SIGNS OF VECTORS IN A LINEAR SUBSPACE (A GENTLE INTRODUCTION)

Alicia Dickenstein

Hypathia School 2024, 05/06/2024

1 WHICH ORTHANTS DOES A LINEAR SUBSPACE INTERSECT?

Given a real matrix $C \in \mathbb{R}^{d \times n}$, when does there exist a positive vector $v \in \mathbb{R}^n_{>0}$ in the kernel of C?

Answer: When any nonzero vector in the row span of C has (at least) one positive coefficient and (at least) one negative coefficient.

Where does this condition come from and how can we verify it?

Quick answer: Computing signs of maximal minors of C.

Given a $V \subseteq \mathbb{R}^n$, we want to know in which orthants $\mathcal{O} \in \{-1,0,1\}^n$ in \mathbb{R}^n there are vectors belonging to V. The *support* supp(v) is the subset of indices with nonzero coordinates (i.e. $\sigma_i = \text{sign}(v_i) \neq 0$). We will define the *circuits* of V and then we will see how to compute these circuits and how to find the set of all sign vectors $\sigma(v) \in \{-1,0,1\}$ for $v \in V$.

CIRCUITS

- We call circuit of a subspace V any nonzero $r \in V$ with minimal support (with respect to inclusion) among all nonzero vectors in V
- It is easy to see that two circuits of V have the same support, then they differ by a multiplicative constant (they lie on the same line).

- If $\dim(V) = d$, circuits are "expected" to have d-1 nonzero entries, but this is not always the case!
- Given an orthant \mathcal{O} (or a vector v), we say that a circuit r is conformal with \mathcal{O} (resp. with v) if for any $i \in supp(r), \sigma(r_i) = \mathcal{O}_i$ (resp. $\sigma(r_i) = sigma(v_i)$).

• Let V be the subspace generated by the rows of

$$C = \left(\begin{array}{cccc} 1 & 1 & 2 & 1 \\ 0 & 2 & 4 & 3 \end{array} \right).$$

Then, (0, 2, 4, 3) is a circuit of V but (1, 1, 2, 1) is not. For instance, (-2, 0, 0, 1) = (0, 2, 4, 3) - 2.(1, 1, 2, 1) is also a circuit of V because its support $\{1, 4\}$ is minimal.

• Given the orthant

$$\mathcal{O}_1 = (-, +, +, +),$$

the circuits r=(0,2,4,3) and r'=(-2,0,0,1) are conformal with it. The support of \mathcal{O}_1 coincides with the union of the supports of the circuits conformal with it and any linear combination with positive coefficients of r and r' gives a vector $v \in V$ with $\sigma(v) \in \mathcal{O}_1$.

THEOREM [ROCKAFELLAR'69]

Give $v \neq 0$ in a linear subspace $V \subset \mathbb{R}^n$, there exist r_1, \ldots, r_m of V such that:

- r_i is a circuit conformal with $v, \forall i = 1, \dots, m, y$
- $v = \sum_{i=1}^{m} \lambda_i r_i$, $\lambda_i \in \mathbb{R}_{>0}$, $\forall i = 1, \dots, m$.

Then, in order to find $\sigma(v)$ for all $v \in V$, it is enough to find $\sigma(r)$ for all circuits r of V.

THEOREM [ROCKAFELLAR'69]

Give $v \neq 0$ in a linear subspace $V \subset \mathbb{R}^n$, there exist r_1, \ldots, r_m of V such that:

- r_i is a circuit conformal with $v, \forall i = 1, \dots, m, y$
- $v = \sum_{i=1}^{m} \lambda_i r_i$, $\lambda_i \in \mathbb{R}_{>0}$, $\forall i = 1, \dots, m$.

Then, in order to find $\sigma(v)$ for all $v \in V$, it is enough to find $\sigma(r)$ for all circuits r of V.

Let $C \in \mathbb{R}^{d \times n}$ with rank d and denote by V its row span. Then, all the circuits in C are obtained this way (with multiples and repetitions):

For any subset $J\subseteq\{1,\ldots,n\}$ of cardinal d-1 we define the circuits r_J :

$$(r_J)_k = ((-1)^{\mu(k,J)} \det(C_{\{k\} \cup J})), k = 1, \dots, n, \quad r_J \in \mathbb{R}^n,$$

where $C_{\{k\}\cup J}$ is the submatrix corresponding to the columns of C with indices in $\{k\}\cup J$ (if $k\in J$ we set the determinant equal to 0) and $\mu(k,J)$ is the number of transpositions we need to do to order the sequence k followed by J in increasing order, that is, the number of indices in J strictly smaller than k.

