
1

Modularity of the Consani-Scholten quintic

with an Appendix by José Burgos Gil and Ariel Pacetti

Luis Dieulefait1, Ariel Pacetti 2 and Matthias Schütt 3,4

Abstract. We prove that the Consani-Scholten quintic, a Calabi-
Yau threefold over Q, is Hilbert modular. For this, we refine sev-
eral techniques known from the context of modular forms. Most no-
tably, we extend the Faltings-Serre-Livné method to induced four-
dimensional Galois representations over Q. We also need a Sturm
bound for Hilbert modular forms; this is developed in an appendix by
José Burgos Gil and the second author.
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1 Introduction

The modularity conjecture for Calabi-Yau threefolds defined over Q is a
particular instance of the Langlands correspondence. Given a Calabi-Yau
threefold X over Q we consider the compatible family of Galois representations
ρℓ of dimension, say, n, giving the action of GQ = Gal(Q̄/Q) on H3(XQ̄,Qℓ):
the conjecture says that there should exist an automorphic form π of GLn
such that ℓ-adic Galois representations attached to π are isomorphic to the
representations ρℓ. This implies that the L-functions of π and ρℓ agree, at
least up to finitely many local factors. Observe that (according to Langlands
functoriality) π should be cuspidal if and only if the representations ρℓ are
absolutely irreducible.
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The only case where the conjecture is known in general (among Calabi-Yau
threefolds) is the rigid case, i.e., the case with n = 2. In this case modularity
was established by the first author and Manoharmayum (cf. [DM03]) under
some mild local conditions. These local assumptions are no longer required
since it is known that modularity of all rigid Calabi-Yau threefolds defined
over Q follows from Serre’s conjecture and the later has recently been proved
(cf. [KW09b], [KW09a], [Die10], [GY11]).
It was observed by Hulek and Verrill in [HV06] that the modularity result
in [DM03] can be extended to show modularity of those Calabi-Yau three-
folds such that the representations ρℓ are (for every ℓ) reducible and have
2-dimensional irreducible components. In fact, using Serre’s conjecture, one
can show that this is true even if reducibility occurs only after extending
scalars, assuming that reducibility is a uniform property, i.e., independent of ℓ
(this uniformity follows for instance from Tate’s conjecture).

In this paper, we will prove modularity for a non-rigid Calabi-Yau threefold
over Q such that the representations ρℓ are irreducible. To our knowledge such
an example has not been known before. We sketch the basic set-up:

In [CS01], Consani and Scholten consider a quintic threefold X̃ which we will
review in section 3. It has good reduction outside the set {2, 3, 5} and Hodge
numbers:

h3,0 = 1 = h2,1, h2,0 = 0 = h1,0 and h1,1 = 141.

In particular the third étale cohomology is four dimensional. If we fix a prime
ℓ, the action of the Galois group Gal(Q̄/Q) on the third étale cohomology gives
a 4-dimensional representation

ρℓ : Gal(Q̄/Q) → GL(H3(X̃Q̄,Qℓ)) ≃ GL4(Qℓ).

Let F = Q[
√
5] and OF its ring of integers. In [CS01] it is shown that the

restriction

ρℓ|Gal(Q̄/F ) : Gal(Q̄/F ) → Aut
(
H3(X̃Q̄,Qℓ)⊗Qℓ

)
,

is the direct sum of two 2-dimensional representations (see Theorem 3.2 of
[CS01]). More precisely, if λ is a prime of OF over ℓ, then there exists a
2-dimensional representation

σλ : Gal(Q̄/F ) → GL2(Oλ),

such that ρℓ|Gal(Q̄/F ) is a direct sum of σλ and σ′
λ (the external conjugate of

σλ) and ρℓ = IndQF σλ.

In the same work, an holomorphic Hilbert newform f on F of weight (2, 4) and
level cf = (30) is constructed, whose L-series is conjectured to agree with that
of σ. The aim of this work is to prove this modularity result.



Modularity of the Consani-Scholten quintic 3

Let λ be a prime of F over a rational prime ℓ. Let Oλ denote the completion at
λ of OF . Since f has F -rational eigenvalues, by the work of Taylor (see [Tay89]),
there exists a two-dimensional continuous λ-adic Galois representation

σf,λ : Gal(Q̄/F ) → GL2(Oλ),

with the following properties: σf,λ is unramified outside ℓcf, and if p is a prime
of F not dividing ℓcf, then

Trσf,λ(Frob p) = θ(Tp),

detσf,λ(Frob p) = θ(Sp)N p.

Here Tp denotes the p-th Hecke operator, Sp denotes the diamond operator

(given by the action of the matrix ( α 0
0 α ), for α =

∏
p π

vq(p)
q and πq a local

uniformizer) and θ(T ) is the eigenvalue of the Hecke operator T on f. Let
τ(f) be the Hilbert modular form which is the external Galois conjugate of f,
where τ is the order two element in Gal(F/Q). Observe that the λ-adic Galois
representations attached to τ(f) are obtained by applying τ to the traces of the
images of Frobenius in the Galois representations attached to f. Our result can
be stated as:

Theorem 1.1. The representations σλ and σν(f),λ are isomorphic, where ν is
either the identity or τ .

In particular the theorem implies that the L-series of σλ and σν(f),λ agree. This
solves the conjecture from [CS01].

Remark 1.2. By known cases of automorphic base change (theta lift) and func-
toriality, Theorem 1.1 is known to imply that ρℓ corresponds to a Siegel modular
form of genus 2 and to a cuspidal automorphic form of GL4.

Remark 1.3. Dimitrov has proved a Modularity Lifting Theorem that applies to
Hilbert modular forms of non-parallel weight (cf. [Dim09]), and he and the first
author checked that for ℓ = 7 the representation σ satisfies all the technical
conditions of this theorem (cf. [DD06]). Thus it would be enough to prove
residual modularity modulo 7 to deduce the modularity of σ from this result.
We will follow, however, a different path.

Remark 1.4. In 2006, one of us received a preprint by Y.-C. Yi which claimed
to prove the Hilbert modularity of X̃. However, the arguments presented con-
tained several crucial gaps and inaccuracies, and to our knowledge, the preprint
has never been published properly.

We give an outline of the proof of Theorem 1.1. Since both Galois repre-
sentations come in compatible families, it is enough to prove that they are
isomorphic for a specific choice of primes λ over ℓ. We choose ℓ = 2 so as to
apply a Faltings-Serre method of proving that two given 2-adic Galois repre-
sentations are isomorphic (cf. [Liv87]). Actually, in [CS01] it is proven that
σλ exists, but its trace at a prime is only determined up to conjugation by
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τ . Hence in Theorem 4.3 we give a version of the Faltings-Serre method that
applies to reducible 4-dimensional representations of Gal(Q̄/F ).
Theorem 4.3 implies that the 2-dimensional Galois representations σλ, σν(f),λ
have isomorphic semisimplifications. Since f is a cuspidal Hilbert eigenform,
its λ-adic Galois representations are irreducible for all primes λ, and Livné’s
Theorem asserts in particular that the same is true for the representations
attached to X̃. Thus we deduce Theorem 1.1.

In the present situation, the problem is non-trivial notably because 2 is inert
in OF . Hence the residual representations lie a priori in GL2(F4), and actually
in SL2(F4). This is clear for both representations: the representation σf,λ has
trivial nebentypus so the determinant image lies in F×

2 while the representation
σλ at a prime ideal p has real determinant of absolute value N p3.
The group SL2(F4) is not a solvable group (it is in fact isomorphic to A5, the
alternating group of 5 elements). We will overcome this subtlety by showing
that the images of the residual representations are 2-groups. For σf,2, this
will be achieved in section 2 by combining three techniques: the theory of
congruences between Hilbert cuspforms, the explicit approach from [DGP10]
and a Sturm bound for Hilbert modular forms that is developed by Burgos and
the second author in the Appendix B. For σ2, we will use the Lefschetz trace
formula and automorphisms on the Calabi-Yau threefold X̃ (section 3). We
collect the necessary data for a proof of Theorem 1.1 in section 4.

Acknowledgements: We would like to thank Lassina Démbelé for many
suggestions concerning computing with Hilbert modular forms. Also we would
like to thank José Burgos Gil for his contribution to the appendix with the
proof of a Sturm bound. The computations of the ap where done using the
Pari/GP system [PAR08]. We would like to thank Bill Allombert for imple-
menting a routine in PARI that was not included in the original software for
dealing with elements of small norm under a positive definite quadratic form.
Particular thanks to the referee for his comments and suggestions. This project
was started when two of us enjoyed the hospitality of Harvard University; it
benefitted from research visits to various other institutions.

2 Computing the residual image of the Galois representation σf,2

This section deals with the holomorphic Hilbert newform f on F = Q(
√
5) of

weight (2, 4) and conductor cf = (30) constructed in [CS01]. The aim of this
section is to prove that the image of the residual 2-adic Galois representation
σ̄f,2 attached to f has image a 2-group. This will enable us to apply methods
for even trace Galois representations to σf,2.

2.1 Properties of the Hilbert modular form f.

Let us recall some definitions of Hilbert modular forms. For c ⊂ OF , let Γ0(c) be
the subgroup of SL2(OF ) whose second row and first column entry is divisible
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by c. Let H denote the Poincare upper half plane. Then given ~k = (k1, k2), with

k1 ≡ k2 (mod 2), a weight ~k Hilbert modular form of level c is an holomorphic
function f : H2 7→ C such that for γ =

(
a b
c d

)
∈ Γ0(c),

f(γ · z1, τ(γ) · z2) = f(z1, z2)(cz1 + d)k1(τ(c)z2 + τ(d))k2 ,

with the usual holomorphicity condition at the cusps. We denote such space
M~k(c), and S~k(c) the subspace of cuspidal forms.
We start studying some properties of the form f. In sections 6 and 7 of [CS01]
such form was constructed using Eichler’s method on definite quaternion al-
gebras and in Theorem 8.3 of loc. cit. it is proved that its coefficient field is
exactly Q(

√
5).

Since the primes 2 and 3 divide the level of the form f to the first power, the
automorphic representation attached to f is Steinberg at both primes. To know
its behaviour at the prime

√
5, we consider its twist by a suitable character.

