rubinstein, M. and Snaith, N.: Random Matrix Theory

and the Fourier Coefficients of Half-Integral-Weight Forms. Exp. Math. 15 (2006), 67–82.



COMPUTING CENTRAL VALUES OF TWISTED L-SERIES 23

0.038837

-0.032455
2 3571

Figure 10. The values R+
q (108)−Rq for the elliptic curve E15A

and 2 ≤ q ≤ 3571 prime

0.03163

-0.040342
2 3571

Figure 11. The values R−q (108)−Rq for the elliptic curve E15A

and 2 ≤ q ≤ 3571 prime

[Cr] Cremona, J. Elliptic Curve Data. http://www.maths.nott.ac.uk/personal/jec/ftp/data/

INDEX.html

[De] Delaunay, C. Note on the frequency of vanishing of L-functions of elliptic curves in a family

of quadratic twists. London Mathematical Society, Lecture Note Series 341: Ranks of elliptic

curves and random matrix theory. Cambridge University Press. (2007) 195–200.

[GP] PARI/GP, version 2.2.11, Bordeaux, 2005, http://pari.math.u-bordeaux.fr/



24 ARIEL PACETTI AND GONZALO TORNARÍA
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