TEST YOUR SKILLS IN TROPICAL AND REAL GEOMETRY!

ERWAN BRUGALLÉ

Exercices marked by ° are supposed to be very easy. Exercices marked by * might require (a bit) more work than the others.

- (1) $^{\circ}$ Let (M, +) be an idempotent monoid with neutral element e (i.e. x + x = x for all x in M). Show that e is the only invertible element in M.
- (2) ° Draw the graph of the tropical polynomials $P(x) = "x^3 + 2x^2 + 3x + (-1)"$ and $Q(x) = "x^3 + (-2)x^2 + 2x + (-1)"$, and locate their tropical roots.
- (3) Determine the tropical roots of a degree 3 tropical polynomial " $a + bx + cx^2 + dx^3$ " in term of a, b, c, and d.
- (4) Prove that x_0 is a tropical root of order k of the tropical polynomial P(x) if and only if $P(x) = (x + x_0)^k Q(x)$ where Q(x) is a tropical polynomial which does not admit x_0 as a root.
- (5) $^{\circ}$ Let $val : \mathbb{K} \to \mathbb{T}$ be a non-archimedean valuation on a field \mathbb{K} . Show that if $val(a) \neq val(b)$ then $val(a+b) = \max(val(a), val(b))$.
- (6) Find an equation for each of the tropical curves depicted in Figure 1

- a) the curve contains the point (0,1) and has primitive direction (0,1)
- b) the curve contains the point (1,0) and has primitive direction (1,3)
- c) the vertex is the origin (0,0) and the three directions are (-1,0), (0,-1), and (1,1)

FIGURE 1

(7) ° Draw the tropical curves defined by the tropical polynomials $P(x,y) = 5 + 5x + 5y + 4xy + 1y^2 + x^2$ and $Q(x,y) = 7 + 4x + y + 4xy + 3y^2 + (-3)x^2$, as well as their dual subdivision.

Date: August 2011.

- (8) Prove that a rational (i.e. with integer slopes) weighted balanced polyhedral complex of pure dimension n-1 in \mathbb{R}^n is a tropical hypersurface.
- (9) Draw the dual subdivision and find an equation for each of the tropical cubics depicted in Figure 2 (for some position of the vertices). Note that the primitive direction of edges which are neither horizontal, vertical, nor of slope 1 can be deduced from the balancing condition.

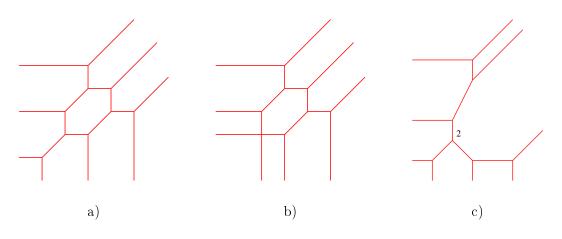


FIGURE 2

- (10) Let $d \ge 1$ be a fixed integer. Prove that there exist finitely many possible primitive directions for an edge of a tropical curve of degree d.
- (11) Let $\Delta \subset \mathbb{R}^n$ be an integer polytope of lattice area 1, and suppose for simplicity that the origin is a vertex of Δ . Prove that there exists a map in $GL_n(\mathbb{Z})$ which maps the standard simplex $Conv\{(0,\ldots,0),(1,0,\ldots,0),(0,1,0,\ldots,0),\ldots,(0,\ldots,0,1)\}$ to Δ .

 Hint: if Δ is a simplex (i.e. has n+1 vertices v_0,\ldots,v_n), then the volume of Δ is equal to $|det(v_0\vec{v}_1,\ldots,v_0\vec{v}_n)|$.
- (12) ° By perturbing the union of two ellipses meeting in 4 real points, construct all possible isotopy types of a non-empty non-singular quartic in $\mathbb{R}P^2$.
- (13) ° Let us consider an arrangement of k ovals and l pseudolines in $\mathbb{R}P^2$, all of them beeing disjoint (so in particular l=0 or 1). Prove that this arrangement is realizable by a non-singular real algebraic curve of degree 2k+l.
- (14) Classify non-singular real algebraic curves of degree 5 in $\mathbb{R}P^2$.
- (15) ° Using patchworking, construct a non-singular real algebraic quartic in $\mathbb{R}P^2$ made of 2 ovals, one containing the other.
- (16) ° Using patchworking, construct the two maximal real algebraic curves of degree 6 in $\mathbb{R}P^2$ originally constructed by Harnack and Hilbert.

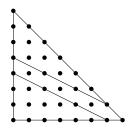


FIGURE 3

- (17) Construct as much as possible of maximal real algebraic curves of degree 7 in $\mathbb{R}P^2$. You can start with the subdivision of the Newton polygon depicted in Figure 3.
- (18) Using patchworking, prove that there exists a maximal real algebraic curve of any degree $d \ge 1$.
- (19) Draw the amoeba of the complex polynomials $\pm 2 + z + w + zw$ and $1 + zw^3 + z^2 + w^2$.
- (20) We consider P(z, w) = z + w 1 as a polynomial with coefficients in the field of transfinite Puiseux series. Compute $W(V(P)) \cap \text{Log}^{-1}(0, 0)$.
- (21) Prove that the genus of a plane non-singular complex real algebraic curve C is equal to the number of interior integer points of $\Delta(C)$.
- (22) * Prove Bernstein Theorem for plane curves :

If C_1 and C_2 are two generic complex algebraic curves in $(\mathbb{C}^*)^2$, then the number of intersection points of C_1 and C_2 in $(\mathbb{C}^*)^2$ is exactly

$$\frac{\mathcal{A}(\Delta(C_1) + \Delta(C_2)) - \mathcal{A}(\Delta(C_1)) - \mathcal{A}(\Delta(C_2))}{2}$$

You can assume as known that this number of intersection points in $(\mathbb{C}^*)^2$ is constant for two generic curves C_1 and C_2 as soon as their Newton polygons are fixed.

Université Pierre et Marie Curie, Paris 6, 175 rue du Chevaleret, 75 013 Paris, France E-mail address: brugalle@math.jussieu.fr