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Abstract. This article is a survey of the recent use of some techniques from com-
putational algebraic geometry to address mathematical challenges in systems biology.
(Bio)chemical reaction networks de�ne systems of ordinary di�erential equations with
many parameters, which are needed for numerical simulations but that can be practically
or provably impossible to identify. Under the standard modeling of mass-action kinetics,
these equations depend polynomially on the concentrations of the chemical species. The
algebraic theory of chemical reaction systems provides new tools to understand the dy-
namical behavior of (families of) chemical reaction systems by taking advantage of the
inherent algebraic structure in the (parametric) kinetic equations.

1. Introduction

Chemical Reaction Network Theory (CNRT) has been developed over the last 40 years,
initially through the work of Horn and Jackson and subsequently by Feinberg and his stu-
dents and collaborators [24, 25, 26, 27, 28, 29, 30, 50, 51, 52, 53]. CRNT connected qual-
itative properties of ordinary di�erential equations corresponding to a reaction network to
the network structure. In particular, assertions which are independent of speci�c parameter
values have been obtained, in general assuming that all kinetics are of the mass-action form.
New concepts were introduced, such as the de�ciency of a reaction network, and several con-
ditions were given on such networks for the existence, uniqueness, multiplicity and stability
of �xed points. Fundational work has also been done by Vol'pert [79], with contributions
with algebraic tools by Bykov, Kytmanov, Lazman and Yablonsky (see [8] and the references
therein, together with more recent work as [44]).

The principal current application of these developments is in the realm of biochemical
reaction networks, that is, chemical reaction networks in biochemistry. Systems biology's
main goal is to understand the design principles of living systems. According to [36], the
state of systems biology (at that moment, but still current) is like planetary astronomy
science before Kepler and Newton and cannot be studied without mathematics and physics.

Recent work has focused on long-term dynamics as well as the capacity for multiple equi-
libria and how such dynamics depend on the speci�c rate parameters, mainly manipulating
R-linear combinations of the polynomials de�ning the dynamical systems (or equivalently,
studying the kernel of the matrix M in (7)) [13, 15, 17, 76, 18, 42, 62, 72, 73, 74, 21].
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We can use algebraic geometry to analyze systems biology models. Symbolic treatment of
the parameters does not need a priori determination (which can be practically and theoret-
ically impossible [17, 54]), as numerical simulations require. Karin Gatermann introduced
the connection between mass-action kinetics and toric varieties at the beginning of the
last decade [38, 39, 40]. Gunawardena also started approaching results from CRNT with
algebraic tools over the last years [45, 46, 47, 61, 77, 78]. In joint work with Craciun,
Shiu and Sturmfels, we studied in [12] toric dynamical systems (aka complex balanced mass-
action systems) with an algebro-geometric perspective. The steady state locus of these
systems coincides with the real points of a toric variety and, in appropriate coordinates in
parameter space, the equations describing these complex balanced systems are also bino-
mial. Advanced algebraic tools have been introduced by di�erent authors over the last years
[22, 16, 23, 32, 31, 34, 43, 48, 58, 60, 66, 69, 75].

Almost all cells in a body have the same genetic information. Multistationarity (see
De�nition 2.4) provides a mechanism for switching between di�erent response states in cell
signaling systems and enables multiple outcomes for cellular-decision making [59]. Questions
about steady states in biochemical reaction networks under mass-action kinetics are funda-
mentally questions about (nonnegative) real solutions to parametrized polynomial ideals.

We present in Section 2 the basic notations and concepts about chemical reaction net-
works. Section 3 concentrates on the important enzymatic networks, that we use to exemplify
questions on multistationarity. Section 4 is devoted to the notion of steady state invariants.
Invariants depending on selected variables can be used to understand the design of the di�er-
ent mechanisms. We distinguish four levels of invariants and we show applications to model
selection, to study absolute concentration robustness and to obtain nontrivial bounds via
implicit dose-response curves. It follows that the study of ideals over polynomial rings un-
veils features of the steady states not visible working only with coe�cients in R, but further
tools from real algebraic geometry are required. Finally, in Section 5 we summarize recent
general results on sign conditions for multistationarity, that hold beyond the framework of
chemical reaction networks. Along the text, we recall results from joint recent papers and
preprints [58, 65, 67, 68, 69]. A more comprehensive account will appear in the book in
progress with Elisenda Feliu [19].

We end this introduction with pointers to a few important subjects we have not addressed
in this text, together with an overview of general goals for our approach and new algebro-
geometric tools that we expect to incorporate.

All biological processes are complex and involve many variables and (unknown) reaction
rate constants. An apparent solution to the complexity challenges in cellular networks con-
sists of studying smaller subunits that one can analyze separately. In fact, essential qualita-
tive features of biological processes can usually be understood or qualitatively approximated
for parameters in a certain range, in terms of a small number of crucial variables [59]. In [71],
the authors de�ned network motifs as patterns of interconnections that recur in many dif-
ferent parts of a big network. Study of subnetworks to determine multistationarity has
been addressed for instance in [9] (via elementary �ux modes) and [35, 57] (via versions of
the implicit function theorem). We expect that tools from deformation theory could help
extending these results to the case of degenerate steady states.
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Di�erential algebra methods and in particular di�erential elimination methods, provide
tools for searching hidden relations which are consequences of our di�erential-algebraic poly-
nomial (nonlinear) equations. They have been used for parameter estimation in nonlinear
dynamical systems and model reduction of biochemical systems (via implicit quasi-steady
state approximation) and some related software is available [3, 4, 5, 6, 7]. It would be
interesting to further explore the use of these tools.

