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Summary. This chapter is an expanded version of the lecture notes prepared by the
second-named author for her introductory course at the CIMPA Graduate School
on Systems of Polynomial Equations held in Buenos Aires, Argentina, in July 2003.
We present an elementary introduction to residues and resultants and outline some
of their multivariate generalizations. Throughout we emphasize the application of
these ideas to polynomial system solving.

1.0 Introduction

This chapter is an introduction to the theory of residues and of resultants.
These are very classical topics with a long and distinguished history. It is not
our goal to present a full historical account of their development but rather
to introduce the basic notions in the one-dimensional case, to discuss some of
their applications -in particular, those related to polynomial system solving-
and present their multivariate generalizations. We emphasize in particular
the applications of residues to duality theory and the explicit computation of
resultants which, in turn, results in the explicit elimination of variables.

Most readers are probably familiar with the classical theory of local
residues which was introduced by Augustin-Louis Cauchy in 1825 as a pow-
erful tool for the computation of integrals and for the summation of infi-
nite series. Perhaps less familiar is the fact that given a meromorphic form
(H(z)/P(z))dz on the complex plane, its global residue, i.e. the sum of local
residues at the zeros of P, defines an easily computable linear functional on
the quotient algebra A := C[z]/(P(z)) whose properties encode many impor-
tant features of this algebra. As in Chapters 2 and 3, it is through the study of
this algebra, and its multivariate generalization, that we make the connection
with the roots of the associated polynomial system.
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The basic definitions and properties of the univariate residue are reviewed
in Section 1.1 and we discuss some nice applications in Section 1.2. Although
there are many different possible definitions of the residue, we have chosen
to follow the classical integral approach for the definition of the local residue.
Alternatively, one could define the global residue by its algebraic properties
and use ring localization to define the local residue. We indicate how this is
done in a particular case.

In Section 1.5 we study multidimensional residues. Although, as coeffi-
cients of certain Laurent expansions, they are already present in the work of
Jacobi [Jac30], the first systematic treatment of bivariate residue integrals is
the 1887 memoir of Poincaré [Poi87], more than 60 years after the introduction
of univariate residues. He makes the very interesting observation that geome-
ters were long stopped from extending the one-dimensional theory because of
the lack of geometric intuition in 4 dimensions (referring to C?). The mod-
ern theory of residues and the duality in algebraic geometry is due to Leray
and Grothendieck. There have been many developments since the late 70’s:
in the algebro-geometric side with the work of Grothendieck (cf. [Har66]); in
analytic geometry where we may mention the books by Griffiths and Harris
[GH78] and Arnold, Varchenko and Gusein -Zadé [AGnZV85]; in commuta-
tive algebra with the work of Scheja and Storch [SS75, SS79], Kunz [Kun86],
and Lipman [Lip87]; and in the analytic side with the residual currents ap-
proach pioneered by Coleff and Herrera [CH78]. In the 90’s the possibility of
implementing symbolic computations brought about another important ex-
pansion in the theory and computation of multidimensional residues and its
applications to elimination theory as pioneered by the Krasnoyarsk school
[AY83, BKL98, Tsi92]. It would, of course, be impossible to fully present all
these approaches to the theory of residues or to give a complete account of all
of its applications. Indeed, even a rigorous definition of multivariate residues
would take us very far afield. Instead we will attempt to give an intuitive
idea of this notion, explain some of its consequences, and describe a few of its
applications. In analogy with the one-variable case we will begin with an “in-
tegral” definition of local residue from which we will define the total residue
as a sum of local ones. The reader who is not comfortable with integration
of differential forms should not despair since, as in the univariate case, we
soon show how one can give a purely algebraic definition of global, and then
local, residues using Bezoutians. We also touch upon the geometric definition
of Arnold, Varchenko and Gusein-Zadé.

In Sections 1.3 and 1.4 we discuss the definition and application of the
univariate resultant. This is, again, a very classical concept which goes back
to the work of Euler, Bézout, Sylvester and Cayley. It was directly motivated
by the problem of elimination of variables in systems of polynomial equa-
tions. While the idea behind the notion of the resultant is very simple, its
computation leads to very interesting problems such as the search for deter-
minantal formulas. We recall the classical Sylvester and Bezoutian matrices
in Section 1.4.



The rebirth of the classical theory of elimination in the last decade owes
much to the work of Jouanolou [Jou79, Jou91, Jou97]| and of Gelfand, Kapra-
nov and Zelevinsky [GKZ94], as well as to the possibility of using resultants
not only as a computational tool to solve polynomial systems but also to study
their complexity aspects. In particular, homogeneous and multi-homogeneous
resultants are essential tools in the implicitization of surfaces. We discuss the
basic constructions and properties in Section 1.6. We refer to [Stu93, Stu9§],
[Stu02, Ch. 4] and to Chapters 2, 3, and 7 in this book for further background
and applications. A new theoretical tool in elimination theory yet to be fully
explored is the use of exterior algebra methods in commutative algebra (start-
ing with Eisenbud and Schreyer [ESWO03] and Khetan [Khe03, Khe]).

In the last section of this chapter we recall how the resultant appears
naturally as the denominator of the residue and apply this to obtain a normal
form algorithm for the computation of resultants which, as far as we know,
has not been noted before.

Although many of the results in this chapter, including those in the last
section, are valid in much greater generality, we have chosen to restrict most
of the exposition to the affine and projective cases. We have tried to direct
the reader to the appropriate references.

For further reading we refer to a number of excellent books on the topics
treated here: [AY83, AGnZV8&5, CLO98, GKZ94, GH78, EM04, Tsi92].

1.1 Residues in one variable

1.1.1 Local analytic residue

We recall that, given a holomorphic function h(z) with an isolated singularity
at a point ¢ in C, we may consider its Laurent expansion

where h is holomorphic in a neighborhood of ¢, and define the residue of h at

¢ as
rese(h) = by. (1.1)

The classical Residue Theorem tells us that the residue is “what remains after
integrating” the differential form (1/27i) h(z)dz on a small circle around &.

Precisely:
1
resg(h) = 27ri/ s h(z)dz,

for any sufficiently small positive 6 and where the circle {|z — | = §} is
oriented counter-clockwise.



Remark 1.1.1. As defined in (1.1), the residue depends on the choice of lo-
cal coordinate z. Associating the residue to the meromorphic 1-form h(z)dz
makes it invariant under local change of coordinates. We will, however, main-
tain the classical notation, res¢(h) rather than write rese (h(2)dz).

We can also think of the residue of a holomorphic function i at £ as a
linear operator res¢[h] : O — C, which assigns to any holomorphic function
f defined near £ the complex number

res¢[h](f) :=rese(f - h).
Suppose h has a pole at £ of order m, Then, the action of resg[h] maps

1— b
z—=8§— by

(Z - g)mfl L bm
and for any k > m, (z — &)* — 0 since (z — &)* - h is holomorphic at &. These
values suffice to characterize the residue map resg[h] in this case: indeed, given
f holomorphic near &, we write

m—

() ‘
6= -0 + c-9mate)

[y

with g holomorphic in a neighborhood of £. Therefore

m—1 (]) . m—1 . .
rescl(f) = Y L eselnl( - ) = X By )
j=0 ’ 7=0 ’

Note, in particular, that the residue map rese[h] is then the evaluation at £ of
a constant coefficient differential operator and that it carries the information
of the principal part of h at &.

1.1.2 Residues associated to polynomials

In this notes we will be interested in the algebraic and computational aspects
of residues and therefore we shall restrict ourselves to the case when h(z)
is a rational function h(z) = H(z)/P(z), H,P € C[z]. Clearly, res¢(h) = 0
unless P(§) = 0. Tt is straightforward to check the following basic properties
of residues:

e [If £ is a simple zero of P, then

H()\ _ HE
(7)) = ey 3




e If £ is a root of P of multiplicity m, then
H(z)P'
rese <(123)(z)(2)> =m - H(§). (1.4)

Since (P'(z)/P(z))dz = d(In P(z)) wherever a logarithm In P of P is de-
fined, the expression above is often called the (local) logarithmic residue.

Given a polynomial P € Clz], its polar set Zp := {{ € C: P(§) = 0} is
finite and we can consider the total sum of local residues

res (I;) = Y res¢(H/P),

£eZp

where H € C[z]. We will be particularly interested in the global residue oper-
ator.

Definition 1.1.2. The global residue resp : C[z] — C is the sum of local

residues:
resp(H) = Z res¢(H/P)
£eZp
Remark 1.1.3. We may define the sum of local residues over the zero set of P
for any rational function h which is regular on Zp. Moreover, if we write h =
H/Q, with Zp N Zg = 0, then by the Nullstellensatz, there exist polynomials
R, S such that 1 = RP + SQ. It follows that the total sum of local residues

Z res¢(h/P) =resp(HS),
£eZp
coincides with the global residue of the polynomial HS.

Let R > 0 be large enough so that Zp be contained in the open disk
{|z] < R}. Then, for any polynomial H the rational function h = H/P is
holomorphic for |2| > R and has a Laurent expansion ) ., e,2" valid for
|z| > R. The residue of h at infinity is defined as

reseo(h) == —e_1. (1.5)

Note that integrating term by term the Laurent expansion, we get

1
reso(h) = “5 n h(z)dz.

Since by the Residue Theorem,

1 H(z)
resp(H) = o /Z_R P02) dz,

we easily deduce



Proposition 1.1.4. Let P,H € C[z]. Then resp(H) = —reso(H/P).

Remark 1.1.5. We note that the choice of sign in (1.5) is consistent with Re-
mark 1.1.1: If h = H/P is holomorphic for |z|] > R, then we may regard h
as being holomorphic in a punctured neighborhood of the point at infinity in
the Riemann sphere S? = C U {oc}. Taking w = 1/z as local coordinate at
infinity we have: h(z2)dz = —(h(1/w)/w?)dw and

reso(—(h(1/w)/w?)) = —e_1. (1.6)

Note also that Proposition 1.1.4 means that the sum of the local residues of
the extension of the meromorphic form (H(z)/P(z)) dz to the Riemann sphere
is zero.

Proposition 1.1.6. Given P, H € C[z|, resp(H) is linear in H and is a
rational function of the coefficients of P with coefficients in Q.

Proof. The first statement follows from the definition of resp(H) and the
linearity of the local residue. Thus, in order to prove the second statement
it suffices to consider resp(z¥), k € N. Let d = deg P, P(z) = Z?:o ajzd,
ag # 0. Then, if follows from Proposition 1.1.4 and (1.6) that

where P(w) = Z?:o ajw?=J. Note that Pi(0) = aq # 0 and therefore
1/ Py (w) is holomorphic near 0. Hence

. 0 if k+2-d<0
resp(2") = ﬁdd—ufe(%l)(O) if¢:=k+1-d>0 (.7

o d—1 . ¢
Now, writing P = aq(1+ 25", ZJ w?7), the expression 2;-L; (P%) (0) may
be computed as the w’ coefficient of the geometric series

T

Ly z Ly (1.8)
ad r=0

@

and the result follows.

In fact, we can extract from (1.7) and (1.8) the following more precise
dependence of the global residue on the coefficients of P.

Corollary 1.1.7. Given a polynomial P = Z?:o a;jzl € Clz] of degree d and
k > d—1, there exists a polynomial with integer coefficients Cy, such that
Ck ag,...,04
ag -
In particular, when P,H have coefficients in a subfield k, it holds that
resp(H) € k.



We also deduce from (1.7) a very important vanishing result:
Theorem 1.1.8. (Euler-Jacobi vanishing conditions) Given polynomials
P, H € Clz] satisfying deg(H) < deg(P) — 2, the global residue
resp(H) = 0.

We note that, in view of (1.3), when all the roots of P are simple, Theo-
rem 1.1.8 reduces to the following algebraic statement: For every polynomial
H € Clz], with deg H < deg P — 1,

H() _
56222}: Pie) ~ 0. (1.9)

The following direct proof of this statement was suggested to us by Askold
Khovanskii. Let d = deg(P), Zp = {&1, ..., &}, and P(2) = aa [1°_,(z — &).
Let L; be the Lagrange interpolating polynomial

Hj;éi(z — &)

[T;:(& = &)

For any polynomial H with deg(H) <d — 1,

d

H(z) = H(&) Li().

i=1
So, if deg(H) < d — 1, the coefficient of 24! in this sum should be 0. But this
coefficient is precisely

d d

1 dnE)
ZH(&) [T — &) ¢ ; P'(&)

i=1

Since aq # 0, statement (1.9) follows.

Since, clearly, resp(G.P) = 0, for all G € C|[z], the global residue map resp
descends to A := C[z]/(P), the quotient algebra by the ideal generated by P.
On the other hand, if deg P = d, then A is a finite dimensional C-vector space
of dimension deg(P), and a basis is given by the classes of 1,z,..., 297! As
in ?? we will denote by [H] the class of H in the quotient A. It follows from
(1.7) and (1.8) that, as a linear map,

resp: A — C
is particularly simple:

0 ifo<k<d-2
e ={ § NI4T (1.10)
aq

The above observations suggest the following “normal form algorithm” for
the computation of the global residue resp(H) for any H € Clz]:



1) Compute the remainder r(z) = rg_1297 1 +--- 4712 + 7o in the Euclidean
division of H by P = aqz®+ -+ + ay.
2) Then, resp(H) = "L,

aq

We may also use (1.10) to reverse the local-global direction in the defi-
nition of the residue obtaining, in the process, an algebraic definition which
extends to polynomials with coefficients in an arbitrary algebraically-closed
field K of characteristic zero. We illustrate this construction in the case of a
polynomial P(z) = Zj:o a;jz? € K[z] with simple zeros. Define a linear map
L: K[z]/(P) — K as in (1.10). Let Zp = {&1,...,€:} C K be the zeros of P
and L1,..., L4 be the interpolating polynomials. For any H € K|[z] we set:

rese, (H/P) = L([H.Li).

One can then check that the defining property (1.3) is satisfied. We will discuss
another algebraic definition of the univariate residue in Section 1.2.1 and
we will discuss the general passage from the global to the local residue in
Section 1.5.3. We conclude this section by remarking on another consequence
of Theorem 1.1.8. Suppose P;, P, € Clz| are such that their set of zeros Z7,
Zy are disjoint. Then, for any H € C[z] such that

deg H < deg P, +deg P> — 2

Z res Ll =0
‘\pp)

EeZ1UZy

we have that

and, therefore

resp, (H/Py) = ) _ res¢ ( Pf{&) =— ) resg ( Pf{&) = —resp, (H/Py)

§E€EZy EeZs
(1.11)

We denote the common value by res;p, p,}(H). Note that it is skew-symmetric
on P, P;. This is the simplest manifestation of a toric residue ([Cox96,
CCD97]). We will discuss a multivariate generalization in Section 1.5.6.

1.2 Some applications of residues

1.2.1 Duality and Bezoutian

The global residue may be used to define a dualizing form in the algebra A.
We give, first of all, a proof of this result based on the local properties of
the residue and, after defining the notion of the Bezoutian, we will give an
algebraic construction of the dual basis.



Theorem 1.2.1. For P € C[z], let A = C[z]/(P). The pairing A x A— C
(1], [H2]) — resp(Hy - H)
is non degenerate, i.e.
resp(Hy - Hy) =0 for all Hs if and only if H; € (P).

Proof. Let d = deg P and denote by &1, ..., &, the roots of P, with respective
multiplicities mi,...,m,.. Assume, for simplicity, that P is monic. Suppose
resp(Hy - Hy) = 0 for all Hy. Given ¢ = 1...,7, let G; = H#i(z — &)
Then, for any £ < m;,

0 =resp(H, - (2 — &)'Gi) = res¢, (H1 /(2 — &)™)

which, in view of (1.1.1), implies that (z—¢&;)™ divides H;. Since these factors
of P are pairwise coprime, it follows that Hy € (P), as desired.

As before, we denote by K an algebraically-closed field of characteristic
Z€ero.

Definition 1.2.2. Let P € K[z] be a polynomial of degree d. The Bezoutian
associated to P is the bivariate polynomial

d—1
P )
Ap(z,w) = (2)7 Ai(z)w' € Klz,w].
2 =0
Proposition 1.2.3. The classes [Ag(2)],. .., [Ai-1(2)] € A = K]z]/(P) give
the dual basis of the standard basis [l],[z],... [ d=11" relative to the non-

degenerate pairing defined by the global residue.
Proof. We note, first of all, that
d—1 ' d '
P(z) — P(w) = (Z Ai(z)w’> (z—w) =Y _(24i(2) = Ai_1(2) 0,
i=0 i=0

where it is understood that A_;(z) = Ay(z) = 0. Writing P(w) = Z?:o a;w’
and comparing coefficients we get the following recursive definition of A;(z):

ZAZ(Z) = Ai_l(Z) — Qy, (112)
with initial step: zA¢(2) = P(2) — ap. We now compute resp([z7] - [A;(2)]).
Since deg A; = d — 1 — i, deg(27A;(z)) = d — 1 — i + j. Hence, if i > j,
deg(27A;(2)) < d — 2 and, by Theorem 1.1.8,

resp([27] - [Ai(2)]) = Ofor i>7.



