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ABSTRACT
The Newton polytope of the resultant, or resultant polytope,
characterizes the resultant polynomial more precisely than
total degree. The combinatorics of resultant polytopes are
known in the Sylvester case [4] and up to dimension 3 [9].
We extend this work by studying the combinatorial charac-
terization of 4-dimensional resultant polytopes, which show
a greater diversity and involve computational and combi-
natorial challenges. In particular, our experiments, based
on software respol for computing resultant polytopes, es-
tablish lower bounds on the maximal number of faces. By
studying mixed subdivisions, we obtain tight upper bounds
on the maximal number of facets and ridges, thus arriving at
the following maximal f -vector: (22, 66, 66, 22), i.e. vector of
face cardinalities. Certain general features emerge, such as
the symmetry of the maximal f -vector, which are intriguing
but still under investigation. We establish a result of in-
dependent interest, namely that the f -vector is maximized
when the input supports are sufficiently generic, namely full
dimensional and without parallel edges. Lastly, we offer a
classification result of all possible 4-dimensional resultant
polytopes.

Categories and Subject Descriptors
G.2.1 [Discrete Mathematics]: Combinatorics—Count-
ing problems; I.1.2 [Symbolic and Algebraic Manipula-
tion]: Algorithms—Algebraic algorithms

Keywords
Resultant, f -vector, Mixed subdivision, Secondary polytope

1. INTRODUCTION
∗Partially supported by UBACYT 20020100100242, CONICET
PIP 112-200801-00483 and ANPCyT PICT 2008-0902, Argentina.
∗∗Partially supported by “Computational Geometric Learning”,
financed within the 7th Framework Program for research of the
European Commission, under FET-Open grant number 255827.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’13, June 26–29, 2013, Boston, Massachusetts, USA.
Copyright 2013 ACM 978-1-4503-2059-7/13/06 ...$10.00.

Let A = (A0, . . . , An) be a family of subsets of Zn and
let f0, . . . , fn ∈ C[x1, . . . , xn] be polynomials with this fam-
ily of sets as supports, and symbolic coefficients cij 6= 0,
i = 0, . . . , n, j = 1, . . . , |Ai|, i.e. fi =

∑
a∈Ai cijx

a. The
family A is essential if these sets jointly affinely span Zn,
and every subfamily of Ai’s of cardinality j, 1 ≤ j < n,
spans an affine space of dimension ≥ j. In this paper we
assume that A is essential. The sparse (or toric) resultant
R = RA of f0, . . . , fn is then a non-constant irreducible po-
lynomial in Z[cij : i = 0, . . . , n, j = 1, . . . , |Ai|], defined up
to sign, which vanishes if f0 = f1 = · · · = fn = 0 has a solu-
tion in (C∗)n, C∗ = C \ {0}. The Newton polytope N(R) of
the resultant, that is, the convex hull of the exponents oc-
curring in R with non-zero coefficient, is a lattice polytope
called resultant polytope. A famous example is the Birkhoff
polytope of a linear system, cf Example 1.

The resultant has m =
∑n
i=0 |Ai| variables, hence N(R)

lies in Rm. However, for essential families,R satisfies n+(n+
1) natural homogeneities [5], so its dimension is dim(N(R)) =
m−2n−1. If A is not essential, but contains a single essen-
tial subfamily, the resultant depends only on the coefficients
of the polynomials in this subfamily. Otherwise, the resul-
tant locus has codimension bigger than one, and then the
sparse resultant is defined to be the constant 1.

Previous work. In [3] an algorithm is described for com-
puting the vertex and facet representations of N(R); the
algorithm also produces a triangulation of the polytope’s
interior into simplices. The input to this algorithm is an or-
acle for computing the extreme resultant vertex given a di-
rection. The software implementation is called respol1 and
is the one used in our experiments. This method is readily
generalized to compute the discriminant and secondary poly-
topes, although for the latter there exists a faster method to
enumerate the vertices, when only these are needed [8]. An
alternative way for computing resultant polytopes exploits
tropical geometry [6] and is implemented based on the soft-
ware library Gfan.

The combinatorics of resultant polytopes is known only in
small cases, namely for linear systems (Example 1), in the
Sylvester case (n = 1), and when dimN(R) = 3. The uni-
variate case is fully described in [4]: N(R) is combinatorially
isomorphic to a polytope denoted by Nk0,k1 , of dimension
k0 + k1 − 1, where the Ai may be multisets with cardinal-
ity ki. They may lead to polytopes in any dimension if one
picks the Ai accordingly. In [5] they show that Nk0,k1 has(
k0+k1
k0

)
vertices and, when both ki ≥ 2, it has k0k1 + 3

1http://respol.sourceforge.net



facets. Sturmfels [9] classifies all resultant polytopes up to
dimension 3. In his notation, the 3-dimensional polytope
N1111,111, denoted by N3,2 in [4], depicted in Fig. 1 with the
resultant label, has maximal f -vector.

Proposition 1. [9, Sect. 6] Assume A is an essential
family. Then, N(R) is 1-dimensional iff |Ai| = 2, for all i.
The only planar resultant polytope is the triangle. The only
3-dimensional N(R) are, combinatorially: (a) the tetrahe-
dron, (b) the square-based pyramid, and (c) the polytope
N3,2.

In [6] the authors raise explicitly the open question of
describing 4-dimensional resultant polytopes, which we un-
dertake in this paper.

Our contribution. We study the combinatorial charac-
terization of 4-dimensional resultant polytopes. To bound
the maximum number of faces, we prove that it suffices to
focus on one case, which corresponds to 3 Newton polygons
with support cardinalities |Ai| = 3, thus m = 9 and n = 2.
We further show it is enough to consider sufficiently generic
polygons, namely where they all have non-zero area, and no
parallel edges exist among them. Our experiments, based
on respol [3], establish lower bounds on the maximal num-
ber of faces (Table 1). By studying mixed subdivisions, we
obtain tight upper bounds on the maximal number of facets
and ridges, thus raising new conjectures, the most impor-
tant of which is that the maximal f -vector is (22, 66, 66, 22)
for 4-dimensional N(R). These results are summarized in
Thm 16. Our (loose) upper bound on the number of ver-
tices, namely 28, significantly improves the known bound of
6608 [9, Cor.6.2]. Certain general features emerge, such as
the symmetry of the maximal f -vector, which are intriguing
but still under investigation. However, the Newton poly-
topes are not self-dual. Our main result is Thm 17, where
we offer a characterization of all possible 4-dimensional re-
sultant polytopes.