We have not discussed the global dynamic behaviour of the systems. The main open
conjecture in the �eld of Chemical Reaction Network Theory is the Global Attractor Con-
jecture, which dates back to the early 1970s. Complex balanced chemical reaction networks
associated with weakly reversible graphs, possess a unique positive steady state in any given
stoichiometric compabitility class (see Section 2), which shows local asymptotic stability
deduced from the existence of a Lyapunov function. The Global Attractor Conjecture as-
serts that this is in fact a global attractor for the dynamics. This statement is proven in
the absence of steady states with zero coordinates, in case the reaction graph is connected
or in case the dynamics occurs in dimension at most three, but the combinatorics of zero
coordinates of the boundary steady states makes the search for a proof of the general result
highly complicated [1, 12, 16, 55]. At the time of the revision of this article, G. Craciun has
posted a �rst version of an article which would positively solve the Conjecture [11].

Tools from elimination theory in computational algebraic geometry and from real alge-
braic geometry can be used to study the number and stability of steady states in families,
as well as the possible occurrence of bifurcations and oscillations in polynomial (nonlinear)
dynamical systems. One general goal is to partition the positive orthant in constant rate
space of a given biochemical network into semialgebraic sets, in such a way that on each
chamber the dynamic behaviour can be determined. The study of properties that depend on
the structure of the network and are independent of the particular reaction rate constants
in this semialgebraic decomposition of parameter space, would allow us to see �the woods�
and not �only the trees�. The super goal is to understand the basic mechanisms in nature
for multistationarity and for oscillations. In theory, computational algebraic geometry can
give many answers. In practice, these responses tend to be too complex to be understood
or computed. Many answers are missing and require the combination of tools from com-
puter algebra, real algebraic geometry, numerical algebraic geometry, discrete mathematics,
dynamical systems, and biochemistry!

2. Basics on chemical reaction networks (CRN)

We start with a simple but meaningful example of a biochemical reaction network: the T-
cell signal transduction model proposed by the immunologist McKeithan [63]. The main task
of the immune system is to recognize that a strange body has entered the organism. T-cell
receptors bind to both self-antigens and foreign antigens and the dynamical features of this
model give a possible explanation of how T-cells can be sensitive and speci�c in recognizing
self versus foreign antigens. A mathematical study of the dynamics of this network was done
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by Sontag in [76]. In its simplest case, the network of reactions is as follows:
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where A denotes the T-cell receptor protein, B denotes the Major Histocompatibility
protein Complex (MHC) of antigen-presenting cell, C denotes the biochemical species A
bound to species B, and D denotes an activated (phosphorylated) form of C. The binding
of A and B forms C, which undergoes a modi�cation into its activated form D before
�transmitting a signal� (that is, before participating in another chemical reaction). The
general mechanism proposed by McKeithan includes several activated forms of C, until a
�nal active form that �triggers the attack� to the foreign antigen is obtained.

This biochemical reaction network has:

• r = 4 reactions among
• m = 3 complexes A+B, C, and D, which are composed by
• s = 4 species A, B, C, D, and
• r = 4 reaction rate constants κ12, κ21, κ23, κ31 ∈ R>0 for the di�erent reactions.

A kinetics is then attached to this labeled directed graph to describe how the concentrations
xA, xB, xC , xD of the di�erent biochemical species evolve in time.

McKeithan assumes that the vector of concentrations x(t) = (xA(t), xB(t), xC(t), xD(t))
evolves according to mass-action kinetics, which is a modeling commonly used in chemistry
and biology when there are su�ciently many molecules that are well mixed. The Law
of Mass Action was proposed by two Norwegians: Peter Waage (1833�1900), a chemist,
and Cato Guldberg (1836�1902), a mathematician, in an article published in Norwegian in
1864. Their work was then published in French in 1867 and �nally, a fuller and further
developed account appeared in German in 1879, and was then recognized (in the meantime
this principle was rediscovered by van't Ho�). The Law of Mass Action is derived from
the idea that the the rate of an elementary reaction is proportional to the probability of
collision of reactants (under an independence assumption), that is, to the product of their
concentrations. We write the precise formulation in (1) below.

The explicit di�erential equations for the concentrations x(t) in the T-cell signal trans-
duction model are the following:

dxA

dt = −κ12xAxB + κ21xC + κ31xD = −κ12x(1,1,0,0) + κ21x
(0,0,1,0) + κ31x

(0,0,0,1)

dxB

dt = −κ12xAxB + κ21xC + κ31xD = −κ12x(1,1,0,0) + κ21x
(0,0,1,0) + κ31x

(0,0,0,1)

dxC

dt = κ12xAxB − κ21xC − κ23xC = κ12x
(1,1,0,0) − (κ21 + κ23)x(0,0,1,0)

dxD

dt = κ23xC − κ31xD = κ23x
(0,0,1,0) − κ31x(0,0,0,1).

In general, the starting data for a chemical reaction network are a �nite set of s species
(whose concentrations x1, . . . , xs will be our variables), a �nite set of r reactions (labeled

edges i
κij→ j, where κij ∈ R>0 are the reaction rate constants), between m complexes

y1, . . . , ym ∈ Zs≥0 among the species (which are classically represented as nonnegative in-
teger combinations of the species and which give rise to monomials in the concentrations
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of the chemical species xyi = xyi11 xyi22 · · ·x
yis
s ) . The entries of the complexes are called

stoichiometric coe�cients.