Lemma 2.1. There exists a unique non-trivial quadratic Hecke character χ√
5 of

OF (of infinity type (sign, sign)), whose conductor is
√
5. The quadratic twist

of f by χ√
5 corresponds to a Hilbert newform of level 6

√
5 and weight (2, 4)

which we denote by f⊗ χ√
5.

Proof. For any prime ideal p of OF , whose residue field has prime order p, we
can consider the quotient map

OF ։ OF /p ≃ Z/pZ,

to get a Dirichlet character χp in OF . To get the Hecke character we just
need the infinity characters, but note that the infinite type (signǫ1 , signǫ2) is
uniquely defined by the conditions

χp(−1) = (−1)ǫ1+ǫ2 ,

χp

(
1 +

√
5

2

)
= (−1)ǫ2 .

The uniqueness comes from the fact that the fundamental unit is not totally
positive (which is equivalent to say that the class number and the narrow class

number are the same). In our case, χ√
5

(
1+

√
5

2

)
= −1, and χ√

5(−1) = 1 so

the first assertion follows.
For the second statement of the Lemma, it is clear (as in the classical case) that
the twist will have trivial character and level at most 30 (see for example [Shi78,
Proposition 4.4]), so the proof goes by elimination. The data used was supplied
by Lassina Démbelé, but is now available in the new versions of MAGMA for
example. Here is a resume:

• The space S(2,4)(30) is of dimension 74.

• Its subspace of newforms is of dimension 22.
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• There are 16 eigenforms in the new subspace whose coefficient field is F
and 2 eigenforms whose coefficient field has degree 3 over it.

• The space S(2,4)(6
√
5) is of dimension 14.

• Its subspace of newforms is of dimension 4.

• There are 4 eigenforms in the new subspace whose coefficient field is F .

By computing the Hecke eigenvalue at the primes above 11 in the newspace of
level 30, we find a unique form matching the eigenvalue of f (in version 2.16 of
Magma, the form is the first one to appear), so the form f⊗χ√

5 does not lie in

the newspace of level 30. Since the primes of norm 11 are generated by 7+
√
5

2

and 7−
√
5

2 , and χ√
5

(
7+

√
5

2

)
= 1, we search for a form with the same eigenvalue

in level 6
√
5 and find a unique one (the third one), but none in level 6, hence

f⊗ χ√
5 has level 6

√
5.

This implies the following.

Corollary 2.2. The form f is also Steinberg at the prime
√
5.

Since the form f and f ⊗ χ√
5 are congruent modulo 2, we can work with the

latter form which has smaller level.

2.2 Properties of the residual image of σf,2

For proving that the image of the residual 2-adic Galois representation attached
to f has image a 2-group, eventually we will pursue a similar approach as in
[DGP10]. We start by computing all subgroups of A5.

Lemma 2.3. Any proper subgroup of A5 is isomorphic to one of the following:

{{1}, C2, C3, C2 × C2, C5, S3, D5, A4}.

There is an easy classification of the orders of the elements in SL2(F4) in terms
of the traces.

Lemma 2.4. If M ∈ SL2(F4), then

ord(M) =





1 if M = id,

2 if Tr(M) = 0 and M 6= id,

3 if Tr(M) = 1,

5 if Tr(M) 6∈ F2.



Modularity of the Consani-Scholten quintic 7

Recall how to derive a Fourier expansion at ∞ for a Hilbert modular form over
F . Let τ denote the generator of Gal(F/Q). An element ν ∈ F is called totally
positive if both ν > 0 and τ(ν) > 0. We denote this by ν ≫ 0. Since F has
strict class number one, any Hilbert modular form G over F has a q-expansion

G(z1, z2) =
∑

ξ∈OF√
5

ξ≫0

aξ exp(ξz1 + τ(ξ)z2), (1)

where exp(z) = e2πiz.
Since the coefficient field for f is F = Q(

√
5) and 2 is inert in F , we can reduce

our coefficients modulo 2 to get a q-expansion with coefficients in F4. We
denote by aξ the reduced coefficients in F4, and we normalize the q-expansion
of f such that its coefficient a 1+

√
5

2
√

5

= 1.

Lemma 2.5. Suppose that some coefficient aξ is not in F2. Then the q-
expansion of the form f3 has a coefficient which is not in F2 either.

Proof. The q-expansion of f3 is again of the form

∑

ξ∈OF√
5

ξ≫0

bξ exp(ξz1 + τ(ξ)z2).

We order the monomials of such q-expansion using the total order given by:
exp(ξz1 + τ(ξ)z2) < exp(νz1 + τ(ν)z2) iff Tr(ξ) < Tr(ν) or Tr(ξ) = Tr(ν) and
ξ < ν. It is easy to check that this gives a total order, and that this order
behaves well under addition.
With this order, the first coefficients of f are a0 and a 1+

√
5

2
√

5

, which are 0 and 1.

Suppose that aξ0 is the first coefficient of f in F4 and not in F2, and lets look

at the coefficient with exponent ξ0 +2
(

1+
√
5

2
√
5

)
of the reduction of f3. Since all

non-zero coefficients have trace at least 1, it is of the form

3aξ0a
2
1+

√
5

2
√

5

+ product of coefficients smaller than aξ0 ,

so the claim follows.

Remark 2.6. From the proof of the last Lemma, it is clear that if the reduction
of all Fourier coefficients of f with trace smaller than a constant N lie in F2,
the same happens to f3.

Recall that Aut(C) acts on the space of Hilbert modular forms, just by acting
on Fourier expansions. The following result is due to Shimura (see Proposition
1.2 of [Shi78]).

Proposition 2.7. Let σ ∈ Aut(C), then σ(M~k) =M~l, where
~l = ~kσ.
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Proposition 2.8. The residual image of σf,2 is not D5 nor A5.

Proof. Suppose the residual image of σf,2 is D5 or A5. The groups D5 and A5

both have order 5 elements, so by Lemma 2.4 there exists a prime p0 such that
the p0-th Hecke eigenvalue ap0

of f lies in F4, but not in F2. The main idea
is that in this case f and its Galois conjugate, τ(f), have different q-expansion
modulo 2. We would like to consider the difference of these functions, and
prove using a Sturm bound result that this function is zero. The only problem
is that f and τ(f) have different weights, so their difference is not a Hilbert
modular form. We overcome this problem by multiplying the reduction of the
cubic powers of these forms by appropiate Hasse invariants which give parallel
weight 10 forms with q-expansions which are not in F2.
Since the prime 2 is inert in Q(

√
5), there exist forms h1 and h2 of level 1 and

weight (2,−1) and (−1, 2) in F2 which are called the partial Hasse invariants
(see [Gor02], Definition 3.4, page 179) whose q-expansion at any cusp is 1. So
we consider the form (f⊗ χ√

5)
3h21 + (τ(f⊗ χ√

5)
3h22, which is a parallel weight

10 form for Γ0(6
√
5) in F2, whose q-expansion vanishes with order 3 at all cusps

and is not the zero form (because by assumption at least one coefficient of the
q-expansion of (f⊗ χ√

5)
3 is not in F2).

We computed all Hecke eigenvalues with ideals generated by an element of trace
smaller than 181 of f and checked that they all lie in 2OF (a table for such
eigenvalues can be found at [DPS]). In particular, all the Fourier coefficients of
the Hilbert modular form f with trace at most 181 lie in F2, so the same holds
for (f⊗ χ√

5)
3h22 which implies that the form (f⊗ χ√

5)
3h22+(τ(f⊗ χ√

5)
3h21 has

zero Fourier expansion for all coefficients with trace at most 181. The Sturm
bound (Theorem B.21) implies that it must be the zero form, contradicting our
assertion above and thus the original assumption.

It remains to prove that the residual image at 2 cannot be any of the groups
{C3, C5, S3, A4}. We recall some well known results from Class Field Theory:

Theorem 2.9. If L/F be an abelian Galois extension unramified outside the

set of places {pi}ni=1 then there exists a modulus m =
∏n
i=1 p

e(pi)
i such that

Gal(L/F ) corresponds to a subgroup of the ray class group Cl(OF ,m).

A bound for e(p) is given by the following result.

Proposition 2.10. Let L/F be an abelian Galois extension of prime degree

p. Consider a modulus m =
∏n
i=1 p

e(pi)
i associated to the extension L/F by

Theorem 2.9. If p ramifies in L/F , then

{
e(p) = 1 if p ∤ p

2 ≤ e(p) ≤
⌊
pe(p|p)
p−1

⌋
+ 1 if p | p,

where p is a prime above the rational prime p and e(p|p) is the ramification
index of p in F/Q.
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Proof. See [Coh00] Proposition 3.3.21 and Proposition 3.3.22.

Using these two results, we can compute for each possible Galois group all
Galois extensions of F unramified outside {2, 3, 5}. In each extension, we find
a prime p where the Frobenius has non-zero trace (in F4). If ap ≡ 0 (mod 2),
for all such primes we are done:

Proposition 2.11. The residual representation σ̄f,2 has image a 2-group.

Proof. Consider the different cases:

• The group A4 has C2 × C2 as a normal subgroup (with generators (12)(34)
and (13)(24)). The quotient by this subgroup is a cyclic group of order 3, so
the extension contains a cubic Galois subfield. Since there are no elements of
order 6 in A4, a non trivial element in this Galois group will have odd trace.
Thus the case A4 and C3 can be discarded at the same time.
In order to do so, we can take m = 2 · 32 ·

√
5 as the maximal modulus by

Proposition 2.11. The ray class group Cl(OF ,m) is isomorphic to C12 × C6

so there are 4 cubic extensions ramified at these primes. We consider the
characters as additive characters (by taking logarithms), and denote by ψ1 and
ψ2 two characters that generate the group of characters of order 3 (we take the
fourth and the second power of the characters in the previous basis). Instead
of computing a prime ideal where each character is non-zero, we compute two
prime ideals p1 and p2 such that

〈(ψ1(p1), ψ2(p1)), (ψ1(p2), ψ2(p2))〉 = Z/3Z× Z/3Z.

Then Proposition 5.4 of [DGP10] implies that any cubic character is non-trivial
in one of these two ideals. The two ideals above the prime 11 have values (1, 0)
and (1, 2), which is a basis for F3×F3. Since the modular form has even traces
(in F2) at both primes (see Table of [CS01]), we conclude that the residual
representation cannot have image isomorphic to C3 nor A4.

