restart : with(LinearAlgebra) : with(Optimization) :

This MAPLE file takes a list of triangulations computed in sage (via TOPCOM package) and gives as
output a series of polynomial expressions.

Each set of expressions f _1,...,f m can be used to produce a region of multistationarity for the n —site
phosphorylation system as f 1 >0,....f m >0.

set n

n:=4:

Since the tables are going to be big, increase the maximum allowed size for tables .

interface(rtablesize=4 +2-n) :

set T[-1] and the matrices A, C and Csimple.

T[-1]=1":

A = Transpose(Matrix([[1,0,0], [0, 1,01, [0,0, 1], seq([1,i,-i],i=1.n),seq([1,i,1 —i],i=1
.n), [0,0,0]]));

C := Transpose(Matrix([[1,0,0], [0,1,0], [0,0, 1], seq([T[i],0,0],i=0..n —1),seq([K[i]-T[i
-1+ L[] T[i], K[i]-T[i-1]), L[i]-T[i]],i=0.n—1), [-S,-E,-F]])) ;

Csimple := Transpose(Matrix([[1,0,0], [0, 1,0], [0,0, 1], seq([1,0,0],i=0..n — 1), seq([1,
M[il, 1 —MJ[i]],i=0.n—1),[-S,-E,-F1]))

roo 1 1 1 11 1 1 160
010 1 2 3 41 2 3 40
001 -1-2-3-40-1-2-30

1007, 7, T, T, LkTy,+Ky K,Ty+L, T, K, T, +L, T, Ky T, +L; T, -S

0100000 K, K, T, K, T, K,T, -E
0010000 LT, LT, L, T, L,T, -F
1001111 1 1 1 1 -S
0100000 M, M M, M -E a

0010000 1—M I—MI1-MI1-—M -F

Here we define the procedure Foundoriginaltriang that we will use in the end of the present script.
This will be used when we need to recover the triangulation in L1 that gave a element in L7 used to
obtain a region of multistationarity.

Foundoriginaltriang :==proc(original, T')

local &, aux;

aux =T

for k from 1 to numelems(original) do

if {op(T) } subset {op(original[k][2]) } then aux = original[k][1] fi
od:

aux;

end proc:

Here we define validpolytopesindex as the set of triples that index all non zero 3 x3 minors of Csimple.
This will be used to pass from L2 to L3.

validpolytopesindex == []:

for i/ from 1 to ColumnDimension (Csimple) do
for i2 from i/ + 1 to ColumnDimension (Csimple) do
for i3 from i2 + 1 to ColumnDimension (Csimple) do
if Determinant(Csimple[1..3, [il, i2,i3]]) # 0 then validpolytopesindex
= [op (validpolytopesindex), [il, i2,i3]];
end if
end do end do end do:
Here we import L1 from a file outputed from SAGE, this is step (1) in the Algorithm.

L1 = parse(ImportData()) :
Here we do step (2) of Algorithm to obtain L2 from L.

The variables "originals", "originals2",..., will keep track from the passage from LI to L2, L2 to L3 and
50 on.

L2:={}:

We define L2 as a empty list and look at the elements of L1 one by one.

In each triangulation of L1 we will take only the simplices that contain the last vertex and insert those
inL2.

In order to pass from L2 to L3 and so on the technique will be the same, start with a empty list and
insert the right elements from the preivous one.

The originals list is a link between L2 and L3 used after to recover elements of L1 from L2.
originals == { }:

for i from 1 to numelems(L1) do

Here we reset the variable "auxi2" that will hold the set of simplices of the triangulation L1[i] to be
inserted in L2.

auxi2 == [];

for [from 1 to numelems(L1[i]) do

Here we reset the variable "auxi" that will hold (the indexes of) the simplex we are testing.

auxi == [0,0,0,0];

forj from 1 to4 do

This line is needed because on SAGE the vertex are indexed beginning with (0 and we want that they
start from 1.

auxi[j1 = LI[i][I][j] + 1;

od:

The next "if" makes Step (2) passing from L1 to L2 only the simplexes with the last vertex.

if auxi[4] = ColumnDimension(C) then auxi2 := [op(auxi2), auxi]; fi:

od:

In the next line we indeed insert in L2 the set of simplices "auxi2", but only if it is not there yet.

if not(member(auxi2, L2)) then

L2 = {op(L2), auxi2};

originals = originals union {[L1[i], auxi2]} :

fi:

od:

Here we do step (3) of Algorithm to obtain L3 from L2
by removing all simplices with a corresponding matrix having a zero 3 x3 minor.