De�nition 2.1. A chemical reaction network (CRN) is a �nite directed graph

G = (V,E, (κij)(i,j)∈E , (yi)i=1,...,m)

whose vertices are labeled by complexes and whose edges are labeled by positive real num-
bers. Mass-action kinetics speci�ed by the network G gives the following autonomous system
of ordinary di�erential equations in the concentrations x1, x2, . . . , xs of the species as func-
tions of time t:

(1)
dx

dt
=

∑
(i,j)∈E

κi,j x
yi (yj − yi).

Note that system (1) is of the form

(2)
dxk
dt

= fk(x), k = 1, . . . , s,

where f1, . . . , fs are polynomials in R[x1, . . . , xs].
A �rst natural question is which autonomous polynomial dynamical systems come from

a CRN under mass-action kinetics. The answer is due to Hárs and Tóth:

Lemma 2.2 ([49]). A polynomial dynamical system dx/dt = f(x) in s variables (x1, . . . , xs)
arises from a CRN under mass-action kinetics if and only if there exists real polynomials
pk, qk, k = 1, . . . , s, with non negative coe�cients such that fk = pk − xkqk for all k.

The necessary condition that each monomial with negative coe�cient in the polyonomial
fk has to be divisible by xk is straightforward from (1). The converse is constructive. One
interesting feature that follows from this constructive proof is the fact that the polynomials
fk do not determine the network, only (almost) the source complexes of the reactions (those
labeling the initial node of a directed edge). We refer the reader to [17, 54] for extensions
and precisions of Lemma 2.2, in particular, identi�ability of the reaction rate constants κij
for a given network. In general, one assumes the structure of the reaction network and would
like to infer dynamical properties of the system from this structure, even if most reaction
rate constants are unknown.

The restriction on the coe�cients of a CRN under mass-action kinetics given by Lemma 2.2
is satis�ed for instance by the oscillatory Lotka-Volterra equations, but not by the �chaotic�
Lorenz equations

dx1

dt
= αx2 − αx1,

dx2

dt
= γx1 − x2 − x1x3,

dz

dt
= x1x2 − βx3, α, β, γ ∈ R>0,

due to the existence of the term −x1x3 in f2.

De�nition 2.3. The steady state variety V (f) of the kinetic system (2) equals the nonneg-
ative real zeros of f1, . . . , fs, that is, the nonnegative points of the real algebraic variety cut
out by f1, . . . , fs. Any element of V (f) is called a steady state of the system.

Note that the positive solutions of the system x1f1 = · · · = xsfs = 0 equal the positive
solutions of f1 = · · · = fs = 0 (but of course the dynamics of the corresponding di�erential
systems is di�erent). So, any system of s real polynomials in s variables de�nes the positive
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steady states of a CRN under mass-action kinetics. However, realistic models have particular
features that produce interesting results. We will focus in particular on enzymatic networks.

Another direct consequence of the form of the equations in (1) is that for any trajectory
x(t), the vector dx

dt lies for all t in the so called stoichiometric subspace S, which is the
linear subspace generated by the di�erences {yj − yi | (i, j) ∈ E}. Using the shape of the
polynomials fk = pk −xkqk in Lemma 2.2, it is straightforward to see that a trajectory x(t)
starting at a nonnegative point x(0) lies in the closed polyhedron (x(0) + S) ∩ Rs≥0 for all
t ≥ 0, called a stoichiometric compatibility class. The (linear) equations of x(0) + S are
called conservation relations.

Di�erent stoichiometric compatibility classes

Note that for any autonomous dynamical system of the form (2), any linear relation∑s
i=1 cifi = 0 with real coe�cients c1, . . . cs, gives rise to the restriction that

∑s
i=1 cixi has

to be constant along trajectories. In our setting, the linear equations for S give conservation
relations, but for speci�c f1, . . . , fs there could be further linear constraints.

As we pointed out in the introduction, a central notion is the following:

De�nition 2.4. We say that system (1) exhibits multistationarity if there exist at least two
steady states in the same stoichiometric compatibility class.

The following �gure illustrates the intersection of the steady state variety V (f) with
di�erent stoichiometric compatibility classes. The middle one has 3 di�erent steady states
x(1),∗, x(2),∗, x(3),∗, so the system exhibits multistationarity.

x(1),∗

x(2),∗

x(3),∗

V(f)

In the following section we will concentrate on multistationarity questions of enzymatic
networks. Section 5 presents recent general mathematical results to preclude or allow the
occurrence of multistationarity based on sign vectors.
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3. Enzymatic networks

The Nobel Prize in Physiology or Medicine 1992 was awarded jointly to Edmond H.
Fischer and Edwin G. Krebs �for their discoveries concerning reversible protein phospho-
rylation as a biological regulatory mechanism�. Phosphorylation/dephosphorylation are
post-translational modi�cation of proteins mediated by enzymes, particular proteins that
add or take o� a phosphate group at a speci�c site, inducing a conformational change that
allows/prevents the protein to perform its function. The standard building block in cell sig-
naling is the following enzyme mechanism, which is called a Michaelis-Menten mechanism,
named after the German biochemist Leonor Michaelis and the Canadian physician Maud
Menten. This basic network involves four species: the substrate S0, the phosphorylated
substrate S1, the enzyme E and the intermediate species ES0. The enzyme E is not �con-
sumed� after the whole mechanism, which is assumed to be with mass-action kinetics. The
concentration of the donor of the phosphate group is considered to be constant, thus hidden
in the reaction rate constants and ignored. A scheme is as follows, with the 3 reaction rate
constants called kon, koff , kcat:

(3) S0 + E
kon−→
←−
koff

ES0
kcat→ S1 + E

S0 S1

E
ES0 ES0 E

One canonical class of biological systems exhibiting multistationarity are protein kinase
mechanisms that involve multiple phosphorylation of a substrate. There are (substrate)
proteins in humans that are known to have more than 150 possible phosphorylation sites [78].

