Signs of vectors in a Linear subspace (A GENTLE INTRODUCTION)

Alicia Dickenstein

Hypathia School 2024, 05/06/2024

1 Which orthants does a Linear subspace INTERSECT?

Given a real matrix $C \in \mathbb{R}^{d \times n}$, when does there existe a positive vector $v \in \mathbb{R}_{>0}^{n}$ in the kernel of C ?

Answer: When any nonzero vector in the row span of C has (at least) one positive coefficient and (at least) one negative coefficient.

Where does this condition come from and how can we verify it?

Quick answer: Computing signs of maximal minors of C.

Given a $V \subseteq \mathbb{R}^{n}$, we want to know in which orthants $\mathcal{O} \in$ $\{-1,0,1\}^{n}$ in \mathbb{R}^{n} there are vectors belonging to V. The support $\operatorname{supp}(v)$ is the subset of indices with nonzero coordinates (i.e. $\left.\sigma_{i}=\operatorname{sign}\left(v_{i}\right) \neq 0\right)$. We will define the circuits of V and then we will see how to compute these circuits and how to find the set of all sign vectors $\sigma(v) \in\{-1,0,1\}$ for $v \in V$.

Circuits

- We call circuit of a subspace V any nonzero $r \in V$ with minimal support (with respect to inclusion) among all nonzero vectors in V
- It is easy to see that two circuits of V have the same support, then they differ by a multiplicative constant (they lie on the same line).
- If $\operatorname{dim}(V)=d$, circuits are "expected" to have $d-1$ nonzero entries, but this is not always the case!
- Given an orthant \mathcal{O} (or a vector v), we say that a circuit r is conformal with \mathcal{O} (resp. with v) if for any $i \in \operatorname{supp}(r), \sigma\left(r_{i}\right)=\mathcal{O}_{i}$ $\left(\right.$ resp. $\left.\sigma\left(r_{i}\right)=\operatorname{sigma}\left(v_{i}\right)\right)$.
- Let V be the subspace generated by the rows of

$$
C=\left(\begin{array}{llll}
1 & 1 & 2 & 1 \\
0 & 2 & 4 & 3
\end{array}\right) .
$$

Then, $(0,2,4,3)$ is a circuit of V but $(1,1,2,1)$ is not. For instance, $(-2,0,0,1)=$ $(0,2,4,3)-2 .(1,1,2,1)$ is also a circuit of V because its support $\{1,4\}$ is minimal.
the circuits
$r=(0,2,4,3)$ and $r^{\prime}=$
$(-2,0,0,1)$ are conformal with it. The support of \mathcal{O}_{1} coincides with the union of the supports of the circuits conformal with it and any linear combination with positive coefficients of r and r^{\prime} gives a vector $v \in V$ with $\sigma(v) \in \mathcal{O}_{1}$.

- Given the orthant

$$
\mathcal{O}_{1}=(-,+,+,+),
$$

TheOREM [RockAFELLAR'69]

Give $v \neq 0$ in a linear subspace $V \subset \mathbb{R}^{n}$, there exist r_{1}, \ldots, r_{m} of V such that:

- r_{i} is a circuit conformal with $v, \forall i=1, \ldots, m, \mathrm{y}$
- $v=\sum_{i=1}^{m} \lambda_{i} r_{i}, \quad \lambda_{i} \in \mathbb{R}_{>0}, \forall i=1, \ldots, m$.

Then, in order to find $\sigma(v)$ forall $v \in V$, it is enough to find $\sigma(r)$ for all circuits r of V.

Theorem [Rockafellar'69]

Give $v \neq 0$ in a linear subspace $V \subset \mathbb{R}^{n}$, there exist r_{1}, \ldots, r_{m} of V such that:

- r_{i} is a circuit conformal with $v, \forall i=1, \ldots, m, \mathrm{y}$
- $v=\sum_{i=1}^{m} \lambda_{i} r_{i}, \quad \lambda_{i} \in \mathbb{R}_{>0}, \forall i=1, \ldots, m$.

Then, in order to find $\sigma(v)$ forall $v \in V$, it is enough to find $\sigma(r)$ for all circuits r of V.

Let $C \in \mathbb{R}^{d \times n}$ with rank d and denote by V its row span. Then, all the circuits in C are obtained this way (with multiples and repetitions):

For any subset $J \subseteq\{1, \ldots, n\}$ of cardinal $d-1$ we define the circuits r_{J} :

$$
\left(r_{J}\right)_{k}=\left((-1)^{\mu(k, J)} \operatorname{det}\left(C_{\{k\} \cup J}\right)\right), k=1, \ldots, n, \quad r_{J} \in \mathbb{R}^{n}
$$

where $C_{\{k\} \cup J}$ is the submatrix corresponding to the columns of C with indices in $\{k\} \cup J$ (if $k \in J$ we set the determinant equal to 0) and $\mu(k, J)$ is the number of transpositions we need to do to order the sequence k followed by J in increasing order, that is, the number of indices in J strictly smaller than k.