If i = j, then deg(z7A;) = d — 1 and it is easy to check from (1.12) that its
leading coefficient is a4, the leading coefficient of P. Hence

resp([27] - [A;(2)]) = resp(aqz?™t) = 1.
Finally, we consider the case i < j. The relations (1.12) give:
PA(2) = ZA72Ai(2) = ZTHAL(2) — ai)

and, therefore _ _

resp(2? Ai(2)) = resp (2771 A1 (2))
given that resp(a;29~!) = 0 since j — 1 < d — 2. Continuing in this manner
we obtain

reSP(Zin(z)) == resP(zj_iAo(z)) = resP(zj_i_lP(z)) =0.

Remark 1.2.4. Note that Proposition 1.2.3 provides an algebraic proof of The-
orem 1.2.1. Indeed, we have shown that Theorem 1.2.1 only depends on the
conditions (1.10) that we used in the algebraic characterization of the global
residue. We may also use Proposition 1.2.3 to give an alternative algebraic
definition of the global residue. Let #: A x A — A denote the bilinear sym-
metric form defined by the requirement that @([z%],[A’]) = §;;. Then, the
global residue map res: A — K is defined as the unique linear map such that

®(a, B) =res(a- ), for a, B € A.

Remark 1.2.5. The recursive relations (1.12) are exactly those deﬁmng the
classical Horner polynomials Hq_;(2) = aqz'™' + ag_12°72 + -+ + ag_is1,
associated to the polynomial P(z) = Z?:o ajz’.

1.2.2 Interpolation

Definition 1.2.6. Let Z := {&1,...,&.} C K be a finite set of points together
with multiplicities my,...,m, € N. Let d =mj +---+m, and h € K[z]. A
polynomial H € K[z] is said to interpolate h over Z if degH < d — 1 and
HO(&) =h9(E) forall j=1,...,m; — 1.

Proposition 1.2.7. Let Z C K and h € K[z] be as above. Let P(z) :=
[I;_,(z = &)™. Then H interpolates h over Z if and only if [H| = [h] in
A =K][z]/(P), i.e. if H is the remainder of dividing h by P.

Proof. If we write h = Q - P+ H, with deg H < d, then
h9) (&) chQ(’“ PEI(&) + HI (&),

for suitable coefficients ¢;, € K. Since P)(&) = 0 for £ = 0,...,m; — 1, it
follows that H interpolates h. On the other hand, it is easy to check that the
interpolating polynomial is unique and the result follows.



Lemma 1.2.8. With notation as above, given h € K|[z], the interpolating poly-
nomial H of h over Z equals

d—1
H(w) =Y ci(hyw'  wherec;(h) =resp(h - A;).

i=1

Proof. This is a straightforward consequence of the fact that res, (27 -A;(z)) =
d;;. For the sake of completeness, we sketch a proof for the complex case using
the integral representation of the residue.

For any € > 0 and any w with |P(w)| < €, we have by the Cauchy integral
formula

h(w) o 2mi |P(2) z—wd 2mi /|P(z)_e P(Z)—P(U))AP( ’ )d ’

|=e¢

Denote I' := {|P(z)| = €}; for any z € I" we have the expansion

: L Ly Pl
PG~ Plw) _ P71 L ~ gop(z)nﬂ,

which is uniformly convergent over I'. Then,

) = X (5 [ “pomi™) P (113)

n>0

and so, isolating the first summand we get
h(w) = resp(h(z) Ap(z,w)) + Q(w) P(w). (1.14)

Finally, call H(w) := resp(h(z) Ap(z,w)). It is easy to check that H = 0
or deg(H) < d — 1, and by linearity of the residue operator, H(w) =
Z?;ll ci(h) w', as desired.

1.2.3 Ideal membership
Let again P(z) = Z?:o a;z" € C[z]. While in the univariate case is trivial, it is
useful to observe that Theorem 1.2.1 allows us to derive a residual system of
d linear equations in the coefficients of all polynomials H(z) = >7" h;2? of
degree less than or equal to m, whose vanishing is equivalent to the condition
that H € (P).

Such a system can be deduced from any basis B = {fp,...,084—1} of
A = C[z]/(P). We can choose for instance the canonical basis of monomials
{[#7],5 = 0,...,d — 1}, or the dual basis {[A(2)],k = 0,...,d — 1}. Theo-
rem 1.2.1 means that H € (P), i.e. [H] = 0 if and only if



resp([H] - 6;) = ZhjresP([zj]ﬁi) =0 Vi=0,...,d—1.

Suppose m > d, when B is the monomial basis, the first d x d minor of the
d x m matrix of the system is triangular, while if B is the dual basis given by
the Bezoutian, this minor is simply the identity.

If H € (P), we can obtain the quotient Q(z) = H(z)/P(Z) € C|z] from
equations (1.13), (1.14). Indeed, we have:

Q(w) = Z res[P" T (H(2) Ap(z,w))P(w)" .

n>1

deg(H) +1
By Theorem 1.1.8, the terms in this sum vanish when n > %.

1.2.4 Partial fraction decomposition

We recall the partial fraction decomposition of univariate rational functions.
This is a very important classical result because of its usefulness in the com-
putation of integrals of rational functions.

Let P,H € K|z] with deg(H) 4+ 1 < deg(P) = d. Let {&1,...,& } be the
zeros of P and let mq,...,m, denote their multiplicities. Then the rational
function H(z)/P(z) may be written as:

P(z) > ((Z&) +- (z@-)ﬂ%) (1.15)

i=1

for appropriate constants A;; € K.

There are, of course, many elementary proofs of this result. Here we would
like to show how it follows from the Euler-Jacobi vanishing Theorem 1.1.8.
The argument below also gives a simple formula for the coefficients in (1.15)
when P has only simple zeros.

For any z & {&1,...,&} we consider the auxiliary polynomial P;(w) =
(z —w)P(w) € K[w]. Its zeros are &;, with multiplicity m;, ¢ =1,...,r, and 2z
with multiplicity one. On the other hand, deg H < deg P; — 2, and therefore
Theorem 1.1.8 gives:

0 = resp,(H) = res.(H/Py)+ Y _rese,(H/P).

=1

Since P; has a simple zero at z, we have res,(H/P)) = H(2)/P{(z) =
—H(2)/P(z) and, therefore

j Zres&( (>13< ))




In case P has simple zeros we have resg, (H/Py) = H(§;)/P; (&) which gives:

H(z) — (H(&)/P'(&))
P(z) ; (z—&)

In the general case, it follows from (1.2) that

dwJ

resg,(H/Py) = Z kde(H(w)/(z—w))(&) _ — a4
§=0

for suitable constants k; and a;.
We leave it as an exercise for the reader to compute explicit formulas for
the coefficients A;; in (1.15).

1.2.5 Computation of traces and Newton sums

Let P(z) = Z?:o a;z* € C[2] be a polynomial of degree d, {&1,...,&,} the set
of zeros of P, and my, ..., m, their multiplicities. As always, we denote by A
the C-algebra A = C[z]/(P). We recall (cf. Theorem ?? in Chapter 2) that
for any polynomial Q € C|[z], the eigenvalues of the multiplication map

Mg: A—As5 [H] - [Q-H]

are the values Q(&;). In particular, using (1.4), the trace of Mg may be ex-
pressed in terms of global residues:

tr(Mg) = ZmiQ(&) = Resp(Q - P').

Theorem 1.2.9. The pairing A x A — C

([91}’ [92}) = tr (M91g2) = ReSP(gl tg2- Pl)

is mon degenerate only when all zeros of P are simple. More generally, the
trace tr (Mg, 4,) = 0 for all g2 if and only if g1(&) =0, for alli=1,...,r or,

equivalently, if and only if g1 € \/(P).
Proof. Fix g1 € C[z]. As tr (Mg, 4,) =resp(g1 - P’ - g2), it follows from Theo-
rem 1.2.1 that the trace of g1 - go vanishes for all g5 if and only if g; P’ € (P).

But this happens if and only if g; vanishes over Zp, since the multiplicity of
P’ at any zero p of P is one less than the multiplicity of P at p.

As trp(Q) is linear in @, all traces can be computed from those corre-
sponding to the monomials z*; i.e. the power sums of the roots:

Sy = ZmszC = resp(2F - P'(2)).
i=1



It is well known that the Sj’s are rational functions of the elementary sym-
metric functions on the zeros of P, i.e. the coefficients of P, and conversely
(up to the choice of ay). Indeed, the classical Newton identities give recursive
relations to obtain one from the other. It is interesting to remark that not
only the power sums Sy can be expressed in terms of residues, but that we
can also use residues to obtain the Newton identities. The proof below is
an adaptation to the one-variable case of the approach followed by Aizenberg
and Kytmanov [AKS81] to study the multivariate analogues.

Lemma 1.2.10. (Newton identities) For all { =0 d—1

2000 )

d
(d—0Oag =~ a;S; ¢ (1.16)
>l

Proof. The formula (1.16) follows from computing:

res(zf;a(z) P(z)> . (eN

in two different ways:

i) As res(Pl(Z)> = reso(F)) = .

2t

ii) Expanding it as a sum:

S e (502) = S (2 )+ S (2505

j<e j>0

The terms in the first sum vanish by Theorem 1.1.8 since deg(z‘~7P(2)) >
deg(P’(z)) +2, while the second sum may be expressed as 3 ;- a;S;—,. Since
So = d, the identity (1.16) follows. B

1.2.6 Counting integer points in lattice tetrahedra

Let P C R"” be a polytope with integral vertices and let P° denote its interior.
For any ¢t € N, call

L(P,t) = #(t - P)NZ" : L(P°t):=#(t - P°)NZL",

the number of the lattice points in the dilated polyhedron ¢ - P and in its
dilated interior. Ehrhart [Ehr67] proved that these are polynomial functions
of degree n. They are known as the Ehrhart polynomials associated to P and
P°. Moreover, he determined the two leading coefficients and the constant
term in terms of the volume of the polytope, the normalized volume of its
boundary and its Euler characteristic. The other coefficients are not as easily



accessible, and a method of computing these coefficients was unknown until
quite recently (cf. [Bar94, KK93, Pom93]). There is a remarkable relation
between these two polynomials, the Ehrhart-Macdonald reciprocity law:

L(P°,t) = (~1)" L(P,1).

In [Bec00], Matthias Beck shows how to express these polynomials in terms
of (multidimensional) residues. In the particular case when P is a tetrahedron,
this is just a rational one-dimensional residue. We illustrate Beck’s approach

by sketching a proof of Ehrhart-Macdonald reciprocity in the case of a tetra-
hedron.

Fix ay,...,a, € N and consider the tetrahedron with vertices at the origin
and at the points (0,...,a;,...,0):

n

X
Y = {(a1,...,2,) €RYy : ZCT: <1}.
k=1

Clearly,

n

[e] n T
50 = {(21,...,2,) €RY, - Zaf <1}
k=1

Let A:=T[" o, Ay := H#kai, k=1,...,n. Then,

n

L(Z,t) = #{m € 72, : ZZL: <t}
k=1

n

=#{m ezl : > mpA, < tA}
k=1

=#{m ezl Y mpAp +maga = tA}L
k=1

So, we can interpret L(X,t) as the coefficient of 24 in the series product:
Q42220 4 ) (42 4220 A+ 2422400,
i.e. as the coefficient of z*4 in the Taylor expansion at the origin of

1
(1—z4). . (1—24)(1-2)

Thus,

= 1+ reso (Z i z?t]i‘[zzll(l — ZAi)) :




For t € Z, let us denote by f;(z) the rational function

241
z-(1—2)- H?:l(l — 24’

Note that for ¢ > 0, reso(f:) = —1, while for ¢ < 0, res(f;) = 0. In particular,
denoting by Z the set of non-zero, finite poles of f;, we have for ¢ > 0:

L(Z,t) = 1+4reso(foe(2) = 1= rese(fe(2)). (1.17)

£ez

fi(z) =

Since L(X,t) is a polynomial, this identity now holds for every t.
Similarly, we compute that

n
L(°,t) = #{m e Z2' © Y mpAr +mapn = tA}
k=1
That means that L(X°,t) is the coefficient of w*4 in the series product:
(W + M ) (w4 ) (w w4

or, in terms of residues:

A (w1
L(X°t) =resy ( ad w™ (w ) )

(1 —wAr) ... (1 —wA)(1 —w)

The change of variables z = 1/w now yields

o n ZtA -1
L(X%t) = (=1)"reseo (z(l — AN (1-z2A (1 —z)>
= (—1)"resoo(fi(2)) - (1.18)

The Ehrhart-Macdonald reciprocity law now follows from comparing (1.17)
and (1.18), and using the fact that for ¢t > 0, reso(f;) = —1.

1.3 Resultants in one variable

1.3.1 Definition

Fix two natural numbers d;,ds and consider generic univariate polynomials
of these degrees and coefficients in a field k:

dy do
P(z) = Z a;zt, Q(z) = Z bzt (1.19)
i=0 =0

The system P(z) = Q(z) = 0 is, in general, overdetermined and has no
solutions. The following result is classical:



Theorem 1.3.1. There exists a unique (up to sign) irreducible polynomial

ReSdl’dZ(P,Q) = Resdl,dZ(ao, .. .,adl,bo7 .. ~7bd2) c Z[ao, .. -aa/d17b07 . >bd2]7

called the resultant of P and @, which verifies that for any specialization of the
coefficients a;, b; in k with aq, # 0,bq, # 0, the resultant vanishes if and only
if P and Q have a common root in any algebraically closed field K containing
k.

Geometrically, the hypersurface {(a,b) € K@+9+2: Resy, 4,(a,b) = 0}
is the projection of the incidence variety {(a,b, z) € K@ +dz+3 Zf;
Zfio b;z* = 0}; that is to say, the variable z is eliminated. Here, and in what
follows, K denotes an algebraically closed field.

A well known theorem of Sylvester allows us to compute the resultant as
the determinant of a matrix of size d; 4+ ds, whose entries are 0 or a coefficient
of either P or @. For instance, when d; = dy = 2, the resultant is the following
polynomial in 6 variables (aq, a1, as,bg, b1, b2):

0 @izt =

bgag — 2bsagasbg + a%bg — bibsaiag — biajasby + azb%ao + bobga%
and can be computed as the determinant of the 4 x 4 matrix:

Qo 0 bo 0

L a1 ag bl bo
M2’2 T az a1 by by
0 ag 0 b2

(1.20)

Let us explain how one gets this result. The basic idea is to linearize the
problem in order to use the eliminant polynomial par excellence: the deter-
minant. Note that the determinant of a square homogeneous linear system
A -z = 0 allows to eliminate x: the existence of a non trivial solution x # 0
of the system, is equivalent to the fact that the determinant of A (a polynomial
in the entries of A) vanishes.

Assume deg(P) = dy, deg(Q) = da. A first observation is that P and Q
have a common root if and only if they have a common factor of positive degree
(since P(zp) = 0 if and only if z — zy divides P). Moreover, the existence of
such a common factor is equivalent to the existence of polynomials g;, go with
deg(g1) < do — 1,deg(g2) < dy — 1, such that g1 P + g2@Q = 0. Denote by Sy
the space of polynomials of degree ¢ and consider the map

Sd2—1 X Sdl—l — Sdl—‘rdg—l

1.21
(91,92) — g1 P+ 92Q (1:21)

This defines a K-linear map between two finite dimensional K-vector spaces of
the same dimension d; +ds, which is surjective (and therefore an isomorphism)
if and only if P and @ do not have any common root in K. Denote by My, 4,



the matrix of this linear map in the monomial bases. It is called the Sylvester
matriz associated to P and (). Then

Resd, 4, (P, Q) = £ det(Ma, a,)- (1.22)

The sign in this last equality cannot be determined, but the positive sign is
taken by convention.

Note that for d; = da = 2 we obtain the matrix M 2 in (1.20). The general
shape of the Sylvester matrix is:

ao bo
ay Qg b1 bo
a T . bl T
ap . bo
al bl
ad, bd2
aq, . bd2
ad1 bd2

where the blank spaces are filled with zeros.