The following CRN corresponds to the case of n = 2 sequential phosphorylations:

S0 + E
kon0−→
←−
koff0

ES0
kcat0→ S1 + E

kon1−→
←−
koff1

ES1
kcat1→ S2 + E(4)

S2 + F
lon1−→
←−
loff1

FS2
lcat1→ S1 + F

lon0−→
←−
loff0

FS1
lcat0→ S0 + F

This network involves nine species: the substrates with zero, one and two phosphorylated
sites S0, S1, S2 (known as phosphoforms), the intermediate species ES0, ES1, FS1, FS2 plus
two enzymes E,F (E is called a kinase and F a phosphatase), and ten complexes denoted as
integer linear combinations of species by S0+E,S1+E,S2+E,ES0, ES1, S0+F, S1+F, S2+
F, FS1, FS2. Renaming the variables and the complexes following the previous ordering, we
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get the following dynamical system for the concentrations under mass-action kinetics:

dx1

dt
=−kon0x1x8 + koff0x4 + lcat0x6

dx6

dt
=lon0x2x9 − (lcat0 + loff0)x6

dx2

dt
=−kon1x2x8 + kcat0x4 + koff1x5

dx7

dt
=lon1x3x9 − (lcat1 + loff1)x7

−lon0x2x9 + loff0x6 + lcat1x7
dx8

dt
=−kon0x1x8 − kon1x2x8 + (koff0 + kcat0)x4

dx3

dt
=kcat1x5 − lon1x3x9 + loff1x7 + (koff1 + kcat1)x5

dx4

dt
=kon0x1x8 − (koff0 + kcat0)x4

dx9

dt
=−lon0x2x9 − lon1x3x9 + (lcat0 + loff0)x6

dx5

dt
=kon1x2x8 − (koff1 + kcat1)x5 + (lcat1 + loff1)x7

The stoichiometric subspace S has codimension 3, so there are 3 linearly independent
conservation relations, usually taken as total substrate, total kinase and total phosphatase:

x1 + x2 + x3 + x4 + x5 + x6 + x7 =Stot

x4 + x5 + x8 =Etot(5)

x6 + x7 + x9 =Ftot.

So, there are only 6 linearly independent di�erential equations in the system. The constants
(Stot, Etot, Ftot) are determined by the initial conditions. We see that each stoichiometric
compatibility class is compact since adding the 3 conservation relations we get a positive
linear combination involving all the variables equal to a positive number, so each class is
bounded (and closed). In general, the n-site phosphorylation system is of great biochem-
ical importance: it is a recurring network motif in many networks describing biochemical
processes.

The common zeros of f1, . . . , fs equal the common zeros of the ideal of their polynomial
consequences (the steady state ideal):

(6) If = {g1f1 + · · ·+ gsfs : gi ∈ R[x1, . . . , xs], i = 1, . . . , s}.
The polynomials f1, . . . , fs are generators of If . We refer the reader to [10] for the basic
notions of polynomial ideals and Gröbner bases.

If the steady state ideal If is a binomial ideal, that is, if it can be generated by polyno-
mials which are binomials (i.e., polynomials with two terms), we say that the system has
toric steady states. We prove in [69] that the chemical reaction system associated with the
multisite n-phosphorylation of a protein by a kinase/phosphatase pair in a sequential and
distributive mechanism (with the same structure as the mechanism in (4) but with n sites)
has toric steady states. This result was implicit in [80] and it is a particular case of [77]. This
system has 3n + 3 species, 4n + 2 complexes and still 3 linearly independent conservation
relations.

Wang and Sontag studied in [80] the number of steady states in the general n-site sequen-
tial distributive phosphorylation network and showed that there are at most 2n− 1 steady
states in each stoichiometric compatibility class. They also identi�ed a particular open set
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in the positive orthant of the constant rate space Rr>0 where the number of positive steady
states in the same compatibility class is n + 1 (for n even) or n (for n odd) and conjec-
tured that the maximum possible number is n + 1 for any n. It was shown in [37], that in
fact for any n = 3 and 4 there can be up to 2n − 1 stoichiometrically compatible positive
steady states, for particular choices of the reaction rate constants. Even for n = 3 it is very
complicated to give a precise description of the (semialgebraic) regions in which Rr>0 can be
partitioned according to the maximal number of steady states and no study explains for the
moment how many of the known steady states in a given compatibility class are attractors
for the dynamics.

We show in [68] that many other important networks have toric steady states including
most of the motifs of enzyme cascades studied in [33], for example, the following cascade of
phosphorylations known as the MAPK/ERK pathway:

R0 R1

F3

R2

F3

P0 P1

F2

P2

F2

S0 S1

F1

E

Each curved arrow in this diagram represents a digraph with 3 nodes as in (3), where the
enzyme is the label of the arrow. Note that the phosphorylated (or double phosporylated)
substrate in the upper reactions acts as an enzyme down the cascade.

