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Cours

Tableaux récapitulatifs

Première semaine : 3 cours de base, de 10 heures chacun

David A. Cox
(Amherst College)

Eigenvalue and eigenvector methods for solving polynomial
equations

Alicia Dickenstein
(Univ. de Buenos Aires)

Introduction to residues and resultants

Lorenzo Robbiano (Univ.
Genova)

Polynomial systems and some applications to statistics

Deuxième semaine : 6 séminaires avancés de 4 heures chacun

Ioannis Emiris
(INRIA Sophia-
Antipolis)

Toric resultants and applications to geometric modeling

André Galligo
(Univ. de Nice)

Absolute multivariate polynomial factorization and alge-
braic variety decomposition

Bernard Mourrain
(INRIA Sophia-
Antipolis)

Symbolic Numeric tools for solving polynomial equations
and applications

Juan Sabia
(Univ. de Buenos Aires)

Efficient polynomial equation solving: algorithms and com-
plexity

Michael Stillman
(Cornell U.)

Computational algebraic geometry and the Macaulay2 sys-
tem

Jan Verschelde
(U. Illinois at Chicago)

Numerical algebraic geometry



Résumés disponibles

David A. Cox, Eigenvalue and eigenvector methods for solving polynomial equa-
tions.

Bibliography:

W. Auzinger and H.J. Stetter, An Elimination Algorithm for the Computation of all Zeros of a System of
Multivariate Polynomial Equations, In Proc. Intern. Conf. on Numerical Math., Intern. Series of Numerical
Math., vol. 86, pp. 12–30, Birkhäuser, Basel, 1988,
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Paper of Moller-Tenberg.

Alicia Dickenstein, Introduction to residues and resultants.

Some basics of commutative algebra and Groebner bases: Zero dimensional ideals and their
quotients, complete intersections. Review of residues in one variable. Multidimensional polynomial
residues: properties and applications. Introduction to elimination theory. Resultants. The classical
projective case: all known determinantal formulas of resultants. Relation between residues and
resultants. Applications to polynomial system solving.
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Algebraic Geometry and Applications, L. González-Vega & T. Recio eds., Progress in Mathematics, vol.
143, p. 135–164, Ed. Birkhäuser, 1996.

D. Cox, J. Little and D. O’Shea, Using Algebraic Geometry, Springer GTM, 1998.

C. D’Andrea & A. Dickenstein, Explicit Formulas for the Multivariate Resultant, J. Pure & Applied
Algebra, 164/1-2:59–86, 2001.

M. Elkadi and B. Mourrain, Géométrie Algébrique Effective en dimension 0 : de la théorie à la pratique,
Notes de cours, DEA de Mathématiques, Université de Nice. 2001.

I.M. Gelfand, M. Kapranov and A. Zelevinsky: Discriminants, Resultants, and Multidimensional Deter-
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J.-P. Jouanolou: Formes d’inertie et résultant: un Formulaire. Advances in Mathematics 126(1997),
119–250.

E. Kunz, Kähler differentials, Appendices, F. Vieweg & Son, 1986.

A. Tsikh, Multidimensional residues and Their Applications, Trans. of Math. Monographs, vol. 103,
AMS, 1992.

Lorenzo Robbiano, Polynomial systems and some applications to statistics.

In the first part of my lectures we study systems of polynomial equations from the point of view
of Groebner bases. In the second part we introduce problems from Design of Experiments, a branch
of Statistics, and show how to use computational commutative algebra to solve some of them.
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Ioannis Emiris, Toric resultants and applications to geometric modeling.

Toric (or sparse) elimination theory uses combinatorial and discrete geometry to model the struc-
ture of a given system of algebraic equations. The basic objects are the Newton polytope of a
polynomial, the Minkowski sum of a set of convex polytopes, and a mixed polyhedral subdivision of
such a Minkowski sum. It is thus possible to describe certain algebraic properties of the given system
by combinatorial means. In particular, the generic number of isolated roots is given by the mixed
volume of the corresponding Newton polytopes. This also gives the degree of the toric (or sparse)
resultant, which generalizes the classical projective resultant.