The script is pretty much the same as step (2) but with distinct test condition.

L3:={}:

The originals?2 list is a link between L2 and L3 used after to recover elements of L2 from L3.
originals2 == { } :

for i from 1 to numelems(L2) do

auxi == [];

for [from 1 to numelems(L2[i]) do

The next "if" makes Step (3) passing from L2
to L3 only simplexes whose corresponding matrix has no zero 3 x3 minor.

if {[L20]001) L2002), L2003 10, TL20000L], L210002]), L21E]0I0410, TL20401400 L],
L2[][703], L2[]UI00410, [L2000002), L20]U003 L, L2[A]1I0411}
subset {op (validpolytopesindex) } then

auxi == [op(auxi), L2[i][/]];

fi:

od:

if not(member(auxi, L3)) then

L3 = L3 union {auxi};

originals2 = originals2 union {[L2[i], auxi]} :

fi:

od:

Here we do step (4) of Algorithm to obtain L4 from L3 changing any index4, 5,....,n +3 to 1.

L4:= {}:
The originals3 list is a link between L2 and L3 used after to recover elements of L3 from L4.
originals3 == { } :

for i from 1 to numelems(L3) do
auxi == [];
for / from 1 to numelems(L3[i]) do
auxi2 == L3[i][!],
forjfrom4 ton + 3 do
The next line tests if j is a index of L3[i], if it is bb receives true and pp its position.
bb = member(j, L3[i][!],pp');
if bb = true then
auxi2[pp] = 1:fi;od;
After changing some index to 1 we sort the list of simplices to keep it in the lexicographic order.
auxi := sort([op (auxi), sort(auxi2)]);
od:
The next line is need because after changing some index to we can have duplicates.
if not(member(auxi, L4)) then
L4 = L4 union {auxi};
The originals3 list is a link between L3 and L4 used after to recover elements of L3 from LA4.
originals3 = originals3 union {[L3[i], auxi]} :
fi:
od:
Here we do step (5) of Algorithm to obtain L5 from L4.

L5:= {}:

for i from 1 to numelems(L4) do
If the variable "auxi" is 0 we insert L4[i] in L5, and if it is 1 we do not.
We reset "auxi" as 0 in the next line.
auxi == 0;
The next loop for will test if L4[i] is contained in any L4[j] with j >i, if it is then we set auxi:=1.
for j from i + 1 to numelems(L4) while auxi =0 do
if numelems({op(L4[i])} intersect {op(L4[j])}) =numelems(L4[i]) then
auxi == 1;
fi;
od:
if auxi =0 then
L5 := L5 union {L4[i]}
fi,
od:
The following is just a information check.

print("This list L1 is the whole list.");
print("This list L2 consider only the simplices having the origin.");
print("This list L3 takes out the simplices which the corresponding matrix has a zero 3x3 minor.");
print("This list L4 replaces indexes 4,5,....n+3 by 1.");

print("This list L5 takes out the triangulations T such that there is another triangulation T'

containing T.");
print("Number of elements of L1, L2,L.3, L4, and L5 are.");
nops(L1); nops(L2); nops(L3); nops(L4); nops(L5);

"This list L1 is the whole list."
"This list L2 consider only the simplices having the origin."
"This list L3 takes out the simplices which the corresponding matrix has a zero 3x3 minor."
"This list L4 replaces indexes 4,5,....,n+3 by 1."

"This list L5 takes out the triangulations T such that there is another triangulation T' containing T.

"Number of elements of L1, L2,.3, L4, and L5 are."
9094
2728
682
62
53)

The following counts and displays how many elements of L5 has a determinated size.
This can be used to guess what will be a good candidate for k.

count? = [seq(0,i=1..nops(L5[nops(L5)]))]:

for i from 1 to numelems(L5) do

count := nops(L5[i]) :

count2[count] = count2[count] +1 :

od:

for i from 1 to nops(count2) do

printf ("There is %d configurations with %d valid polytopes.\n", count2[i], i);
od;

for Jin L5 do

print(J);

od:

There is 0 configurations with 1 valid polytopes.

There is 0 configurations with 2 valid polytopes.

There is 6 configurations with 3 valid polytopes.

There is 0 configurations with 4 valid polytopes.

There is 23 configurations with 5 valid polytopes.
There is 0 configurations with 6 valid polytopes.

There is 20 configurations with 7 valid polytopes.
There is 0 configurations with 8 valid polytopes.

There is 4 configurations with 9 valid polytopes.