In general, deciding multistationarity amounts to the di�cult question of determining
emptiness of a (complicated) semialgebraic set, which is in principle algorithmic but unfea-
sible in practice. For chemical reaction systems with toric steady states for every choice of
positive reaction rate constants, we have the following explicit criterion for multistationarity
[69]. First, if the system has toric steady states for every choice of positive reaction rate
constants, the steady states can be explicitly parametrized by monomials (or shown to be
empty). That is, we can check for non emptiness and the positive steady states can be
parametrized by a monomial map

t 7→ (c1(κ)tv1 , . . . , cs(κ)tvs),

where t ∈ Rd+, d is the dimension of the steady state variety and c1, . . . , cs are rational
functions of the κij . Now, we can check for multistationarity in an algorithmic way (under

the conditions detailed in [69, Section 3]). Call V ∈ Nd×s the matrix with columns v1, . . . , vs.
The following is a simpli�ed version of Theorem 5.5 in [69]:

Theorem 3.1 ([69]). Fix a chemical reaction network G with s species, under mass-action
kinetics such that there exist positive constants µij for all reactions such that

∑
µij(yj −

yi) = 0.1 Assume the system has toric steady states for all reaction rate constants and it
satis�es Condition 3.1 or 3.16 in [69]. Let V ∈ Nd×s be a matrix giving the exponents of

1Note that by (1), this condition is necessary for the existence of a positive steady state
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a parametrization of the positive steady state variety. There exists a reaction rate constant
vector such that the resulting chemical reaction network exhibits two di�erent positive steady
states in the same stoichiometric compatibility class if and only if there exists an orthant O
of Rs of any positive dimension that the two intersections O∩ image(V ) and O∩S are both
non empty, or in other words, if and only if there exist non-zero α ∈ image(V ) and β in
the stoichiometric subspace S with sign(αi) = sign(βi) for all i = 1, . . . , s.

We will present a recent general result on multistationarity in Section 5.

4. Steady state invariants

We keep in this section the notations of Section 2. Note that we can also write the
polynomial autonomous system (1) which models the kinetics of a chemical reaction network,
as a real matrix M ∈ Rs×m multiplied by a vector of monomials Ψ(x) with i-th coordinate
equal to xyi :

(7)
dx

dt
= f(x) = M(Ψ(x)).

De�nition 4.1. A steady state invariant (or simply, an invariant) is a polynomial that
vanishes on the steady state variety V (f).

The given polynomials f1, . . . , fs are trivially steady state invariants. But we are inter-
ested in describing new invariants that reveal further properties of the system. In many
cases, it is most important to �nd invariants that only depend on a selected subset of vari-
ables, which usually correspond to those concentrations that are easier to measure, or to
concentrations one wants to relate at steady stated.

We can distinguish four �levels� of invariants.

Level 1: Any element of the rowspan of M de�nes an invariant which is an R-linear combi-
nation of f1, . . . , fs. Level 1 invariants depending on fewer complexes can be simply
obtained by Gaussian elimination. For any element λ in the rowspan of M , the
sum

∑m
i=1 λivi vanishes for any vector v ∈ ker(M); in particular, the polynomial∑m

i=1 λix
yi vanishes at steady state.

Level 2: Any polynomial in the steady state ideal If ⊂ R[x1, . . . , xs] de�ned in (6) is an
invariant, which can be obtained via computational algebraic geometry methods as
a polynomial linear combination of f1, . . . , fs. In particular, any invariant of Level
1 is an invariant of Level 2, and the inclusion is strict. Note that any invariant
of Level 2 vanishes on all complex common zeros of f1, . . . , fs. Elimination ideals
If ∩ R[xi, i ∈ Γ] for a given subset Γ of {1, . . . , s}, can be e�ectively computed
with Gröbner basis methods, which are for instance e�ciently implemented in the
free computer algebra systems Singular [20] or Macaulay2 [41]. We will mainly deal
with positive steady states, which in particular have nonzero coordinates. Primary
decomposition of ideals has been applied in [75] to describe boundary steady states
(with some zero coordinate).

Level 3: Any polynomial in the radical
√
If of the ideal If is an invariant. By Hilbert Nullstel-

lensatz, these are precisely those polynomials that vanish on all the complex common
zeros of f1, . . . , fs. The radical ideal

√
If can also be computed via computational

algebraic geometry, keeping the same zeros but without �multiplicity�.
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Level 4: Any polynomial which vanishes on V (f), that is on the nonnegative real zeros of If ,

is an invariant by de�nition. These polynomials form an ideal R≥0

√
If that we could

call the positive real radical of If . The positive real radical is in turn contained in

the real radical R
√
If of If composed of all polynomials which vanish on the real

zeros of If . These notions pertain to the (di�cult) realm of real algebraic geometry.

In general, we have that

(8) If ⊂
√
If ⊂ R

√
If ⊂ R≥0

√
If ,

and the inclusions are in general strict. A simple example for n = 1 is given by the ideal
If ⊂ R[x] generated by the polynomial f = x2(x2−1)(x2 +1). In this case, x(x2−1)(x2 +1)

lies in
√
If \ If , x(x2 − 1) lies in R

√
If \

√
If , the polynomial x(x− 1) lies in R≥0

√
If \ R

√
If

and x− 1 vanishes on the positive real zeros of If . Another simple example in one variable
shows that algebraic extensions enter into the picture: for instance, take f = x5 − 2x; then
R≥0

√
If can be generated by the polynomial x2 − α, with the additional information that

α2 − 2 = 0 and α > 0. However, the containments in (8) are equalities for the most usual
enzymatic networks.