This seminar will provide an introduction to the theory of toric elimination and toric resultants,
paying special attention to the algorithmic and computational issues involved. Different matrices
expressing the toric resultants shall be discussed, and effective methods for their construction will be
defined based on discrete geometric operations, as well as linear algebra, including the subdivision-
based methods and the incremental algorithm which is especially relevant for the systems studied
by A. Zelevinsky and B. Sturmfels. Toric resultant matrices generalizing Macaulay’s matrix exhibit
a structure close to that of Toeplitz matrices, which may reduce complexity by almost one order of
magnitude. These matrices reduce the numeric approximation of all common roots to a problem
in numerical linear algebra, as described in the courses of this School. In addition to a survey of
recent results, the seminar shall point to open questions regarding the theory and the practice of
toric elimination methods for system solving.

Available software on Maple (from library multires) and in C (from library ALP) shall be de-
scribed, with exercises designed to familiarize the user with is main aspects. The goal is to provide



an arsenal of efficient tools for system solving by exploiting the fact that systems encountered in
engineering applications are, more often than not, characterized by some structure. This claim shall
be substantiated by examples drawn from several application domains discussed in other courses of
this School including robotics, vision, molecular biology and, most importantly, geometric and solid
modeling and design.
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Bernard Mourrain, Symbolic Numeric tools for solving polynomial equations
and applications.

This course will be divided into a tutorial part and a problem solving part. In the first part,
we will gives an introductive presentation of symbolic and numeric methods for solving equations.
We will briefly recall well-known analytic methods and less known subdivision methods and will
move to algebraic methods. Such methods are based on the study of the quotient algebra A of the
polynomial ring modulo the ideal I = (f1, . . . , fm). We show how to deduce the geometry of the
solutions, from the structure of A and in particular, how solving polynomial equations reduces to
eigencomputations on these multiplication operators. We will mention a new method for computing



the normal of elements in A, used to obtain a representation of the multiplication operators. based
on these formulations. We will describe iterative methods exploiting the properties of A, and which
can be applied to select a root (among the other roots), which maximize or minimize some criterion,
or to count or isolate the roots in a given domain. A major operation in effective algebraic geometry
is the projection, which is closely related to the theory of resultants. We present different notions
and constructions of resultants and different geometric methods for solving systems of polynomial
equations

In a second part, we will consider problems from different areas such CAD, robotics, computer
vision, computational biology, . . . and show how to apply the methods that we have presented be-
fore. Practical experimentations in maple with the package multires and with the library ALP

(environment for symbolic and numeric computations) will illustrate these developments.
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Juan Sabia, Efficient polynomial equation solving: algorithms and complexity.

This course intends to familiarize the assistants with the notion of algebraic complexity when
solving polynomial equation systems. First, it will deal with the notion of dense representation of
multivariate polynomials. Some results about the algebraic complexities of the effective Nullstel-
lensatz, of quantifier elimination processes and of decomposition of varieties when using this model
will be exposed. Then it will be shown how these complexities are essentially optimal in the dense
representation model. This leads to a change of encoding of polynomials to get lower bounds for the
complexity: the sparse representation and the straight-line program representation will be discussed.
Finally, some complexity results in the straight-line program representation model will be shown
(effective Nullstellensatz, quantifier elimination procedures, deformation techniques, for example).
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Jan Verschelde, Numerical algebraic geometry.

In a 1996 paper, Andrew Sommese and Charles Wampler began developing new area, ”Numerical
Algebraic Geometry”, which would bear the same relation to ”Algebraic Geometry” that ”Numerical
Linear Algebra” bears to ”Linear Algebra”.

To approximate all isolated solutions of polynomial systems, numerical path following techniques
have been proven reliable and efficient during the past two decades. In the nineties, homotopy
methods were developed to exploit special structures of the polynomial system, in particular its
sparsity. For sparse systems, the roots are counted by the mixed volume of the Newton polytopes
and computed by means of polyhedral homotopies.

In Numerical Algebraic Geometry we apply and integrate homotopy continuation methods to
describe solution components of polynomial systems. One special, but important problem in Symbolic
Computation concerns the approximate factorization of multivariate polynomials with approximate
complex coefficients. Our algorithms to decompose positive dimensional solution sets of polynomial
systems into irreducible components can be considered as symbolic-numeric, or perhaps rather as
numeric-symbolic, since numerical interpolation methods are applied to produce symbolic results in
the form of equations describing the irreducible components.



Applications from mechanical engineering motivated the development of Numerical Algebraic
Geometry. The performance of our software on several test problems illustrate the effectiveness of
the new methods.
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