[r1,2,3,121,11,2,9,12],[1, 2,9, 12]]
[r1,2,3,121,11,2,10,12], [1, 2, 10, 12]]
[r1,2,3,121, 11,2, 11,121, 1,2, 11, 12]]

[r1,2,3,121,11,3,8,12], [1, 3,8, 12]]

[r1,2,3,121,11,3,9,12], [1,3,9, 12]]
[r1,2,3,121,11,3,10,12], [1, 3, 10, 12]]

(r1,2,3,121,11,2,9,121,11,2,9,12], [1,2, 11, 12], [1, 2, 11, 12]]
[r1,2,3,121,11,2,9,121, 11, 2,10,12], 1,9, 10, 12], [2, 9, 10, 12]]
[r1,2,3,121,11,2,9,121, 1,2, 11,12], [1,9, 11, 12], [2,9, 11, 12]]
[r1,2,3,121, 11,2, 10,121, 1,2, 11, 12], [1, 10, 11, 12], [2, 10, 11, 12]]
(r1,2,3,121, 11,2, 11,121, 1,2, 11, 12], [1, 3,8, 12], [1, 3, 8, 12]]
(r1,2,3,121,11,3,8,12],[1,3,8,12], [1,3, 10, 12], [1, 3, 10, 12]]
[r1,2,3,121,11,3,8,12],[1,3,9,12], [1,8,9,12], [3, 8,9, 12]]
[r1,2,3,121,11,3,8,12],[1,3,10,12], [1, 8,10, 12], [3, 8, 10, 12]]
[r1,2,3,121,11,3,9,12],[1,3,10,12], 1,9, 10, 12], [3, 9, 10, 12]]
[r1,2,8,121,11,2,10,12], [1,2,10,12], [1, 3,8, 12], [2, 3, 8, 12]]
(r1,2,8,121,11,2,11,12], [1,2,11,12], [1, 3,8, 12], [2, 3, 8, 12]]
(r1,2,9,121, 11,2, 11,121, 1,2, 11, 12], [1, 3,9, 12], [2, 3,9, 12]]
[r1,2,10,121,11,3,8,12], [1,3,8,12], [1, 3,10, 12], [2, 3, 10, 12]]
[r1,2,10,121,11,3,8,12], [1, 8,10, 12], [2, 3,8, 12], [2, &, 10, 12]]
[r1,2,10,12],11,3,8,12], [1, 8, 10, 12], [2, 3, 10, 121, [3, &, 10, 12]]
[r1,2,10,121,11,3,9,12], [1,9, 10, 12], [2, 3,9, 12], [2, 9, 10, 12]]
[r1,2,10,121,11,3,9,12], [1,9, 10, 12], [2, 3, 10, 121, [3, 9, 10, 12]]
[(r1,2,11,121,11,3,8,12], [1,3,8,12], [1,3, 11, 12], [2, 3, 11, 12]]
[(r1,2,11,121,11,3,8,12], [1, 8,11, 12], [2, 3,8, 12], [2, 8, 11, 12]]
(r1,2,11,121,11,3,8,12], [1,8, 11, 12], [2,3, 11, 12], [3, 8, 11, 12]]
(r1,2,11,121,11,3,9,121, [1,3,9,12], [1, 3, 11, 12], [2, 3, 11, 12]]
(r1,2,11,121,11,3,9,12]1, 1,9, 11, 12], [2, 3,9, 12], [2,9, 11, 12]]
(r1,2,11,121,11,3,9,12], [1,9, 11, 12], [2, 3, 11, 12], [3,9, 11, 12]]

[[1,2,3,12],[1,2,9,12], [1,2,11,12],[1,9, 10, 121, [1, 10, 11, 121, [2, 9, 10, 121, [2, 10,
11,127]

[[1,2,3,12],[1,3,8,12], [1,3, 10,121, [1,8,9, 121, [1,9, 10, 121, [3, 8, 9, 121, [3, 9, 10,
121]

[[1,2,8,12],[1,2,10,12], [1,2, 11,121, [1,3,8, 12, [1, 10, 11, 12], [2, 3, 8, 12], [2, 10,
11,127]]

[[1,2,9,12],[1,2, 11,121, [1,2, 11,121, [1,3,8, 121, [1,8,9, 121, [2,3, 8, 121, [2, 8, 9,
127]

[[1,2,9,12],[1,2, 11,121, [1,2, 11,121, [1,3,8, 121, [1,8,9, 121, [2,3,9, 121, [3, 8, 9,
121]