Invariants can be used to check the (un)correctness of a proposed model [61]. A baby
example of this application taken from [46] is the following. In the sequential enzymatic
mechanism for n = 2, we get by elimination of variables an invariant of Level 2 of the form
xj(x1x3 − Kx2

2) with j = 8 or j = 9, where K depends on the (unknown) reaction rate
constants but not on the initial conditions! Recall that x1, x2, x3 denote the concentrations
at steady state of the unphosphorylated, singly phosphorylated or doubly phosphorylated
substrate and x8, x9 denote the enzymes, which can be measured and are assumed to be
positive. So the �values at steady state� (x1, x2, x3) of the concentrations for di�erent runs
should satisfy, according to this model, that the points (x1x3, x

2
2) lie (approximately) on a

line. Even if the slope is unknown, plotting these points allows to check the correctness of
the model. In fact, K is the following explicit rational function in the reaction rate constants
(obtained via elimination in the polynomial ring with variables xi and κij): it is the quotient
P1/Q1 of the following polynomials:

P1 = κ10,7κ25κ41κ54κ79κ96 + κ10,7κ25κ42κ54κ79κ96 + κ10,8κ25κ41κ54κ79κ96 + κ10,8κ25κ42κ54κ79κ96,

Q1 = κ10,7κ14κ42κ52κ8,10κ96 + κ10,7κ14κ42κ52κ8,10κ97 + κ10,7κ14κ42κ53κ8,10κ96

+κ10,7κ14κ42κ53κ8,10κ97.

Note that steady states correspond to nonnegative constant solutions of (1), so if for any
�nite t the system is at steady state, then the trajectory is constant. If there exists a positive
conservation relation

∑s
i=1 ci

dxi
dt = 0 with c1, . . . , cs > 0 as in this example, the trajectories

are bounded (so the system is conservative) and then each trajectory is de�ned for any
t ≥ 0. The �values at steady state� are the limit values limt→∞ xi(t) (when these limits
exist), which can be approximated with experimental measurements.

4.1. Invariants and the notion of Absolute Concentration Robustness. Shinar and
Feinberg introduced in [74] the notion of Absolute Concentration Robustness (ACR, for
short) of a given chemical species xj . This happens when the j-th coordinate of the positive
steady states of the system have a �xed value, independent of the given positive steady state
and even independent of the value of the conservation relations (see also [72] for the notion
of robustness of the output with respect the initial conditions). This is a very peculiar
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feature that shows up in real examples. Here is a particular mechanism extracted from [74].
The enzyme X is a kinase (known as EnvZ) present in the the bacteria Escherichia Coli,
that can be self-transformed into XD and XT and it can then be self-phosphorylated to
produce the species Xp. In Xp form, it can react with species Y (known as OmpR) to obtain
the phosphorylated form Yp, while XD and XT can dephosphorylate Yp by the standard
Michaelis-Menten mechanism:

XD
κ12

�
κ21

X
κ23

�
κ32

XT
κ34→ Xp

Xp + Y
κ56

�
κ65

XpY
κ67→ X + Yp

XT + Yp
κ89

�
κ98

XTYp
κ9,10→ XT + Y

XD + Yp
κ11,12

�
κ12,11

XDYp
κ12,13→ XD + Y

(9)

We denote by x1, . . . , x9 the species concentrations as follows: xXD = x1, xX = x2, xXT =
x3, xXp = x4 , xY = x5, xXpY = x6, xYp = x7, xXTYp = x8, xXDYp = x9 .

In fact, this system has toric steady states. Indeed, an ideal is binomial if and only if any
reduced Gröbner basis is composed of binomials. Any such basis gives a binomial system of
generators for the ideal. The reduced Gröbner basis of If with respect to the lexicographical
order x1 > x2 > x4 > x5 > x6 > x8 > x9 > x3 > x7 consists of the following binomials:

g1 = [κ89κ12κ23κ9,10(κ12,11 + κ12,13) + κ11,12κ21κ12,13(κ98 + κ9,10)(κ32 + κ34)]x3x7−
−[κ23κ34κ12(κ12,11 + κ12,13)(κ98 + κ9,10)]x3

g2 = [−κ11,12κ21κ34(κ98 + κ9,10)(κ32 + κ34)]x3+
+[κ11,12κ21κ12,13(κ98 + κ9,10)(κ32 + κ34) + κ12κ23κ89κ9,10(κ12,11 + κ12,13)]x9

g3 = [−κ23κ34κ89κ12(κ12,11 + κ12,13)]x3+
+[κ23κ9,10κ89κ12(κ12,11 + κ12,13) + κ11,12κ21κ12,13(κ98 + κ9,10)(κ32 + κ34)]x8

g4 = κ67x6 − κ34x3
g5 = κ56κ67x4x5 + κ34(−κ65 − κ67)x3
g6 = κ23x2 + (−κ32 − κ34)x3
g7 = −κ21(κ32 + κ34)x3 + κ12κ23x1

Note that g1 has the form g1 = Q1x3 − Q2x3x7 = x3(Q1 − Q2x7), where Q1 and Q2

are homogeneous polynomials in the reaction rate constants which are positive for positive
values of the κij . Thus, any positive steady state satis�es that the value of x7 = xYp equals
Q1/Q2, independently of the initial concentrations. So the Level 2 invariant g1 ∈ If shows
immediately that the system exhibits ACR in Yp.