Note that setting a4, = 0 but by, # 0, the determinant of the Sylvester
matrix equals by, times the determinant of the Sylvester matrix My, 1 4,
(in ag,...,ad,—1,b0,--.,ba,). We deduce that when deg(P) = d} < dy and
deg(Q) = da, the restriction of the (d,dy) resultant polynomial to the closed
set (aq, = -++ = ag,41 = 0) of polynomials of degrees dj,ds factorizes as

dy—d)
Resdl,dz (P7 Q) = bd; L ReSd/17d2 (P7 Q)

What happens if we specialize both P and @ to polynomials of respective
degrees smaller than d; and ds? Then, the last row of the Sylvester matrix is
zero and so the resultant vanishes, but in principle P and @) do not need to
have a common root in K. One way to recover the equivalence between the
vanishing of the resultant and the existence of a common root is the following.

Given P,Q as in (1.19), consider the homogenizations P" Q" defined by

d1 d2
Ph(z,w) = E azwh Tt QM = E b2 w2,
i=0 i=0

Then, P,@ can be recovered by evaluating at w = 1 and (zp,1) is a com-
mon root of P" Q" if and only if P(29) = Q(z0) = 0. But also, on one hand
P"(0,0) = Q"(0,0) = 0 for any choice of coefficients, and on the other P", Q"
have the common root (1,0) when a4, = bg, = 0. The space obtained as the
classes of pairs (z,w) # (0,0) after identification of (z,w) with (Az, Aw) for
any A € K — {0}, denoted P'(K), is called the projective line over K. Since



for homogeneous polynomials as P" it holds that P"(\ z, \w) = A% P"(z,w)
(and similarly for Q") , it makes sense to speak of their zeros in P(K). So, we
could restate Theorem 1.3.1 saying that for any specialization of the coeffi-
cients of P and @), the resultant vanishes if and only if their homogenizations
have a common root in P!(K). As we have already remarked, when K = C, the
projective space P1(C) can be identified with the Riemann sphere, a compact-
ification of the complex plane, where the class of the point (1,0) is identified
with the point at infinity.

1.3.2 Main properties

It is interesting to realize that many properties of the resultant can be derived
from its expression (1.22) as the determinant of the Sylvester matrix:

i) The resultant Resq, 4, is homogeneous in the coefficients of P and @ sep-
arately, with respective degrees ds,d;. So, the degree of the resultant in
the coefficients of P is the number of roots of @), and vice-versa.

ii) The resultants Resq, 4, and Resg, 4, coincide up to sign.

ili) There exist polynomials Ay, Ay € Zlao,...,b4,][2] with deg(A;) = da —
1,deg(As) = dy — 1 such that

Resdlﬂg (P7 Q) =AP+ A2Q (123)

Let us sketch the proof of property iii). If we add to the first row in the
Sylvester matrix z times the second row, plus z? times the third row, and so
on, the first row becomes

P(z) zP(2) ... z2%27'P(2) Q(2) 2Q(z2) 2M71Q(2)

but the determinant is unchanged. Expanding along this modified first row,
we obtain the desired result.

Another important classical property of the resultant Resg, 4, (P, Q) is that
it can be written as a product over the zeros of P or Q:

Proposition 1.3.2. (Poisson formula) Let P,Q polynomials with respec-
tive degrees dy,dy and write P(2) = aq, [[;=, (2 —pi)™ , Q(2) = ba, [[j=1 (2 —
q;)". Then

Resa, 4,(P, Q) = af [[ Q(p)™ = (1) b3 [] Plan)™
=1

j=1

Proof. Again, one possible way of proving the Poisson formula is by showing
that

Resdl,d2((z - p)Plv Q) = Q(p)ReSdlfl,@ (Plv Q)?
using the expression of the resultant as the determinant of the Sylvester ma-

trix, and standard properties of determinants. The proof would be completed
by induction, and the homogeneity of the resultant.



Alternatively, one could observe that R'(a,b) := aif [T, Q(p;)™ depends
polynomially on the coefficients of @) and, given the equalities

R'(a,b) = a2b@ [[(0i — qp)™™ = (1) =03 T Pa:)™ .

4,3 Jj=1

on the coeflicients of P as well. Since the roots are unchanged by dilation of
the coefficients, we see that, as Resy, 4,, the polynomial R’ has degree dy + ds
in the coefficients (a,b) = (ao,...,bd,). Moreover, R'(a,b) = 0 if and only if
there exists a common root, i.e. if and only if Resq, 4,(a,b) = 0. This holds
in principle over the open set (ag, # 0,bq, # 0) but this implies that the loci
{R" = 0} and {Resg, 4, = 0} in K®+9+2 agree. Then, the irreducibility of
Resg, 4, implies the existence of a constant ¢ € K such that Resq, 4, = ¢ - R'.
Evaluating at P(z) = 1,Q(z) = 2%, the Sylvester matrix My, 4, reduces to
the identity Ig, +q4, and we get ¢ = 1.

We immediately deduce

Corollary 1.3.3. Assume P = Py - Py with deg(Py) = d}, deg(P2) = d'1 and
deg(Q) = dy. Then,

Resq; 14144, (P, Q) = Resay 4, (P1, Q) Resary a, (P2, Q)-

There are other determinantal formulas to compute the resultant, coming
from suitable generalizations of the map (1.21), which are for instance de-
scribed in [DDO1]. In case d; = dy = 3, the Sylvester matrix Ms 3 is 6 X 6.
Denote [ij] := a;b; —ajb;, for all ¢, = 0,...,3. The resultant Ress 3 can also
be computed as the determinant of the following 3 x 3 matrix:

(03] [02]  [01]
Bss:= | [13] [03] +[12] [02] | , (1.24)
23] [13]  [03]

or as minus the determinant of the 5 x 5 matrix

agp 0 bo 0 [01]
a1 ao b1 bo [02]
a9 a1 b2 b1 [03]
as as b3 b3 0
0 as 0 b3 0

Let us explain how the matrix B33 was constructed and why Resss =
det(Bs,3). We assume, more generally, that d; = dy = d.

Definition 1.3.4. Let P,Q polynomials of degree d as in (1.19). The Be-
zoutian polynomial associated to P and @ is the bivariate polynomial



P(x)Q(y) ~ PW)Q(2) _ Z e

AP,Q(Zay) = Zz—y

1,j=0

The d x d matriz Bp,g = (c;j) is called the Bezoutian matriz associated to P

and Q.

Note that Ap; = Ap defined in (1.2.2) and that each coefficient ¢;; is a
linear combination with integer coefficients of the brackets [k, £] = arbs — asby.

Proposition 1.3.5. With the above notations,
Resga(a,b) = det(Bpg). (1.25)

Proof. The argument is very similar to the one presented in the proof of
Poisson’s formula. Call R’ := det(Bp,q). This is a homogeneous polynomial in
the coefficients (a, b) of the same degree 2d = d+d as the resultant. Moreover,
if Resg,q(a,b) = 0, there exists zp € K such that P(zp) = Q(z9) = 0, and so,

Ap oy, z0) = Z;.tol (E?;& cijz3> y' is the zero polynomial. This shows that

R'(a,b) = 0 since the non trivial vector (1, zg, .. .,z5 ') lies in the kernel of
the Bezoutian matrix Bp g. By Hilbert’s Nullstellensatz, the resultant divides
a power of R’. Using the irreducibility of Resg 4 plus a particular specialization
to adjust the constant, we get the desired result.

The Bezoutian matrices are more compact and practical experience seems
to indicate that these matrices are numerically more stable than the Sylvester
matrices.

1.4 Some applications of resultants

1.4.1 Systems of equations in two variables

Suppose that we want to solve a polynomial system in two variables f(z,y) =
g(z,y) = 0 with f, g € K[z, y]. We can “hide the variable y in the coefficients”
and think of f,g € K[y][z]. Denote by di,ds the respective degrees in the
variable z. Then, the resultant Resq, q,(f,g) with respect to the variable z
will give us back a polynomial (with integer coefficients) in the coefficients,
i.e. we will have a polynomial in ¢, which vanishes on every ¥, for which there
exists zg with f(20,%0) = 9(20,%0) = 0. So, we can eliminate the variable z
from the system, detect the second coordinates gy of the solutions, and then
try to recover the full solutions (zq, yo)-

Assume for instance that f(z,y) = 22+y?>—10, g(z,y) = 22+2y*+2y—16.
We write

flzoy) =22+ 02+ (y* —10), g(z,y) = 22 +yz + (2y* — 16).



Then, Resq 2(f, g) equals
ResQ,Q((la 07 y2_10)a (17 Y, 2y2_16)) = _22y2+2y4+36 = 2(y+3)(y_3)(y2_2)

For each of the four roots yo = —3,3,v/2, —v/2, we replace g(z,99) = 0 and

we need to solve z = y%;G' Note that f(z,y0) = 0 will also be satisfied due to
the vanishing of the resultant. So, there is precisely one solution zy for each
yo. The system has 4 = 2 x 2 real solutions.

It is easy to deduce from the results and observations made in Section 1.3
the following extension theorem.

. d i d i :
Theorem 1.4.1. Write f(z,y) = X% | fi(y)21, g(z) = X2, g:(y)=", with
fiygi € Klyl, and fa,,94, non zero. Let yo be a root of the resultant with

respect to z, Resq, a4, (f,9) € Kly|. If either fa,(yo) # 0 or ga,(yo) # 0, there
exists zg € K such that f(z0,y0) = 9(20,y0) = 0.

Assume now that f(z,y) = yz—1, g(z,y) = y>—y. It is immediate to check
that they have two common roots, namely {f = ¢ = 0} = {(1,1),(-1,-1)}.
Replace g by the polynomial § := g+ f. Then, {f =§=0} = {f =g =0}
but now both f, g have positive degree 1 with respect to the variable z. The
resultant with respect to z equals

- y -1 2/ 2
Res1,1(f,g) = det <y Py — 1) =y (y" —1).
Since both leading coefficients with respect to z are equal to the polynomial
y, Theorem 1.4.1 asserts that the two roots yp = £1 can be extended. On the
contrary, the root yg = 0 cannot be extended.

Consider now f(z,y) = yz2 +2—1, g(2,y) = y> — y and let us again
consider f and g := g + f, which have positive degree 2 with respect to z.
In this case, yo = 0 is a root of Resao(f,§) = y*(y*> — 1)%. Again, yo = 0
annihilates both leading coefficients with respect to z. But nevertheless it can
be extended to the solution (0, 1).

So, two comments should be made. The first one is that finding roots
of univariate polynomials is in general not an algorithmic task! One can try
to detect the rational solutions or to approximate the roots numerically if
working with polynomials with complex coeflicients. The second one is that
even if we can obtain the second coordinates explicitly, we have in general a
sufficient but not necessary condition to ensure that a given partial solution
yo can be extended to a solution (zg,yo) of the system, and an ad hoc study
may be needed.

1.4.2 Implicit equations of curves

Consider a parametric plane curve C given by z = f(t),y = g¢(t), where
f,g9 € K[t], or more precisely,



C = {(z,y) €K?: 2= f(t), y = g(t) forsomet € K}.

Having this parametric expression allows one to “follow” or “travel along”
the curve, but it is hard to detect if a given point in the plane is in C. One
can instead find an implicit equation f € K[z,y], i.e. a bivariate polynomial
f such that C = {f = 0}. This amounts to eliminating ¢ from the equations
z—f(t) =y—g(t) = 0 and can thus be done by computing the resultant with
respect to t of these polynomials.

This task could also be solved by a Grobner basis computation. But
we propose the reader to try in any computer algebra system the follow-
ing example suggested to us by Ralf Froberg. Consider the curve C de-
fined by z = 32,y = 48 — 36 — ¢60 _ 462 _ 63 Then the resultant
Resga 63 (132 — 2,48 — 196 — 60 — 462 463 _ o) with respect to ¢ can be com-
puted in a few seconds, giving the answer f(z,y) we are looking for. It is a
polynomial of degree 63 in z and degree 32 in y with 257 terms. On the other
side, a Grébner basis computation seems to be infeasible.

For a plane curve C with a rational parametrization; i.e.

C = {(p1(t)/q1(t), p2(t)/a2(t)) :qi(t) #0,q2(t) # 0},

where p;, ¢; € K]t], the elimination ideal

I == {(qi(t)z — p1(t), q2(t)y — p2(t)) N K[z, y]

defines the Zariski closure of C in K2. We can obtain a generator of I; with a
resultant computation that eliminates t. For example, let

2 -1 t+1
€= {((1+2t)2’ (1+2t)(1—t)> AL 1/2}'
Then C = V(1) is the zero locus of
f(z,9) = Resao((1+2t)%2 — (17 = 1), (1 +26)(1 = )y — (t + 1))

which equals

27y%z — 18yz + 4y + 42° — 2.

We leave it to the reader to verify that C is not Zariski closed.

One could also try to implicitize non planar curves. We show a general
classical trick in the case of the space curve C with parametrization z =
12,y = 13,z = t°. We have 3 polynomials = — t?,y — t3, 2 — t° from which
we want to eliminate t. Add two new indeterminates u,v and compute the
resultant

Resg 5(v—1%, u(y—t*)+v(z—1t°)) = (—y*+2°)u+(22* —2y2)uv+ (-2 +2°)v*.

Then, since the resultant must vanish for all specializations of v and v, we
deduce that

C={-y?+a23=22" —2y2 = —22 + 25 = 0}.



1.4.3 Bézout’s theorem in two variables

Similarly to the construction of P!(K), one can define the projective plane
P?(K) (and in general projective n-space) as the complete variety whose points
are identified with lines through the origin in K3. We may embed K? in P?(K)
as the set of lines through the points (x,y, 1). Again, it makes sense to speak of
the zero set in P?(KK) of homogeneous polynomials (i.e. polynomials f(x,, 2)
such that f(Ax, Ay, A\z) = A f(z,y, 2), for d = deg(f)).

Given two homogeneous polynomials f,g € K|x,y, 2] without common
factors, with deg(f) = d, deg(g) = da, a classical theorem of Bézout asserts
that they have d; - do common points of intersection in P?(K), counted with
appropriate intersection multiplicities. A proof of this theorem using resultants
is given for instance in [CLO97]. The following weaker version suffices to obtain
such nice consequences as Pascal’s Mystic Hexagon theorem [CLO97, Sect. 8.7]
(see Corollary 1.5.15 for a proof using multivariable residues).

Theorem 1.4.2. Let f,g € Klz,y,z] be homogeneous polynomials, without
common factors, and of respective degrees di,ds. Then (f =0)N (g = 0) is
finite and has at most dy - do points.

Proof. Assume (f = 0) N (g = 0) have more than d; - dy points, which we
label po, . .., Pd,d,- Let L;; be the line through p; and p; for 4,5 =0, ..., dids.
Making a linear change of coordinates, we can assume that (0,0,1) ¢ (f =
0) U (g = 0) U (Uj;L;j). Write f = Z?;O a;zt, g = Z?io b;jz?, as polynomi-
als in z with coefficients a;,b; € K[z,y]. Since f(0,0,1) # 0, ¢(0,0,1) # 0
and f and g do not have any common factor, it is straightforward to ver-
ify from the expression of the resultant as the determinant of the Sylvester
matrix, that the resultant Resq, 4, (f,g) with respect to z is a non zero ho-
mogeneous polynomial in z,y of total degree dy - do. Write p; = (x4, v, 2i)-
Then, Resq, 4, (f,9)(zi,y;) =0 foralli =0,...,d; - do. The fact that (0,0,1)
does not lie in any of the lines L;; implies that the (dids + 1) points (x;, y;)
are distinct, and we get a contradiction.

1.4.4 GCD computations and Bézout identities

Let P,Q be two univariate polynomials with coefficients in a field k. Assume
they are coprime, i.e. that their greatest common divisor GCD(P, Q) = 1.
We can then find polynomials hy,hy € k[z] such that the Bézout identity
1 = h1 P+ hoQ is satisfied, by means of the Euclidean algorithm to compute
GCD(P, Q). A we have already remarked, GCD(P, Q) = 1 if and only if P
and @ do not have any common root in any algebraically field K contain-
ing k. If dy,d> denote the respective degrees, this happens precisely when
Resg, 4, (P, Q) # 0. Note that since the resultant is an integer polynomial
in the coefficients, Resq, 4, (P, @) also lies in k. Moreover, by property iii) in
Section 1.3.2, one deduces that



1= Ay P Az
Resdl,d2 (P, Q) ReSdl,d2 (P, Q)

So, it is possible to find hi, hy whose coefficients are rational functions with
integer coefficients evaluated in the coefficients of the input polynomials P, Q,
and denominators equal to the resultant. Moreover, these polynomials can be
explicitly obtained from the proof of (1.23). In particular, the coefficients of
A1, Ay are particular minors of the Sylvester matrix Mgy, 4,.