[[1,2,10,12],1,3,8,12],[1,8,9, 121, [1,9, 10, 121, [2,3, 8, 121, [2,8,9, 121, [2, 9, 10,
121]

[[1,2,10,12],[1,3,8,121,[1,8,9, 121, [1,9, 10, 12, [2,3,9, 121, [2,9, 10, 121, [3, 8, 9,
121]

[[1,2, 10,121, [1,3,8, 121, [1,8,9, 121, [1,9, 10, 121, [2, 3, 10, 121, [3, 8, 9, 121, [3, 9, 10,
121]

[[1,2,11,12],[1,3,8,12],[1,3,8,12], [1,3, 10, 121, [1, 10, 11, 121, [2, 3, 10, 12], [2, 10,
11,127]]

[[1,2,11,121,[1,3,8,121,[1,3,8, 121, [1,3, 10, 121, [1, 10, 11, 121, [2, 3, 11, 121, [3, 10,
11,127]

[[1,2, 11,121, [1,3,8, 121, [1,3,9, 121, [1,3, 11,121, [1,8,9, 121, [2, 3, 11, 121, [3, 8, 9,
121]

[[1,2,11,12],[1,3,8,12],[1,8,9, 121, [1,9, 11, 121, [2,3, 8,121, [2,8,9, 121, [2,9, 11,
121]

[[1,2,11,12],[1,3,8,121,[1,8,9, 121, [1,9, 11, 12, [2,3,9, 121, [2,9, 11, 121, [3, 8, 9,
127]

[[1,2,11,121,[1,3,8, 121, [1,8,9, 121, [1,9, 11, 121, [2,3, 11, 121, [3, 8,9, 121, [3, 9, 11,
121]

[[1,2,11,12],[1,3,8,12], [1,8, 10, 121, [1, 10, 11, 121, [2, 3, 8, 121, [2, 8, 10, 12], [2, 10,
11,127]]

[[1,2,11,121,[1,3,8, 121, [1,8, 10, 12, [1, 10, 11, 127, [2, 3, 10, 12], [2, 10, 11, 121, [3, 8,
10, 127]

[[1,2, 11,121, [1,3,8, 121, [1,8, 10, 121, [1, 10, 11, 127, [2, 3, 11, 12], [3, 8, 10, 121, [3, 10,
11,127]]

[[1,2,11,12],[1,3,9, 121, [1,9, 10, 121, [1, 10, 11, 121, [2, 3,9, 121, [2, 9, 10, 12], [2, 10,
11,127]]

[[1,2,11,121,[1,3,9, 121, [1,9, 10, 121, [1, 10, 11, 127, [2, 3, 10, 12], [2, 10, 11, 121, [3, 9,
10, 127]

[[1,2, 11,121, [1,3,9, 121, [1,9, 10, 121, [1, 10, 11, 127, [2, 3, 11, 12], [3, 9, 10, 121, [3, 10,
11,127]]

(r1,2,11,12], 1, 3,8,121, [1,8,9,121, 1,9, 10, 12], [1, 10, 11,121, [2, 3, 8, 12], [2, 8, 9,
121, [2,9,10,12], [2, 10, 11, 12]]
(r1,2,11,12], 1, 3,8,12], 1, 8,9,12], 1,9, 10, 12], [1, 10, 11, 12], [2, 3,9, 12], [2, 9, 10,
121, [2,10,11,12], [3,8,9, 12]]
(r1,2,11,12],1,3,8,121, (1,8,9,12], [1,9, 10, 12], [1, 10, 11, 12], [2, 3, 10, 12], [2, 10,
11,121, [3,8,9,12], [3,9, 10, 12]]
(r1,2,11,12],1,3,8,121, 11, 8,9, 121, 1,9, 10, 12], [1, 10, 11,127, [2, 3, 11, 12], [3, 8,9, A3
121, [3,9,10,12], [3, 10, 11, 12]]

In the following we check for each element of L5 the conditions that are needed for it to be positively
decorated by Csimple.

allsolutions == { }:

for Jin L5 do
We only work with J in L5 with at least 2 - ﬂoor(%) + 1 simplices.

if numelems(J) > 2- ﬂoor(%) + 1 then

Jused == []:
The variable "solutions" will have pairs [I,C].
Each 1 is a list of (indexes of) simplices.
The corresponding C is a list of expressions f1,..., fm such that the simplices
in [are simultaneously positively decorated by Csimple if and only if f1 > 0,.., fm > 0.
Each C has at least the conditions E, F and S (thatis E > 0, F > 0, S
> 0) because these are total concentrations of chemical species.
Each C also has 1-M[1],...,1-M[n-1] sinse these M[i] must be less than 1.
We include in each C the expression I as well since the obvious condition 1 >0 will help us to
eliminate bad candidates.

solutions = {[Jused, {1, E, F, S, seq(1 —M[i],i=0..n—1)}]}:
solutionsaux == { } :

The next loop does the following. Start with the first element of J, if it gives viable solutions keep it
and discard it otherwise.