Note that the two monomials that occur in g1 correspond to two complexes in our network,
so one could imagine that it is possible to get a binomial only involving x3x7 and x7 as a
Level 1 invariant, that is, via R-linear combinations of f1, . . . , f9 However, we prove in [69]
that this is not possible and that Level 1 invariants cannot reveal the ACR property.

4.2. Invariants and robust bounds. Most of the literature on chemical reaction networks
only deals with the computation of Level 1 steady state invariants, that we call Type 1
Complex Invariants in [58], from where we extracted the following examples of CRN with
di�erent bifunctional enzymes. Being bifunctional means that the same enzyme has two
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di�erent binding sites in such a way that the enzyme can both catalyze a phosphorylation,
or the reverse dephosphorylation.

The �rst example is a biologically plausible modi�cation of the network (9): we add a
reaction with the self dephosphorylation Yp −→ Y of Yp. The resulting system does not have
toric steady states. We show in [58] that there is no longer ACR behaviour in the variable
x7 = xYp , but instead we found a particular Level 1 invariant depending on a selected
proper subset of the complexes, that allowed us to �nd two nontrivial bounds at steady
state independent of initial conditions and the total amounts of the enzymes. According to
the numbering of the nodes in [58], we have that for any positive steady state,

xYp < min{k1

k2

k3k5

(k4 + k5)

(k14 + k15)

k13k15
, k5

(k11 + k12)

k10k12
}.

The factors in these bounds as well as the particular reaction rate constants entering the
expressions can be biochemically interpreted.

The second example corresponds to a bifunctional enzyme (known as PFK2-F2,6BPase)
in a mammalian cell. In this case, we again get in [58] from Level 1 particular invariants
depending on some chosen complexes and the signs of their coe�cients, a robust bound in
the concentration of a smaller enzyme known as fructose-6-phosphate or in the concentration
of the enzyme called F2,6BP, depending on the sign of the di�erence of two speci�c reaction
rate constants, independently of the stoichiometric compatibility class [58, 18].

4.3. Invariants and implicit dose�response curves. We say that b > 0 is a trivial upper
bound for the ith species if there exists a conservation relation a1x1 +a2x2 + · · ·+xi + · · ·+
asxs = b with all aj ≥ 0. Note that b is an upper bound for the concentration of xi all
along the trajectory. Using invariants and elimination, we show in [67] how to improve these
bounds for steady state concentrations of speci�c species of the system that are usually
considered as the output, and so we bound what is called the maximal response of the
system, regardless of the occurrence of multistationarity. For example, the concentration of
the doubly phosphorylated substrate x3 = xS2 can be taken as the output in the sequential
phosphorylation mechanism with two sites. The input of the system is in general a quantity
that depends on the initial concentrations, for instance the total amount Etot of the kinase
in (5), that can be usually regulated.

Denote by σ the codimension of the stoichiometric subspace S and suppose f1, . . . , fs−σ
are linearly independent. Choose also σ independent conservation relations `1−c1, . . . , `σ−cσ
(where `1, . . . , `σ are homogeneous linear forms and ci are constants). Fix the values of
c2, . . . , cσ and take c = c1 as our input and x1 as our output variable. We assume, as it is
in general tacitly assumed, that there are a (nonzero) �nite number of (complex) solutions
to the equations

(10) f1 = f2 = · · · = fσ = `1 − c = `2 − c2 = · · · = `σ − cσ = 0,

for any value of c. In particular, there are a (nonzero) �nite number of points in the
intersection of V (f) with each stoichiometric compatibility class. It can be seen that
there exists a nonzero polynomial p = p(c, x1) in the ideal generated by the polynomi-
als f1, f2, . . . , fs, `1 − c, `2 − c2, . . . , `σ − cσ in R[c, x1, . . . , xs], depending ony on x1 and c
and with positive degree in x1, which can be computed with standard elimination tools in
computational algebraic geometry (see Lemma 2.1 in [67]). The curve C = {p = 0} gives
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the implicit relation between the input and output variables at steady state, that we call
an implicit dose�response curve, extending the name of dose�response curve usually given
in case x1 can be analytically expressed in terms of c. In the general case, p has high degree
both in c and in x1 and no such expression is available. However, if one is able to plot the
curve C = {p = 0}, then an upper bound for the values of x1 at steady state can be read
from this plotting, but an implicit plot has in general bad quality and is inaccurate. Instead,
one can appeal to the properties of resultants and discriminants to preview a �box� contain-
ing the intersection of C with the �rst orthant in the plane (x1, c). This gives improved
bounds which yield smaller starting boxes to launch numerical computations. We moreover
illustrate in the application to the enzymatic network studied in [62], the relation between
the exact implicit dose-response curve we obtain symbolically and the standard hysteresis
diagram provided by a numerical solver that is currently seen in the literature. The setting
and tools we propose in [67] could yield many other results adapted to any autonomous
polynomial dynamical system.

5. General results on sign conditions and multistationarity

Uniqueness of positive solutions plays an important role in many applications and domains
of mathematics, beyond chemical reaction networks. In the recent joint paper [65], we
were able to isolate and generalize many previous results, in particular, Birch's theorem [2]
in Statistics and Feinberg's theorem for complex balanced equilibria in case of de�ciency
zero [27, Prop. 5.3 and Cor. 5.4], as well as Theorem 3.1 above (together with several other
results quoted in [65]). The setting is as follows, where n and m refer to any two natural
numbers (so m does not denote in this section the number of complexes, and n could be s, d
or any other suitable number of variables).