This has also been extended to compute GCD(P, Q) even when P and @
are not coprime (and the resultant vanishes), based on the so called subresul-
tants, which are again obtained from particular minors of My, 4,. Note that
GCD(P, Q) is the (monic polynomial) of least degree in the ideal generated by
P and Q (i.e. among the polynomial linear combinations hy P + ha@). So one
is led to study non surjective specializations of the linear map (1.21). In fact,
the dimension of its kernel equals the degree of GCD(P, @), i.e. the number
of common roots of P and @, counted with multiplicity.

Note that if 1 < dy < d; and C = Zf;EdQ c;' is the quotient of P in the
Euclidean division by @, the remainder equals

Q. (1.26)

di—da

R=P- Z ci(2'Q).

=0

Thus, subtracting from the first column of My, 4, the linear combination of the
columns corresponding to 2°Q,i = 0,...,d; — do, with respective coefficients
¢;, we do not change the determinant but we get the coeflicients of R in the
first column. In fact, it holds that

Rg,.4,(P,Q) = agf_deg(R)Rdeg(R),dz (R,Q).

So, one could describe an algorithm for computing resultants similar to the
Euclidean algorithm. However, the Euclidean remainder sequence to compute
greatest common divisors has a relatively bad numerical behavior. Moreover,
it has bad specialization properties when the coefficients depend on parame-
ters. Collins [Col67] studied the connections between subresultants and Eu-
clidean remainders, and he proved in particular that the polynomials in the
two sequences are pairwise proportional. But the subresultant sequence has a
good behavior under specializations and well controlled growth of the size of
the coefficients. Several efficient algorithms have been developed to compute
subresultants [LRD00].

1.4.5 Algebraic numbers

A complex number « is said to be algebraic if there exists a polynomial P €
Q[z] such that P(«) = 0. The algebraic numbers form a subfield of C. This
can be easily proved using resultants.



Lemma 1.4.3. Let P,Q € Q|z] with degrees dyi,ds and let o, 3 € C such that
P(a) = Q(B) =0. Then,

i) a+ 0 is a root of the polynomial uy(z) = Resq, a4,(P(z — y),Q(y)) =0,
i) a - 3 is a root of the polynomial uy (z) = Resq, a4, (Y™ P(2/y), Q(y)),
i) for o £ 0, =t is a root of the polynomial u_1(z) = Resq, 4, (2y —1, P(y)),

where the resultants are taken with respect to y.

The proof of Lemma 1.4.3 is immediate. Note that even if P (resp. Q) is
the minimal polynomial annihilating « (resp. (), i.e. the monic polynomial
with minimal degree having « (resp. 3) as a root, the roots of the polynomial
uyx are all the products «; - §; where a; (resp. 3;) is any root of P (resp. @),
which need not be all different, and so uy need not be the minimal polynomial
annihilating o - 3. This happens for instance in case o = /2, P(z) = 22—2,3 =
V3,Q(2) = 2% — 3, where uy (2) = (22 — 6)2.

1.4.6 Discriminants

Given a generic univariate polynomial of degree d, P(z) = ag + a1z +
< Fagz?, ag # 0, it is also classical the existence of an irreducible poly-
nomial Dg(P) = Dgy(ao,...,aq) € Z[ag, ..., aq], called the discriminant (or
d-discriminant) whose value at a particular set of coefficients (with a4 # 0)
is non-zero if and only if the corresponding polynomial of degree d has only
simple roots. Equivalently, Dy(aq, - . ., a,) = 0 if and only if there exists z € C
with P(z) = P'(z) = 0.
Geometrically, the discriminantal hypersurface

{a = (ao,...,aq) € C': Dy(a) = 0}

is the projection over the first (d + 1) coordinates of the intersection of the
hypersurfaces {(a,2) € C*2: ag + a1z + -+ + agz¢ = 0} and {(a,2) €
CH2: g1 +2a9z2+ -+ +dagz?! = 0}, i.e. the variable z is eliminated.

The first guess would be that Dg(P) equals the resultant Resq 4—1(P, P’),
but it is easy to see that in fact Resgq_1(P, P') = (=1)44=1/2q;D4(P). In
case d = 2, P(z) = az? + bz + ¢, Da(a,b,c) is the well known discriminant
b? — 4ac. When d = 6 for instance, Dg is an irreducible polynomial of degree
10 in the coefficients (ag, . .., as) with 246 terms.

The extremal monomials and coefficients of the discriminant have very
interesting combinatorial descriptions. This notion has important applications
in singularity theory and number theory. The distance of the coefficients of
a given polynomial to the discriminantal hypersurface is also related to the
numerical stability of the computation of its roots. For instance, consider the
Wilkinson polynomial P(z) = (z+1)(z+2) ... (24 19)(z + 20), which clearly
has 20 real roots at distance at least 1 from the others, and is known to be
numerically unstable. The coefficients of P are very close to the coefficients of
a polynomial with a multiple root. The polynomial Q(z) = P(z) + 1079219,



obtained by a “small perturbation” of one of the coefficients of P, has only
12 real roots and 4 pairs of imaginary roots, one of which has imaginary
part close to +£0.88i. Consider then the parametric family of polynomials
P\(z) = P(2) + A\z'Y and note that P(z) = Py and Q(z) = Pjy-o. Thus, for
some intermediate value of A, two complex roots merge to give a double real
root and therefore that value of the parameter is a zero of the discriminant
D(X) = Doo(Py).

1.5 Multidimensional residues

In this section we will extend the theory of residues to the several variables
case. As in the one-dimensional case we will begin with an “integral” definition
of local residue from which we will define the total residue as a sum of local
ones. We will also indicate how one can give a purely algebraic definition of
global, and then local, residues using Bezoutians. We shall also touch upon
the geometric definition of Arnold, Varchenko and Gusein-Zadé [AGnZV85].

Let K be an algebraically closed field of characteristic zero and let I C
K[z1,...,z,] be a zero-dimensional ideal. We denote by Z(I) = {&1,...,&s} C
K" the variety of zeros of I. We will assume, moreover, that I is a complete
intersection ideal, i.e. that it has a presentation of the form I = (Py,..., P,),
P, € K[z, ...,x,]. For simplicity, we will denote by (P) the ordered n-tuple
{P1,...,P,}. As before, let A be the finite dimensional commutative algebra
A = Klzy,...,2z,]/I. Our goal is to define a linear map

respy: A—-K

whose properties are similar to the univariate residue map. In particular, we
would like it to be dualizing in the sense of Theorem 1.2.1 and to be compatible
with local maps res(py ¢: Ae — K, £ € Z(I).

1.5.1 Integral definition

In case K = C, given £ € Z(I), let U C C™ be an open neighborhood of &
containing no other points of Z(I), and let H € Clzy,...,z,]. We define the
local Grothendieck residue

1 H(x
(2mi)" /rg(e) Pi(z) - Po(z)

where I¢(e) is the real n-cycle I't(e) = {z € U : |Pi(x)| = €} oriented by
the n-form d(arg(Py)) A --- A d(arg(Py)). For almost every € = (e1,...,€,) in
a neighborhood of the origin, I'¢(€) is smooth and by Stokes’” Theorem the
integral (1.27) is independent of €. The choice of the orientation form implies
that res py ¢ (H) is skew-symmetric on Py, ..., P,. We note that this definition

res(py ¢ (H) = dey A---Ndx,,  (1.27)



makes sense as long as H is holomorphic in a neighborhood of £. If € € Z(1)
is a point of multiplicity one then the Jacobian

Tay(€) = det (G1406))

is non-zero, and

H(¢)
Jpy (&)

This identity follows from making a change of coordinates y; = P;(x) and
iterated integration.

It follows from Stokes’s theorem that if H € I¢, the ideal defined by I in
the local ring defined by £ (cf. Section 2 in Chapter 2), then res(py ¢(H) =0
and therefore the local residue defines a map res(p) ¢ : A¢ — C. We then define
the global residue map as the sum of local residues

res(py(H) := Z res py.¢(H)
§ez(I)

respy¢(H) = (1.28)

which we may view as a map res;py: A — C. We may also define the global
residue res(py(H1/Hz) of a rational function regular on Z([I), i.e. such that
H, does not vanish on Z(I). At this point one may be tempted to replace the
local cycles I'z(€) by a global cycle

I'(e) = {x e C":|P(x)] =¢}

but I'(¢) need not be compact and integration might not converge. However,
if the map
(Py,...,P,): C"—=C"

is proper, then I'(e) is compact and we can write

o 1 H(x) e A A da
S H) = G o Bl Py A o

The following two theorems summarize basic properties of the local and

global residue map.

Theorem 1.5.1 (Local and Global Duality). Let I = (Py,...,P,) C
Clzy,...,x,] be a complete intersection ideal and A = Clxy,...,x,]/I. Let
Ag¢ be the localization at & € Z(I). The pairings

Ae x Ae = C 5 ([Hi], [H2]) — res(py¢(Hi1 - Hs)

and
AxA—=C ;  ([H] [Ha]) — res(p)(Hi - Ha)

are non-degenerate.



Theorem 1.5.2 (Local and Global Transformation Laws). Let I =
(Py,...,Py)y and J = {(Q1,...,Qn) be zero-dimensional ideals such that J C I.
Let

Qj(x) = Y ai(x)Pi(x).
i=1
Denote by A(x) the n x n-matriz (a;j(x)), then for any & € Z(I),

resp)¢(H) = res(q).¢(H - det(4)). (1.29)
Moreover, a similar formula holds for global residues
res(py(H) = resiqy(H -det(4)).

Remark 1.5.8. We refer the reader to [Tsi92, Sect. 5.6 and 8.4] for a proof
of the duality theorems and to [Tsi92, Sect. 5.5 and 8.3] for full proofs of
the transformation laws. The local theorems are proved in [GH78, Sect. 5.1]
and extended to the global case in [TY84]; a General Global Duality Law is
discussed in [GH78, Sect. 5.4] Here we will just make a few remarks about
Theorem 1.5.2.

Suppose that & € Z(I) is a simple zero and that det(A(£)) # 0. Then,
since

iy (&) = Jipy(§) - det(A(E))

we have

res(pyc(H) = A() = H() - det(A(©)) = res(g),¢(H - det(A)),

Jipy (§) Ji@) (&)

as asserted by (1.29). The case of non-simple zeros which are common to both
I and J is dealt-with using a perturbation technique after showing that when
the input {Py,..., P,} depends smoothly on a parameter so does the residue.
Finally, one shows that if £ € Z(J)\Z(I), then det(A) € Je and the local
residue res gy ¢ (H - det(A)) vanishes.

1.5.2 Geometric definition

For the sake of completeness, we include a few comments about the geometric
definition of the residue of Arnold, Varchenko and Gusein-Zadé [AGnZV85].
Here, the starting point is the definition of the residue at a simple zero
& € Z(I) as in (1.28). Suppose now that ¢ € Z(I) has multiplicity u. In a
sufficiently small neighborhood U of £ in C™ we can consider the map

P=(P,...,P,): U—C".

By Sard’s theorem, almost all values y € P(U) are regular and at such points
the equation P(x)—y = 0 has exactly u simple roots 71 (y), . .., 7, (y). Consider
the map



It is shown in [AGnZV85, Sect. 5.18] that ¢(y) extends holomorphically to
0 € C". We can then define the local residue res p ¢ (H) as the value ¢(0). A
continuity argument shows that both definitions agree.

1.5.3 Residue from Bezoutian

In this section we generalize to the multivariable case the univariate approach
discussed in Section 1.2.1. This topic is also discussed in Section 4 of Chapter 3.
We will follow the presentation of [BCRS96] and [RS98] to which we refer the
reader for details and proofs. We note that other purely algebraic definitions
of the residue may also be found in [KK87, Kun86, SS75, SS79].

Let K be an algebraically closed field K of characteristic zero and let A
be a finite-dimensional commutative K algebra. Recall that A is said to be a
Gorenstein algebra if there exists a linear form ¢ € A := Homg (A, K) such
that the bilinear form

oo AxA—-K ; ¢4a,b) := L(a-b)

is non-degenerate. Given such a dualizing linear form ¢, let {aq,...,a,} and
{b1,...,b.} be ¢p-dual bases of A, and set

= iaﬂ@bi c A A.

i=1

By is independent of the choice of dual bases and is called a generalized Be-
zoutian. It is characterized by the following two properties:

e (a®1)B; = (1®a)By, for all a € A, and
e If {ai,...,a,} is a basis of A and B; = ), a; ® b;, then {b1,...,b,} is a
basis of A as well.

It is shown in [BCRS96, Th. 2.10] that the correspondence ¢ — By is an
equivalence between dualizing linear forms on A and generalized Bezoutians
in A® A.

As in Section 1.2.5 we can relate the dualizing form, the Bezoutian and
the computation of traces. The dual A may be viewed as a module over A
by a- A(b) :== A(a-b), a,b e A\ € A. A dualizing form ¢ € A generates A
as an A-module. Moreover, it defines an isomorphism A — A, a — {(ae). In
particular there exists a unique element J; € A such that tr(M,) = €(J; - q),
where M,: A — A denotes multiplication by ¢ € A. On the other hand, if
{a1,...,a,} and {b1,...,b.} are ¢,-dual bases of A, then

Mq( *q aj; = Z¢Zq a],



and therefore
(M) =Y de(q-aib) =Y lg-ai-b)=L(q- ) aiby)
i=1 i
from which it follows that
,
Joo= > ai-b;. (1.30)
i=1

Note that, in particular,

0J)) = > lai-b;) = r = dim(A). (1.31)
i=1
Suppose now that I C K[zy,...,z,] is a zero-dimensional complete inter-

section ideal. We may assume without loss of generality that I is generated by
a regular sequence {Pj,..., P,}. The quotient algebra A = K[z1,...,z,]/]
is a Gorenstein algebra. This can be done by defining directly a dualizing
linear form (global residue or Kronecker symbol) or by defining an explicit
Bezoutian as in [BCRS96, Sect. 3:

Let

0,P, = Py, ¥j—1,Zj, oy &n) — Pi(yr, - Y5, Tj1s -, Tn) (1.32)
Tj—Yj

and set
Apy(z,y) = det(9;P) € Klz,y]. (1.33)

We shall also denote by Apy(z,y) its image in the tensor algebra

A A = Kla,yl/(Pi(2), ..., Pu@), Pi(y),. .., Pu(y)) . (1.34)

Remark 1.5.4. In the analytic context, the polynomials 0;F; are the coeffi-
cients of the so called Hefer expansion of P;. We refer to [TY84] for the
relationship between Hefer expansions and residues.

Theorem 1.5.5. The element Apy(z,y) € A®A is a generalized Bezoutian.

This is Theorem 3.2 in [BCRS96]. It is easy to check that A py satisfies the
first condition characterizing generalized Bezoutians. Indeed, given the iden-
tification (1.34), it suffices to show that [f(x)]- Apy(z,y) = [f(y)]- Apy (7, y)
for all [f] € A. This follows directly from the definition of A py. The proof
of the second property is much harder. Becker et al. show it by reduction to
the local case where it is obtained through a deformation technique somewhat
similar to that used in the geometric case in [AGnZV85].



We denote by 7 the Kronecker symbol; that is, the dualizing linear form
associated with the Bezoutian A py. As we shall see below, for K = C, the
Kronecker symbol agrees with the global residue. In order to keep the context
clear, we will continue to use the expression Kronecker symbol throughout
this section.

If H,/H, is a rational function such that Hy does not vanish on Z(I), then
[H2] has an inverse [G3] in A and we define 7(Hy/Hs) := 7([H1] - [G2]).

If {[x*]} is a monomial basis of A and we write

Apy(z,y) = Zx“Aa(y)
then {[z*]} and {[A,(z)]} are dual basis and it follows from (1.30) and (1.34)

that
Jipy(@) = Jo(x) = Y a%Au(x) = Apy(z,2).

oF;
8.13j
Jacobian of the polynomials P, ..., P,. Aswe did in Section 1.1.2 for univari-
ate residues, we can go from the global Kronecker symbol to local operators.
Let Z(I) = {&,...,&} and let

Since lim 0, P;(z,y) = it follows that J py(z) agrees with the standard
y—a

I = Neeznyle

be the primary decomposition of I as in Section 2 of Chapter 2. Let A¢ =
Klz1,...,xs]/I¢, we have an isomorphism:

A= ] A
)

cez(I

We recall (cf. [CLO98, Sect. 4.2]) that there exist idempotents e¢ € K[z, ..., zy]
such that, in A, EgeZ(I) ee =1, eg,ee, = 0if 7 # j, and eg = 1. These gener-
alize the interpolating polynomials we discussed in Section 1.1.2. We can now
define

e([H]) = 7(ec - [H])
and it follows easily that the global Kronecker symbol is the sum of the local
ones. In analogy with the global case, we may define the local Kronecker
symbol 7¢ ([H1/Hz]) of arational function Hy /Hs, regular at £ as 7¢ ([H1]-[Gz]),
where [Go] is the inverse of [H»] in the algebra A¢. The following proposition
shows that in the case of simple zeros and K = C, the Kronecker symbol
agrees with the global residue defined in Section 1.5.1.

