
Topics in Applied Algebraic Geometry

Alicia Dickenstein and Sandra di Rocco, Spring 2017
Homework # 1, due Tuesday February 21

Exercise 1. The following chemical reaction network is the 1-site phosphorylation system:

S0 + E
k1−→
←−
k2
ES0

k3→ S1 + E (1)

S1 + F
`1−→
←−
`2
FS1

`3→ S0 + F .

The players in this network are a kinase enzyme (E), a phosphatase enzyme (F ), and two
substrates (S0 and S1). The substrate S1 is obtained from the unphosphorylated protein S0
by attaching a phosphate group to it via an enzymatic reaction involving E. Conversely, a
reaction involving F removes the phosphate group from S1 to obtain S0. The intermediate
complexes ES0 and ES1 are the bound enzyme-substrate complexes. Under the ordering of
the 6 species as (S0, S1, ES0, FS1, E, F ) and the 6 complexes as (S0 + E,S1 + E,ES0, S0 +
F, S1 + F, FS1), call

Ψ(x) = (x1x5, x2x5, x3, x1x6, x2x6, x4) .

(i) Write the matrices Aκ, Y of the corresponding dynamical system:

dx

dt
= Ψ(x) ·Aκ · Y = (f1(x), . . . , f6(x)) .

(ii) Find the conservation relations and prove that 〈f1, . . . , f6〉 is a binomial ideal.

(iii) Find a positive steady state c ∈ R6
>0 and parametrize all positive steady states.

Exercise 2. Consider the following dynamical system:

dx

dt
=

(
−2αx21x4 + 2γx43, 3αx

2
1x4 − 3βx32x

2
4, 4βx

3
2x

2
4 − 4γx43, αx

2
1x4 − 2βx32x

2
4 + γx43

)
,

where x = (x1, . . . , x4), α, β, γ ∈ R>0. Check that this system represents the mass-action
kinetics dynamical system associated to the network

4X3 3X2 + 2X4

2X1 +X4

γ α

β
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Now, consider the mass-action kinetics dynamical system associated to the following 9
reactions and compare it with the one previously obtained.

4X3

X1 + 4X3

3X3

4X3 +X4

2γ
4γ

γ
2X1 +X4

2X1 +X2 +X4

X1 +X4

2X1 + 2X4

2α
3α

α

3X2 + 2X4

3X2 +X3 + 2X4

2X2 + 2X4

3X2 +X4

4β
3β

2β

(previously: )

x21x4
2α→ x1x4 , x

2
1x4

3α→ x21x2x4 , x
2
1x4

α→ x21x
2
4,

x32x
2
4

3β→ x22x
2
4 , x

3
2x

2
4

4β→ x32x3x
2
4 , x

3
2x

2
4

2β→ x32x4

x43
2γ→ x1x

4
3 , x

4
3

4γ→ x33 , x
4
3
γ→ x43x4.

What can you conclude?

Exercise 3. Consider the reaction network

A2
k′←−− A1

k←−− 2A2
k−−→ 3A1.

Compute the stoichiometric subspace. Find the smaller subspace containing (dc1dt ,
dc2
dt ) for

every trajectory c(t) (where ci(t) denotes the concentration of species Ai in time t). How
many steady states are there in each stoichiometric compatibility class?

Exercise 4. Consider the reaction network 2A+B −−⇀↽−− 3A,A −−⇀↽−− 0, B −−⇀↽−− 0 (i.e, there are
two species A and B, and each one of them can flow in and out of the system). Write down the
corresponding dynamical system.Is there any conservation relation? Show that there exists a
choice of rate constants for the 6 reactions for which the system has 3 positive steady states.

Exercise 5. In this exercise you will prove that the general model for T-cell specificity has
precisely one positive steady state in each linear invariant subspace. The general model is
described by the following reaction network:

T +M
a0 // X0

a1 //
b0ee X1

a2 //

b1

dd . . .
ai // Xi

ai+1 //

bi

gg . . .
an // Xn

bn

dd

For each species shown in the diagram, that is, T,M,X0, . . . , Xn, we denote their concen-
tration by: xT , xM , x0, . . . , xn.