Consider a family of generalized polynomial maps fκ : Rn>0 → Rm de�ned on the positive
orthant, associated with two �xed real matrices A = (aij) ∈ Rm×r, B = (bij) ∈ Rr×n, and
r real positive parameters κ ∈ Rr>0:

(11) fκ,i(x) =
r∑
j=1

aij κj x
bj1
1 . . . x

bjn
n , i = 1, . . . ,m.

Note that we allow real exponents and not only nonnegative integer exponents.

De�nition 5.1. We say that fκ : Rn>0 → Rm is injective with respect to a subset S ⊂ Rn
if for all distinct x, y ∈ Rn>0 such that x− y ∈ S we have f(x) 6= f(y).

Clearly, if we have a mass-action kinetics system (2), which is injective with respect to
the stoichiometric susbpace S according to De�nition 5.1 with fκ = f , then there cannot
be two di�erent positive steady states on any stoichiometric compatibility class.

The following result is a simpli�ed version of Theorem 1.4 in [65], where we also discuss
the algorithmic issues. We need the following notations. The sign vector σ(x) ∈ {−, 0,+}n
of a vector x ∈ Rn is de�ned componentwise. Given a subset T , σ(T ) denotes the set of sign
vectors of all elements in T and Σ(T ∗) = σ−1(σ(T \ {0})) denotes the set of all vectors with
the same sign of some nonzero vector in T .

Theorem 5.2 ([65]). The following statements are equivalent:

(inj) The map fκ is injective with respect to S, for all κ ∈ Rr>0.
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(sig) σ(ker(A)) ∩ σ(B(Σ(S∗)) = ∅.

In the particular case m = n with rank(A)=rank(B)=n and S = Rn, condition (sig)
simply reads σ(ker(A)) ∩ σ(im(B)) = {0}. In oriented matroid language [70], this can be
phrased as: no nonzero vector of A is orthogonal to all vectors of BT , or, equivalently, no
nonzero covector of BT is orthogonal to all covectors of A. In this framework, we recognized
in [65] the �rst partial version of Descartes' rule of signs, proposed by René Descartes in
1637 in �La Géometrie�, an appendix to his �Discours de la Méthode�. No multivariate
generalization is known and only a lower bound together with a disproven conjecture was
proposed in [56].

Recall that Descartes' rule of signs says that given a univariate real polynomial f(x) =
a0 +

∑r
j=1 ajx

j , the number of positive real roots of f is bounded above by the number

nf of sign variations in the ordered sequence of coe�cient signs σ(a0), . . . , σ(ar) (where we
discard the 0's in this sequence and we add a 1 each time two consecutive signs are di�erent).
For instance, if f = a0+3x−90x6+2x8+x111, the sequence of coe�cient signs (discarding
0's) is: σ(a0),+,−,+,+. So, nf equals 2 if a0 ≥ 0 and 3 if a0 < 0. Then, f has at most 2 or
3 positive real roots. This bound is true in case of real, not necessarily natural, exponents.
Note that being a condition only depending on the sign of the coe�cients, the consequence
should also hold for any other polynomial with the same vector of signs, that is, for any
polynomial of the form fκ(x) = a0 +

∑r
j=1 aj κj x

j , for any choice of positive κ ∈ Rr>0.

The partial multivariate generalization is as follows. Given matrices A ∈ Rn×r, B ∈ Rr×n
with n ≤ r and any index set J ⊆ {1, . . . , r} of cardinality n, we denote by det(AJ) (resp.
det(BJ)) the minor indexed by the columns (resp. rows) in J . For any choice of y ∈ Rn, we
consider the system of n equations in n unknowns

(12)
r∑
j=1

aij x
bj1
1 · · ·x

bjn
n = yi, i = 1, . . . , n.

We denote by C◦(A) the interior of the polyhedral cone generated by the column vectors
a1, . . . , ar of A:

C◦(A) =

{
r∑
i=1

µi a
i ∈ Rn : µ ∈ Rr+

}
.

Item (bnd) in the following result from [65] was previously found (but not highlighted)
in [14]. Item (surj) is based on Theorem 3.8 in [64].

Theorem 5.3. [Multivariate Descartes' rule for (at most) one positive real root] Let A ∈
Rn×r and B ∈ Rr×n be matrices of rank n. Then,

(bnd) Assume that for all index sets J of cardinality n, the product det
(
AJ
)

det
(
BJ
)
either

is zero or has the same sign as all other nonzero products, and moreover, at least
one such product is nonzero. Then, (12) has at most one positive solution x ∈ Rn>0,
for any y ∈ Rn.

(surj) Assume that the row vectors of B lie in an open half-space and that the determinants
det
(
AJ
)
and det

(
BJ
)
have the same sign for all index sets J of cardinality n, or

the opposite sign in all cases. Then, (12) has exactly one positive solution x ∈ Rn>0

if and only if y ∈ C◦(A).
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In particular, if the associated oriented matroids of A and B are equal, there is at most
one positive solution. Note that in case n = 1, the conditions in Theorem 5.3 read as follows.
For f = a0 +

∑r
j=1 ajx

j ∈ R[x], A is the 1 × r matrix with entries a1, a2, . . . ar, B is the
r × 1 matrix with bj1 = j for all j = 1, . . . , r, c1 = −a0. The hypotheses of the theorem
reduce to asking that a1, . . . , ar ≥ 0 (or ≤ 0) and not all 0. So, there is at most one change
sign (depending on σ(a0)) and so at most one positive root, as in classical Descartes' rule.
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