The rest of the paper is organized as follows. The next sec-
tion introduces 4-dimensional resultant polytopes. Sect. 3
focuses on three 2d-triangles with non-parallel edges, which
maximizes the number of faces, and upper bounds the num-
ber of facets and ridges in N(R) by combinatorial argu-
ments. Sect. 4 classifies all 4-dimensional resultant poly-
topes, and proves we can ignore parallel edges when maxi-
mizing the number of faces. We conclude with open ques-
tions and generalizations.

2. RESULTANT POLYTOPES
We start with previous results from [9, 5]. The main tool

for computing sparse resultants are the regular mixed subdi-
visions of the convex hull of Minkowski sum P =

∑
iAi. By

abuse of notation, we may also refer to this sum as
∑
i Pi,

where Pi denotes the convex hull of Ai and it is understood
that the information from the Ai’s is preserved. A subdi-
vision of P is a collection of subsets of P , the cells of the
subdivision, such that the union of the cells’ convex hulls
equals the convex hull of P and every pair of convex hulls
of cells intersect at a common face. Maximal cells are those
with dimension equal to the dimension of the subdivision.
Fine (or tight) are those whose dimension equals the sum
of its summands’ dimensions. A subdivision is regular if it
can be obtained as the projection of the lower hull of the

Minkowski sum
∑
i Âi of the lifted point sets Âi, for some

lifting to Rn+1. A subdivision is mixed when its cells have
(unique) expressions as Minkowski sums of convex hulls of
point subsets in the Ai’s. It is fine (or tight) if all its cells
are fine. Maximal cells are mixed if the dimension of every
summand, except possibly one, equals one. In the sequel,
we focus only on regular subdivisions, thus we will omit the
word regular in general.

Given a family A, the associated Cayley configuration C
is the lattice configuration in Zn+1×Zn = Z2n+1 defined by

{e0} ×A0 ∪ · · · ∪ {en} ×An,

where e0, . . . , en denotes the canonical basis in Zn+1. We de-
note by Q its convex hull. Regular fine mixed subdivisions of
P are in bijection with regular triangulations of Q. Indeed,
there is a bijection of maximal cells given as follows: any
maximal cell (simplex) σT in a given regular triangulation
T = Tw of Q (with vertices in C) has 2n vertices; the corre-
sponding maximal cell in the associated regular fine subdivi-
sion S = Sw of P has vertices of the form α0 + · · ·+αn, with
(ei, αi) a vertex of σT . Note that for σT to be of maximal
dimension, at least one of its vertices lies in ei × Ai, for all
i. For more details about the translation between regular
subdivisions of Q and regular mixed subdivisions of P , see
[2, Sect. 9.2].

Let C be the (2n + 1) × m associated Cayley matrix,
i.e., the matrix whose columns are the points in the Cayley
configuration C. The inner product of any point in N(R)
with any vector in the rowspan of the Cayley matrix C is
constant, and so N(R) lies in a parallel translate to the
nullspace of C. This explains why dim(N(R)) = m−2n−1.

The faces (resp. vertices) of N(R) can be obtained, by a
many-to-one mapping, from the set of all regular (resp. fine)
mixed subdivisions of P [9]. Given a mixed subdivision of
P , every cell σ defines a subsystem of the fi|σ, where each
polynomial is a restriction of fi on the face of Ai appearing
as a summand in σ. If the subdivision is the projection of
the lower hull under a lifting w, then the face of N(R) whose
outer normal is w is∏

σ

R(f0|σ, . . . , fn|σ)dσ , (1)

where dσ ∈ N is specified in [9, Thm 4.1]. We shall call σ
essential if the corresponding fi|σ define an essential sub-
system. Hence, all faces of N(R) are Minkowski sums of
lower-dimensional resultant polytopes, corresponding to es-
sential subsystems. These lower-dimensional resultant poly-
topes correspond to subsets of the cells of the subdivision
defining the face of N(R). In particular, resultant vertices
are obtained when all resultants in (1) are monomials, hence
all σ are mixed; then dσ is the normalized volume of σ.

We call flip the transformation of a fine mixed subdivision
of P to another fine mixed subdivision of P . Following [9], if
these subdivisions correspond to different vertices of N(R)
we call this flip cubical. In other words, a cubical flip corre-
sponds to a resultant edge. The above discussion yields the
following which, will be our basic tool for counting the faces
of N(R).

Proposition 2. [9, Thm.4.1] A mixed subdivision S of
P corresponds to a face of N(R), which is the Minkowski
sum of the resultant polytopes of the cells of S.

2.1 4-dimensional resultant polytopes.



resultant prism cube

Figure 1: Graph skeleta of 3d facets of 4d resultant
polytopes of 3 triangles with non-parallel edges.

In this case, m = 2n + 5, where m =
∑n
i=0 |Ai|, and

|Ai| ≥ 2. So, there are only 3 cases, up to reordering:

(i) All |Ai| = 2, except for one with cardinality 5.

(ii) All |Ai| = 2, except for two with cardinalities 3 and 4.

(iii) All |Ai| = 2, except for three with cardinality 3.

Cases (i) and (ii) are similar to the study of 3d-resultant
polytopes in [9], cf Thm 17. So, we concentrate on the new
case (iii) and, more precisely, on the main case n = 2 and
each |Ai| = 3, which we term the case (3, 3, 3). This is done
without loss of generality, by the following:

Theorem 3. [9, Thm.6.2] Every resultant polytope of an
essential family is affinely isomorphic to a resultant polytope
of an essential family (A0, . . . , An) with |Ai| ≥ 3, for all
i = 0, . . . , n.

