Topics in Applied Algebraic Geometry

Alicia Dickenstein and Sandra di Rocco, Spring 2017
Homework # 1, due Tuesday February 21

Exercise 1. The following chemical reaction network is the 1-site phosphorylation system:
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The players in this network are a kinase enzyme (F), a phosphatase enzyme (F'), and two
substrates (Sp and S7). The substrate S is obtained from the unphosphorylated protein Sy
by attaching a phosphate group to it via an enzymatic reaction involving E. Conversely, a
reaction involving F' removes the phosphate group from S; to obtain Sy. The intermediate
complexes ESy and ES; are the bound enzyme-substrate complexes. Under the ordering of
the 6 species as (5o, S1, ESp, F'S1, E, F) and the 6 complexes as (So + E,S1 + E, ESp, So +
F, S+ F,FS), call

U(x) = (x1x5, 225, T3, T1%6, T2Te, T4) .

(i) Write the matrices Ay, Y of the corresponding dynamical system:

d
dit“ = U@) Ac-Y = (fi(2),..., folx)) .
(ii) Find the conservation relations and prove that (f1,..., fg) is a binomial ideal.

(iii) Find a positive steady state ¢ € Rgo and parametrize all positive steady states.

Exercise 2. Consider the following dynamical system:

dx
i (—2a:c%w4 + 2vay, 3axizy — 3Pxiad, ABxda] — Ayxs, axtay — 28wy + ’ym%) ,
where x = (z1,...,24),a,3,7 € Rsp. Check that this system represents the mass-action

kinetics dynamical system associated to the network

2X1+ Xy




Now, consider the mass-action kinetics dynamical system associated to the following 9
reactions and compare it with the one previously obtained.
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What can you conclude?

Exercise 3. Consider the reaction network

K k k

A2 Al 2A2 3A1 .

Compute the stoichiometric subspace. Find the smaller subspace containing (dditl7 ddif) for

every trajectory c(t) (where ¢;(t) denotes the concentration of species A; in time t). How
many steady states are there in each stoichiometric compatibility class?

Exercise 4. Consider the reaction network 24+ B —= 34,4 —= 0, B == 0 (i.e, there are
two species A and B, and each one of them can flow in and out of the system). Write down the
corresponding dynamical system.Is there any conservation relation? Show that there exists a
choice of rate constants for the 6 reactions for which the system has 3 positive steady states.

Exercise 5. In this exercise you will prove that the general model for T-cell specificity has
precisely one positive steady state in each linear invariant subspace. The general model is
described by the following reaction network:

al az a;

T+ M-~ X, X1 X, X,
0
by
b;
bn
For each species shown in the diagram, that is, T, M, Xq, ..., X,, we denote their concen-
tration by: x7,xar, o, -, Ty

(i) Find the ODE system associated to the reactions using the mass-action assumption.

(ii) Check that there are conservation laws zp;+xo+- - -+xny = Moy and xp+x9+-- -+ Ny =
Ttot-



(iii) Use the steady-state equations to show that at steady state, z; = pxpapys for all i =
0,...,N, and where yu; is a constant that depends on the rate constants.

(iv) Use the conservation law for Tio to find an expression for zp in terms of xp; at steady
state, under the assumption xy; > 0.

(v) Use the conservation law for M to conclude that there is one positive steady state for
each choice of Tiot, Mot > 0.

You can start by studying the system for N = 2.
We will give two different results that will prove this last statement immediately!

Exercise 6. We consider the model of signal transmission widely employed by bacteria dis-
cussed in class. The buildings blocks of this two-component systems are two proteins X and
Y, called sensor kinase and response requlator respectively.

We consider the reaction network with the following reactions:

e Activation of X is modeled in two steps

X % XT &5 X,,. (2)

e X, activates the response regulator Y, while inactivating itself:

K
X, +Y =X, Y X% X +Y,. (3)

K5

e The species XT has the capacity to dephosphorylate RR, without being itself altered in
the process (it is an enzyme).This is represented with the following reactions:

XT+Y, = XTY, =% XT + Y. (4)
K8

For simplicity, we denote the concentrations of the species as:

T [X] Tro = [XT] r3 = [Xp]

[Y] x5 = [XpY] z6 = [Y)p] w7 = [XTY,].

Tq

Under the mass-action kinetics assumption the evolution of the concentration of each species
in time is described by the following system of ODZEs:

T1 = —K1Z1 + Kax2 + KeTs

Tg = K1T1 — K2X2 — K3T2 — K7X2xe + K7 + Ko7
T3 = K3T2 — K4T3%4 + K525

T4 = —K4T3T4 + K5T5 + K9x7

Ty = K4T3T4 — K505 — KI5

x'6 = KLy — K7IoXg + K]IL7

T7 = K7T9Xg — K]T7 — K9X7.
This system has two independent conservation laws:

Xiot = 1 + To + 23 + x5 + 27
Yiot = X4 + x5 + g + 7.



e Prove that this system shows Absolute Concentration Robustness in the species Y, (that

is, for positive steady states, the value of zg does not depend on the total amounts
Xtothtot)-

Show that the steady-state equations and the conservation equations admit a positive
solution (i.e. there exists a positive steady state given the total amounts) if and only if

(kg + kg)kg

< Yiot-
k‘7k‘g tot

Show that if the inequality holds, then there is a unique positive steady state for each
choice of positive X;ot. Are there other nonnegative steady states in the same compati-
bility class?

Again, we will develop tools to avoid making all these computations by hand.

Exercise 7. Consider the reactions

A+B™c B*Maic o B

Let x4, zp, xc denote the concentration of species A, B, C' respectively.

(i)
(i)
(i)

)

(iv

(v)

Find the ODE system associated to the reactions using the mass-action assumption.
Show that g + z¢ is conserved.
Show that a positive steady state always exist and is unique.

Show that the value of 4 at a positive steady state is independent of the system’s initial
conditions (i.e., absolute concentration robustness exists for x4).

In the two-component example in the previous exercise we have shown that absolute
concentration robustness exists and, as a consequence, positive steady states do not
always exist. Why does the system in this exercise have absolute concentration robustness
and, at the same time, positive steady states always exist?