Let $C \in \mathbb{R}^{d \times n}$ with rank d and denote by V its row span. Then, all the circuits in C are obtained this way (with multiples and repetitions):

For any subset $J \subseteq\{1, \ldots, n\}$ of cardinal $d-1$ we define the circuits r_{J} :

$$
\left(r_{J}\right)_{k}=\left((-1)^{\mu(k, J)} \operatorname{det}\left(C_{\{k\} \cup J}\right)\right), k=1, \ldots, n, \quad r_{J} \in \mathbb{R}^{n}
$$

where $C_{\{k\} \cup J}$ is the submatrix corresponding to the columns of C with indices in $\{k\} \cup J$ (if $k \in J$ we set the determinant equal to
0) and $\mu(k, J)$ is the number of transpositions we need to do to order the sequence k followed by J in increasing order, that is, the number of indices in J strictly smaller than k.

Exercise: Understand the statemente and prove it :-).

We were considering the subspace V generated by the rows of

$$
C=\left(\begin{array}{llll}
1 & 1 & 2 & 1 \\
0 & 2 & 4 & 3
\end{array}\right)
$$

In this case, all the circuits are listed below:

- para $J=\{1\}$ son: $r_{\{1\}}=(0,-2,-4,-3)$
- para $J=\{2\}$ los circuitos son $r_{\{2\}}=(2,0,0,-1)$;
- para $J=\{3\}, r_{\{3\}}=(4,0,0,-2)$;
- para $J=\{4\}, r_{\{4\}}=(3,1,2,0)$.

> Exercise: Compute all sign vectors of V. Compute all sign vectors in ker C.

Two sign vectors $\sigma, \sigma^{\prime} \in\{0,+1,-1\}^{n}$ are said to beorthogonal if either for all i we have that $\sigma_{i} \cdot \sigma_{i}^{\prime}=0$ o there exist i, j such that $\sigma_{i} \cdot \sigma_{i}^{\prime}=1$ y $\sigma_{j} \cdot \sigma_{j}^{\prime}=-1$.

> Theorem: A sign vector σ^{\prime} is the sign vector or a vector in $\operatorname{ker} C$ if and only if $\sigma^{\prime} \sigma^{\prime}$ is orthogonal to all sign vectors σ of circuits of the row span of C (and then to all $\sigma(v)$ for all v in the row span)

This is a basic result in the context of oriented matroids. Exercise: Use it to show that there exists a positive vector in ker C if and only if any circuit r in the row span of C has a positive and an negative coordinate. Why this is an effectively checkable condition?

Two sign vectors $\sigma, \sigma^{\prime} \in\{0,+1,-1\}^{n}$ are said to beorthogonal if either for all i we have that $\sigma_{i} \cdot \sigma_{i}^{\prime}=0$ o there exist i, j such that $\sigma_{i} \cdot \sigma_{i}^{\prime}=1 \mathrm{y} \sigma_{j} \cdot \sigma_{j}^{\prime}=-1$.

Theorem: A sign vector σ^{\prime} is the sign vector or a vector in $\operatorname{ker} C$ if and only if $\sigma^{\prime} \sigma^{\prime}$ is orthogonal to all sign vectors σ of circuits of the row span of C (and then to all $\sigma(v)$ for all v in the row span).
\square

Two sign vectors $\sigma, \sigma^{\prime} \in\{0,+1,-1\}^{n}$ are said to beorthogonal if either for all i we have that $\sigma_{i} \cdot \sigma_{i}^{\prime}=0$ o there exist i, j such that $\sigma_{i} \cdot \sigma_{i}^{\prime}=1$ y $\sigma_{j} \cdot \sigma_{j}^{\prime}=-1$.

Theorem: A sign vector σ^{\prime} is the sign vector or a vector in $\operatorname{ker} C$ if and only if $\sigma^{\prime} \sigma^{\prime}$ is orthogonal to all sign vectors σ of circuits of the row span of C (and then to all $\sigma(v)$ for all v in the row span).

This is a basic result in the context of oriented matroids. Exercise: Use it to show that there exists a positive vector in ker C if and only if any circuit r in the row span of C has a positive and an negative coordinate. Why this is an effectively checkable condition?

- One basic reference (available online) is: J. Richter-Gebert and G. Ziegler: Oriented Matroids, in: Handbook of Discrete and Computational Geometry, J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.
- There are implementations.