• To discard the C5 case, we take m = 2 ·3 · (
√
5)3. The ray class group for this

module is cyclic of order 10. The generator at primes above 11 has value 9, in
particular the order 5 characters do not vanish at this primes. But the trace
of Frobenius lies in F2 at these primes (as mentioned in the previous case), so
the image cannot be cyclic of order 5.

• To discard the S3 case, we start by computing all the quadratic extensions
of F ramified outside the set of primes {2, 3, 5}. The modulus in this case is
m = 23 · 3 ·

√
5. The ray class group is isomorphic to C4 × C4 × C2 × C2 × C2

so there are 31 such extensions. In Table 2.1 we put all the information of
these extensions; the first column has an equation for each such extension,
the second column its discriminant over Q, the third column the modulus
considered (where by p2 (respectively p5) we denote the unique prime ideal in
the extension above the rational prime 2 (respectively 5)), the fourth column
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Equation over F Disc. over Q Modulus Ray Class Group Rational Primes

x2 − 6
√
5 −26 · 32 · 53 9 · p2 · p5 C72 × C6 × C3 × C3 {7, 11, 13}

x2 + 6
√
5 −26 · 32 · 53 9 · p2 · p5 C72 × C6 × C3 × C3 {7, 11, 13}

x2 +
√
5 + 1 −26 · 52 9 · p2 ·

√
5 C12 × C6 × C3 {7, 11, 13, 19}

x2 −
√
5− 1 −26 · 52 9 · p2 ·

√
5 C12 × C6 × C3 {7, 11, 13, 19}

x2 − 3
√
5− 3 −26 · 32 · 52 9 · p2 ·

√
5 C36 × C6 × C3 × C3 {7, 11, 13, 17}

x2 + 3
√
5 + 3 −26 · 32 · 52 9 · p2 ·

√
5 C36 × C6 × C3 × C3 {7, 11, 13, 17}

x2 + 2
√
5 −26 · 53 9 · p2 · p5 C24 × C6 × C3 {7, 11, 13}

x2 − 2
√
5 −26 · 53 9 · p2 · p5 C24 × C6 × C3 {7, 11, 13}

x2 + 3
2

√
5 + 3

2 −24 · 32 · 52 9 · p2 ·
√
5 C36 × C6 × C3 {7, 11, 13}

x2 − 3
2

√
5− 3

2 −24 · 32 · 52 9 · p2 ·
√
5 C36 × C6 × C3 {7, 11, 13}

x2 −
√
5 −24 · 53 9 · p2 · p5 C24 × C6 × C3 {7, 11, 13}

x2 +
√
5 −24 · 53 9 · p2 · p5 C24 × C6 × C3 {7, 11, 13}

x2 + 3
√
5 −24 · 32 · 53 9 · p2 · p5 C24 × C6 × C3 × C3 {7, 11, 13}

x2 − 3
√
5 −24 · 32 · 53 9 · p2 · p5 C24 × C6 × C3 × C3 {7, 11, 13}

x2 − 1
2

√
5− 1

2 −24 · 52 9 · p2 ·
√
5 C12 × C6 × C3 × C3 {7, 11, 13, 17}

x2 + 1
2

√
5 + 1

2 −24 · 52 9 · p2 ·
√
5 C12 × C6 × C3 × C3 {7, 11, 13, 17}

x2 +
√
5 + 5 26 · 53 9 · p2 · p5 C60 × C6 × C3 × C3 {7, 11, 13, 23}
x2 − 6 26 · 32 · 52 9 · p2 ·

√
5 C12 × C6 × C6 {7, 11, 13, 23}

x2 + 2 26 · 52 9 · p2 ·
√
5 C24 × C12 × C3 × C3 × C3 {7, 11, 13, 23}

x2 − 3
√
5− 15 26 · 32 · 53 9 · p2 · p5 C12 × C6 {7, 11, 13}
x2 + 6 26 · 32 · 52 9 · p2 ·

√
5 C72 × C12 × C3 × C3 × C3 {7, 11, 13, 17}

x2 −
√
5− 5 26 · 53 9 · p2 · p5 C36 × C18 × C3 × C3 {7, 11, 13}

x2 + 3
√
5 + 15 26 · 32 · 53 9 · p2 · p5 C12 × C6 × C6 {7, 11, 13, 61}
x2 − 2 26 · 52 9 · p2 ·

√
5 C36 × C18 × C3 × C3 {7, 11, 13}

x2 + 3
2

√
5 + 15

2 24 · 32 · 53 9 · p2 · p5 C36 × C18 × C3 × C3 {7, 11, 13}
x2 + 3 32 · 52 18 ·

√
5 C36 × C3 × C3 × C3 × C3 × C3 {7, 11, 13, 17, 19, 23}

x2 + 1 24 · 52 9 · p2 ·
√
5 C24 × C12 × C3 × C3 {7, 11, 13, 17}

x2 + 1
2

√
5 + 5

2 53 18 · p5 C60 × C3 × C3 × C3 {7, 11, 13}
x2 − 1

2

√
5− 5

2 24 · 53 9 · p2 · p5 C12 × C6 {7, 11, 13}
x2 − 3 24 · 32 · 52 9 · p2 ·

√
5 C12 × C6 × C6 × C3 {7, 11, 13}

x2 − 3
2

√
5− 15

2 32 · 53 18 · p5 C6 × C6 {7, 11, 13}

Table 2.1: Quadratic extensions of F unramified outside {2, 3, 5}
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the ray class group and the last column the rational primes whose prime divisors
in F generate the F3 vector space of cubic characters.

Note that the first 16 extensions are not Galois over Q and are listed so that
they are isomorphic in pairs. The last 15 are indeed Galois over Q. This implies
that we could consider one element of each pair for the first fields. Note that
the primes at conjugate fields are the same, since the Frobenius at a prime in
F of a field is the same as the Frobenius at the conjugate of the prime in the
conjugate extension.

The traces of Frobenius are even in all such primes (see Table of [CS01]), so we
conclude that the image of the residual representation σ̄f,2 cannot be isomorphic
to S3 either.

3 Computing the residual image of the Galois representation σ2

In this section we consider the Consani-Scholten quintic X̃ from [CS01]. Our
goal is to prove that the ℓ-adic Galois representations ρ of H3(X̃Q̄,Qℓ) have 4-
divisible trace. This will be used in 3.5 to deduce that modulo 2 the restricted
2-adic two-dimensional Galois representations have image in SL2(F2), and in
fact even trace, so that we can apply an adaptation of the Faltings-Serre-Livné
method in order to prove Theorem 1.1.

3.1 Setup

Consider the Chebyshev polynomial

P (y, z) = (y5 + z5)− 5yz(y2 + z2) + 5yz(y + z) + 5(y2 + z2)− 5(y + z).

Then we define an affine variety X in A4 by

X : P (x1, x2) = P (x4, x5).

Let X̄ ⊂ P4 denote the projective closure of X. Then X̄ has 120 ordinary
double points. Let X̃ denote a desingularisation obtained by blowing up X̄ at
the singularities.

Remark 3.1. We might also consider a small resolution X̂, as many of the nodes
lie on products of lines. Then we would have to check that X̂ is projective and
can be defined over Q. This desingularisation would have the advantage of
producing an honest Calabi-Yau threefold, but it does not affect the question
of Hilbert modularity.

Consani and Scholten compute the Hodge diamond of X̃ as follows:
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1
0 0

0 141 0
1 1 1 1

0 141 0
0 0

1

Hence the étale cohomology groups H3(X̃Q̄,Qℓ) (ℓ prime) give rise to a com-

patible system of four-dimensional Galois representations {ρℓ}. Since X̃ has
good reduction outside {2, 3, 5}, ρℓ is unramified outside {2, 3, 5, ℓ}.
Let F = Q(

√
5) and fix some prime ℓ ∈ N and a prime λ of F above ℓ. Then

Consani and Scholten prove for the ℓ- resp. λ-adic representations:

Theorem 3.2 (Consani-Scholten [CS01]). The restriction ρ|Gal(Q̄/F ) is re-
ducible as a representation into GL4(Fλ): There is a Galois representation

σ : Gal(Q̄/F ) → GL2(Fλ)

such that ρ = IndQF σ.

The theorem implies in particular that internal and external conjugation have
the same effect on σ. Here we want to prove the following property:

Proposition 3.3. The Galois representation ρ has 4-divisible trace, and so
has any restriction to a finite extension of Q. That is, ρ(Frobq) ≡ 0 mod 4
for any odd prime power q.

In fact, for q ≡ 2, 3 mod 5, Consani-Scholten proved that ρ(Frobq) has zero
trace. Hence we would only have to consider the case q ≡ 1, 4 mod 5, although
we will treat the problem in full generality.
As a corollary, we will deduce that σ is even in 3.5 as required for the proof of
Theorem 1.1.

3.2 Lefschetz fixed point formula

Choose a prime p 6= ℓ of good reduction for X̃ and let q = pr. Consider
the geometric Frobenius endomorphism Frobq on X̃/Fp, raising coordinates to
their q-th powers. Then the Lefschetz fixed point formula tells us that

#X̃(Fq) =

6∑

i=0

(−1)i trace Frob∗q(H
i(X̃Q̄,Qℓ)).

In our situation, this simplifies as follows: h1 = h5 = 0; H2(X̃) and H4(X̃) are
algebraic by virtue of the exponential sequence and Poincaré duality. Moreover
Frob∗q factors through a permutation on H2(X̃), i.e. all eigenvalues have the
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shape ζq where ζ is some root of unity. Denote the sum of these roots of unity
by hq (which is an integer in Z by the Weil conjectures). Finally geometric and
algebraic Frobenius are compatible through ρ. Hence

tq = trace ρ(Frobq) = 1 + hq q(1 + q) + q3 −#X̃(Fq). (2)

Prop. 3.3 claims that the left hand side is divisible by 4. If q ≡ −1 mod 4,
this is a consequence of the following

Lemma 3.4. For any good prime p and q = pr, #X̃(Fq) ≡ 0 mod 4.

If q ≡ 1 mod 4, then we furthermore need the following

Lemma 3.5. For any good prime p and q = pr, hq is odd.