The proof is an algorithm to produce this reduction: up to
an affine change of variables and reordering, we can assume
that Ai = {0, νiei+1}, i = 0, . . . , n− 3, so we can solve (with
rational powers) the first n − 2 variables and replace them
in the last 3 polynomials. Then, N(R) has the same com-
binatorial type as an essential (3, 3, 3) configuration, where
we could have repeated points or parallel edges, even if they
were not present in An−2, An−1 and An (and some coeffi-
cients could be equal to the sum of Laurent monomials in
the original coefficients).

Let us focus on N(R) for an essential (3, 3, 3) configura-
tion A = (A0, A1, A2), and consider A′2 ⊂ A2.

Lemma 4. [9] When there are no parallel edges in the
subfamily (A0, A1, A

′
2), |A′2| = 2, their corresponding resul-

tant polytope gives a facet of N(R), which is combinatorially
equivalent to the polytope of Fig 1 (resultant).

3. THE CASE (3, 3, 3)

In this section, we assume that we have an essential family
with n = 3,m = 9 and each Ai has cardinality 3. Our study
shows the richness of possible polytopes, in contrast to the
case of resultant polytopes with dimension ≤ 3.

We write the f -vectors as (f0, f1, f2, f3), omitting the 1
corresponding to the unique 4-face. We define the mini-
mum and maximum f -vector to be the one with minimum
and maximum number of facets, i.e. with minimum or maxi-
mum value of f3. The minimum f -vector of the (3, 3, 3) case
when all Pi have dimension 2 but we admit parallel edges,
is (6, 15, 18, 9) and is attained by the following example.

Example 1 (Birkhoff polytope). Let A0 = A1 =
A2 = {(0, 0), (1, 0), (0, 1)}. Then N(R) is the 4-dimensional
Birkhoff polytope [10] which has f-vector (6,15,18,9).

Figure 2: Vertex graph and facet graph (courtesy of
M. Joswig) of the resultant polytope in Example 2.

X1

X2

X3X4

Figure 3: A non-regular subdivision of P of Exam-
ple 2. There are 4 hexagons X1, X2, X3, X4.

A complete list of f -vectors when A0 = {(0, 0), (0, 1), (1, 0)}
andA1, A2 take all the possible values from the set {(0, 0), a1,
a2} where a1, a2 ∈ {(j, k) | j, k ∈ N ∧ j, k ≤ 5} is presented
in Table 1. There is a unique f -vector, (22, 66,66, 22), which
is maximal, and corresponds to more than one input family
of supports. Highlighted f -vectors correspond to triangles
that share no parallel edges between any of them. The com-
putations have been performed using respol and last several
days.

(6, 15, 18, 9)
(8, 20, 21, 9)
(9, 22, 21, 8)
(9, 24, 25, 10)

(10, 24, 23, 9)
(10, 25, 24, 9)
(10, 25, 25, 10)
(10, 26, 25, 9)
(11, 28, 27, 10)
(11, 29, 28, 10)
(11, 29, 29, 11)
(12, 29, 26, 9)
(12, 30, 27, 9)
(12, 30, 28, 10)
(12, 32, 31, 11)
(12, 33, 33, 12)
(13, 32, 29, 10)
(13, 33, 30, 10)
(13, 33, 31, 11)
(13, 34, 32, 11)
(13, 34, 33, 12)

(13, 37, 37, 13)
(14, 35, 32, 11)
(14, 36, 33, 11)
(14, 36, 34, 12)
(14, 37, 34, 11)
(14, 37, 35, 12)
(14, 37, 36, 13)
(14, 38, 36, 12)
(14, 38, 37, 13)
(14, 38, 38, 14)
(14, 40, 40, 14)
(15, 39, 36, 12)
(15, 40, 36, 11)
(15, 40, 37, 12)
(15, 40, 38, 13)
(15, 41, 39, 13)
(15, 41, 40, 14)
(15, 42, 41, 14)
(15, 42, 42, 15)
(16, 42, 39, 13)
(16, 43, 39, 12)

(16, 43, 40, 13)
(16, 43, 41, 14)
(16, 44, 41, 13)
(16, 44, 42, 14)
(16, 45, 43, 14)
(16, 45, 44, 15)
(16, 46, 45, 15)
(16, 46, 46, 16)
(17, 46, 43, 14)
(17, 47, 43, 13)
(17, 47, 44, 14)
(17, 47, 45, 15)
(17, 48, 45, 14)
(17, 48, 46, 15)
(17, 48, 47, 16)
(17, 49, 47, 15)
(17, 49, 48, 16)
(17, 49, 49, 17)
(17, 50, 50, 17)
(18, 51, 48, 15)
(18, 51, 49, 16)

(18, 52, 50, 16)
(18, 52, 51, 17)
(18, 53, 51, 16)
(18, 53, 53, 18)
(18, 54, 54, 18)
(19, 54, 52, 17)
(19, 55, 51, 15)
(19, 55, 52, 16)
(19, 55, 54, 18)
(19, 56, 54, 17)
(19, 56, 56, 19)
(19, 57, 57, 19)
(20, 58, 54, 16)
(20, 59, 57, 18)
(20, 60, 60, 20)
(21, 62, 60, 19)
(21, 63, 63, 21)
(22, 66, 66, 22)

Table 1: The largest f-vectors of 4d N(R) computed:
9 highlighted f-vectors correspond to triangles with-
out parallel edges.

A particular extremal case follows:

Example 2. Let A0 = {(0, 0), (1, 0), (0, 1)}, A1 = {(0, 0),
(5, 4), (9, 1)}, A2 = {(5, 0), (0, 1), (1, 2)}. Then, N(R) has
f-vector (22,66,66,22); the vertex and facet graphs are in
Fig. 2. A non-regular subdivision of P =

∑
i Pi is depicted

in Fig. 3 (see also Rem. 1).

On the other hand, the following example concerns the
case of three 1-dimensional configurations, excluded from
the above list.

Example 3. Let A0 = {(0, 0), (0, 1), (0, 2)}, A1 = {(0, 0),
(1, 0), (2, 0)}, A2 = {(0, 0), (1, 1), (2, 2)}. Then, N(R) has
f-vector (20,57,51,14).