Then if the second gives condities compatible with the first one keep it and discard it otherwise,
and so on.

for jin J do

Now we compute two sets of conditions for j to be positively decorated by Csimple, conditionsnewa
and conditionsnewb, these correspond to the two possibilites of the alternating signs of the four 3x3
MInors.

for i from 1 to4 do det[i] := Determinant(Csimple[1..3, subsop(i=NULL, j)]) : od:

conditionsnewa = {-det[1], det[2],-det[3], det[4]};

conditionsnewb = {det[1],-det[2], det| 3],-det|4]};

solutionsaux ‘= { } :

Next we compare conditionsnewa and conditionsnewb with the previous conditions. We include

only one of them, if there is a compatible one.
for /in solutions do
Jused = [[1]; conditions == I[2];
if evalb(numelems(conditions intersect conditionsnewa) > 1 and numelems(conditions
intersect conditionsnewb) > 1) = true then
solutionsaux = solutionsaux union { [Jused, conditions]};
fi:
if evalb(numelems(conditions intersect conditionsnewb) =0) = true then
solutionsaux = solutionsaux union { [[op (Jused), j], conditions union conditionsnewa};
fi:
if evalb(numelems(conditions intersect conditionsnewa) =0) = true then
solutionsaux = solutionsaux union { [[op (Jused), j], conditions union conditionsnewb]};
fi:
od:

solutions ‘= solutionsaux;
od:

Finally, in the variable "allsolutions" we keep the candidates that give at least k=2 - ﬂoor(%)

+ 1 regions.

for kin solutions do
if numelems(k[1]) > 2- ﬂoor(n) + 1 then allsolutions := allsolutions union {k}; fi

2
od:

fi:
od:

printf ("Number of solutions to try: %d.", numelems(allsolutions));

Number of solutions to try: 14.

In this part we obtain L7 from "allsolutions".

We do this searching in "allsolutions" for the elements for which there are viable parameters
satisfying the conditions.

This is the only numerical part of the whole script.

In the end each J in L7 will contain:

J[1] =list of simplexes;

J[2]= corresponding conditions;

J[3]= a list of real numbers which are viable values for the parameters.

interface(displayprecision=6) : L7 == { }:

for j in allsolutions do

conditions = j[2]:

Jused == j[1]:

The next command "Minimize" is used to find a numerical solution for the condition.

If the "Minimize" is able to find one solution then the conditions are viable and are included in L7.

instead of > 0.

Since "Minimize" works only with closed conditions we use > 1 0(1)00

If "Minimize" is unable to find a solution it returns a error, because of that we need the "try"

command. In this case the conditions are discarded.
try

Min == Minimize(l, {seq(conditions[j] >

1 . ..
10000 ,J =1 ..numelems(conditions)) }, assume

= nonnegative, iterationlimit = 100) :

L7 = L7union {[j[1],j[2], Min[2]]}:
catch:

end try:

end do:

The next loop for is used to remove the conditions 1 >0,E >0,...,1-M[i] >0,M[i] >0 from the
elements of L7.

solutionsaux = { } :

for k from 1 to numelems(L7) do

solutionsaux = solutionsaux union { [L7[k][1], L7[k][2] minus {1, E, F,, S, seq(1 — M[i],i=0..n
—1),seq(M[i],i=0.n—1)} L7[k][3]]}:

od:

L7 = solutionsaux :

The next two loops are used to remove a set of conditions C if it is contained in another. In this
way we get only maximal regions.

solutionsaux == { } :

for & from 1 to numelems(L7) do

aux == 0:

for j from k + 1 to numelems(L7) do

if evalb(L7[k][2] subset L7[j][2]) then

aux =1

fi:

od:

if aux =0 then

solutionsaux = solutionsaux union { [L7[k][1], L7[k][2], L7[k][3]]}:

fi:

od:

L7 := solutionsaux :

printf ("There are %d maximal regions, in which there are %d positive solutions each. \n",

numelems(L7), 2+ ﬂoor(%) + 1);

printf ("The original triangulations, simplices positively decorated, regions, and a point on each one
are:");

for i from 1 to numelems(L7) do
This line recovers the original triangulations from the final sets obtained.