3.3 Proof of Lemma 3.4

To prove Lemma 3.4, we use the action of the dihedral group D4 on X̃ and the
knowledge about the exceptional divisors from Consani-Scholten.
Let ζn denote a primitive n-th root of unity. Then all the nodes are defined over
Q(ζ15). A detailed list can be found in [CS01]. Over the field of definition of
the node, the exceptional divisor E is isomorphic to P1×P1. Hence #E(Fq) =
(q + 1)2 if the node is defined over Fq.

Lemma 3.6. For any good prime p and q = pr, #X̃(Fq) ≡ #X̄(Fq) mod 32.

Proof: By [CS01], we have

#{nodes over Fq} =





0, q ≡ 2, 7, 8, 13 mod 15,

8, q ≡ 14 mod 15,

24, q ≡ 4 mod 15,

104, q ≡ 11 mod 15,

120, q ≡ 1 mod 15.

Since the number of points on the exceptional divisor is the same for all nodes
defined over Fq, the claim follows.

Lemma 3.7. For any good prime p and q = pr, #X̄(Fq) ≡ #X(Fq)−q mod 4.

Proof: The affine variety X is compactified by adding a smooth surface at ∞.
In fact, this is the Fermat surface of degree five:

S = {x50 + x51 − x53 − x54 = 0} ⊂ P3.

Hence #X̄(Fq)−#X(Fq) = #S(Fq). Thus Lemma 3.7 amounts to the following

Lemma 3.8. For p 6= 5 and q = pr, #S(Fq) ≡ 1 + q + q2 mod 4.
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The proof of this lemma will be postponed to the end of this subsection. Lemma
3.7 follows.

To prove the corresponding statement about the affine variety X, we use the
action of the dihedral group D4 generated by the involutions

(x1, x2, x3, x4) 7→ (x2, x1, x3, x4), (x1, x2, x3, x4) 7→ (x1, x2, x4, x3)

and by the cyclic permutation

γ : (x1, x2, x3, x4) 7→ (x3, x4, x2, x1). (3)

It follows that

#X(Fq) ≡ #{x ∈ X(Fq);#{y ∈ (D4 − orbit of x)} < 4} mod 4.

Here {x ∈ X(Fq);#{y ∈ (D4 − orbit of x)} < 4} = {(x1, x1, x3, x3) ∈ X(Fq)}.
We are led to consider the affine curve C in A2 defined by

C : P (y, y) = P (z, z).

Then the above subset of X(Fq) is in bijection with C(Fq), and we obtain

#X(Fq) ≡ C(Fq) mod 4. (4)

Lemma 3.9. For any good prime p and q = pr, #C(Fq) ≡ q mod 4.

Proof of Lemma 3.9: C is reducible. The change of variables

u =
y + z

2
, v =

y − z

2

allows us to write

P (y, y)−P (z, z) = v(v4+5(2u2−4u+1)v2+5(u2−3u+1)(u2−u−1)) = vG(u, v).

Hence

#C(Fq) = q +#(B(Fq) ∩ {v 6= 0}) (5)

where B is the affine curve in A2 given by G(u, v) = 0. Here B is endowed
with involutions

(u, v) 7→ (u,−v), (u, v) 7→ (2− u, v).

For the number of points, this implies

#(B(Fq) ∩ {v 6= 0}) ≡ #(B(Fq) ∩ {u = 1, v 6= 0}) mod 4

= #{v ∈ Fq; v
4 − 5v2 + 5 = 0}.
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The last polynomial factors as

4(v4 − 5v2 + 5) = (2v2 − 5−
√
5) (2v2 − 5 +

√
5).

Since 5+
√
5

2 · 5−
√
5

2 = 4, a square, we deduce that the last equation has either
zero or four solutions in Fq. In particular, (5) reduces to #C(Fq) ≡ q mod 4,
i.e. to the claim of Lemma 3.9.

Proof of Lemma 3.8: We shall again use the cyclic permutation γ from (3), but
this time it operates on the homogeneous coordinates of P3. Hence

#S(Fq) ≡ #(S ∩ Fix(σ2))(Fq) mod 4. (6)

Here
Fix(σ2) = {[λ, µ,±λ,±µ]; [λ, µ] ∈ P1}.

One of these lines is contained in S, and it is easy to see that there are exactly
(5, q − 1) further points of intersection unless p = 2. I.e.

#(S ∩ Fix(σ2))(Fq) = 1 + q +

{
0, p = 2

(5, q − 1), p 6= 2
≡ 1 + q + q2 mod 4.

Lemma 3.8 follows from this congruence and (6).

Proof of Lemma 3.4: Lemma 3.9 and (4) imply that #X(Fq) ≡ q mod 4. By

Lemma 3.7 this gives #X̄(Fq) ≡ 0 mod 4. The according statement for X̃ is
obtained from Lemma 3.6.

3.4 Proof of Lemma 3.5

Lemma 3.5 states that the trace hq of Frobq on H2(X̃Q̄,Qℓ(1)) is always odd.
We shall first prove the following auxiliary result:

Lemma 3.10. The Galois group Gal(Q̄/Q(ζ15)) acts trivially on H2(X̃Q̄,Qℓ(1)).

Proof: Denote the exceptional locus of the blow-up by E. Then E is defined
over Q. The Leray spectral sequence for the desingularisation gives an exact
sequence

0 → H2(X̄Q̄,Qℓ(1)) → H2(X̃Q̄,Qℓ(1)) → H2(EQ̄,Qℓ(1)). (7)

By construction, (7) is compatible with the Galois action. Here H2(X̄Q̄,Qℓ(1))
is the same as for a general quintic hypersurface in P4. Hence it has dimen-
sion one and is generated by the class of a hyperplane section. In particular,
Gal(Q̄/Q) acts trivially on H2(X̄Q̄,Qℓ(1)). Recall that every component of
E as well as both rulings on every component are defined over Q(ζ15). Hence
Gal(Q̄/Q(ζ15)) acts trivially on H2(EQ̄,Qℓ(1)). By the Galois-equivariant exact

sequence (7), the same holds for H2(X̃Q̄,Qℓ(1)).
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It follows from Lemma 3.10, that hq = 141 if q ≡ 1 mod 15. The prove the
parity for the other residue classes, we need two easy statements about sums of
primitive roots of unity. They involve the Möbius function µ : N → {−1, 0, 1}:

µ(n) =

{
0, n not squarefree,

(−1)m, n squarefree with m prime divisors.

Lemma 3.11. Let n ∈ N and ζn a primitive n-th root of unity. Then ζn has
trace µ(n).

The lemma follows immediately from the factorisation of the cyclotomic poly-
nomial xn − 1 and the definition of µ(n).

Lemma 3.12. Let n ∈ N and ζn a primitive n-th root of unity. Let m = 2s · k
with (k, n) = 1. Then

µ(n) = trace ζn =
∑

j∈(Z/nZ)∗

ζjn ≡
∑

j∈(Z/nZ)∗

ζmjn mod 2.

Proof: If (m,n) = 1, then taking m-th powers permutes the primitive n-th
roots of unity and both sums coincide. Hence it suffices to consider the case
where m = 2s(s > 0) and 2|n.
If 4 ∤ n, then {ζmjn ; j ∈ (Z/nZ)∗} is the set of n

2 -th primitive roots of unity.
Hence ∑

j∈(Z/nZ)∗

ζmjn = µ
(n
2

)
= −µ(n)

and the claim follows mod 2. If 4|n, then µ(n) = 0 and every element in
{ζmjn ; j ∈ (Z/nZ)∗} appears with multiplicity (m,n). Hence

2 | (m,n) |
∑

j∈(Z/nZ)∗

ζmjn ,

and we obtain the claimed congruence.

Proof of Lemma 3.5: Let Ξ be the set of eigenvalues of Frobq on H
2(X̃Q̄,Qℓ(1))

with multiplicities. Then

hq =
∑

ζ∈Ξ

ζ.

Recall that the Galois group Gal(Q̄/Q(ζ15)) acts trivially on H2(X̃Q̄,Qℓ(1)).
Since Q(ζ15)/Q is Galois of degree eight, we deduce that ζ8 = 1 for each ζ ∈ Ξ.
In particular

∑

ζ∈Ξ

ζ8 = 141. (8)

In the present situation, hq ∈ Z, i.e. hq is a sum of traces of elements in Ξ.
Hence we can apply Lemma 3.12 to deduce that hq has the same parity as the
sum in (8). That is, hq is odd.
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3.5 Evenness of σ

In this subsection we conclude our preparations for the proof of Theorem 1.1
by proving the following corollary of Proposition 3.3:

Corollary 3.13. The Galois representation σ is even.

Recall that σ induces the 4-dimensional Galois representation ρ over Q. The
proof commences by spelling out the characteristic polynomial of ρ(Frobq) for
some odd prime power q:

µq(T ) = T 4 − tqT
3 + uT 2 − q3tqT + q6

with u = (t2q−tq2)/2 using the notation of (2). By Proposition 3.3, tq ≡ tq2 ≡ 0
mod 4, so u ≡ 0 mod 2.
Now we turn to σ, the 2-dimensional Galois representation with values in F =
Q(

√
5) inducing ρ. Let q denote some power of a prime ideal in F with odd

norm q ∈ Z. We write
sq = Trσ(Frobq)

and consider the case sq 6∈ Z. Then sq = a+ bω where ω solves v2 − v − 1 = 0
and a, b ∈ Z, b 6= 0. By Theorem 3.2 we have

tq = 2a+ b.

Since tq is even by Proposition 3.3, so is b, and we can write somewhat more
intuitively sq = c + d

√
5 with c, d ∈ Z, d 6= 0. This already implies that the

mod 2-reduction of σ has traces in F2, so it will have image in SL(2,F2).
In the new notation, we obtain

tq = 2c,

so by Proposition 3.3 the input c is even. But then, factoring µq(T ) into
quadratic factors over F corresponding to σ and its external conjugate, the
coefficient of T 2 reads

u = (c2 − 5d2) + 2q3.

Since we have already seen that u and c are even, we find that d is even, too.
That is, σ has even trace at Frobq. The case sq ∈ Z is essentially the same
argument, but even simpler.