If we replace the configuration (A0, A1, A2) in Example 3 by
the configuration (A0, A1, {(0, 0), (1, 1), (2, 3)}), where two
parallelisms are broken without introducing any new one,
the f -vector becomes (20, 58, 54, 16). Note that we get higher
values for the different fi.

3.1 Non-parallel edges
All along this section, we consider essential (3, 3, 3) fam-

ilies with dim(Pi) = 2, for all i, where moreover no edges
coming from two different Pi are parallel. Even in this case,
there are several different relevant polytopes (cf highlighted
f -vectors in Table 1).

We describe the subsets A′i ⊂ Ai, which form subsystems,
that define cells of a subdivision S of P , and their connection
to the faces of N(R). The simpler non-trivial subsystem
is 2-element subsets A′i in each Ai (namely edges). Such a
subsystem is essential when no two of the convex hulls of the
A′i are parallel. In this case, the cell is a Minkowski sum of 3
edges from the different Ai’s which we call a hexagon. Every
hexagon can be refined in two possible ways to a regular
mixed decomposition and corresponds to an edge of N(R)
(see the cubical flips discussed above). A heptagon cell is a
Minkowski sum of an Ai, w.l.o.g. A0, and 2 edges A′1, A

′
2

from A1, A2 resp., which form an essential subfamily A′ =
(A0, A

′
1, A

′
2). Every heptagon has up to 3 mixed refinements,

each of which has a hexagon cell which is the sum of A′1, A
′
2

and one edge of A0, not parallel to any of them. In this
general case, a heptagon corresponds to a triangular 2-face of
N(R). Two hexagons in S might give rise to the Minkowski
sum of two N(R) edges which forms a parallelogram 2-face
of N(R), again in case of non-parallelism. An octagon cell is
a Minkowski sum of two Ai, w.l.o.g. A0, A1, and an edge A′2
of A2. An octagon corresponds to a 3d resultant polytope,
thus to a facet of N(R). We call these facets resultant facets
(Fig. 1). A heptagon and a hexagon in S correspond to a
facet which equals the Minkowski sum of a segment and a
triangle, i.e., the sum of a 1d and 2d resultant polytopes.
In generic position, this is a prism facet (Fig. 1). Finally, 3
hexagons in S correspond to a facet which is the Minkowski
sum of 3 segments. In generic position this is a cube facet
(Fig. 1).

The number of facets. We describe resultant polytopes
corresponding to maximum facet cardinality. We start with
several lemmata that serve as tools later. Assume we have
a hexagon X = s0 + s1 + s2 where si ⊂ Ai of cardinality
2, and a heptagon H = A0 + s′1 + s′2 where s′i ⊂ Ai is of
cardinality 2 for i ∈ {1, 2}, with the corresponding support
sets being essential.

Lemma 5. A heptagon and a hexagon in a subdivision
have exactly one common edge from Ai for some i ∈ {0, 1, 2}.

Proof. Observe that X,H always share the edge s0 ⊂
A0. Then if they have one more common edge, this should
be from A1 or A2. W.l.o.g. it is an edge from A1 and we call
it s1. Then we can construct a subdivision of A0 + s1 +A2

that contains X,H. This yields a prism as 3d resultant
polytope, which cannot exist.

Lemma 6. There are no two subdivisions which contain
the same hexagon and heptagon.

Proof. We will show that by fixing the common edge
s0 ⊂ A0, there is a unique way to construct a regular mixed

subdivision with X and H. Assume there are two such sub-
divisions: one with X,H and one with X∗, H∗, which both
share the segment s0. We can always subdivide H in a way
s.t. it has the hexagon s0 + s′1 + s′2 as a cell. Similarly, H∗

has s0 + s∗1 + s∗2 as a cell, where s∗i , s
∗
i ⊂ Ai, for i ∈ {1, 2}.

This implies that s0 +A1 +A2 can have two different pairs
of hexagons, namely s0 + s′1 + s′2 and s0 + s∗1 + s∗2. Thus,
the 3d resultant polytope of s0 +A1 +A2 has two different
parallelogram facets, which is impossible.

Corollary 7. There is no subdivision with an octagon
and a hexagon cell or with two heptagon cells.

We now introduce a technical tool. Let G be the dual
graph of a regular subdivision S (not necessarily tight); G is
planar. The cells, edges and vertices of S correspond, resp.,
to nodes, edges and cells of G. The graph G also contains a
special node, which can be placed at infinity, corresponding
to the complement of S in the plane. The cells and edges
incident to this node are called unbounded. There are 9
unbounded edges incident to this node. The unbounded
edges may form multi-edges if at least 2 of them are incident
to the same non-infinity node. An example is in Fig. 4,
corresponding to the non-regular subdivision S of Fig. 3.

X1 X3

X2

X4

Figure 4: The graph G dual to S of Fig. 3, with
labels on the 4 nodes dual to hexagons. Nodes dual
to X1, X2, X3 and the triangles (colored) define the
perimeter. Unbounded edges are dashed.

Lemma 8. The dual graph G has 9 unbounded cells, each
defined by two unbounded edges and up to 2 bounded edges.

Proof. G has as many unbounded cells as unbounded
edges, which are as many as the boundary edges of P . Each
unbounded cell is defined by two unbounded edges and, pos-
sibly, some bounded edges. There cannot be ≥ 3 bounded
edges in an unbounded cell because this would imply having
≥ 2 cells in S with no edge on the boundary ∂P . These
would have to be triangles sharing an edge, which is impos-
sible if S is obtained by a sufficiently generic lifting.

Unbounded cells with no bounded edges are defined by
an unbounded double-edge between the dual of a hexagon
cell and the node at infinity. For unbounded cells with
2 bounded edges, the common node between the bounded
edges is incident to no unbounded edge hence it is dual to a
triangle that intersects ∂P at a vertex; see e.g., the 3 nodes
in Fig. 4 dual to triangles in S.

Given 3 triangles, no subdivision can have more than 4
hexagons, but the following can occur.

Lemma 9. There exists an essential (3, 3, 3) family of 2-
dimensional triangles with no parallel edges, which has a
unique subdivision with 4 hexagons. This coarse subdivision
is not regular, but it gets refined to regular subdivisions defin-
ing different faces of N(R).



