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1 Which orthants does a linear subspace
intersect?
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Which orthants does a linear subspace intersect?

Given a real matrix C ∈ Rd×n, when does there existe a posi-
tive vector v ∈ Rn

>0 in the kernel of C?

Answer: When any nonzero vector in the row span of C has
(at least) one positive coefficient and (at least) one negative
coefficient.

Where does this condition come from and how can we verify
it?

Quick answer: Computing signs of maximal minors of C.
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Which orthants does a linear subspace intersect?

Given a V ⊆ Rn, we want to know in which orthants O ∈
{−1, 0, 1}n in Rn there are vectors belonging to V . The support

supp(v) is the subset of indices with nonzero coordinates (i.e.

σi = sign(vi) 6= 0). We will define the circuits of V and then

we will see how to compute these circuits and how to find the set

of all sign vectors σ(v) ∈ {−1, 0, 1} for v ∈ V .
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Which orthants does a linear subspace intersect?

Circuits

We call circuit of a subspace
V any nonzero r ∈ V with
minimal support (with
respect to inclusion) among
all nonzero vectors in V

It is easy to see that two
circuits of V have the same
support, then they differ by
a multiplicative constant
(they lie on the same line).

If dim(V ) = d, circuits are
“expected” to have d− 1
nonzero entries, but this is
not always the case!

Given an orthant O (or a
vector v), we say that a
circuit r is conformal with O
(resp. with v) if for any
i ∈ supp(r), σ(ri) = Oi
(resp. σ(ri) = sigma(vi)).
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Which orthants does a linear subspace intersect?

Let V be the subspace
generated by the rows of

C =

(
1 1 2 1
0 2 4 3

)
.

Then, (0, 2, 4, 3) is a circuit
of V but (1, 1, 2, 1) is not.
For instance, (−2, 0, 0, 1) =
(0, 2, 4, 3)− 2.(1, 1, 2, 1) is
also a circuit of V because
its support {1, 4} is minimal.

Given the orthant

O1 = (−,+,+,+),

the circuits
r = (0, 2, 4, 3) and r′ =
(−2, 0, 0, 1) are conformal
with it. The support of O1

coincides with the union of
the supports of the circuits
conformal with it and any
linear combination with
positive coefficients of r and
r′ gives a vector v ∈ V with
σ(v) ∈ O1.
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Which orthants does a linear subspace intersect?

Theorem [Rockafellar’69]

Give v 6= 0 in a linear subspace V ⊂ Rn, there exist r1, . . . , rm
of V such that:

ri is a circuit conformal with v, ∀i = 1, . . . ,m, y

v =
∑m

i=1 λi ri, λi ∈ R>0, ∀i = 1, . . . ,m.

Then, in order to find σ(v) forall v ∈ V , it is enough to find
σ(r) for all circuits r of V .
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Which orthants does a linear subspace intersect?

Let C ∈ Rd×n with rank d and denote by V its row span. Then, all

the circuits in C are obtained this way (with multiples and

repetitions):

For any subset J ⊆ {1, . . . , n} of cardinal d − 1 we define the
circuits rJ :

(rJ)k =
(

(−1)µ(k,J) det
(
C{k}∪J

))
, k = 1, . . . , n, rJ ∈ Rn,

where C{k}∪J is the submatrix corresponding to the columns of C

with indices in {k} ∪ J (if k ∈ J we set the determinant equal to

0) and µ(k, J) is the number of transpositions we need to do to

order the sequence k followed by J in increasing order, that is, the

number of indices in J strictly smaller than k.

Exercise: Understand the statemente and prove it :-).

A. Dickenstein (UBA) Signs of vectors in a subspace . . . 05/06/2024 9 / 12



Which orthants does a linear subspace intersect?

Let C ∈ Rd×n with rank d and denote by V its row span. Then, all

the circuits in C are obtained this way (with multiples and

repetitions):

For any subset J ⊆ {1, . . . , n} of cardinal d − 1 we define the
circuits rJ :

(rJ)k =
(

(−1)µ(k,J) det
(
C{k}∪J

))
, k = 1, . . . , n, rJ ∈ Rn,

where C{k}∪J is the submatrix corresponding to the columns of C

with indices in {k} ∪ J (if k ∈ J we set the determinant equal to

0) and µ(k, J) is the number of transpositions we need to do to

order the sequence k followed by J in increasing order, that is, the

number of indices in J strictly smaller than k.

Exercise: Understand the statemente and prove it :-).

A. Dickenstein (UBA) Signs of vectors in a subspace . . . 05/06/2024 9 / 12



Which orthants does a linear subspace intersect?

We were considering the subspace V generated by the rows of

C =

(
1 1 2 1
0 2 4 3

)
.

In this case, all the circuits are listed below:

para J = {1} son: r{1} = (0,−2,−4,−3)

para J = {2} los circuitos son r{2} = (2, 0, 0,−1);

para J = {3}, r{3} = (4, 0, 0,−2);

para J = {4}, r{4} = (3, 1, 2, 0).

Exercise: Compute all sign vectors of V . Compute all sign
vectors in kerC.
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Which orthants does a linear subspace intersect?

Two sign vectors σ, σ′ ∈ {0,+1,−1}n are said to
beorthogonal if either for all i we have that σi · σ′i = 0 o there
exist i, j such that σi · σ′i = 1 y σj · σ′j = −1.

Theorem: A sign vector σ′ is the sign vector or a vector in
kerC if and only if σ′ σ′ is orthogonal to all sign vectors σ of
circuits of the row span of C (and then to all σ(v) for all v in
the row span).

This is a basic result in the context of oriented matroids. Ex-
ercise: Use it to show that there exists a positive vector in
kerC if and only if any circuit r in the row span of C has a
positive and an negative coordinate. Why this is an effec-
tively checkable condition?
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Which orthants does a linear subspace intersect?

One basic reference (available online) is:
J. Richter-Gebert and G. Ziegler: Oriented Matroids, in:
Handbook of Discrete and Computational Geometry, J.E.
Goodman, J. O’Rourke, and C. D. Tóth (editors), 3rd
edition, CRC Press, Boca Raton, FL, 2017.

There are implementations.
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