4 Proof of the Main Theorem

There is version of the Faltings-Serre method in [Liv87] that allows to compare
two-dimensional 2-adic Galois representations with even traces. Here we have
to modify this approach slightly since the two-dimensional Galois representa-
tion σ2 is only determined up to conjugation of its coefficients in the quadratic
field F . While the original result involved the notion of non-cubic test sets, in
order to prove Theorem 1.1, we replace this notion by non-quartic sets:
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Definition. A subset T of a finite dimensional vector space V is non-quartic if
every homogeneous polynomial of degree 4 on V which vanishes on T , vanishes
in the whole V .

The following lemma is useful to lower the cardinality of the test set T .

Lemma 4.1. Let V be a finite-dimensional vector space. Let T be a subset of
V which contains 4 distinct hyperplanes through the origin and a point outside
them. Then T \ {0} is non-quartic.

Proof. Let L1, . . . , L4 denote linear homogeneous polynomials giving equations
of the four hyperplanes. Let P (x1, . . . , xn) be a homogeneous quartic polyno-
mial vanishing on all points of T . Division with remainder gives a representa-
tion

P (x1, . . . , xn) = L1Q(x1, x2, . . . , xn) + P2(x1, . . . , xn)

with L1 ∤ P2. The crucial property here is the following: Since T contains
the hyperplane {L1 = 0} and P vanishes on this hyperplane, P2 vanishes on
all of V . (To see this, apply a linear transformation so that L1 = x1; then
P2 = P2(x2, . . . , xn), and P2 vanishes on the hyperplane {x1 = 0} if and only
if it vanishes on V ). Since the hyperplanes are linearly independent, we can
apply the same argument to the other three hyperplanes (starting with L1Q
instead of P ). We obtain

P (x1, . . . , xn) = A · L1L2L3L4 + P̃ (x1, . . . , xn),

where A is a field constant and P̃ vanishes identically on V . Since T contains
a point outside the union of the four hyperplanes, A must be zero.
But then P = P̃ vanishes on all of V . Since this argument applies to any
homogeneous quartic polynomial P , the test set T \ {0} is non-quartic.

Remark 4.2. Note that Lemma 4.1 does explicitly not require the hyperplanes
to be linearly independent. It is immediate from the proof of Lemma 4.1 that
the same argument works for test sets for homogeneous polynomials of degree
n if we find n distinct hyperplanes through the origin and a point outside them.

We want to compare the two Galois representations, σ2 and σf,2. It is crucial
that in the present situation we know that the external Galois conjugate rep-
resentation exists: this follows in the geometric example by construction, and
in the modular example we can consider the 2-adic representation attached
to the conjugate Hilbert modular forms τ(f), where τ is a generator of the
group Gal(F/Q). For any given ℓ-adic Galois representation ρ with field of
coefficients F (i.e, the field generated by the traces of Frobenius elements is
F ) we will denote by ρ′ the external conjugate representation (if we know that
such a representation exists). Since for the Calabi-Yau threefold X̃, we can
only compute the traces of the 4-dimensional Galois representation σ2 ⊕ σ′

2 of
Gal(Q̄/F ) (or actually of Gal(Q̄/Q)), we will need the following generalization
of Theorem 4.3 in [Liv87] about Galois representations whose residual images
are 2-groups:
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Theorem 4.3. Let K be a global field, S a finite set of primes of K and E
the unramified quadratic extension of Q2. Denote by KS the compositum of
all quadratic extensions of K unramified outside S and by P2 the maximal
prime ideal of O := OE. Suppose ρ1, ρ2 : Gal(Q/K) → GL2(E) are continuous
representations, unramified outside S, and with field of coefficients F , and
assume also that their external Galois conjugates exist. We suppose that the
following conditions are satisfied:

1. Tr(ρ1) ≡ Tr(ρ2) ≡ 0 (mod P2) and det(ρ1) ≡ det(ρ2) ≡ 1 (mod P2).

2. There exists a set T of primes of K, disjoint from S, for which

(i) The image of the set {Frobt}t∈T in Gal(KS/K)\{0} is non-quartic.

(ii) Tr(ρ1(Frobt)) + Tr(ρ′1(Frobt)) = Tr(ρ2(Frobt)) + Tr(ρ′2(Frobt)) and
det(ρ1(Frobt)) = det(ρ2(Frobt)) for all t ∈ T .

Then ρ1 ⊕ ρ′1 and ρ2 ⊕ ρ′2 have isomorphic semi-simplifications.

Proof. This is just a slight generalization of Proposition 4.7 and Theorem 4.3
in [Liv87], we reproduce most of the arguments for the reader convenience,
adapted to our situation.
Observe that due to assumption (1), and the fact that similar conditions hold
also for ρ′1 and ρ′2, the image of any of the representations ρ1, ρ

′
1, ρ2 and ρ′2 is

a pro-2-group. Let G be the image of the product of the four representations.
Then, G is a topologically finitely generated pro-2-group and the four repre-
sentations can be thought of (and we will do so for the rest of this proof) as
representations of G, each being obtained from a suitable projection.
Set M2 to be the algebra of 2 by 2 matrices with coefficients in O. For g ∈ G,
let ρ : G→M2 ×M2 be the map:

ρ(g) = (ρ1(g), ρ2(g))

Keeping the notation in [Liv87], we call Σ the subset of G corresponding to T
(the projection of the elements in {Frobt}t∈T to G).
Let M be the Z2-linear span of ρ(G). Since O has rank 2 over Z2, M is a sub-
algebra with unity of M2 ×M2 which is free of rank at most 16 as a module
over Z2.
We consider R =M/2M , which is an F2-vector space of dimension at most 16.
Denote the image of g ∈ G in R by ḡ. Set Γ = {ḡ | g ∈ G}. Then Γ ⊆ R×. R
is spanned as F2-vector space by Γ and dimF2

R ≤ 16.
We will show the following:

Assertion: R is spanned over F2 by {σ̄ | σ ∈ Σ ∪ {1}}.
In order to do so, following [Liv87], we have first to prove that

σ ∈ Σ ⇒ σ̄2 = 1̄ in Γ. (9)
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Let σ ∈ Σ. Set d = det ρ1(σ) = det ρ2(σ) (the last equality is due to assumption
(2)(ii)) and t1 = Tr ρ1(σ), t2 = Tr ρ2(σ).
By the Cayley-Hamilton theorem (for 2 by 2 matrices) we have:

ρ(σ)2 = (t1ρ1(g), t2ρ2(g))− d(I, I)

in M2 ×M2, where I is the 2 by 2 identity matrix.
Reducing modulo P2 this equality, since assumption (1) gives t1 ≡ t2 ≡ 0
(mod P2) and d ≡ 1 (mod P2) we obtain σ̄

2 = 1̄ in Γ, and this is formula (9).
If we call G∗ the Frattini subgroup of G, and Γ∗ the one of Γ, since G/G∗ →
Γ/Γ∗ is surjective, the image of Σ in Γ/Γ∗ is non-quadratic (we use assumption
(2)(i) and the fact that non-quartic easily implies non-quadratic). Then, by
Lemma 4.5 in [Liv87] we see that formula (9) implies that Γ∗ = 1 and hence
Γ ∼= (Z/2Z)r, for some r.
In particular, Γ is commutative, and since Γ spans R, R is a commutative ring.
Let r ∈ R be any element and write r =

∑
γ∈Γ kγγ, with kγ ∈ F2.

Then r2 = (
∑
k2γ) · 1̄. Hence r2 = 0 or else r is invertible.

It follows that R is a local artinian algebra over F2 with maximal ideal

P = {r ∈ R | r2 = 0}

and R/P = F2. Let us now show that P 5 = 0. The proof of this fact goes as
the one given in [Liv87], except that we consider now products of 5 elements
x1, ..., x5 in P (instead of 4 elements): assuming that their product is non-zero
we derive a contradiction, as in [Liv87], by considering the F2-algebra

R0 = F2[T1, ..., T5]/(T
2
1 , ..., T

2
5 )

and the injective map of F2-algebras from R0 to R that sends Ti to xi. The
contradiction follows from the inequalities: dimF2

R0 = 32 > 16 ≥ dimF2
R.

Using the fact that P 5 = 0, the rest of the proof of the assertion follows as
in [Liv87], changing “cubic polynomial” by “quartic polynomial”, and “non-
cubic” by “non-quartic”.
The assertion being proved, we conclude as in [Liv87] from Nakayama’s lemma
that the Z2-span of {ρ(σ) | σ ∈ Σ∪{1}} is all of M (recall that M is the linear
Z2-span of ρ(G)).
Here comes the only place where equality of the traces over Σ is used in Livné’s
proof (cf. [Liv87]): he considers the map: α : M → O defined by α(a, b) =
Tr a−Tr b. Since this map is O-linear and α(I, I) = 0, assuming that α(ρ(σ)) =
0 for every σ ∈ Σ Livné concludes that α = 0, i.e., equality of the traces of ρ1
and ρ2. We can argue in the same way but using the map: β : M → Z2 given
by

β(a, b) = Tr a+ (Tr a)φ − Tr b− (Tr b)φ

where φ is the order two element in Gal(E/Q2). Observe that when applied
to numbers in F , φ agrees with the order two element τ in Gal(F/Q).
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Observe that if a = ρ1(g), then (Tr a)φ = (Tr ρ1(g))
φ = Tr(ρ′1(g)), and

similarly for b = ρ2(g). This map is Z2-linear and satisfies β(I, I) = 0. Then,
assumption (2) (ii) in the theorem implies that for elements of G in Σ (recall
that these elements correspond to Frobenius elements for primes in T ) the
map β vanishes, thus we conclude (as Livné does for α) that β = 0, which
is the equality of the traces of two 4-dimensional 2-adic Galois representa-
tions. Applying Brauer-Nesbitt we conclude that these 4-dimensional Galois
representations have isomorphic semi-simplifications.