Proof. Existence follows from Example 2 and the sub-
division of Fig. 3, with dual graph in Fig. 4. The 4 segments
corresponding to the Newton polytopes of the 4 associated
resultants of 3 binomials in dimension 2 are linearly indepen-
dent, and thus cannot define any boundary face of N(R).
We detail in Remark 1 its refinements giving rise to faces of
N(R).

Lemma 10. For any (A0, A1, A2) the number of triplets
of hexagons X1, X2, X3 over all subdivisions of

∑2
i=0Ai is:

1. at most 1, if any two Xi’s have empty intersection,

2. 0, if more than two pairs of Xi’s have a non-empty
intersection.

3. 0, if exactly two Xi’s have a non-empty intersection,

4. at most 3, if exactly two pairs of Xi’s have a non-empty
intersection,

Proof. The intersection of 2 Xi’s is empty or a segment.
Case 1. The hexagons must intersect the boundary: ob-

serve that the hexagons use all the edges of Pi thus their
convex hull should be P . Then, there is only one way to put
3 hexagons to intersect the boundary. There is one way to
color the edges of the graph in Fig. 4 such that the edges of
the hexagons alternate and the edges of the triangles have
the same color.

Case 2. If all 3 pairs of X1, X2, X3 have non-empty in-
tersection, their convex hull is a 9-gon that contain the 3
hexagons and a triangle in the middle, i.e. it intersects all
hexagons but not the boundary of the 9-gon. The dual graph
of this subdivision is a 4-clique. Assume that Ai have colors,
black, blue, red. Observe that we cannot color the edges of
the 4-clique in a way s.t. the edges of the triangle are col-
ored with the same color and no two bounded edges of each
hexagons are colored with the same color. The claim follows
from the fact that a hexagon is a sum of 3 edges of dif-
ferent colors. Case 3 holds with similar, more complicated
arguments.

Case 4. Let X1 = {s0, s1, s2}, X2 = {s′0, s1, s′2}, X3 =
{s′′0 , s′1, s2} for segments si, s

′
i, s
′′
i ⊂ Ai. The first property

is that there is no other triplet of hexagons sharing s1, s2,
otherwise A0 +s1 +A2 would have another pair of hexagons
different than X1, X2 which implies that a 3d N(R) has
2 parallelogram facets, which is impossible. Thus, if there
exists another triplet of hexagons that uses all segments of
A0, it shares s′1 6= s1 and s′2 6= s2. The second property is
that the hexagons use all the segments of the triangle P0,
hence P0 should be placed in the middle of them. Thus, each
hexagon can form a heptagon with A0, namely A0 + s1 + s2,
A0 + s1 + s′2, A0 + s′1 + s2. Each of these 3 heptagons
corresponds to a prism facet. By the first property above we
observe that all prism facets produced by different triplets of
hexagons are all different. There are at most 9 prism facets
by Lem.13, so there are at most 3 cube facets.

Note that the subdivision of Fig. 3 has 4 triplets of hexagons
and thus satisfies the statements of Lem. 10 at their extreme.

We are now ready to bound the maximum number of
facets.

Lemma 11. If the 3 triangles Ai share no parallel edges,
then the only possible facets are the ones depicted in Fig 1.

Proof. The uniqueness of the type of the resultant facet
comes from Lem. 4. Combining this with Cor. 7 we observe
that we cannot have a resultant facet as a Minkowski sum
that has a 3-dimensional summand or two 2-dimensional
summands. The other possibilities are the Minkowski sum
of a segment and a triangle (i.e. a prism facet), or three
affinely independent segments (i.e. a cube facet), or four
affinely dependent segments. The latter cannot occur since
the only subdivision that corresponds to a Minkowski sum
of 4 segments gives raise to affinely independent segments
in the non parallel case.

We start by bounding the number of resultant facets, they
are as the one in Fig. 1(resultant).

Lemma 12. There can be at most 9 resultant facets in the
(3, 3, 3) case, and this is tight.

Proof. The resultant facet is a 3d resultant polytope,
corresponding to a subsystem with no parallel edges and
support cardinalities (3, 3, 2). This subsystem, comprised of
two triangles and an edge, defines a Minkowski sum equal
to an octagon. Consider a coarse mixed subdivision S of
A0, A1, A2, containing this octagon as a cell. All the other
cells of S correspond to non-essential subsystems, hence
their resultant is a monomial. There are 9 different sub-
systems with support cardinalities 3, 3, 2, because there are
3 ways to choose the Ai contributing an edge, and 3 ways to
specify this edge. This bound is tight because it is achieved
in Example 2.

The facet in Fig. 1 (resultant) contains 6 vertices, 11
edges, and 7 ridges: 6 triangular and one parallelogram.

A prism facet is the Minkowski sum of a triangular ridge
T and an edge E of N(R), see Fig. 1(prism), where T,E are
resultant polytopes of subsystems with cardinalities (3, 2, 2)
and (2, 2, 2) resp. This type of facet has 6 vertices. The
ridges are two translates of T , and 3 Minkowski sums of
E with every edge of T . Each prism facet has 9 edges:
3 translates of E, and two translates of each edge of T .
The subdivision of P which corresponds to a prism facet
should contain a hexagon X and a heptagon H, where X
corresponds to E and H to T .

Lemma 13. There can be at most 9 prism facets in the
(3, 3, 3) case, and this is tight.

Proof. Consider a hexagon X = s0 + s1 + s2, where
si ∈ Ai, and a heptagon H, which is the Minkowski sum of
A0 and segments s′1, s

′
2, where s′i ⊂ Ai, for i ∈ {1, 2}. By

Lem. 5, X and H should have a common edge from A0. By
Lem. 6, if we fix s0 ⊂ A0, there is a unique way to construct
a regular mixed subdivision with X and H. Hence, there
are at most 9 such subdivisions, which shows there are at
most 9 prism facets. This is tight because it is achieved in
Example 2.