Exercise: Understand the statemente and prove it :-).

Let $C \in \mathbb{R}^{d \times n}$ with rank d and denote by V its row span. Then, all the circuits in C are obtained this way (with multiples and repetitions):

For any subset $J\subseteq\{1,\ldots,n\}$ of cardinal d-1 we define the circuits r_J :

$$(r_J)_k = ((-1)^{\mu(k,J)} \det(C_{\{k\} \cup J})), k = 1, \dots, n, \quad r_J \in \mathbb{R}^n,$$

where $C_{\{k\}\cup J}$ is the submatrix corresponding to the columns of C with indices in $\{k\}\cup J$ (if $k\in J$ we set the determinant equal to 0) and $\mu(k,J)$ is the number of transpositions we need to do to order the sequence k followed by J in increasing order, that is, the number of indices in J strictly smaller than k.

Exercise: Understand the statemente and prove it :-).

We were considering the subspace V generated by the rows of

$$C = \left(\begin{array}{rrr} 1 & 1 & 2 & 1 \\ 0 & 2 & 4 & 3 \end{array} \right).$$

In this case, all the circuits are listed below:

- para $J = \{1\}$ son: $r_{\{1\}} = (0, -2, -4, -3)$
- para $J = \{2\}$ los circuitos son $r_{\{2\}} = (2, 0, 0, -1)$;
- para $J = \{3\}, r_{\{3\}} = (4, 0, 0, -2);$
- para $J = \{4\}, r_{\{4\}} = (3, 1, 2, 0).$

Exercise: Compute all sign vectors of V. Compute all sign vectors in ker C.

Two sign vectors $\sigma, \sigma' \in \{0, +1, -1\}^n$ are said to be orthogonal if either for all i we have that $\sigma_i \cdot \sigma'_i = 0$ o there exist i, j such that $\sigma_i \cdot \sigma'_i = 1$ y $\sigma_j \cdot \sigma'_j = -1$.

Theorem: A sign vector σ' is the sign vector or a vector in $\ker C$ if and only if σ' σ' is orthogonal to all sign vectors σ of circuits of the row span of C (and then to all $\sigma(v)$ for all v in the row span).

This is a basic result in the context of oriented matroids. Exercise: Use it to show that there exists a positive vector in $\ker C$ if and only if any circuit r in the row span of C has a positive and an negative coordinate. Why this is an effectively checkable condition?

Two sign vectors $\sigma, \sigma' \in \{0, +1, -1\}^n$ are said to be orthogonal if either for all i we have that $\sigma_i \cdot \sigma'_i = 0$ o there exist i, j such that $\sigma_i \cdot \sigma'_i = 1$ y $\sigma_j \cdot \sigma'_j = -1$.

Theorem: A sign vector σ' is the sign vector or a vector in $\ker C$ if and only if σ' σ' is orthogonal to all sign vectors σ of circuits of the row span of C (and then to all $\sigma(v)$ for all v in the row span).

This is a basic result in the context of oriented matroids. Exercise: Use it to show that there exists a positive vector in $\ker C$ if and only if any circuit r in the row span of C has a positive and an negative coordinate. Why this is an effectively checkable condition?

Two sign vectors $\sigma, \sigma' \in \{0, +1, -1\}^n$ are said to be orthogonal if either for all i we have that $\sigma_i \cdot \sigma'_i = 0$ o there exist i, j such that $\sigma_i \cdot \sigma'_i = 1$ y $\sigma_j \cdot \sigma'_j = -1$.

Theorem: A sign vector σ' is the sign vector or a vector in $\ker C$ if and only if σ' σ' is orthogonal to all sign vectors σ of circuits of the row span of C (and then to all $\sigma(v)$ for all v in the row span).

This is a basic result in the context of oriented matroids. Exercise: Use it to show that there exists a positive vector in $\ker C$ if and only if any circuit r in the row span of C has a positive and an negative coordinate. Why this is an effectively checkable condition?

- One basic reference (available online) is:
 J. Richter-Gebert and G. Ziegler: Oriented Matroids, in:
 Handbook of Discrete and Computational Geometry, J.E.
 Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.
- There are implementations.