4.1 Proof of Theorem 1.1

We want to apply Theorem 4.3 to the 2-adic Galois representations σ2, σf,2 over
F = K. In Proposition 3.3 we proved that σ2 has even traces by geometric
considerations, and in Section 2 we proved that the same is true for the repre-
sentation σf,2. Recall from the introduction that both residual representations
σ̄2, σ̄f,2 have image in SL(F4). In particular their determinants are congruent
modulo 2. Thus the first hypothesis of Theorem 4.3 is satisfied. The field KS

of Theorem 4.3 is the compositum of the thirty one field extensions computed
in the proof of Proposition 2.11. The set of primes in K in the set

T = {〈61, 26−
√
5〉, 〈59,

√
5+8〉, 〈149,

√
5−68〉, 〈211,

√
5+65〉, 〈101,

√
5−45〉,

〈19,
√
5 + 9〉, 〈229,

√
5− 66〉, 〈11,

√
5− 4〉, 〈11,

√
5 + 4〉, 〈109,

√
5− 21〉,

〈19,
√
5− 9〉, 〈701,

√
5− 53〉, 〈211,

√
5− 65〉, 〈29,

√
5− 11〉, 〈59,

√
5− 8〉,

〈181,
√
5− 27〉, 〈239,

√
5 + 31〉, 〈31,

√
5 + 6〉, 〈79,

√
5− 20〉, 〈71,

√
5− 17〉, 13,

〈401,
√
5− 178〉, 〈449,

√
5− 118〉, 〈241,

√
5− 103〉, 〈89,

√
5− 19〉, 7,

〈79,
√
5 + 20〉, 〈239,

√
5− 31〉, 〈41,

√
5− 13〉, 〈31,

√
5− 6〉, 〈71,

√
5 + 17〉},

saturate the set Gal(KS/K)\{0}. They are ordered in such a way that the
primes (under class field theory) correspond to the extensions listed in Table
2.1 in the same order.
Thus T saturates the set Gal(KS/K)\{0}, but we can still eliminate some
prime ideals of big norm by replacing T by a non-quartic test set by Lemma
4.1. To do so, we fix a standard basis of F5

2 corresponding to the following
quadratic extensions of F :

x2 − 3

√
5− 5

2
, x2 − 3, x2 +

√
5 + 5

2
, x2 − 3

√
5, x2 − 2.

In this basis, the elements corresponding to the primes above 701, 449 and 401
correspond to the elements (1, 1, 0, 0, 1), (0, 1, 1, 1, 0) and (1, 1, 0, 1, 0) respec-
tively in F5

2.
We claim that the set T ′ obtained from T by removing these three elements
is a non-quartic set in F5

2. To see this, we use Lemma 4.1 with the fact that
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T ′ ∪ {0} contains the four hyperplanes





x2 = 0

x4 + x5 = 0

x1 + x3 = 0

x1 + x2 + x3 + x4 + x5 = 0

and the extra point (0, 1, 1, 0, 1) (which corresponds to one of the primes above
59).

It was checked in [CS01] that the characteristic polynomials of the 4-
dimensional Galois representations σ2⊕σ′

2 and σf,2⊕στ(f),2 agree at the primes
of K above rational primes smaller than 100. For the remaining set of primes
above the set of rational primes

{101, 109, 149, 181, 211, 229, 239, 241},

the same was checked by us, see Appendix A and the table at [DPS]. By The-
orem 4.3 we conclude that the two 4-dimensional Galois representations have
indeed isomorphic semi-simplifications. In particular, any irreducible compo-
nent of one of them must be isomorphic to some irreducible component of the
other, thus since we know that σf,2 and στ(f),2 are irreducible, one of them must
be isomorphic to σ2 (and the other to σ′

2). This proves Theorem 1.1.

A Appendix: Counting points

In this appendix we indicate how to count the number of points on the Consani-
Scholten quintic X̃ over finite fields. In particular, we give the traces of the
Galois representations σλ, σ

′
λ at the primes p > 100 needed to prove Theorem

1.1. For most part, we follow the approach from [CS01].

Recall that X̃ is given affinely by the symmetric equation in the Chebyshev
polynomial P5(y, z):

X = {P5(x1, x2) = P5(x4, x5)} ⊂ A4.

Thus we can count the number of points of X̃ over some finite field Fq as
follows:

1. Compute the affine number of points #X(Fq).

2. For the projective closure X̄ ⊂ P4, let S ⊂ P3 be X̄ − X. Compute
#S(Fq).

3. Compute the contribution from the exceptional divisors in the resolution
X̃ → X̄.
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For (1), we can proceed by counting how often each value in Fq is attained by
the Chebyshev polynomial P5(y, z) over A

2. Due to the symmetry, #X(Fq) is
the sum of the squares of these numbers.
For (2), note that S is the Fermat quintic surface given by the model

S = {x51 + x52 = x54 + x55} ⊂ P3.

In [CS01] it was pointed out that for q 6≡ 1 mod 5 one has #S(Fq) = 1+q+q2.
Meanwhile for q ≡ 1 mod 5, we could either use the zeta function of S and
its description in terms of Jacobi symbols due to A. Weil or proceed along the
same lines as above, i.e. count points over A4 using symmetry and then take
into account that we are actually working over P3 (substract 1 and divide by
q − 1). However either approach would a priori impose the same complexity
as for computing #X(Fq). Luckily counting {(y, z) ∈ A2

Fq
; y5 + z5 = a} can

be improved by noting that scalar multiplication acts as multiplication by fifth
powers on the values. Hence #{(y, z) ∈ A2

Fq
; y5 + z5 = 0} = (q− 1) ·#{[y, z] ∈

P1
Fq
; y5 + z5 = 0} + 1 and for any a 6= 0 with O(a) = a · (F∗

q)
5 denoting the

a-orbit under multiplication by fifth powers in F∗
q :

#{(y, z) ∈ A2
Fq
; y5 + z5 = a} = 5

∑

o∈O(a)

#{[y, z] ∈ P1
Fq
; y5 + z5 = o}.

(Strictly speaking the sets on the right are ambiguous, but scalar multiples end
up in the same orbit, so the contribution does not depend on the chosen rep-
resentative [y, z] ∈ P1.) Essentially this simplification reduces the algorithm’s
running time from q2 to q compared with computing #X(Fq).
Finally for (3) we recall from 3.3 that the 120 nodes are always defined over
the extension of Fq containing the 15th roots of unity, and that their rulings
are always defined over the same field. So if a node is defined over Fq, then its

exceptional divisor contributes q2+2q additional points. Thus we find #X̃(Fq).
This allows us to compute the trace

tq = trace Frob∗q(H
3(X̃Q̄,Qℓ))

through the Lefschetz fixed point formula (2). Here we do not need to know hq
in advance since it is determined (for q > 20 and b3(X̃) = 4) by the inequality

| tq |≤ 4q3/2.

We obtain the characteristic polynomial of Frob∗q on H3(X̃Q̄,Qℓ):

µq(T ) = T 4 − tqT
3 +

1

2
(t2q − tq2)T

2 − tqq
3T + q6.

In the present situation, we know that Lq(T ) will always split over Q(
√
5):

µq(T ) = (T 2 − αqT + q3)(T 2 − ασq T + q3), αq ∈ Q(
√
5).
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The traces αp, α
σ
p appear as eigenvalues of the Hilbert modular form. In the

following table, we collect one of the traces together with the numbers of points
of X and S over Fp and Fp2 for all primes p > 100 needed to prove Theorem
1.1.

p #X(Fp) #X(Fp2) #S(Fp) #S(Fp2) αp

101 1222681 1063601210405 14655 104338955 −598− 476
√

5

109 1338593 1679922873825 11991 141787855 890 + 468
√

5

149 3395857 10952392903505 22351 494061055 150− 344
√

5

181 6562145 35183310464645 39455 1074841355 −898− 288
√

5

211 10261235 88285583898085 49205 1984280555 −1228− 1616
√

5

229 12214593 144270849112465 52671 2752837855 −210 + 940
√

5

239 13872967 186440164574105 57361 3265836055 3240 + 944
√

5

241 15137985 195998061709305 65255 3375066455 −4938 + 172
√

5

B Appendix: Sturm Bound (by José Burgos Gil and Ariel Pacetti)

The aim of this appendix is to show how a Sturm bound can be obtained for
the modular form of level 6

√
5 and parallel weight 10. We expect to extend

the result to any real quadratic fields in a future work. Following the previous
notation, F will denote the real quadratic field Q(

√
5).

B.1 Desingularization and a Hecke bound over C

Let H(3) be the Hilbert modular surface obtained as the quotient of the prod-
uct of two copies of the Poincare upper half plane modulo the action of the
congruence group

Γ(3) :=

{(
α β
γ δ

)
∈ SL2(OF ) : α ≡ δ ≡ 1 (mod 3), β, γ ∈ 3OF

}
.

The group Γ(3) has no fixed elliptic points for this action (see [vdG88] page
109); it has 10 non-equivalent cusps. Let H(3) be the minimal compactification
of H(3) obtained by adding one point for each cusp. The surface H(3) is

singular at all such points. Denoting by H̃(3) the minimal desingularization of
H(3), we get that the diagram of the desingularization of H(3) at any cusp is
the following (see [vdG88], page 193):
Denote by ci, 1 ≤ i ≤ 10 the different cusps (where c1 is the cusp at infinity)
and denote by Si, 1 ≤ i ≤ 10 the exceptional divisor at the i-th cusp. The
surface H̃(3) is of general type (by Theorem 3.4 of [vdG88]).
We want a criterion to show that a Hilbert modular form whose Fourier ex-
pansion starts with many zeroes is actually the zero modular form. This is a
generalization of the Sturm bound to Hilbert modular forms. To this end we
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−3 −3

−3

−3

need a nef (numerically eventually free) divisor. Let F1 be the curve defined
in [vdG88] page 88. It has 30 disjoint connected components made of curves
with self-intersection number −2 and it meets each connected component of
the desingularization at the cusps in three points (see [vdG88], page 193).

Lemma B.1. The intersection numbers between the curves Si and F1 are:

• Si · Sj =
{

0 if i 6= j,

−4 if i = j.

• F1 · F1 = −60.

• Si · F1 = 12.

Consider the divisor

D′ :=
1

5

(
10∑

i=1

Si + 2F1

)
.

Lemma B.2. The divisor D′ is nef and it agrees with the canonical divisor. Its
self-intersection number is given by

D′ ·D′ = 8.

Proof. In example 7.5 of [vdG88] (page 179) it is proved that D′ equals the
canonical divisor and its self-intersection number is computed. The fact that it
is nef follows from the fact that H̃(3) is a minimal surface of general type.

Remark B.3. Since H̃(3) is a complex smooth projective surface, there is a
unique canonical divisor (which equals the dualizing sheaf).