The cube facet is a Minkowski sum of 3 N(R) edges,
each corresponding to a hexagon, see Fig. 1(cube). The
corresponding (regular) mixed subdivision of P contains 3
hexagons, yielding 3 resultant edges whose Minkowski sum
is the cube facet. Each cube facet contains 8 vertices, 12
edges, and 6 parallelogram ridges.

Lemma 14. There can be at most 4 cube facets in the
(3, 3, 3) case, and this is tight.



Figure 5: The complex of 4 cube facets: a Minkowski
sum of 4 affinely independent segments, each associ-
ated to a hexagon in the subdivision; each subfigure
highlights a cube.

Proof. In order to have a cube facet we need 3 hexagons
in a subdivision. By Lem. 10 the largest number of triplets of
hexagons in all subdivisions of a fixed family (A0, A1, A2) is
4. Thus, there are at most 4 cube facets. The maximum car-
dinality is achieved by our maximal instance in Ex. 2 where
the 4 cube facets are constructed by selecting the 4 different
triplets of hexagons from the subdivision of Fig. 3.

Remark 1. The subdivision of Fig. 3, attained in our
maximal instance, corresponds to a Minkowski sum of 4
affinely independent segments, each corresponds to a sub-
division’s hexagon. As we remarked, this Minkowski sum is
4-dimensional and thus the subdivision could not be regular
because it neither corresponds to the whole 4-dimensional
polytope nor to any of its faces. We indicate now the topol-
ogy of the cube facets correspond to refinements of this sub-
division. Let (a, b, c, d) ∈ {0, 1}4 stand for the two possible
flips in the 4 hexagons. There are 16 fine subdivisions of S:
those which are regular correspond to resultant vertices. Let
us denote, w.l.o.g., by

(0bcd), (a0cd), (ab0d), (abc0) ⊂ {0, 1}4,

the subsets of regular fine subdivisions defining cubical facets,
each with cardinality 8. The flip graph corresponds to 4
cubical facets, each defined by all possible flips in 3 of the
hexagons. Hence, each is a neighbor of the other 3, as shown
in Fig. 5, with a parallelogram in common. The facet graph
is a 4-clique. Overall, 15 fine subdivisions are involved,
hence regular, while one fine subdivision, namely (1111), is
non-regular and not contained in any of the 4 facets. Of
course, each cube has another 3 parallelograms in common
with non-cube facets.

3.2 The number of faces
We denote by f̃i the maximum number of faces of dimen-

sion i of any (3, 3, 3) resultant polytope. It follows from
Thm 19 that it is enough to bound the maximal number of
faces in the generic case with no parallel edges, considered
in Sect. 3.1.

We will make use of a powerful result extending Barnette’s
Lower bound to non-simplicial polytopes:

Proposition 15. [7, thm.1.4] For d-dimensional polytopes:

f1 +
∑
i≥4

(i− 3)f i2 ≥ df0 −

(
d+ 1

2

)
,

where f i2 is the number of 2-faces which are i-gons.

The following theorem summarizes our results on the max-
imum numbers f̃i.

Theorem 16. . The maximal number of ridges of a (3, 3, 3)

resultant polytope is f̃2 = 66 and the maximal number of
facets is f̃3 = 22. Moreover, f̃1 = f̃0 + 44, 22 ≤ f̃0 ≤ 28,
and 66 ≤ f̃1 ≤ 72. The lower bounds are tight.

Proof. Assume that we have a non parallel (3, 3, 3) con-
figuration and let us relate f2 and f3. Let φ1, φ2, φ3 be the
number of resultant, prism and cube facets resp.; i.e. φi is
the number of facets with i summands. By Lemma 11, the
total number of facets is f3 = φ1 +φ2 +φ3. We observe that
there are only triangular and parallelogram ridges, whose
cardinalities are at most 36 and 30, resp.:

1

2
(6φ1 + 2φ2) = 3φ1 + φ2 ≤ 36,

1

2
(φ1 + 3φ2 + 6φ3) =

1

2
(φ1 + 3φ2) + 3φ3 ≤ 30.

The total number of ridges is then

f2 =
1

2
(7φ1 + 5φ2) + 3φ3 ≤ 66. (2)

Thus, f̃2 ≤ 66 and our maximal instance establishes the
lower bound.

With respect to the number of facets, there are at most 9
resultant, 9 prism, and 4 cubical facets by Lemmata 12, 13,
and 14. Thus f̃3 ≤ 22 and again, our maximal instance in
Example 2 establishes the lower bound.

By Euler’s equality, for any resultant polytope we have
f0 + f2 = f1 + f3 ≤ f̃1 + f̃3, therefore f̃0 + f̃2 ≤ f̃1 + f̃3. By
symmetry, we get f̃0 + f̃2 = f̃1 + f̃3. Then,

f̃1 − f̃0 = f̃2 − f̃3 = 44 (3)

With respect to the two last inequalities in the statement, t
he lower bounds are given by our maximal instance and by
equality (3), it is enough to prove f̃0 ≤ 28. Again, assume
we are in the non parallel case. In the resultant polytope
with maximal number of facets, the 2-faces are either trian-
gles or parallelograms and there are f4

2 = 30 parallelograms.
Prop. 15 becomes f̃1 + 30 ≥ 4f̃0 − 10. Then,

f̃1 + 40 = f̃0 + 84 ≥ 4f̃0,

and the desired bound follows.

