TEST YOUR SKILLS IN TROPICAL AND REAL GEOMETRY!

ERWAN BRUGALLÉ

Exercises marked by \circ are supposed to be very easy. Exercises marked by \ast might require (a bit) more work than the others.

(1) \circ Let $(M,+)$ be an idempotent monoid with neutral element e (i.e. $x + x = x$ for all x in M). Show that e is the only invertible element in M.

(2) \circ Draw the graph of the tropical polynomials $P(x) = "x^3 + 2x^2 + 3x + (-1)"$ and $Q(x) = "x^3 + (-2)x^2 + 2x + (-1)"$, and locate their tropical roots.

(3) Determine the tropical roots of a degree 3 tropical polynomial $"a + bx + cx^2 + dx^3"$ in terms of $a, b, c,$ and d.

(4) Prove that x_0 is a tropical root of order k of the tropical polynomial $P(x)$ if and only if $P(x) = "(x + x_0)^kQ(x)"$ where $Q(x)$ is a tropical polynomial which does not admit x_0 as a root.

(5) \circ Let $val : \mathbb{K} \rightarrow \mathbb{T}$ be a non-archimedean valuation on a field \mathbb{K}. Show that if $val(a) \neq val(b)$ then $val(a + b) = \max(val(a), val(b))$.

(6) \circ Find an equation for each of the tropical curves depicted in Figure 1

(7) \circ Draw the tropical curves defined by the tropical polynomials $P(x,y) = "5 + 5x + 5y + 4xy + 1y^2 + x^2"$ and $Q(x,y) = "7 + 4x + y + 4xy + 3y^2 + (-3)x^2"$, as well as their dual subdivision.

Date: August 2011.
(8) Prove that a rational (i.e. with integer slopes) weighted balanced polyhedral complex of pure dimension \(n - 1 \) in \(\mathbb{R}^n \) is a tropical hypersurface.

(9) Draw the dual subdivision and find an equation for each of the tropical cubics depicted in Figure 2 (for some position of the vertices). Note that the primitive direction of edges which are neither horizontal, vertical, nor of slope 1 can be deduced from the balancing condition.

![Figure 2](image)

(10) Let \(d \geq 1 \) be a fixed integer. Prove that there exist finitely many possible primitive directions for an edge of a tropical curve of degree \(d \).

(11) Let \(\Delta \subset \mathbb{R}^n \) be an integer polytope of lattice area 1, and suppose for simplicity that the origin is a vertex of \(\Delta \). Prove that there exists a map in \(GL_n(\mathbb{Z}) \) which maps the standard simplex \(\text{Conv}\{(0,\ldots,0),(1,0,\ldots,0),(0,1,0,\ldots,0),\ldots,(0,\ldots,0,1)\} \) to \(\Delta \).

Hint: if \(\Delta \) is a simplex (i.e. has \(n + 1 \) vertices \(v_0, \ldots, v_n \)), then the volume of \(\Delta \) is equal to \(|\det(v_0v_1, \ldots, v_0v_n)| \).

(12) ° By perturbing the union of two ellipses meeting in 4 real points, construct all possible isotopy types of a non-empty non-singular quartic in \(\mathbb{R}P^2 \).

(13) ° Let us consider an arrangement of \(k \) ovals and \(l \) pseudolines in \(\mathbb{R}P^2 \), all of them being disjoint (so in particular \(l = 0 \) or 1). Prove that this arrangement is realizable by a non-singular real algebraic curve of degree \(2k + l \).

(14) Classify non-singular real algebraic curves of degree 5 in \(\mathbb{R}P^2 \).

(15) ° Using patchworking, construct a non-singular real algebraic quartic in \(\mathbb{R}P^2 \) made of 2 ovals, one containing the other.

(16) ° Using patchworking, construct the two maximal real algebraic curves of degree 6 in \(\mathbb{R}P^2 \) originally constructed by Harnack and Hilbert.
(17) Construct as much as possible of maximal real algebraic curves of degree 7 in \mathbb{RP}^2. You can start with the subdivision of the Newton polygon depicted in Figure 3.

(18) Using patchworking, prove that there exists a maximal real algebraic curve of any degree $d \geq 1$.

(19) Draw the amoeba of the complex polynomials $\pm 2 + z + w + zw$ and $1 + zw^3 + z^2 + w^2$.

(20) We consider $P(z, w) = z + w - 1$ as a polynomial with coefficients in the field of transfinite Puiseux series. Compute $W(V(P)) \cap \text{Log}^{-1}(0, 0)$.

(21) Prove that the genus of a plane non-singular complex real algebraic curve C is equal to the number of interior integer points of $\Delta(C)$.

(22) * Prove Bernstein Theorem for plane curves:

If C_1 and C_2 are two generic complex algebraic curves in $(\mathbb{C}^*)^2$, then the number of intersection points of C_1 and C_2 in $(\mathbb{C}^*)^2$ is exactly

$$\frac{A(\Delta(C_1) + \Delta(C_2)) - A(\Delta(C_1)) - A(\Delta(C_2))}{2}$$

You can assume as known that this number of intersection points in $(\mathbb{C}^*)^2$ is constant for two generic curves C_1 and C_2 as soon as their Newton polygons are fixed.