Let M2k(Γ(3)) denote the vector space of modular forms of parallel weight 2k
for Γ(3). It is the space of global sections of the line bundle O(k(D′ + S)) =
O(D′ + S)⊗k:

M2k(Γ(3)) = Γ(O(k(D′ + S))),



26 Luis Dieulefait, Ariel Pacetti and Matthias Schütt

where S =
∑10
i=1 Si. Similarly, the space of cusp forms S2k(Γ(3)) is given by

the divisor k(D′ + S)− S.
We want to add some vanishing conditions to M2k(Γ(3)) such that the space
of forms with these vanishing conditions is empty. Let a be a positive integer,
and G be a Hilbert modular form. We say that G vanishes with order a at the
cusp ci if G is a section of O(k(D′ + S)− aSi) ⊂ O(k(D′ + S)).
Let G be a form which vanishes with order a at all the cusps and with order
a+ b at the infinity cusp, i.e. it belongs to the space given by the divisor

E = k(D′ + S)− aS − bS1.

It follows from Lemma B.1 and Lemma B.2 that D′ · Si = 4 for all 1 ≤ i ≤ 10,
so

E ·D′ = k(D′ ·D′ + S ·D′)− aS ·D′ − bS1 ·D′ = 48k − 40a− 4b.

If b+ 10a > 12k, this intersection number is negative and, since D′ is nef, the
space of global sections of O(E) is the zero space. This implies

Theorem B.4. If G is a Hilbert modular form of parallel weight 2k for Γ(3)
which vanishes with order a at all cusps and with order a + b at the infinity
cusp and b+ 10a > 12k, then G is the zero form.

Corollary B.5. If G is a Hilbert modular form of weight (k1, k2), with k1 ≡ k2
(mod 2), for Γ(3) which vanishes with order a at all cusps and with order a+ b
at the infinity cusp and b+ 10a > 3(k1 + k2), then G is the zero form.

Proof. Just apply the previous Theorem to the form G(z1, z2) ·G(z2, z1).

To relate the order of vanishing of a modular form at a cusp with the q-
expansion we need to compute explicitly the first step of the desingularization
of the cusp. In the case of the infinity cusp, this implies computing the local
ring of the cusp, which is done in [vdG88] Chapter II, Section 2. The stabilizer
of the infinity cusp for Γ(3) is given by

{(
ǫ α
0 ǫ−1

)
: α ∈ 3OF and ǫ ≡ 1 (mod 3)

}
,

i.e. it is of type (M,V ) = (3OF , U
8
F ), where U

8
F = 〈 472 + 3

2

√
5〉. The dual of

M is given by M∨ =
O

∨
F

3 = OF

3
√
5
, so any Hilbert modular form for Γ(3) has a

q-expansion at the infinity cusp of the form
∑

ξ≫0

ξ∈ OF

3
√

5

aξ exp(ξz1 + τ(ξ)z2).

Let M+ denote the elements of M which are totally positive, and consider the
embedding of M+ in (R+)

2, given by

µ 7→ (µ, τµ).



Modularity of the Consani-Scholten quintic 27

Denote by Ak = (A1
k, A

2
k), k ∈ Z the vertices of the boundary of the convex

hull of the image of M+, ordered with the condition A1
k+1 < A1

k for all k. Any
pair (Ak−1, Ak) is a basis for M as Z-module (see [vdG88] Lemma 2.1). This
determines an isomorphism

M\C2 → C× × C×,

which maps z = (z1, z2) to (uk−1, uk), where

exp(zj) = u
Aj

k−1

k−1 u
Aj

k

k , for j = 1, 2. (10)

Let σk denote the cone spanned by Ak−1 and Ak, i.e.

σk = {sAk−1 + tAk : s, t ∈ R+}.

The desingularization of the infinity cusp is obtained by taking a copy of C2

for each element σk and gluing them together in terms of the change of basis
matrix (see [vdG88] page 31).
Let ξ ∈ M∨ be a totally positive element. Then in the copy corresponding to
σk,

exp(Tr(ξz)) = exp(ξz1 + τ(ξ)z2) = u
ξA1

k−1+τ(ξ)A
2
k−1

k−1 · uξA
1
k+τ(ξ)A

2
k

k =

= u
Tr(ξAk−1)
k−1 · uTr(ξAk)

k .

Now, we denote by Lk, the component of the exceptional divisor S1, over the
infinity cusp, that corresponds to the ray through Ak. Observe that Lk+4 = Lk.
We have:

Proposition B.6. Let G be a Hilbert modular form with q-expansion at infinity

G(z1, z2) =
∑

ξ≫0

ξ∈ OF

3
√

5

aξ exp(ξz1 + τ(ξ)z2).

Let Lk be as above. Then ordLk
(G) > K if and only if aξ = 0 for all ξ ∈M∨,

ξ ≫ 0 with Tr(ξAk) ≤ K.

Name Point
A0 3(1, 1)
A1 3(1 + ω, 1 + τ(ω))
A2 3(2 + 3ω, 2 + 3τ(ω))
A3 3(5 + 8ω, 5 + 8τ(ω))

Table B.1: First boundary points
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In Table B.1 it is shown a set of nonequivalent boundary points of the convex

hull of M+, where ω denotes the element 1+
√
5

2 . It is clear that they differ

by powers of ω2, and since the matrix
(
ω2 0
0 ω−2

)
∈ Γ0(3), a Hilbert modular

form for Γ0(3) will vanish with the same order in the four components Lk,
k = 0, . . . , 3, of S1. The vanishing condition corresponding to L0, reads

ordL0
(exp(ξz)) = 3Tr(ξ).

In particular, a modular form vanishes at the cusp if and only if a0 = 0.
The above discussion implies the following theorem for Γ0(3).

Theorem B.7. Let G be a Hilbert modular form of parallel weight 2k for Γ0(3)
which vanishes with order a at all cusps and whose Fourier expansion at the
infinity cusp is given by

G =
∑

ξ≫0

ξ∈ OF

3
√

5

aξ exp(ξz1 + τ(ξ)z2).

If aξ = 0 for all ξ with Tr(ξ) ≤ 4k − 3a then G is the zero form.

Proof. If aξ = 0 for all ξ with Tr(ξ) ≤ 4k− 3a, by Proposition B.6, G vanishes
with order greater than 12k − 9a at the infinity cusp. Thus the result follows
from Theorem B.4.

Corollary B.8. Let G be a Hilbert modular form of weight (k1, k2), with
k1 ≡ k2 (mod 2), for Γ0(3) which vanishes with order a at all cusps and whose
Fourier expansion at the infinity cusp is given by

G =
∑

ξ≫0

ξ∈ OF

3
√

5

aξ exp(ξz1 + τ(ξ)z2).

If aξ = 0 for all ξ with Tr(ξ) ≤ (k1 + k2)− 3a then G is the zero form.

B.2 Moduli interpretation and integral models

In order to make the computation of the previous section work over finite fields,
we need to use the integral structure of the modular Hilbert surface and of the
modular curve X(3). It comes from their moduli interpretation. Let us follow
the notation of [BBGK07].
We fix ζ3 a third-root of unity and we denote by δ = (

√
5)−1 the different of

F .
An abelian scheme A→ S of relative dimension 2, together with a ring homo-
morphism

ι : OF → End(A)
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is called an abelian surface with multiplication by OF , and is denoted by the
pair (A, ι). This gives an OF -multiplication in the dual abelian surface A∨. An
element µ ∈ Hom(A,A∨) is called OF -linear if µι(α) = ι(α)∨µ for all α ∈ OF .
Denote by P(A) the sheaf for the étale topology on Sch /S defined by

P(A)T = {λ : AT → A∨
T : λ is symmetric and OF -linear},

for all T → S. The subsheaf P(A)+ is the subsheaf of polarizations in P(A).
The pair (A, ι) is said to satisfy the Deligne-Pappas condition, denoted by
(DP), if the canonical morphism of sheaves

A⊗OF
P(A) 7→ A∨

is an isomorphism. In this case, P(A) is a locally constant sheaf of projective
OF -modules of rank 1.
Since the class number of OF is one, we can restrict to consider only OF -
polarizations. An OF -polarization on a pair (A, ι) is a morphism of OF -modules
ψ : OF → P(A)S taking O

+
F to P(A)+ such that the natural homomorphism

A⊗OF
OF → A∨, a⊗ α 7→ ψ(α)(a)

is an isomorphism.
Suppose S is a scheme over SpecZ[1/3]. A level 3-structure on an abelian
surface A over S with real multiplication by OF is an OF -linear isomorphism

ϕ : (OF /3)
2
S → A[3]

between the constant group scheme defined by (OF /3)
2 and the 3-torsion of A.

Theorem B.9. The moduli problem “Abelian surfaces over S with real multipli-
cation by OF satisfying (DP) condition, OF -polarization and level 3-structure”
is represented by a regular algebraic scheme H (3) which is flat and of rel-
ative dimension two over SpecZ[1/3, ξ3]. Furthermore, it is smooth over
SpecZ[1/15, ξ3].

Proof. See [Gor02] Theorem 2.17, p. 57;Lemma 5.5, p. 99.

Remark B.10. The scheme H (3) is not geometrically irreducible, it has
#(OF /3)

× = 8 connected components over Q̄. In fact, the 8 components
are defined over SpecZ[1/15, ξ3]. This definition is not the same as the one
given in [Rap78] (which is connected), it is a topological cover of degree 4 of it.
Let S be a scheme over Z[1/3], then the abelian scheme A has a Weil pairing
e3 : A[3] × A∨[3] → µ3, which satisfies e3(αa, b) = e3(a, αb). There exists an
OF -bilinear form eOF

: A[3]×A∨[3] → (δ−1/3δ−1)(1) such that e3 = Tr(eOF
).

Any element in λ ∈ P(A)T defines a homomorphism between A and A∨ which
is trivial on A[3] if and only if λ ∈ 3P(A)T for any morphism T → S. Since
eOF

is non-degenerate, P(A)⊗OF
Λ2
OF
A[3] = δ−1/3δ−1(1).
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Any element φ ∈ Isom(µ3,Z/3) gives an isomorphism between δ−1/3δ−1(1)
and δ−1/3δ−1. In [Rap78] the only level 3-structures considered are the ϕ such
that in the following diagram

P(A)⊗OF
Λ2
OF
A[3]

∼eOF
⊗ψ

��

δ−1/3δ−1(1)

��

δ−1 ⊗OF
Λ2
OF

(OF /3) δ−1/3δ−1

the vertical dotted arrow is given by an element φ ∈ Isom(µ3,Z/3). Since
all such maps differ by (multiplication by) an element in (OF /3)

×, the two
assertions follow.