4. CLASSIFICATION
Let us summarize the characterization of 4d resultant poly-

topes. We need to consider 3 special instances, correspond-
ing to 3 possible cardinalities of supports in Sect. 2.1. As
mentioned before, the cases n = 0, 1 are similar to those
in [9], so we concentrate on (3, 3, 3). We fix n = 2 and
m = 9 = 3+3+3 and consider such families. The associated
mixed Grassmannian G(2; 3, 3, 3;Q), defined in [1], is the
linear subvariety of the Grassmanian of 5-dimensional sub-
spaces in Q9 which contain the vectors e1+e2+e3, e4+e5+e6,
and e7 + e8 + e9. Given a (3, 3, 3) family A, its associated
Cayley matrix C represents (via its rowspan) an element in
G(2; 3, 3, 3;Q). All 5 × 9 matrices representing an element
in G(2; 3, 3, 3;Q) are affinely equivalent to an integer Cayley
matrix of an integer (3, 3, 3) family and have some structural
vanishing minors. In the case of Cayley matrices of essen-
tial configurations, not too many minors can be 0, but there
could be parallel vectors and repeated points. In Sturmfels’
notation [9], the Newton polytope N12,111 corresponds to
two univariate configurations of multisets of 3 points, but



in the first, two of the points coincide: this is the square-
based pyramid in Fig. 1(b). Thus, this is a degeneration of
N111,111, which is the Newton polytope for two univariate
configurations with 3 different points each, cf Fig. 1. Note
that from the point of view of the Cayley matrix C, having
a configuration with a repeated point is just an occurrence
of the fact that some minors of C vanish, similarly to the ex-
istence of parallel edges in A, which is the new feature that
we have encountered in the study of 4-d resultant polytopes.

Theorem 17. Assume we have an essential family A of
n + 1 (finite) lattice point configurations in Rn with N(R)
of dimension 4. Then, up to reordering, we are in one of
the situations (i), (ii) or (iii) in Sect. 2.1. These resultant
polytopes are, resp., a degeneration of the following:

1. n = 0, |A0| = 5, which is a 4-simplex with f-vector
(5, 10, 10, 5),

2. n = 1, |A0| = 3, |A1| = 4, which is a Sylvester case,
with f-vector (10, 26, 25, 9),

3. n = 2, |A0| = |A1| = |A2| = 3, which are the polytopes
described in Sect. 3.

In particular, no resultant polytope of dimension 4 can have
more than 22 facets and 66 ridges.

Proof. By Thm 3, we restrict our attention to cases 1
to 3. We discuss case 3 because cases 1 and 2 are settled,
resp., in [9] and [5, ch.12], cf also the 8th instance in Table 1.

We can perturb (with values in Q), e.g. a point p ∈ A0

to a nearby rational point p∗. We get a perturbed matrix
C′Q ∈ G(2; 3, 3, 3;Q) of the Cayley matrix C. The resultant
is an affine invariant of a configuration or its Cayley matrix,
so we can left multiply C′Q by an invertible matrix M in
block form with a 3 × 3 identity matrix in the upper left
corner and an integer 2 × 2 integer matrix M ′ with non-
zero determinant in the lower right corner, to get an integer
matrix C′ = MC′Q, which corresponds to the same point in
the mixed Grassmanian. Then, C′ is the Cayley matrix of
an essential integer family A′. We can say that A is then
a degeneration of this new integer family A′, which is the
image of the family A′Q = (A0 − {p} ∪ {p∗}, A1, A2) by M ′.

Given a regular mixed subdivision S of A associated to a
generic lifting vector w (i.e., w is generic among the vectors
that produce the same regular subdivision), we consider the
regular subdivision S′Q that w induces on the perturbed con-
figuration AQ. We then translate S′Q via multiplication by
M ′ to a combinatorially equivalent regular subdivision S′ of
A′. It follows from Thm 19 that the number of facets of
N(R) cannot exceed the number of facets of N(R′), and we
conclude by Thm 16.

Example 4. Let us consider degeneracy when n = 1, i.e.
points are repeated: A0 = {0, 1}, A1 = {0, 1, 1, 2}. We per-
turb A1 and get A∗1 = {0, 1, 101/100, 2}. We dilate by
100 (multiply a row of the Cayley matrix) and get B0 =
{0, 100}, B1 = {0, 100, 101, 200}, which span Z. The resul-
tant polytopes for A, B are combinatorially equivalent, al-
though the former resultant has total degree 2 + 1 = 3, and
the latter 200 + 100 = 300.

4.1 Input genericity maximizes complexity
Given a polytope Q ⊂ R3 and a direction u ∈ R3, its lower

hull along u, denoted LHuQ, is the union of all facets whose

outer normal has negative or zero inner product with u. In
the case of zero inner product, the facet is called degenerate
and its projection is not a maximal cell. We assume that
the triangles Ai = {pij , j = 0, 1, 2}, i = 0, 1, 2, have 2d
convex hulls Pi. Let S be a regular subdivision of P , and

Âi, P̂ be the lifted Newton polytopes and their Minkowski

sum; LHe3 P̂ , where e3 is the unit vector on the x3-axis, is
in bijection with S. Consider edges E0, E1 with the same
outer normal v:

E0 = (p00, p01) ⊂ P0, E1 = (p10, p11) ⊂ P1.

For some vertex p2k ∈ A2, E1+E2+p2k is an edge of P with

outer normal v. Thus, their lifting Ê1 + Ê2 + p̂2k has outer

normal (v, 0) and yields one or two facets of P̂ , yielding one

or two degenerate facets on LHe3 P̂ , i.e. segments, depending
on whether the lifting leads, resp., to a coarse or fine sub-
division. In the latter case, the two segments are collinear
but their union has been subdivided into one of two possible
mixed subdivisions, each with two cells. W.l.o.g., these are:

{p00+E1+p2k, E0+p11+p2k}, {E0+p10+p2k, p01+E1+p2k}
(4)

We consider a perturbation in the direction of v

p∗00 := p00 + εv, (5)

with indeterminate ε → 0+. Since we are considering a fi-
nite process that branches on signs of algebraic expressions,
namely Cayley minors, ε can take sufficiently small positive
rational values, as is the case in standard symbolic pertur-
bation methods.

Lemma 18. With the above hypotheses and notation, let

A∗ := ({p∗00, p01, p02}, A1, A2),

and P ∗ := A∗0 + A1 + A2 be the family and Minkowski sum
associated with a perturbation (5). Let S be a (regular fine)
mixed subdivision of P associated with a generic weight vec-
tor w, and S∗ the regular subdivision of P ∗ associated to the
same vector w. Then, S∗ is mixed and contains at most one
more cell σ than does S. There is a bijection between all
cells of S∗ (except σ, if it exists) and the cells of S, which
associates combinatorially equivalent cells.

We expect this lemma to extend to any dimension.