Foundoriginaltriang (originals, Foundoriginaltriang (originals2, Foundoriginaltriang (originals3,
L71i1[11D));

L7i][1];

L7Ti][2];

L7Ti1[31];

od;

There are 5 maximal regions, in which there are 5 positive

solutions each.

The original triangulations, simplices positively decorated,
regions, and a point on each one are:

[[0,1,2,7], 10, 1,2,11], {0, 1,7,8], [0, 1, 8, 11], [0, 6, 10, I1], [0, 8,9, 11], [0, 9, 10, 11],
[1,6,10,11],[1,8,9,11],[1,9, 10, I1]]

[[1,2,3,12],[1,2,9,12], [1,2, 11,121, [1,9, 10,121, [1, 10, 11, 12]]

(My— My, My — My, ~-EM, — FM, + E,EMy+ F M, —E, -EM; — FMy + E, -SM, — F +35,
-SMy—F+S,EM, —EM,+FM, —FM,—SM, +SM, -EM,+EM,—FM,+FM,
+S M, — S M)

[£=0.399860, F =0.000197, § =2.200280, M, =0.999900, M, =0.999258, M, =0.999782, M,
=0.999258]

[[0,2,7,11],[0,6,9,11],[0,7,8,111,[0,8,9, 111, [1,2,6,91, [1,2,6,11], [1,6,9, 10],
[2,6,9,117,[2,7,8,11],[2,8,9, 11]]

[[1,2,3,12],[1,3,8,12], [1,3, 10, 12], [1,8,9, 121, [1, 9, 10, 12]]

(My— My, My — M,, S My— E, S My — E, E My + F My— E, -EM, — F M, + E, E M, + F M,
—E, ~-EMy+EM, —FM,+FM,+SM,—SM,EM, —EM,+FM, —FM,—SM,
+S M)

[E£=0.449981, F =0.082246, S=2.301131, My =0.917170, M, =0.845280, M, =0.910353, M,
=0.999900]

[[0,2,7,11],[0,4,8,11],[0,7,8, 111, [1,2,8, 111, [1,4,8,10], [1,4,8,11], [1,4, 10, 11],
[1,6,10,11],[2,7,8,11], [4,6, 10, 11]]

[[1,2,9,12], [1,2,11,12], [1,2, 11,12, [1,3, 8, 121, [1, 8, 9, 12]]

{My—M,, S My—E, EMy+FMy,—E, -EM, —F M, + E, -EM; — F My +E, -S M, = F +5,
-SMy—F+S, -EMy+EM, —FMy+FM +SM,—SM)

[£=0.399860, F=0.000212, § =2.200280, M, =0.999744, M, =0.999220, M, =0.999900, M,
=0.999220]

[[0,2,7,11],[0,4,7,11],[1,2,10, 111, [1,6, 10, 111, [2,4,7,9], [2,4,7, 111, [2,4,9, 11],
[2,9,10,11], [4,6,10,11], [4,9, 10, 11]]

[[1,2,11,12],[1,3,8,12], [1,3,8, 121, [1,3, 10, 12], [1, 10, 11, 12]]

(My— My, S My— E, S My — E, E My + F My— E, EMy + F My — E, -E My — F My + E, -S M,

—F+S, -EMy +E M, —F My + F My + S My — S M)

[E=0.399860, F =0.000234, S =2.200280, M, =0.999900, M, =0.999900, M, =0.999708, M,
=0.999166]
[[0,2,7,11],10,6,10, 111, [0,7,8, 111, [0,8,9, 111, [0,9, 10,117, [1,2, 10, 111, [1, 6, 10,
111,12,7,8,111,[2,8,9, 111,[2,9, 10, 11]]
[[1,2,11,12],[1,3,8,12], [1,8,9, 121, [1,9, 10, 12], [1, 10, 11, 12]]
{My — My, My — M, My — My, S My — E, E My + F My— E, -EM, — F M, + E, E M, + F M,
—E, -EM,—FM,+E, -SMy —F+S, -EM,+EM, —F My +FM, + S M, — S M,
EM, —EMy+FM, —FM,—SM, +SM, -EM,+EM—FM,+F M, +5M—S M)
[E£=0.399861, F =0.000213, $ =2.200280, M, = 0.999746, M, =0.999217, M, =0.999746, M @)
=0.999217]