Remark B.11. The group GL2(OF /3) acts on H (3), where an
element M send a level 3-structure ϕ to the level 3-structure
ϕ ◦ M . The subgroup SL2(OF /3) acts on each connected compo-
nent of H (3) ⊗ Q̄, while the subgroup HF = {( α 0

0 1 ) such that
α ∈ (OF /3)

×} acts transitively on the set of connected components.

Theorem B.12. There is a toroidal compactification h3 : H̃ (3) → Z[ζ3, 1/3]

of H (3) that is smooth at infinity. The complement H̃ (3)\H (3) is a relative
divisor with normal crossings.

Proof. See [Cha90] Theorem 3.6, Theorem 4.3 and [Rap78] Theorem 5.1 and
Theorem 6.7.

The set of complex points of H (3) is equal to 8 copies of the surface H(3)

considered in the previous section, while the set of complex points of H̃ (3) is

equal to 8 copies of H̃(3).

If we study the moduli problem for 1-dimensional abelian varieties (i.e. elliptic
curves), we have the advantage that they are already principally polarized. As
in the two-dimensional case, if S is a scheme over Z[1/3], a level 3-structure on
an elliptic curve E over S is a Z-linear isomorphism

ϕ : (Z/3)2S → E[3]

between the constant group scheme defined by (Z/3)2 and the 3-torsion of E.

Theorem B.13. The moduli problem “elliptic curves over S with level 3-
structure” is represented by a smooth affine curve Y (3) over Z[1/3]. Further-
more, the category M3[1/3] of “generalized elliptic curves over S, that have
smooth generic fibres, singular fibres whose Neron polygons have 3-sides and
with a level 3-structure” is a projective smooth scheme X (3) over Z[1/3].

Proof. See [DR73], Corollary 2.9.
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Remark B.14. The group GL2(Z/3) acts on X (3), in the same way as in the
two dimensional case, i.e. an elementM ∈ GL2(Z/3) sends the level 3-structure
ϕ to the level 3-structure ϕ ◦M . The subgroup SL2(Z/3) acts on each con-
nected component of X (3)⊗Q̄ while the subgroup HQ = {( α 0

0 1 ) such that α ∈
(Z/3)×} acts transitively in the set of connected components.

We want to study the inclusions of Y (3) into H (3). If E is an elliptic curve
over S, the abelian variety AE = E⊗ZOF has a canonical OF -action ιE : OF →
End(AE). Furthermore,

AE ≃ E ×S E,

where the isomorphism depends on chosing a basis for OF as Z-module. The
dual abelian variety A∨

E is isomorphic to E ⊗Z δ
−1. Furthermore, P(AE) ≃

δ−1 ≃ OF (i.e. AE has a canonical principal polarization ψE), where the
isomorphism preserves positivity and the Deligne-Pappas condition holds (see
[BBGK07] Lemma 5.10). Let (E,ϕ) be an elliptic curve with level 3-structure.
Consider the natural inclusion SL2(Z/3) →֒ SL2(OF /3), and let N = {Ni}30i=1

be a set of representatives for the quotient set SL2(OF /3)/SL2(Z/3). Each ele-
ment N of N gives rise to an embedding of Y (3) into H (3), which associates
to the pair (E,ϕ) the element (AE , ιE , ψE , ϕ ◦ N). For shortness we abuse
notation by writing ϕ ◦N . The map ϕ extends by OF -linearity to a map

ϕ̃ : (Z/3)2 ⊗Z OF = (OF /3)
2 → AE [3],

and the element N acts in (OF /3)
2. By choosing a connected component of

Y (3)⊗ Q̄ and of H ⊗ Q̄, the 30 embeddings obtained from the set N (up to
composition with an element of HF if necessary) give us open dense subsets of
the 30 connected components of the curve F1 from the previous section.

Theorem B.15. The closed inmersion Y (3) →֒ H (3) of schemes over

Z[ζ3, 1/15] extends to a closed inmersion X (3) →֒ H̃ (3).

Proof. Following the referee’s advice, we omit the proof of this Theorem.

Theorem B.15 has the following direct consequences. Let H̃ be one of the irre-

ducible components of H̃ (3) over SpecZ[1/15, ξ3]. The set of complex points

of H̃ agrees with the surface H̃(3) of section B.1. Let Z be any irreducible

component of the divisor D′ of H̃(3) introduced in the same section. Then Z

is defined over Q(ζ3). Let Z = Z be the Zariski closure of Z in H̃ .

Corollary B.16. For every prime p of Z[1/15, ζ3], the vertical cycle Zp is
irreducible.

Proof. If Z is a component of S this follows directly from Theorem B.12. If Z
is a component of F1 this follows from Theorem B.15 and Theorem B.13.

Let D ′ be the horizontal divisor of H̃ determined by D′.
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Corollary B.17. For every prime p of Z[1/15, ζ3], the divisor D ′
p of the

surface H̃p over SpecZ[1/15, ζ3]/p is nef.

Proof. Since the divisor D ′
p is effective, we only have to show that the intersec-

tion of D ′
p with any of its irreducible components is greater or equal to zero.

By Corollary B.16, every irreducible component of D ′
p is the specialization of

a irreducible component of D′. Thus the result follows from the fact that D′

is nef and that the intersection product is preserved by specialization.

Corollary B.18. Let G be a Hilbert modular form of weight (k1, k2), with
k1 ≡ k2 (mod 2), for Γ0(3) whose coefficients generate a finite field extension
L of Q. Let p be a prime ideal of OL.F [ξ3] not dividing 15. If G vanishes with
order a at all cusps of H̄p and if the Fourier coefficients of its q-expansion at
the infinity cusp are algebraic integers satisfying aξ ≡ 0 (mod p) for all ξ with
Tr(ξ) ≤ (k1 + k2)− 3a then all aξ are divisible by p.

Proof. From the last Corollary, we have that the divisor D ′
p of the surface H̃p

over SpecZ[1/15, ζ3]/p is nef, so we can apply the same argument as in the
proof of Theorems B.4 and B.7. The result follows from the fact that D ′

p is
the specialization of the divisor D consider in such theorems and the fact that
intersection numbers are preserved by specialization.

Remark B.19. In practice, if one starts with a form whose coefficients vanish
at all cusps of the complex Hilbert surface with order at least a (for example
if it is a product of cusp forms, as will be the case in the next section) then it
also vanishes at all the cusps of H̄p with order at least a.

B.3 The case of the form (f⊗ χ√
5)

3h22 + (τ(f⊗ χ√
5)

3h21 of level

Γ0(6
√
5)

We want to apply the results of the last two sections to the Hilbert cusp form
h = (f⊗ χ√

5)
3h22 + (τ(f⊗ χ√

5)
3h21 of Section 2, which has weight (10, 10) and

level Γ0(6
√
5). Assuming that the q-expansion at the infinity cusp of f is zero

for all elements of trace smaller than b̃+1 (hence the order of vanishing at the
four lines Li, i = 1, . . . , 3 is 3b̃ + 3), we want to determine which value of b̃
forces the form h (which vanishes with order 3 at all cusps and 9b̃ + 9 at the
four lines) to be the zero form. We start with some general results.

Lemma B.20. Let p, q be two distinct prime ideals of F relatively prime to 3.
Then the index of Γ0(3p

rqs) in Γ0(3) is

[Γ0(3) : Γ0(3p
rqs)] = N pr−1(N p+ 1)N qs−1(N q+ 1).

In particular,
[Γ0(3) : Γ0(6

√
5)] = 30. (11)
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Let h be a modular form of weight (10, 10) for Γ0(6
√
5), which vanishes with

order 3 at all cusps, and with order b̃+ 3 at the infinity cusp. We consider its
norm to Γ0(3),

G :=
∏

γ∈ Γ0(6
√
5)\Γ0(3)

h|2[γ].

It is a parallel weight 10 · 30 Hilbert modular form for Γ0(3). Since h is a cusp
form, looking at its q-expansion at the different cusps it is easy to see that G
vanishes with order at least 3 ·4 at all cusps and with order at least 3 · (3b̃+18)
at the infinity cusp. Then Theorem B.4 and Corollary B.18 (with a = 12,
b = 9b̃+ 54 and k = 150) imply that if b̃ ≥ 181 then G is the zero form. So we
get

Theorem B.21. Let h be a Hilbert modular form over F2 of parallel weight
(10, 10) for Γ0(6

√
5), which vanishes with order 3 at all cusps. If its Fourier

expansion is given by

h =
∑

ξ≫0
ξ∈O

∨
F

aξ exp(ξz1 + τ(ξ)z2).

with aξ = 0 for all ξ with Tr(ξ) ≤ 181, then h = 0.
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[BBGK07] Jan H. Bruinier, José I. Burgos Gil, and Ulf Kühn. Borcherds prod-
ucts and arithmetic intersection theory on Hilbert modular surfaces.
Duke Math. J., 139(1):1–88, 2007.

[Cha90] C.-L. Chai. Arithmetic minimal compactification of the Hilbert-
Blumenthal moduli spaces. Ann. of Math. (2), 131(3):541–554,
1990.

[Coh00] Henri Cohen. Advanced topics in computational number theory,
volume 193 of Graduate Texts in Mathematics. Springer-Verlag,
New York, 2000.

[CS01] Caterina Consani and Jasper Scholten. Arithmetic on a quintic
threefold. Internat. J. Math., 12(8):943–972, 2001.

[DD06] Luis Dieulefait and Mladen Dimitrov. Explicit determination of
images of Galois representations attached to Hilbert modular forms.
J. Number Theory, 117(2):397–405, 2006.

[DGP10] Luis Dieulefait, Lucio Guerberoff, and Ariel Pacetti. Proving mod-
ularity for a given elliptic curve over an imaginary quadratic field.
Math. Comp., 79(270):1145–1170, 2010.



34 Luis Dieulefait, Ariel Pacetti and Matthias Schütt
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José Burgos Gil
ICMAT-CSIC
jiburgosgil@gmail.com