Proposition 1.5.6. Suppose that Jipy(&) # 0 for all § € Z(I). Then

(1.35)

for all H € K[z1,...,z,].



Proof. Recall that the assumption that Jpy(£) # 0 for all £ € Z(I) implies

that [J;p)] is invertible in A. Indeed, since J(py, P1, ..., P, have no common
zeros in K™, the Nullstellensatz implies that there exists G € K[zq,...,z,]
such that

G.J<p> =1 mod .

Given H € K[zy,...,x,], consider the trace of the multiplication map
Mpy.g: A — A. On the one hand, we have from Theorem ?? in Chapter 2

that
wOie) = Y HEOGE = Y )

¢eZ(I) Eez(I)

But, recalling the definition of the Jacobian we also have
tI"(MH.G) = T(J<p> -G - H) = T(H)
and (1.35) follows.

Remark 1.5.7. As in the geometric case discussed in Section 1.5.2 one can use
continuity arguments to show that the identification between the Kronecker
symbol and the global residue extends to the general case. We refer the reader
to [RS98] for a proof of this fact as well as for a proof of the Transformation
Laws in this context. In particular, Theorem 1.5.2 holds over any algebraically
closed field of characteristic zero.

1.5.4 Computation of residues

In this section we would like to discuss briefly some methods for the com-
putation of global residues; a further method is discussed in Section 7?7 in
Chapter 3. Of course, if the zero-dimensional ideal I = (Py,..., P,) is radi-
cal and we can compute the zeros Z(I), then we can use (1.28) to compute
the local and global residue. We also point out that the transformation law
gives a general, though not very efficient, algorithm to compute local and
global residues. Indeed, since I is a zero dimensional ideal there exist univari-
ate polynomials f1(z1), fa(z2),..., fn(zy) in the ideal I. In particular we can

write
n

file) = > ai;(x)Pi(x)

=1

and for any H € K[z1,...,2z,],
res py(H) = res(s (H - det(a;;)). (1.36)

Moreover, the right hand side of the above equation may be computed as
an iterated sequence of univariate residues. What makes this a less than de-
sirable computational method is that even if the polynomials P, ..., P, and



fi,..., fn are very simple, the coefficients a;;(x) need not be so. The following
example illustrates this.
Consider the polynomials

Plzxf—xg

Py = a9y — x122 (1.37)
Py =a3— a3
The ideal I = (P, P, P3) is a zero-dimensional ideal; the algebra .4 has di-
mension four, and the zero-locus Z(I) consists of two points, the origin, which
has multiplicity three, and the point (1,1, 1). Grobner basis computations with
respect to lexicographic orders give the following univariate polynomials in the
ideal I:

fi=at—af
fo=a3 -z (1.38)

fgzxg—xg.

We observe that we could also have used iterated resultants to find univariate
polynomials in I. However, this will generally yield higher degree polynomials.
For instance, for our example (1.37) a Singular [GPS01] computation gives:

>resultant (resultant(P_1,P_2,x_3),resultant(P_2,P_3,x_3),x_2);
x_1710-2%x_1"9+x_1"8

Returning to the polynomials (1.38), we can obtain, using the Singular com-
mand “division”, a coefficient matrix A = (a;;(x)):

23+ a3 25 + (23 + a1 + D2 + (23 + 21 + 22)w3 + 2320 (21 + 1V)ag + 23

0 T3+ ag —1 0
1 (v1 + 1)(wg + x3) + 23 T1 + 23
So that

det(A) = (zo+ a3 — )22 + (229 + 27 — 2% — 22 — 29 + 1)z +
= x?xg—kx?—x?—xi’—i—x?—x%m.

Rather than continuing with the computation of a global residue res py(H)
using (1.36) and iterated univariate residues or Bezoutians, we will refer the
reader to Chapter 3 where improved versions are presented and discuss instead
how we can use the multivariate Bezoutian in computations. The Bezoutian
matrix (0;F;) is given by

1+ -3 —(23 + 2191 +?)
0 1 0
-1 —yi(xs +ys3) 3+ Y3

and therefore



Aipy(z,y) = @123+ T1Y3 + T3Y1 + Y1Y3 — xy — 1y — y7

Computing a Grobner basis relative to grevlex gives a monomial basis of A
of the form {1,z1, 22, z3}. Reducing A py(x,y) relative to the corresponding
basis of A ® A we obtain:

Aipy(z,y) = (y2—y3) + (Y3 —y1)r1 + 22+ (y1 — 1)z3.

Hence the dual basis of {1, x1,x9,z3} is the basis {xs — x3,23 —x1,1,21 — 1}.
We now claim that given H € K|z1,...,x,], if we compute the grevlex
normal form:
N(H) = A+ )\1[I1] + Ao [:102] + A3 [CC3}

then, res py(H) = 2. More generally, suppose that {[z“]} is a monomial
basis of A and that {[A,(z)]} is the dual basis given by the Bezoutian, then

if [H] =3, Aafz®] and 1 =} palAal,
res(py(H) = Z)‘O‘MO“ (1.39)

Indeed, we have

respy(H) = respy(H -1) = res(p) (Z)\axa . Z“ﬁAﬁ)
B

Z Aapipres py(z® - Ag) = Z)\a,ua.
o, «

Although the computational method based on the Bezoutian allows us to
compute res py(H) as a linear combination of normal form coefficients of H,
it would be nice to have a method that computes the global residue as a
single normal form coefficient, generalizing the univariate algorithm based on
the identities (1.10). This can be done if we make some further assumptions
on the generators of the ideal I. We will discuss here one such case which
has been extensively studied both analytically and algebraically, following
the treatment in [CDS96]. A more general algorithm will be presented in
Section 1.5.6. Assume the generators Py, ..., P, satisfy:

Assumption: P,..., P, are a Grobner basis for some term order <.

Since we can always find a weight w € N” such that in,, (P;) = in<(P;),

1 =1,...,n, and given that I is a zero dimensional ideal, it follows that, up

to reordering the generators, our assumption is equivalent to the existence of
a weight w such that:

in,(P;) = ¢ zlitl (1.40)

K3

It is clear that in this case dimg(A) = ry - - -7, and a monomial basis of A is
given by {[z%]: 0 < a; <1}

We point out that, for appropriately chosen term orders, our assumption
leads to interesting examples.



e Suppose < is lexicographic order with x,, < --- < z1. In this case
P, = cm?“ + Pl(xi...,xp)

and deg, (P]) <r. This case was considered in [DS91].
e Let < be degree lexicographic order with 1 < --- < x,,. Then

1—1
PZ(CC) = cix;'”'l -+ sz d)”(ZL') + ’LZJl(ZL’),
Jj=1

where deg(¢;;) = r; and deg(y;(x)) < r;. This case has been extensively
studied by the Krasnoyarsk School (see, for example, [AY83, Ch. 21] and
[Tsi92, I1.8.2]) using integral methods. Some of their results have been
transcribed to the algebraic setting in [BGV02] under the name of Pham
systems of type II.

Note also that the polynomials in (1.37) satisfy these conditions. Indeed,
for w = (3,14, 5) we have:

in, (Py) = xf , g (Pe) =xe, ing,(P3) = x% (1.41)

The following theorem, which may be viewed as a generalization of the
basic univariate definition (1.1), is due to Aizenberg and Tsikh. Its proof may
be found in [AY83, Ch. 21] and [CDS96, Th. 2.3].

Theorem 1.5.8. Let Py,..., P, € Clxy,...,x,] satisfy (1.40). Then for any
H € Clwy,...,z,] res(py(H) is equal to the ——————-coefficient of the Laurent
T T

1 n
series expansion of:

H(x) 1
W l:[ <1 + P{(Hf)/(ci:rf”l)) ) (1.42)

obtained through geometric erpansions.

The following simple consequence of Theorem 1.5.8 generalizes (1.10) and
is the basis for its algorithmic applications.

Corollary 1.5.9. Let Py,..., P, € Clxy,...,x,] satisfy (1.40) and let {[x*] :

0 < a; < r;} be the corresponding monomial basis of A. Let p = (r1,...,7n),
then fast
any 0 if a#p
res(py([z°]) = { cl-<1~cn if o= p (1.43)

Remark 1.5.10. A proof of (1.43) using the Bezoutian approach may be found
in [BCRS96]. Hence, Corollary 1.5.9 may be used in the algebraic setting as
well.

As in the univariate case, we are led to the following algorithm for com-
puting residues when Py, ..., P, satisfy (1.40).



Algorithm 1: Compute the normal form N(H) of H € K[xy,...,z,] relative
to any term order which refines w-degree. Then,
O

res<p>(H) = -, (144)

Cl ... cn
where q,, is the coefficient of «* in N(H).

Remark 1.5.11. Given a weight w for which (1.40) holds it is easy to carry the
computations in the above algorithm using the weighted orders wp (weighted
grevlex) and Wp (weighted deglex) in Singular [GPS01]. For example, for the
polynomials in (1.37), the Jacobian Jpy(z) = 4z123 — 327 and we get:

> ring R = 0, (x1, x2, x3), wp(3,14,5);

> ideal I = x172-x3, x2-x1*x372, x372 - x173;

> reduce (4*x1*x3 - 3*x1°2,std(1));
4%x1%*x3-3%x3

Thus, the z123 coefficient of the normal form of Jipy(z) is 4, i.e. dimg(A) as
asserted by (1.30).

1.5.5 The Euler-Jacobi vanishing theorem

We will now discuss the multivariate extension of Theorem 1.1.8. The basic
geometric assumption that we need to make is that if we embed C” in a suit-
able compactification then the ideal we are considering has all its zeros in C".
Here we will restrict ourselves to the case when the chosen compactification is
weighted projective space. The more general vanishing theorems are stated in
terms of global residues in the torus and toric compactifications as in [Hov78].

Let w € N™ and denote by deg,, the weighted degree defined by w. We set
|lw| =3, w;. Let I = (Py,..., P,) be a zero-dimensional complete intersection
ideal and write

Pi(z) = Qi(z)+ Pl(z),

where Q;(z) is weighted homogeneous of w-degree d; and deg,,(P/) < d;.
We call Q; the leading form of P;. We say that I has no zeros at infinity in
weighted projective space if and only if

Qi(x) = -+ = Qup(xr) = 0 ifandonlyif = =0 (1.45)

In the algebraic context an ideal which has a presentation by generators
satisfying (1.45) is called a strict complete intersection [KK87).

Theorem 1.5.12 (Euler-Jacobi vanishing). Let I = (Py,...,P,) be a
zero-dimensional complete intersection ideal with no zeros at infinity in
weighted projective space. Then,

res(py(H) = 0 if deg,(H) <) deg,(P;) — |wl
=1



Proof. We begin by proving the assertion in the particular case when Q;(x) =
:17?“'1. By linearity it suffices to prove that if % is a monomial with (w, a) <
Nlw|, then res py(®) = 0. We prove this by induction on § = (w, a). If § = 0
then % = 1 and the result follows from Corollary 1.5.9. Suppose then that
the result holds for any monomial of degree less than § = (w,«), if every
a; < N then the result follows, again, from Corollary 1.5.9. If, on the other
hand, some «; > N then we can write

= 2. P, —af - P/,

where 8 = a — (N + 1)e;. It then follows that res p) () = —res(py(z” - P}),

1
but all the monomials appearing in the right-hand side have weighted degree

less than § and therefore the residue vanishes.
Consider now the general case. In view of (1.45) and the Nullstellensatz
there exists N sufficiently large such that

xi\f-i-l € (Qi(z),...,Qn(z)).

In particular, we can write

n

l’?’“ = Zaij(x)Qi(x)v

i=1
where a;;(z) is w-homogeneous of degree (N + 1)w; — d,. Let now

n

Fi(z) = Zaij(:c)Pi(z) = 2V 4 Fi(a),

=1

and deg,,(F}) < (N + 1)w;. Given now H € Klz1,...,z,] with deg,, (H) <
>~ di — |w|, we have by the Global Transformation Law:

res(py(H) = respy(det(asy) - H).
But, deg,, (det(a;;)) < (N +1)|w| — ", d; and therefore
deg,, (det(a;;) - H) < deg,,(det(a;;)) + deg,,(H) < N|w|,
and the result follows from the previous case.

Remark 1.5.13. The FEuler-Jacobi vanishing theorem is intimately connected
to the continuity of the residue. The following argument from [AGnZV85,
Ch. 1, Sect. 5] makes the link evident. Suppose P4, ..., P, have only simple
zeros and satisfy (1.45). For simplicity we take w = (1,...,1), the general
case is completely analogous. Consider the family of polynomials

Pi(z;t) = t4 Pt ey, ..t ). (1.46)



Note that P(t - z,t) = t% Py(z). In particular if Pi(€) =0, Pi(t&;t) = 0 as
well. Suppose now that deg(H) < ). d; —n and let H(x;t) be defined as in
(1.46). Then

~ ifusl) H(E)
SNCIRD SRR e p—
" p (P) )
ccz(I) JaC<P> (tg) ce () JaC<P> (g)
where a = deg(H) — deg(Jac(py(x)) = deg(H) — (>, d; —n). Hence, if a < 0,
the limit )
}E% res py (H)

may exist only if respy(H) = 0 as asserted by the Euler-Jacobi theorem.

We conclude this subsection with some applications of Theorem 1.5.12 to
plane projective geometry (cf. [GH78, 5.2]). The following theorem is usually
referred to as the Cayley-Bacharach Theorem though, as Eisenbud, Green,
and Harris point out in [EGH96], it should be attributed to Chasles.

Theorem 1.5.14 (Chasles). Let C; and Cy be curves in P2, of respective
degrees dy and do, intersecting in dyds distinct points. Then, any curve of
degree d = dy + ds — 3 that passes through all but one of the points in C1 N Cs
must pass through the remaining point as well.

Proof. After a linear change of coordinates, if necessary, we may assume that
no point in Cy; N Cy lies in the line z3 = 0. Let C; = {Pi(xl,xg,xg) = 0},
deg P; = d;. Set Pj(x1,x2) = Pi(x1,22,1). Given H € K[zy, 2, z3], homoge-
neous of degree d, let H € K|z, x2] be similarly defined. We can naturally
identify the points in C; N Cy with the set of common zeros

Z ={¢€K?: P (&) = Py(¢) =0}.

Since deg H < deg Py +deg P, —2, Theorem 1.5.12 implies that res py(H) = 0,
but then

which implies that if H vanishes at all but one of the points in Z it must
vanish on the remaining one as well.

Corollary 1.5.15 (Pascal’s Mystic Hexagon). Consider a hexagon in-
scribed in a conic curve of P2. Then, the pairs of opposite sides meet in
collinear points.

Proof. Let Ly ... Lg denote the hexagon inscribed in the conic Q C P?, where
L; is a line in P2. Let &;; denote the intersection point L; N L;. Consider the
cubic curves C7 = L1+ Ls+Ls and Cy = Lo+ Ls+ Lg. The intersection C1NCy
consists of the nine points &;; with ¢ odd and j even. The cubic Q + L(£14&36),



where L(£14€36) denotes the line joining the two points, passes through eight
of the points in Cy; N C5 hence must pass through the ninth point &55. For
degree reasons this is only possible if £52 € L(£14€36) and therefore the three
points are collinear.

1.5.6 Homogeneous (projective) residues

In this section we would like to indicate how the notion or residue may be
extended to meromorphic forms in projective space. This is a special instance
of a much more general theory of residues in toric varieties. A full discussion
of this topic is beyond the scope of these notes so we will restrict ourselves to
a presentation of the basic ideas, in the case K = C, and refer the reader to
[GH78, TY84, PS83, Cox96, CCD97] for details and proofs.

Suppose Fy, ..., F, € Clxg,...,z,] are homogeneous polynomials of de-
grees do,...,dp, respectively. Let V; = {x € P" : F;(z) = 0} and assume
that

VonVi---nV, = 0. (1.47)

This means that the zero locus of the ideal I = (Fy,...,F,) is the origin
0 € C™*!. Given any homogeneous polynomial H € C[zo,...,r,] we can
define the projective residue of H relative to the n+1-tuple (F) = {Fp, ..., F,,}
as:

res]<PF>(H) == res(p)(H) = res(py o(H).