(i) Find the ODE system associated to the reactions using the mass-action assumption.

(ii) Check that there are conservation laws xM+x0+· · ·+xN = Mtot and xT +x0+· · ·+xN =
Ttot.
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(iii) Use the steady-state equations to show that at steady state, xi = µixTxM for all i =
0, . . . , N , and where µi is a constant that depends on the rate constants.

(iv) Use the conservation law for Ttot to find an expression for xT in terms of xM at steady
state, under the assumption xM ≥ 0.

(v) Use the conservation law for Mtot to conclude that there is one positive steady state for
each choice of Ttot,Mtot > 0.

You can start by studying the system for N = 2.
We will give two different results that will prove this last statement immediately!

Exercise 6. We consider the model of signal transmission widely employed by bacteria dis-
cussed in class. The buildings blocks of this two-component systems are two proteins X and
Y , called sensor kinase and response regulator respectively.

We consider the reaction network with the following reactions:

• Activation of X is modeled in two steps

X
κ1−−⇀↽−−
κ2

XT
κ3−→ Xp. (2)

• Xp activates the response regulator Y, while inactivating itself:

Xp + Y
κ4−−⇀↽−−
κ5

XpY
κ6−→ X + Yp. (3)

• The species XT has the capacity to dephosphorylate RR, without being itself altered in
the process (it is an enzyme).This is represented with the following reactions:

XT + Yp
κ7−−⇀↽−−
κ8

XTYp
κ9−→ XT + Y. (4)

For simplicity, we denote the concentrations of the species as:

x1 = [X] x2 = [XT] x3 = [Xp]

x4 = [Y] x5 = [XpY] x6 = [Yp] x7 = [XTYp].

Under the mass-action kinetics assumption the evolution of the concentration of each species
in time is described by the following system of ODEs:

ẋ1 = −κ1x1 + κ2x2 + κ6x5

ẋ2 = κ1x1 − κ2x2 − κ3x2 − κ7x2x6 + κ8x7 + κ9x7

ẋ3 = κ3x2 − κ4x3x4 + κ5x5

ẋ4 = −κ4x3x4 + κ5x5 + κ9x7

ẋ5 = κ4x3x4 − κ5x5 − κ6x5
ẋ6 = κ6x5 − κ7x2x6 + κ8x7

ẋ7 = κ7x2x6 − κ8x7 − κ9x7.

This system has two independent conservation laws:

Xtot = x1 + x2 + x3 + x5 + x7

Ytot = x4 + x5 + x6 + x7.
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• Prove that this system shows Absolute Concentration Robustness in the species Yp (that
is, for positive steady states, the value of x6 does not depend on the total amounts
Xtot,Ytot).

• Show that the steady-state equations and the conservation equations admit a positive
solution (i.e. there exists a positive steady state given the total amounts) if and only if

(k8 + k9)k3
k7k9

< Ytot.

• Show that if the inequality holds, then there is a unique positive steady state for each
choice of positive Xtot. Are there other nonnegative steady states in the same compati-
bility class?

Again, we will develop tools to avoid making all these computations by hand.

Exercise 7. Consider the reactions

A+B
k1−→ C B

k2−→ A+ C C
k3−→ B.

Let xA, xB, xC denote the concentration of species A,B,C respectively.

(i) Find the ODE system associated to the reactions using the mass-action assumption.

(ii) Show that xB + xC is conserved.

(iii) Show that a positive steady state always exist and is unique.

(iv) Show that the value of xA at a positive steady state is independent of the system’s initial
conditions (i.e., absolute concentration robustness exists for xA).

(v) In the two-component example in the previous exercise we have shown that absolute
concentration robustness exists and, as a consequence, positive steady states do not
always exist. Why does the system in this exercise have absolute concentration robustness
and, at the same time, positive steady states always exist?
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