Proof. Eq. (5) defines p∗00 ∈ Q2. As in the proof of
Theorem 17, by an appropriate dilation we define a family
of supports in Z2. By abuse of notation, we denote the
latter by A∗. To prove the lemma for any S, we consider
two cases according to the subdivisions of E0 + E1 + p2k
in (4). In the first case, p00 + p11 + p2k is not a vertex of P
but p∗00 + p11 + p2k is a vertex of P ∗: the perturbation has

moved outward the middle point of E0 +E1 +p2k. LHe3 P̂ is

combinatorially equivalent to LHe3+εvP̂ , where the latter is
defined by shifting our viewpoint by an infinitesimal amount:

the two degenerate facets whose union is Ê0+Ê1+p̂2k appear
in both lower hulls (the subdivision to two facets occurs
because S is fine). The non-degenerate facets are clearly
combinatorially equivalent in both lower hulls. Formally,

non-degenerate facets on LHe3 P̂ , i.e. with positive area, have
outer normal (w,−1) and we claim that

(w,−1) · (e3 + ε(v, 0)) = −1 + εw · v < 0,



for sufficiently small ε > 0. Thus, these facets also lie on

LHe3+εvP̂ . Non-degenerate facets of P̂ but not on LHe3 P̂
have outer normal (w, 1) and we claim that

(w, 1) · (e3 + ε(v, 0)) = 1 + εw · v > 0,

for sufficiently small ε > 0. So, these facets do not lie on

LHe3+εvP̂ . We now show LHe3 P̂
∗ is combinatorially equiv-

alent to LHe3+εvP̂ . Any facet except the degenerate ones in

LHe3+εvP̂ clearly corresponds to a combinatorially equiva-

lent facet in LHe3 P̂
∗. The degenerate facets give rise to two

edges in P̂ ∗, which proves that S∗ is fine, hence a mixed sub-
division; moreover, these edges are combinatorially equiva-

lent to those on LHe3+εvP̂ . Thus the lemma is proved in the
case no new cell is created.

In the second subdivision of E0 + E1 + p2k, the middle
point is p01+p10+p2k; this point is perturbed to the relative
interior of P ∗. The perturbation creates an extra (mixed)
cell E∗0 + E1 + p2k which intersects ∂P ∗. For all other cells
in S∗ the discussion for the above case holds. This settles
the case a new cell is created.

Theorem 19. For any family A whose triangles have one
or more pairs of parallel edges, there exists a family of trian-
gles A∗ without any parallel edges as in section 3.1, whose
resultant polytope N(R∗) has at least as many faces of any
dimension as those in the polytope N(R) of A.

Proof. We first assume all Pi’s have non-zero area. Given
A with strongly parallel edges E0 ⊂ P0, E1 ⊂ P1, perturba-
tion (5) defines A∗, where the corresponding edges are not
parallel. In the case of other strongly parallel edges, we ap-
ply the same procedure sufficiently many times. For every
mixed subdivision S of A the same lifting defines a mixed
subdivision S∗, as in Lem. 18. This shows that the vertices
of N(R) can be mapped in a 1-1 fashion to, possibly a sub-
set of, vertices of N(R∗). Hence the number of vertices in
N(R∗) is at least as large as that of N(R).

To prove the statement for k-faces, k ≥ 1, we extend
Lem. 18 to an arbitrary (coarse) regular subdivision S and
its perturbed counterpart S∗. The only difference is that
S may contain a single 1d cell E0 + E1 + p2k and cells of
the form σ = E0 + E1 + F2, for a face F2 ⊂ P2. Each σ
is subdivided to 3 or 2 cells in S∗, depending on whether a
new cell is created or not. The subdivision follows one of
the subdivisions of E0 + E1 + p2k discussed in the proof of
Lem. 18. Now σ is not essential hence contributes a point
summand to the N(R) face corresponding to S. The N(R∗)
face corresponding to S∗ is an edge if σ∗ is a hexagon, thus
establishing the lemma for k-faces.

If parallel edges E0, E1 have antiparallel outer normals,
no regular subdivision (even coarse) may contain a cell of
the form E0 + E1 + F2, though there may be adjacent cells
E0 +p1j +F2, p0i+E1 +F2. Any infinitesimal perturbation,
such as (5), yields S∗ combinatorially equivalent to S.

When some Pi’s have zero area, the result still holds in
a similar way after a detailed study of each possible case
(including repeated points), which we omit due to space re-
strictions. The key case is the following: A satisfies |A0| =
|A1| = |A2| = 3, dimP0 = 1, dimP1 = dimP2 = 2, then
let A∗ = (A∗0, A1, A2) such that the middle point of A0 is
infinitesimally perturbed to yield dimP ∗0 = 2. Then there
is an injection of regular subdivisions of A to those of A∗,
such that if S maps to S∗ then S∗ contains one more cell

equal to A∗0 + p1j + p2k, for vertices p1j ∈ A1, p2k ∈ A2, and
all other cells are combinatorially equivalent to the corre-
sponding cells in S.

5. OPEN PROBLEMS AND EXTENSIONS
Open problem 1. Prove that either f0 ≤ 22 or f1 ≤ 66.

That is, we conjecture that the maximum f-vector of a 4d-
resultant polytope is (22, 66, 66, 22).

Open problem 2. Is it true that, for maximal f-vectors,
it holds f0 = f3? Is it always true that f1 ≥ f2, if f0 ≥ 10?

The proof of Thm 19 should extend to high dimensions.
Lem. 20 generalizes Lem. 12 in any dimension and is proven
analogously. It motivates us to raise Conj. 1.

Lemma 20. A d-dimensional resultant polytope has at most
m resultant facets.

Conjecture 1. The number of vertices of a d-dimensional
resultant polytope is bounded above by

3 ·
∑

‖S‖=d−1

∏
i∈S

f̃0(i)

where S is any multiset with elements in {1, . . . , d − 1},
‖S‖ :=

∑
i∈S i, and f̃0(i) is the maximum number of vertices

of a i-dimensional N(R).

The only bound in terms of d is (3d − 3)2d
2

[9], yielding

f̃0(5) ≤ 1250 whereas our conjecture yields f̃0(5) ≤ 231.
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