It is clear from the integral definition of the Grothendieck residue, that the
local residue at 0 is invariant under the change of coordinates x; +— Az;,
A € C*. On the other hand, if deg(H) = d we see that, for

p =Y (di—1),
=0

H(\-z) AP H(x)
d(\ o ANdOTR) = = g A ANday,
Folh ) B (h ) (0N N M) = e (o A A
Hence,

res%]’IZ)(H) =0 if deg(H)#p.

Being a global (and local) residue, the projective residue is a dualizing
form in the algebra A = C[xy,...,x,]/I. Moreover, since I is a homogeneous
ideal, A is a graded algebra and the projective residue is compatible with the
grading. These dualities properties are summarized in the following theorem.

Theorem 1.5.16. The graded algebra A = Ay satisfies:

a) Ag=0ford>p:=do+---+d,— (n+1).
b) A,=C.



¢) For(0<d<p, the bilinear pairing

n

Aix Apa— C ;5 ([Hi], [Ha]) — res p (Hy - Hy)
is non-degenerate.

Proof. The assumption (1.47) implies that Fy, ..., F, are a regular sequence
in the ring C|zo, . .., x,]. Computing the Poincaré series for A using the exact-
ness of the Koszul sequence yields the first two assertions. See [PS83, Sect. 12]
for details. A proof using residues may be found in [Tsi92, Sect. 20]. The last
assertion follows from Theorem 1.5.1.

An important application of Theorem 1.5.16 arises in the study of smooth
hypersurfaces Xrp = {z € P : F(z) = 0}, of degree d, in projective space
[CGS80]. In this case we take F; = 0F/0x; , the smoothness condition means
that {Fp,...,F,} satisfy (1.47), and the Hodge structure of X may be
described in terms of the Jacobian ideal generated by {OF/0z;}. Indeed,
p=(n+1)(d—2) and setting, for 0 <p<n—1, d(p) :=dlp+1)— (n+1),
we have §(p) + 6(n — 1 —p) = p, and

HP=1op(X) = Asp) -
Moreover, the pairing
res]?m: A5(p) X A(;(n,l,p) —C
corresponds to the intersection pairing

HP17P(X) x H"'7PP(X) — C.

The projective residue may be related to affine residues in a different way. If
we identify C" = {x € P" : 2y # 0}, then after a linear change of coordinates,

if necessary, we may assume that for every ¢ =0,...,n,
Zi = Von---nV;n---NV, c C". (1.48)

Let P; € Clxy,...,2,] be the polynomial P;(x1,...,z,) = Fi(1,21,...,2,)
and let us denote by (P?) the n-tuple of polynomials Py, ..., Pi_1, Piy1,..., Py.

Theorem 1.5.17. For any homogeneous polynomial H € Clxg, ..., z,] with
deg(H) < p, |
resI?m (H) = (=1)"res pi(h/Py), (1.49)

where h(x1,...,zn) = H(1,21,...,2,).

Proof. We will only prove the second, implicit, assertion that the right-hand
side of (1.49) is independent of i. This statement, which generalizes the iden-
tity (1.11), is essentially Theorem 5 in [T'Y84]. For the main assertion we refer



to [CCDI7, Sect. 4], where it is proved in the more general setting of simplicial
toric varieties.

Note that the assumption (1.47) implies that the rational function h/P;
is regular on Z; and hence it makes sense to compute res (Pi) (h/P;). For each
i = 0,...,n, consider the n-tuple of polynomials in K[z1,...,z,]: (Q;) =
{Po,...,(Pi . Pi+1)a---7Pn}7 if i < n and <Qn> = {P17~--;Pn—17(Pn . Po)}
The set of common zeros of the polynomials in Q; is Z(Q;) = Z; U Z;11.
Hence, it follows from (1.48) that the ideal generated by the n-tuple Q; is
zero-dimensional and has no zeros at infinity. Hence, given that deg(H) < p,
the Euler-Jacobi vanishing theorem implies that

0 = resig(h) =) resgaelh) + Y resiqye(h)
tez, £€Zi
= Z res, piy ¢ (h/F;) Z res pirTy h/PZH)
Eez; £€Zi1

= res<P;;>(h/Pi) + res<Pm>(h/Pi+1)

and, consequently, the theorem follows. We should point out that the equality
res(q,),¢(h) = res piy ((h/F;), which is clear from the integral definition of the
local residue, may be obtained in the general case from the Local Transfor-
mation Law and the fact that res pi) ((h/F;) was defined as res piy ((h - Qs),

where @Q; inverts P; in the local algebra AZE and, consequently, the statement
holds over any algebraically closed field of characteristic zero.

We can use the transformation law to exhibit a polynomial A(z) of degree
p with non-zero residue. Write

n

F; = Zaij(x)xi; j=0,....,n,

=0

and set A(x) = det(a;;(z)). Then, deg(A) = p, and
res]f%(A) =1 (1.50)

Indeed, let (G) denote the n + 1-tuple G = {xg,...,x,}. Then by the trans-
formation law ; }
res]f’@ (1) = res]?’m(A)
and a direct computation shows that the left-hand side of the above identity
is equal to 1.
Putting together part b) of Theorem 1.5.16 with (1.50) we obtain the fol-
lowing normal form algorithm for computing the projective residue reslg)% (H):

Algorithm 2: 1. Compute a Grébner basis of the ideal (Fy,..., F,).



2. Compute the normal form N(H) of H and the normal form N(A) of

A, with respect to the Grobner basis.
3. The projective residue rest p (H) = N(H)
‘ () N(A)

Remark 1.5.18. There is a straightforward variant of this algorithm valid for
weighted homogeneous polynomials. This more general algorithm has been
used by Batyrev and Materov [BM02], to compute the Yukawa 3-point func-
tion of the generic hypersurface in weighted projective P*  w = (1,1,2,2,2).
This function, originally computed in [CAIOF*94] has a series expansion
whose coefficients have enumerative meaning. We refer to [BM02, 10.3] and
[CK99, 5.6.2.1] for more details.

We can combine Theorem 1.5.17 and Algorithm 2 to compute the global
(affine) residue with respect to a zero-dimensional complete intersection ideal
with no zeros at infinity in projective space. The construction below is a special
case of a much more general algorithm described in [CD97] and it applies, in
particular, to the weighted case as well. It also holds over any algebraically
closed field K of characteristic zero.

Let I ={P,...,P,} € K[zy,...,z,] be polynomials satisfying (1.45). Let
d; = deg(P;) and denote by

d; I Tn
Fi(xo,21,...,20) = P(xo,..., ZL’O)
the homogenization of P;. Let h(x1,...,2,) € Klz1,...,z,]. If d = deg(h) <
> i(di — 1), then res py(h) = 0 by the Euler-Jacobi theorem. Suppose, then
that d > Y .(d; — 1), let H € K[zo, ..., z,] be its homogenization, and let

n

Fy = al, dO:d—Z(di—1)+1.
i=1

Then, d = Y. (deg(F;) — 1) and it follows from Theorem 1.5.17 that

res?%(H) = res poy(h/Py) = res(py(h).

1.5.7 Residues and elimination

One of the basic applications of residues is to elimination theory. The key
idea is very simple (see also Section ?? in Chapter 3). Let [ = (Py,...,P,) C
K[z1,...,2,] be a zero-dimensional, complete intersection ideal. Let & =
&1y -5 &n) €K™, i=1,...,r, be the zeros of I. Let u1, ..., u, denote their
respective multiplicities. Then the power sum

®) N ek
- e
=1



is the trace of the multiplication map M «: A — A and, therefore, it may be
J
expressed as a global residue:

Sj(k) = tr(M$;c) = reS<p>(fE§J(P>(x))

The univariate Newton identities of Section 1.2.5 now allow us to compute
inductively the coefficients of a polynomial in the variable x; with roots at
&1j, -+, & € K and respective multiplicities p1,. .., f,.

We illustrate the method with the following example. Let

3., .2 3_ .2
I = (27427 — 29,2 — x5+ T129) .

It is easy to check that the given polynomials are a Grobner basis for any term
order that refines the weight order defined by w = (5,9). The leading terms are
23, —x3. A normal form computation following Algorithm 1 in Section 1.5.4

yields:
S =—2; 8% =4;5Y=-2;5"=0;5"=8;5%=-2

For example, the following Singular [GPS01] computation shows how the val-
ues Sf’) and SYL) were obtained:

> ring R = 0, (x1,x2), wp(5,9);

> dideal I = x173 + x172 - x2, x173 - x272 + x1*x2;
> poly J = -6*%x172%x2+3%x173-4*x1*x2+5xx172+x2;

> reduce(x1~3*J,std(I));
2%x172%x2+2*%x1*x2+10%x1"2-10%x2

> reduce(x174%J,std(I));

-8xx1*x2-12*%x1"2+12%x2

Now, using the Newton identities (1.16) we may compute the coefficients of a
monic polynomial of degree 6 on the variable x; lying on the ideal:

as=2;a4=0;a3=—2;a,=0; a1 =0; a9p=0

Hence, fi(x1) = 2§ + 225 — 223 € I.

We refer the reader to [AY83, BKLIS8] for a fuller account of this elim-
ination procedure. Note also that in Section ??7 of Chapter 3 there is an
application of residues to the implicitization problem.

1.6 Multivariate resultants

In this section we will extend the notion of the resultant to multivariate sys-
tems. We will begin by defining the resultant of n+1 homogeneous polynomials
in n + 1 variables and discussing some formulas to compute it. We will also
discuss some special examples of the so-called sparse or toric resultant.



1.6.1 Homogeneous resultants

When trying to generalize resultants associated to polynomials in any num-
ber of variables, the first problem one faces is which families of polynomials
one is going to study, i.e. which will be the variables of the resultant. For
example, in the univariate case, fixing the degrees di,ds amounts to setting
(agy--.,ad,,bo,...,bd,) as the input variables for the resultant Resg, 4,. One
obvious, and classical choice, in the multivariable case is again, to fix the
degrees dy,...,d, of n + 1 polynomials in n variables, which will generally
define an overdetermined system. If one wants the vanishing of the resultant
Resg,,...,d, to be equivalent to the existence of a common root, one realizes
that a compactification of affine space naturally comes into the picture, in
this case projective n-space.
Consider, for instance, a bivariate linear system

Jo(z,y) = agox + ao1y + ao2
fi(z,y) = a1or + a1y + aiz (1.51)
fo(z,y) = asox + a2y + age

We fix the three degrees equal to 1, i.e. we have nine variables a;; (i,j =
0,1,2), and we look for an irreducible polynomial Resi 11 € Z[a;j, i,j =
0,1,2] which vanishes if and only the system has a solution (x,y). If such
a solution (z,y) exists, then (z,y,1) would be a non-trivial solution of the
augmented 3 x 3-linear system and consequently the determinant of the ma-
trix (a;;) must vanish. However, as the following example easily shows, the
vanishing of the determinant does not imply that (1.51) has a solution. Let

folz,y) =z +2y+1
filz,y) =2+ 2y +2
fo(z,y) =2 +2y+3

The determinant vanishes but the system is incompatible in C2. On the other
hand, the lines defined by f;(x,y) = 0 are parallel and therefore we may view
them as having a common point at infinity in projective space. We can make
this precise by passing to the homogenized system

FO(xvyvz) :;v+2y—|—z
Fi(z,y,2) =+ 2y + 2z
FQ(%ZJ’Z') :$+2y—|—32§,

which has non zero solutions of the form (—2y,y,0), i.e. the homogenized
system has a solution in the projective plane P?(C), a compactification of the
affine plane C2.

We denote x = (zq,...,z,) and for any a = (ag,...,a,) € Nt |a| =
ag+ -+ o, % =z5° .. 2% Recall that f =) aqz® € k[zo,...,2,] is
called homogeneous (of degree deg(f) = d) if |a| = d for all || with a, # 0, or
equivalently, if for all A € k, it holds that f(\ z) = A\? f(z), for all z € k"L,



As we already remarked in Section 1.3.1, the variety of zeros of a homogeneous

polynomial is well defined over P"(k) = (k"**\{0}) / ~, where we identify

x ~ Az, for all A € k\{0}. As before, K denotes the algebraic closure of k.
The following result is classical.

Theorem 1.6.1. Fix dy,...,d, € N and write F; = Z\a|=di Qi 1 =
1,...,n. There exists a unique irreducible polynomial

Resdo,___@n (Fo, - 7Fn) € Z[am ) 7 = 0, Lo, n, |Oé| = dz]

which verifies:

(1) Resay....a, (Fo, ..., Fn) =0 for a given specialization of the coefficients in
k if and only if there exists x € P"(K) such that Fy(z) = --- = F,(x) = 0.
(ii)Resgy....a, (0, ... ) =1.
The resultant Resq,,... 4, depends on N variables, where N = Y7 ("jl'idi).
A geometric proof of this theorem, which is widely generalizable, can be found
for instance in [Stu98]. It is based on the consideration of the incidence variety

Z = {((tia),x) €KY xP"(K) : > aiqa®, i=1,...,n},

and its two projections to KV and P"(K). In fact, Z is an irreducible variety
of dimension N — 1 and the fibers of the first projection is generically 1 — 1
onto its image.

As we noticed above, in the linear case dy = --- = d,, = 1, the resultant
is the determinant of the linear system. We now state the main properties of
multivariate homogeneous resultants, which generalize the properties of deter-
minants and of the univariate resultant (or bivariate homogeneous resultant)
in Section 1.3.2. The proofs require more background, and we will omit them.

Main properties

i) The resultant Resg, . . 4, is homogeneous in the coefficients of F; of de-
gree dy...d;—1dit1 . ..dy, i.e. by Bézout’s theorem, the number of generic

common roots of Fy =---=F,_ 1 =F,41=---=F,=0.

ii) The resultants Resay,....d;....d;,....d, and Resa, . d; .4, 4, coincide up to
sign.

iii) For any monomial 7 of degree |y| greater than the critical degree p :=
Z?:O(di —1), there exist homogeneous polynomials Ay, ..., A, in the vari-

ables xq, ..., z, with coefficients in Z[(a;,)] and deg(A;) = |y| — d;, such
that
Resd01-<~7dn (Fo, ceey Fn) ca7 = AgFy+ -+ ALF,. (1.52)



Call fi(z1,...,2,) = F;(1,21,...,2,) € K[21,...2,] the dehomogeniza-
tions of Fp, ..., F},. One can define the resultant

Resay,...d, (fos- - [n) = Resay, 4, (Fo, ..., F)

and try to translate to the affine setting these properties of the homogeneous
resultant. We point out the following direct consequence of (1.52). Taking
v = (p+1,0,...,0) and then specializing zp = 1, we deduce that there
exist polynomials Ao, ..., A, € Z[(aia)][x1, ..., 2], with deg(A;) bounded by
p+1—d;= Zj#di —n, and such that

Resay,....d, (fo,- s fn) = Aofo+ -+ Anfu. (1.53)

As we remarked in the linear case, the resultant Resgq,, . a4, (fo,--.,fn)
can vanish even if fy,..., f, do not have any common root in K™ if their
homogenizations Fy, . .., F;, have a nonzero common root with xg = 0. Denote
by fi.a, = Fi(0,21,...,x,) the homogeneous component of top degree of each
fi- The corresponding version of Proposition 1.3.2 is as follows.

Proposition 1.6.2. (Homogeneous Poisson formula) Let Fy,..., F, be
homogeneous polynomials with degrees do,...,d, and let f;(z1,...,2,) and
fia. (@1, ..., zy,) as above. Then

ReSdO,m’dn (Fo, ey Fn)) = Resdh...,dn (.fl,dl S fn,dn)do H fo(é‘)mg’
Eev

where V' is the common zero set of fi,..., fn, and m¢ denotes the multiplicity
of E€V.

This factorization holds in the field of rational functions over the co-
efficients (a;q). Stated differently, the product [[.cy fo(§)™¢ is a rational
function of the coefficients, whose numerator is the irreducible polynomial
Resq,.....d, (Fo, - - -, Fy,) and whose denominator is the dy power of the irre-
ducible polynomial Resq,, . 4, (fi,dys--- fn,d,), which only depends on the
coefficients of the monomials of highest degree dy,...,d, of fi,..., f,. Note
that taking Fy = zo we get, in particular, the expected formula
d, (0, F1,y .o, ) = Resa, a, (frdys s fad,)- (1.54)

.....

Another direct consequence of Proposition 1.6.2 is the multiplicative pro-
perty:
Resdé.d(’{,dl,.‘.,dn (F6 . Fé/, Fl, . 7f‘_‘n) = (155)
Resqy ay.....d, (Fos F1s - oo Fr) - Resay gy a, (FG s Fuy ooy F),

where Fj, Fj' are homogeneous polynomials of respective degrees dj,, dfj. More
details and applications of the homogeneous resultant to study V and the
quotient ring by the ideal (f1,..., f») can be found in Chapter 2, Section ?7?.



Some words on the computation of homogeneous resultants

When trying to find explicit formulas for multivariate resultants like the
Sylvester or Bézout formulas (1.22) (1.25), one starts searching for maps as
(1.21) which are an isomorphism if and only if the resultant does not van-
ish. But this is possible only in very special cases or low dimensions, and
higher linear algebra techniques are needed, in particular the notion of the
determinant of a complex [GKZ94]. Given dy, ..., d,, the first idea to find a
linear map whose determinant equals the resultant Resq,, .. a, (Fo, ..., Ey), is
to consider the application

Serlfdo X oo X Serlfdn — SP+1

(Go,...7Gn) — GoFo + -+ GpFy, (1'56)

where we denote by S, the space of homogeneous polynomials of degree ¢ and
we recall that p+1=dop+---+d, — n.

For any specialization in K of the coefficients of Fy, ..., F,, (with respec-
tive degrees dp,...,d,), we get a K-linear map between finite dimensional
K-vector spaces which is surjective if and only if Fy,..., F, do not have any
common root in K"*1\ {0}. But it is easy to realize that the dimensions are
not equal, except if n = 1 or dy = -+ = d,, = 1. Macaulay [Mac02, Mac94]
then proposed a choice of a generically non zero maximal minor of the cor-
responding rectangular matrix in the standard bases of monomials, which
exhibits the multivariate resultant not as a determinant but as a quotient of
two determinants. More details on this can be found in Chapters 2 and 3; see
also [CLO98].

We now recall the multivariate Bezoutian defined in Section 1.5 (cf. also
Chapter 3).

Let Fy,..., F, polynomials of degrees dy,...,d,. Write x = (zo,...,zn),
y = (yo,...,yn) and let F;(z)—F;(y) = Z;'L:o Fij(z,y)(z; —y;), where F;; are
homogeneous polynomials in 2(n+1) variables of degree d; — 1. The Bezoutian
polynomial A py is defined as the determinant

Ay (,y) = det((Fij(z,9)) = Y Aalz)y”.

la|<p
For instance, we can take as in (1.32)
Fij(z,y) = (Fi(yo, - - y5-1, 5, @n) = Fi(Yo, - -, Y5, Tj41, -, Tn) /(25 — 45)-

This polynomial is well defined modulo (Fo(x) — Fy(y), ..., Fn(z) — Fu(y)).
Note that the sum of the degrees deg(A,) + || equals the critical degree
p=>_.(di—1). In fact, for any specialization of the coefficients in k such that
Ry,.....d, (Fo, ..., Fy,) is non zero, the specialized polynomials {A,, || = m}
give a system of generators (over k) of the classes of homogeneous polynomials
of degree m in the quotient k[zg, ..., x,]/(Fo(z),..., F(x)), for any m < p.



In particular, according to Theorem 1.5.16, the graded piece of degree p of
the quotient has dimension one and a basis is given by the coefficient

Ao(l‘) = A<F>(l‘,0) (157)

On the other side, by (1.52), any homogeneous polynomial of degree at least
p+ 1 lies in the ideal (Fy(x),..., FL(2)).

There is a determinantal formula for the resultant Resq,, . 4, (as the de-
terminant of a matrix involving coefficients of the given polynomials and co-
efficients of their Bezoutian A py) only when dy + -+ + d,, < do + di + n.
In general, it is possible to find smaller Macaulay formulas than those arising
from (1.56), as the quotient of the determinants of two such explicit matrices
(c.f. [Jou97], [WZ94], [DDO1]).

Assume for example that n = 2, (dp,d1,d2) = (1,1,2), and let

Fo apxo + ai1x1 + asxe
F1 = b().’EO + bll'l -+ bngQ
Fy = clacg + czx% + 0333% + cqxox1 + C5T9T2 + CgT1 T2

be generic polynomials of respective degrees 1, 1, 2. Macaulay’s classical matrix

looks as follows:
agp 0000 C1

0 al 0 bl 0 Co
00 a9 0 b2 C3
ay ag 0 bo 0 Cy4
a9 0 Qg 0 bo Cs
0 g ay b2 b1 Cg
and its determinant equals —agRes; 1 2. In this case, the extraneous factor ag
is the 1 x 1 minor formed by the element in the fourth row, second column. On
the other hand, we can exhibit a determinantal formula for +Res; 12, given
by the determinant of
A(1,0,0) @0 bo
Aw,1,0) a1 b1 |,
A0,0,1) a2 b2

where the coefficients A, of the Bezoutian A py are given by
A(1,070) = c1(arba — azb1) — ca(agbs — azby) + c5(aoby — aibo),

Ao,1,0) = c6(aobr — a1by) — c2(agbs — boaz)
and
Aw,0,1) = cs(aoby — boar).
In fact, in this case the resultant can be also computed as follows. The

generic space of solutions of the linear system f, = f1 = 0 is generated by the
vector of minors (a1by — asby, —(agbs — aszby), a1b2 — azb1). Then



Resi,1,2(Fo, F1, F2) = Fa(ai1ba — agbi, —(apba — asbo), ai1bs — azby).

Suppose now that Fy = > a;x; is a linear form. As in expression (1.54)
one gets, using the homogeneity of the resultant, that

n
dy...d Z a;
Resl,dlv-mdn(FDvFly"'7Fn):aol nReS]ﬂdly,_,’dn(fL'(]ﬁ- a xinla"'an)
. 0
=1

n n

= al* " Resq, .4, (F1(— Z % Tiy L1y ey Tn )y ey Fr(— Z % iy X1yeneyTn))-
=10 i1 0
More generally, let £y, ..., ¢._1 be generic linear forms and F.,..., F, be
homogeneous polynomials of degree d..,...,d, on the variables xg,...,x,.
Write £; = >°7_ ajx; and for any subset J of {0,... ,n}, |J| = r, denote by
4 the determinant of the square submatrix Ay := (a}),j € J. Obviously,
o0y € Z[aé,j € J] vanishes if and only if ¢y = --- = ¢,_; = 0 cannot be

parametrized by the variables (;);¢ ..

Assume for simplicity that J = {0,...,r — 1} and let d; # 0. Left mul-
tiplying by the inverse matrix of Aj, the equality A.z' = 0 is equivalent
to xp = k-th coordinate of —(A;)~".(a%);¢s(2r,...,xn)", for all k& € J.
Call F]J (ry...,Tn),J = T,...,n, the homogeneous polynomials of degrees
dr,...,d, respectively gotten from Fj,j = r,...,n after this substitution.
Using standard properties of Chow forms (defined below), we then have

Proposition 1.6.3. Up to sign,
dp...dn J J
ReSl,‘..,l,dr,...,d” (fo, . ,&‘,1, FT, ey Fn) = (SJ Resdmm,dn (Fr geeey Fn )
In case r = n we moreover have

Resi,... 1,4, (50, coeslna, Fn) = Fn(5{1,...,n}, —5{0,2,...,n}, SRR (_1)n6{0,...,n71})~

As we have already remarked in the univariate case, resultants can, in
principle, be obtained by a Groébner basis computation using an elimination
order. However, this is often not feasible in practice, while using geometric
information contained in the system of equations to build the resultant ma-
trices may make it possible to obtain the result. These matrices may easily
become huge (c.f. [DDO1] for instance), but they are structured. For some
recent implementations of resultant computations in Macaulay2 and Maple,
together with examples and applications, we also refer to [Bus03].

The unmixed case

Assume we have an unmixed system, i.e. all degrees are equal. Call dg = --- =
dy, = d and write F(z) = |, _; aiyx”. Then, the coefficients of each A, are
linear combinations with integer coefficients of the brackets [vo,...,vn] =
det(ag,,4,7 = 0,...,n), for any subset {70, ..., } of multi-indices of degree



d. In fact, in this equal-degree case, if Fy,..., F, and Gy, ...,G, are homo-
geneous polynomials of degree d, and G; = Z?:o m; Fy,1=0,...,n, where

M = (my;) € k(x4 “then,

Resded(Go, ey Gn) = det(M)aneSd,m’d(Fo, ey Fn)

.....

In particular, the resultant Resq, . 4 is invariant under the action of the group
SL(n,k) of matrices with determinant 1, and by the Fundamental Theorem
of Invariant Theory, there exists a (non unique) polynomial P in the brackets
such that Resq, . a(Fo,---,Fn) = P([70,---,7vn): 7| = d). There exists a de-
terminantal formula in terms of the coefficients of the Bezoutian as in (1.24)
only if n =1 or d = 1. In the “simple” case n =2, d = 2, Resz 22 is a degree
12 polynomial with more than 20,000 terms in the 18 coefficients of Fy, Fy, Fy,
while it has degree 4 in the 20 brackets with considerably fewer terms.
Given a projective variety X € PV (K), of dimension n, and n generic
linear forms /1, ..., ¢,, the intersection X N (¢; = 0)N---N (¢, = 0) is finite of
cardinal equal to the degree of the variety deg(X). If we take instead (n + 1)
generic linear forms y, .. ., £, in PV (K), the intersection X, := X N (fy = 0)N
N (£, = 0) is empty. The Chow form Cx of X is an irreducible polynomial
in the coefficients of ¢y, ..., ¢, verifying

Cx(lo, ... ly) =0 < X, #£0.

Consider for example the twisted cubic, i.e the curve V defined as the
closure in P3(K) of the points parametrized by (1 :¢:t%:¢3), t € K. It can
also be presented as

V=A(o:&:6&:&)eP(K): : & — &b =& — &8s = &bz — &1&2 = 0}

Given a linear form ¢y = ap&p + a1&1 + a262 + ass (rvesp. €1 = bo&o + b1&1 +
bo&s +b3&3), a point in V of the form (1 :¢: ¢? : ¢3) is annihilated by £y (resp.
/1) if and only if ¢ is a root of the cubic polynomial fo = ag+ a1t + ast? + ast®
(resp. f1 = bo + byt + bat? + bst3). It follows that

Cv (Lo, £1) = Res3 3(fo, f1)-
In general, given n and d, denote N = (";d) and consider the Veronese

variety V;, 4 in PN 71(K) defined as the image of the Veronese map

P"(K) — PN—1(K)

(tO cee tn) — (ta)la\:d-
Given coefficients (a;q,7 = 0,...,n,|a| = d), denote by ¢; = Z|a\:d a;aéa
and f; = > al=d a;ot®, 1 =0,...,n, the corresponding linear forms in the N

variables £, and degree d polynomials in the n variables t;. Then,

CVn,d (60, e ,én) = ReSd7.._7d(fo, ey fn)

For the use of exterior algebra methods to compute Chow forms, and a fortiori
unmixed resultants, we refer to [ESWO03].



1.6.2 A glimpse of other multivariate resultants

Resultants behave quite badly with respect to specializations or give no in-
formation, and so different notions of resultants tailored for special families
of polynomials are needed, together with appropriate different algebraic com-
pactifications.

Suppose we want to define a resultant which describes the existence of a
common root of three degree 2 polynomials of the form

filz1,22) = asz122 + bix1 + cixo +di; i, bi,¢,d; €K, i=0,1,2, (1.58)

i.e. ranging in the subvariety of the degree 2 polynomials with zero coefficients
in the monomials 22, 3. Note that the homogenized polynomials

2 .
Fi(zo,x1,22) = = a; x122 + bjxox1 + c;roxe + djag, i=0,1,2,

vanish at (0,1,0) and (0,0, 1) for any choice of coefficients a;, b;, ¢;, d;. There-
fore the homogeneous resultant Resa 2 2(fo, f1, f2) is meaningless because it
is identically zero. Nevertheless, the closure in the 12 dimensional parameter
space K12 with coordinates (aq, ..., ds) of the vectors of coefficients for which
fo, f1, f2 have a common root in K2, is an irreducible hypersurface, whose
equation is the following polynomial with 66 terms:

Res(l,l),(l,l),(l,l)(foa f1, f2) = 762a0d%a260 — a1cgbgd1 — alcgbgdl —+ agcldgbl

+2apci1bacabidg — ai1cabocobida — aocfbgdo =+ cm%d?bz — C%aob?do + aicadoaobida
—‘rCoagd?bo + 2cpazbicibods — 2caa0di1baar1dg + azc%bobzdo + aicadoasbody + G%CngbQ
+azcidoaobadi —ase1dobods +azci doarbods — ascidabaar 4 coazdibaardo — a1 cadibiaz
+02a0d1b1a2d0 +02a0d1a1b0d2 —alcodgaolh — Coa2b1b062d1 — a201b0b200d1 —Cgazb%dz
—a1 Cgboclbzdo —‘rcgaoblbodl + a1 Cgbgcldz —aopcCi b2C0b1 d2 “+aopc1 bgcodl - 2a100d2a2b0d1
+a100d2a0b2d1—Coazdiaobz—a361d2b2d1—a%CQdobon—20,001d2b1a2d0+00a2d1a0b1d2
760a§d1b1d0 + C3a2b1b2d1 —+ alcngbldz + apci1daasbodr — agcldgalbo —+ azclb?)cgdl
+egazbicadotarcodabiazdo+aoctdabaardo—+caaobi cods —caaobibacodi —coasbr c1bado
_alCObZClbOd2+2alcOb2b002d1_a201b002b1d0_alCObQCZbld0+(1100b301d0+000%b2b0d2
—aoclbzbocgdl — Cga0b1C1bod2 — Cza%dlbldg — CL%Conbzdo + a%COdgbo + alcgbolhdo
7(126%1)36[2 + agcldgbl. (159)
This polynomial is called the multihomogeneous resultant (associated to bide-
grees (1,1)). In Section 1.7 we will describe a method to compute it.

There are also determinantal formulas to compute this resultant, i.e. for-
mulas that present Res(i 1) (1,1),(1,1)(fo, f1, f2) as the determinant of a matrix
whose entries are coefficients of the given polynomials or of an adequate ver-
sion of their Bezoutian. The smallest such formula gives the resultant as the

determinant of a 2 x 2 matrix, as follows. Given fy, f1, f2, as in (1.58) introduce
two new variables y1,y2 and let B be the matrix:



fo(z1,22) fi(z1,22) fo(z1,22)
B = fo(yl,m) fl(yl,l‘z) fz(yuxz)
fo(yr,y2) fi(yr,2) fa(y1, 22)

Compute the Bezoutian polynomial
1
(@1 — 1) (@2 — y2)

where the coefficients B;; are homogeneous polynomials of degree 3 in the
coefficients (ag, . ..,bs) with tridegree (1, 1,1) with respect to the coefficients
of fo, fi and fo. Moreover, they are brackets in the coefficient vectors; for
instance, B11 = c1bgds — bgcady — cobids + cobidg + bacody — c1bady is the
determinant of the matrix with rows (b, cg, do), (b1, c1,d1), (b2, c2,ds). Finally,

Res(1,1),(1,1),(1,1) (fo, f1, f2) = det(By;).

These formulas go back to the pioneering work of Dixon [Dix08]. For a mod-
ern account of determinantal formulas for multihomogeneous resultants see
[DE03].

Multihomogeneous resultants are special instances of sparse (or toric) re-
sultants. We refer to Chapter 7 for the computation and applications of sparse
resultants. The setting is as follows (cf. [GKZ94, Stu93]). We fix n + 1 finite
subsets Ay, ..., A, of Z". To each o € Z™ we associate the Laurent monomial
' ...x8% and consider consider

n
fi:E aox®, 1=0,...,n.

acA;

det(B) = Bi1 + B2z + Baiy1 + Baaxayn,

For instance, one could fix lattice polytopes Py, ..., P, and take A; = P,NZ".
In general A; is a subset of the lattice points in its convex hull P;. For generic

choices of the coefficients a;,, the polynomials fy,..., f, have no common
root. We consider then, the closure H,4 of the set of coefficients for which
fos ..., fn have a common root in the torus (K\{0})™. If H4 is a hypersurface,

it is irreducible, and its defining equation, which has integer coefficients (de-
fined up to sign by the requirement that its content be 1), is called the sparse
resultant Res4,,... 4, . The hypersurface condition is fulfilled if the family of
polytopes P, ..., P, is essential, i.e. if for any proper subset I of {0,...,n},
the dimension of the Minkowski sum } ., P; is at least |I|. In this case, the
sparse resultant depends on the coefficients of all the polytopes; this is the
case of the homogeneous resultant. When the codimension of H,4 is greater
than 1, the sparse resultant is defined to be the constant 1. For example, set
n = 4 and consider polynomials of the form

fo = a1y + axx2 + azxz + asry + as
f1 =bixy + baxo
fo=ciz1 + como
f3 = b33 + byzy
f4 = C3T3 + C44.



Then, the existence of a common root in the torus implies the vanishing of both
determinants bico — bocy and bzcy — bycs, i.e. the variety H 4 has codimension
two. In this case, the sparse resultant is defined to be 1 and it does not vanish
for those vectors of coefficients for which there is a common root. Another
unexpected example is the following, which corresponds to a non essential
family. Set n = 2 and let

fo=ai1z1 +azxs +as
fi = biz1 + bazo
fo = c1m1 + cowa.

In this case, the sparse resultant equals the determinant bycy — boc; which
does not depend on the coeflicients of fj.

There are also arithmetic issues that come into the picture, as in the fol-
lowing simple example. Set n = 1 and consider two univariate polynomials
of degree 2 of the form fy = ag + boz?, fi = a1 + biz?. In this case, the
sparse resultant equals the determinant D := agb; — bga;. But if we think
of fo, f1 as being degree 2 polynomials with vanishing x-coefficient, and we
compute its univariate resultant Ress o(fo, f1), the answer is D?. The expo-
nent 2 is precisely the rank of the quotient of the lattice Z by the lattice
27 generated by the exponents in fy, fi. As in the case of the projective
resultant, there is an associated algebraic compactification X4, . a, of the
n-torus, called the toric variety associated to the family of supports, which
contains (K \ {0})™ as a dense open set. For essential families, the sparse
resultant vanishes at a vector of coefficients if and only if the closures of
the hypersurfaces (f; = 0),i = 0,...,n, have a common point of intersec-
tion in X4, .. 4,. In the bihomogeneous example (1.58) that we considered,
A; = {(0,0),(1,0),(0,1),(1,1)} are the vertices of the unit square in the
plane for i = 0, 1,2, and the corresponding toric variety is the product variety
PY(K) x P}(K).

Sparse resultants are in turn a special case of residual resultants. Roughly
speaking, we have families of polynomials which generically have some fixed
common points of intersection, and we want to find the condition under which
these are the only common roots. Look for instance at the homogeneous case:
for any choice of positive degrees dy,...,d,, generic polynomials Fy,..., F,
with these degrees will all vanish at the origin 0 € K**!, and the homoge-
neous resultant Resg, . 4, (Fo,...,Fy) is non zero if and only if the origin
is the only common solution. This problem arises naturally when trying to
find implicit equations for families of parametric surfaces with base points of
codimension greater than 1. We refer to Chapter 7 and to [Bus03, BEMO3]
for more background and applications.



1.7 Residues and resultants

In this section we would like to discuss some of the connections between
residues and resultants. We will also sketch a method, based on residues, to
compute multidimensional resultants which, as far as we know, has not been
made explicit before.

Suppose P(z),Q(z) are univariate polynomials of respective degrees dy, do
as in (1.19) and let Zp = {&1,...,& } be the zero locus of P. If @ is regular
on Zp, equivalently Resq, 4, (P, Q) # 0, then the global residue resp(1/Q) is
defined and the result will be a rational function on the coefficients (a,b) of P
and (). Thus, it is reasonable to expect that the denominator of this rational
function (in a minimal expression) will be the resultant. This is the content
of the following proposition:

Proposition 1.7.1. For any k = 0,...,d,+dy—2, the residue resp(2¥/Q) is a
rational function of the coefficients (a,b) of P,Q, and there exists a polynomial
Cy € Z[a,b] such that

Ck(a,b
resp (Zk/Q) - ReS(:E:(P),Q)'

Proof. We have from (1.26) that

Ay A,
1= P+
Resdl,dz (P, Q) Resdhd,“ (P, Q)

with Ay, As € Z[a, b][z], deg(A1) = d2 — 1, and deg(Az) = dy — 1. Then,

k _ k Az
resp (2¥/Q) = resp <z W) ’

and we deduce from Corollary 1.1.7 that there exists a polynomial C}(a,b) €
Z[a, b][z] such that

Q,

Ci.(a,b)

k _ .
resp (Z /Q) ReSdl,d2 (P, Q) asjl

Thus, it suffices to show that agj'l divides C},(a, b). But, since k < dy +dz —2
we know from (1.11) that

Ci(a,b)
R‘esdhdZ (Pv Q) bs:l ’

resp (2°/Q) = —resq (2/P) =

for a suitable polynomial C} € Zla, b][z]. Since Resg, a4, (P, Q) is irreducible,
the result follows.



Note that according to Theorem 1.5.17, we have
resﬂ;,l@(zk) = resp (2"/Q) = —resq (*/P),

where P, Q denote the homogenization of P and @, respectively. This is the
basis for the generalization of Proposition 1.7.1 to the multidimensional case.
The following is a special case of Theorem 1.4 in [CDS98].
Theorem 1.7.2. Let F;(z) = Z\od:di aiox® € Clzg,...,x,], i =0,...,n, be
homogeneous polynomials of degrees do, . ..,d,. Then, for any monomial z°
with |B| = p = >_,(d; — 1), the homogeneous residue res]?;i) (2P) is a rational
function on the coefficients {a;o} which can be written as
n C (a‘ )
P 3 _ B\Lia
res, g (27) =
<F>( ) Resdo,...,dn(FO,“',Fn)

for a suitable polynomial Cg € Z[a;q].

We sketch a proof of this result, based on [Jou97, CDS98] and the notion
of the determinant of a complex [GKZ94].

Proof. We retrieve the notations in (1.56), but we consider now the application
“at level p”

Spfdo X e X Sp,dn X SO — Sp

(Goy ..., Gn, ) — GoFy + -+ 4+ G F, + My, (1.60)

where Ag is defined in (1.57). For any specialization in K of the coefficients of
Fy, ..., F, (with respective degrees dy, . .., d,,), we get a K-linear map between
finite dimensional K-vector spaces which is surjective if and only if Fp, ..., F,
do not have a common root in K"*!\ {0}, or equivalently, if and only if
the resultant Resq,, .4, (Fo,...,Fy) is non zero. Moreover, it holds that the
resultant equals the greatest common divisor of all maximal minors of the
above map. Let U be the intersection of Zariski open set in the space of
coefficients a = (a;4) of the given polynomials where all (non identically zero)
maximal minors do not vanish. For a € U, the specialized K-linear map is
surjective and for any monomial 2% of degree p we can write

o = ;Ai(a;x) Fi(a;z) + Ma) Ao(a; x) ,

where A depends rationally on a. Since the residue vanishes on the first sum
and takes the value 1 on Ay, we have that

res%;)(xg) = Aa),

This implies that every maximal minor which is not identically zero must
involve the last column and that A(a) is unique. Thus, it follows from Cramer’s
rule that resP; (%) may be written as a rational function with denominator
M for all non-identically zero maximal minors M. Consequently it may also
be written as a rational function with denominator Resg, .. 4, (Fo, ..., Fn).



In fact, (1.60) can be extended to a generically exact complex
0— Sdo—(n+1) X X Sdn_(yH_l) — = Op—dg X 0 X Spfdn X So — Sp — 0,

which is a graded piece of the Koszul complex associated to Fy, ..., F,, which
is exact if and only if Resq,,. .. a, (Fo,--.,Fn) # 0. Moreover, the resultant
equals (once we index appropriately the terms and choose monomial bases
for them) the determinant of the complex. This concept goes back to Cayley
[Cay48] and generalizes the determinant of a linear map between two vector
spaces of the same dimension with chosen bases. For short exact sequences
of finitely dimensional vector spaces V_1, Vi, V1 with respective chosen bases,
the determinant of the based complex is defined as follows [GKZ94, Appendix
A]. Call d_; and dy the linear maps

0— V=V —o,

and let ¢; =dimV;, i = —1,0,1. Thus, o = ¢_1 +¥¢;. Denote by M_; and M,
the respective matrices of d_; and dy in the chosen bases. Choose any subset
I of {0,...,4} with |I| = ¢/_; and let M, be the submatrix of M_; given
by all the ¢_; rows and the ¢_; columns corresponding to the index set I.
Similarly, denote by M{ the submatrix of My given by the ¢; rows indexed
by the complement of I and all the ¢; columns. Then, it can be easily checked
that det(M1,) #0 <= det(M{) # 0. Moreover, up to (an explicit) sign, it
holds that whenever they are non zero, the quotient of determinants

det(Mfl)
det(M{)

is independent of the choice of I. The determinant of the based complex is
then defined to be this common value. In the case of the complex given by
a graded piece of the Koszul complex we are considering, the hypotheses of
[GKZ94, Appendix A, Th. 34] are fulfilled, and its determinant equals the
greatest common divisor of the rightmost map (1.60) we considered in the
proof of Theorem 1.7.2.

We recall that, by b) in Theorem 1.5.16, the graded piece of degree p
in the graded algebra A = Clxq, ..., z,]/(Fv, ..., Fn), is one-dimensional. We
can exploit this fact together with the relation between residues and resultants
to propose a new algorithm for the computation of resultants. Given a term
order <, there will be a unique standard monomial of degree p, the smallest
monomial 2% relative to <, not in the ideal (Fo, ..., F,). Consequently, for
any H € Clxo, ..., xy],, its normal form N (H) relative to the reduced Grébner
basis for <, will be a multiple of z.

In particular, let A € Clxo,...,z,] be the element of degree p and homo-
geneous residue 1 constructed in Section 1.5.6. We can write

P(aia) . a’:ﬁo ]

N(A) - Q(aia)




Theorem 1.7.3. With notation as above, if P(a;), and Q(a;q) are relatively
prime

Resqy,....d, (Fo, .-, Fn) = Plaia)

Proof. We have:

1 = res%h%(A) = reS%) (P(aia) ~mﬁ°> = P(aia) Cﬁo(ai&)

Q(aia) Q(aia) Resdo,...,dn(F07“';Fn) '
Therefore
Resdy,...d, (Fo, - -+, Fn)Q(aia) = P(aia)Cp,(aia),
but since Resq,, .4, (Fo, ..., Fy) is irreducible and coprime with Cg, (@i ) this

implies the assertion.

Remark 1.7.4. Note that Theorem 1.7.3 holds even if the polynomials F; are
not densely supported as long as the resultant Resgq,, . 4, (Fo,-.., Fy) is not
identically zero.

Consider the example from Section 1.6.1:

Fy agTo + a1x1 + asxs
F1 = bO«IO + b1I1 + b2132
Fy = clx% + czxf —+ 03x§ + C4ToxT1 + C5TT2 + CeT1T2

Then p =1 and

ao ai a2
A = det bo b1 bg
C1Xg + C4T1 + C5X2  Ca¥1 + CgT2  C3X2

We can now read off the resultant Resy 1,2(Fo, F1, F2) from the normal form
of A relative to any Grobner basis of I = (Fy, Fy, F»). For example computing
relative to grevlex with x¢ > z; > x5, we have:

N(A) = ((a%b?cs — adbibace + adbica + apaibobacs — agasbics+
agai1bibacs — a0a1b3(34 + agasbgbicg — agasbibocy — 2agaibgbics + a%bgc;g —
a§b0b205 + a%b%cl — alagb%ce, + ajasbgbics + ajasbgbacy + 2agazbgbace —
2a1a2b1bacy + a%bgCQ — a%boblc4 + a%b%cl)/(aobl - albo))xg

and the numerator of the coefficient of x5 in this expression is the resultant.
Its denominator is the subresultant polynomial in the sense of [Cha95], whose
vanishing is equivalent to the condition x5 € I

Theorem 1.7.3 is a special case of a more general result which holds in the
context of toric varieties [CD]. We will not delve into this general setup here



but will conclude this section by illustrating this computational method in the
case of the sparse polynomials described in (1.58). As noted in Section 1.6.2,
the homogeneous resultant of these three polynomials is identically zero. We
may however view them as three polynomials with support in the unit square
P C R? and consider their homogenization relative to P. This is equivalent to
compactifying the torus (C*)? as P! x P! and considering the natural homog-
enizations of our polynomials in the homogeneous coordinate ring of P* x P!,
i.e. the ring of polynomials Clzy,y1,z2,y2] bigraded by (deg,, ,,,deg,, ,.)-
We have:

Fi(z1,22,y1,y2) = a;x102 + bix1y2 + cixoyy + diyiye, @i, by, ci,d;y € K
These polynomials have the property that
Fi(A1z1, My, Aex2, Aaye) = M A Fi(x1, 22, Y1, Y2),

for all non zero A1, As.

Notice that (Fy, Fy, Fo) C (x1,z2,y1y2) and we can take as A the deter-
minant of any matrix that expresses the F} in terms of those monomials. For
example

agTz2 +boy2 coyr do
A = det a1To + b1y2 c1y1 dq
asTz + baya  coy1  da

We point out that in this case p = (1,1) = 3(1,1)—(2, 2), which is the bidegree
of A. If we consider for instance the reverse lexicographic term order with
Yo < y1 < To < 1, the least monomial of degree p is y1y2. The normal form
of A modulo a Grobner basis of the bi-homogeneous ideal (Fy, Fy, Fa) equals
a coefficient times y;y2. This coefficient is a rational function of (ay,...,ds)
whose numerator is the P! x P! resultant of Fy, Fy, I, displayed in (1.59). We
invite the reader to check that its denominator equals the determinant of the
3 x 3 square submatrix of the matrix of coefficients of the given polynomials

ag bo co
ay by
az b o

Again, this is precisely the subresultant polynomial whose vanishing is equiv-
alent to y1y2 € (Fy, F1, Fo) (c.f. also [DK]).

As a final remark, we mention briefly the relation between residues, re-
sultants and rational A-hypergeometric functions in the sense of Gel’fand,
Kapranov and Zelevinsky [GZK89]. Recall that given a configuration

A = {ay,...,an} CZP

or, equivalently an integral p x n matrix A, a function F', holomorphic in an
open set U C C", is said to be A-hypergeometric of degree 3 € CP if and only
if it satisfies the differential equations:



OUF —Q'F =0,

|l
for all u,v € N™ such that A-u = A - v, where 0" = %, and
Z1t ... 2

n
oF
E WijZjg = BiF
=1 ’

for all ¢ = 1,...,p. The study of A-hypergeometric functions is a very ac-

tive area of current research with many connections to computational and

commutative algebra. We refer the reader to [SST00] for a comprehensive

introduction and restrict ourselves to the discussion of a simple example.
Let X'(d) denote the set of integer points in the m-simplex

{u e RYy: Zuj <d}.
j=1

Let A C Z?>™*! be the Cayley configuration
A= {eo} x X(d)U---U{em} x X(d)).

Let f;(t) = Zaez(d) Zial®, @ = 0,...,d be an m + 1-tuple of generic poly-
nomials supported in X(d). Denote by F;(zo,...,zq) the homogenization of
fi. Given an m + 1-tuple of positive integers a = (ag,...,a,) let (F*) be
the collection (Fy°, ..., F%m). The following result is a special case of a more
general result (see [AS96, CD97, CDS01]) involving the Cayley product of a
general family of configurations A; C Z™,i=0,...,m.

Theorem 1.7.5. For any b € N™ 1 with |b| = d|a|—(n+1), the homogeneous
residue res]?;a>(xb), viewed as a function of the coefficients x;n, 1S a Tational
A-hypergeometric function of degree 3 = (—aq, ..., —Gm,—b1—1,...,—=b,,—1).

Suppose, for example, that m = 2 and d = 1. Then, we have

111000000
000111000
A=1000000111
010010010
001001001

and Fl'(l’o,xl,l'g) = a;0To + a;1T1 + a;0T2. Let a = (2, 1, 1) and b = (0, 1,0)
Then the residue res]?;a>(a:1) might be computed using Algorithm 2 in Sec-
tion 1.5.6 to obtain the following rational function

(a20a12 - aloa22)/det(a’ij)2'

Note that, according to Theorem 1.7.2 and (1.55), the denominator of the
above expression is the homogeneous resultant



Reso 1.1(Fy, F1, F2) = Resy 1,1(Fo, 1, F»)?.

Indeed, as

T - 8 1
F2RFy,  Oagm \FoF1,Fp)’

differentiation “under the integral sign” gives the equality

2 0 1
IP [ — S —
reS(Fa)(xl) o 3a01 (det(aij)> '

One can also show that the determinant det(a;;) agrees with the discriminant
of the configuration A. We should point out that Gel’fand, Kapranov and
Zelevinsky have shown that the irreducible components of the singular locus
of the A-hypergeometric system for any degree § have as defining equations
the discriminant of A and of its facial subsets, which in this case correspond
to all minors of (a;;) .

In [CDSO01] it is conjectured that essentially all rational A-hypergeometric
functions whose denominators are a multiple of the A-discriminant arise as
the toric residues of Cayley configurations. We refer to [CDS02, CD04] for
further discussion of this conjecture.
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