restart : with(LinearAlgebra) : with(Optimization) :

# This MAPLE file takes a list of triangulations computed in sage (via TOPCOM package) and gives as
output a series of polynomial expressions.

# Each set of expressions f _1,...,f m can be used to produce a region of multistationarity for the n —site
phosphorylation system as f 1 >0,....f m >0.

# set n

n:=4:

# Since the tables are going to be big, increase the maximum allowed size for tables .

interface(rtablesize=4 +2-n) :

# set T[-1] and the matrices A, C and Csimple.

T[-1]=1":

A = Transpose(Matrix([[1,0,0], [0, 1,01, [0,0, 1], seq([1,i,-i],i=1.n),seq([1,i,1 —i],i=1
.n), [0,0,0]]));

C := Transpose(Matrix([[1,0,0], [0,1,0], [0,0, 1], seq([T[i],0,0],i=0..n —1),seq([K[i]-T[i
-1+ L[] T[i], K[i]-T[i-1]), L[i]-T[i]],i=0.n—1), [-S,-E,-F]])) ;

Csimple := Transpose(Matrix([[1,0,0], [0, 1,0], [0,0, 1], seq([1,0,0],i=0..n — 1), seq([1,
M[il, 1 —MJ[i]],i=0.n—1),[-S,-E,-F1]))

roo 1 1 1 11 1 1 160
010 1 2 3 41 2 3 40
001 -1-2-3-40-1-2-30

1007, 7, T, T, LkTy,+Ky K,Ty+L, T, K, T, +L, T, Ky T, +L; T, -S

0100000 K, K, T, K, T, K,T, -E
0010000 LT, LT, L, T, L,T, -F
1001111 1 1 1 1 -S
0100000 M, M M, M -E a

0010000 1—M I—MI1-MI1-—M -F

# Here we define the procedure Foundoriginaltriang that we will use in the end of the present script.
# This will be used when we need to recover the triangulation in L1 that gave a element in L7 used to
obtain a region of multistationarity.

Foundoriginaltriang :==proc(original, T')

local &, aux;

aux =T

for k from 1 to numelems(original) do

if {op(T) } subset {op(original[k][2]) } then aux = original[k][1] fi
od:

aux;

end proc:

# Here we define validpolytopesindex as the set of triples that index all non zero 3 x3 minors of Csimple.
# This will be used to pass from L2 to L3.

validpolytopesindex == [ ]:



for i/ from 1 to ColumnDimension (Csimple) do
for i2 from i/ + 1 to ColumnDimension (Csimple) do
for i3 from i2 + 1 to ColumnDimension (Csimple) do
if Determinant(Csimple[1..3, [il, i2,i3]]) # 0 then validpolytopesindex
= [op (validpolytopesindex), [il, i2,i3]];
end if
end do end do end do:
# Here we import L1 from a file outputed from SAGE, this is step (1) in the Algorithm.

L1 = parse(ImportData( )) :
# Here we do step (2) of Algorithm to obtain L2 from L.

# The variables "originals", "originals2",..., will keep track from the passage from LI to L2, L2 to L3 and
50 on.

L2:={}:

# We define L2 as a empty list and look at the elements of L1 one by one.

# In each triangulation of L1 we will take only the simplices that contain the last vertex and insert those
inL2.

# In order to pass from L2 to L3 and so on the technique will be the same, start with a empty list and
insert the right elements from the preivous one.

# The originals list is a link between L2 and L3 used after to recover elements of L1 from L2.
originals == { }:

for i from 1 to numelems(L1) do

# Here we reset the variable "auxi2" that will hold the set of simplices of the triangulation L1[i] to be
inserted in L2.

auxi2 == [ ];

for [ from 1 to numelems(L1[i]) do

# Here we reset the variable "auxi" that will hold (the indexes of) the simplex we are testing.

auxi == [0,0,0,0];

forj from 1 to4 do

# This line is needed because on SAGE the vertex are indexed beginning with (0 and we want that they
start from 1.

auxi[ j1 = LI[i][I][j] + 1;

od:

# The next "if" makes Step (2) passing from L1 to L2 only the simplexes with the last vertex.

if auxi[4] = ColumnDimension(C) then auxi2 := [op(auxi2), auxi]; fi:

od:

# In the next line we indeed insert in L2 the set of simplices "auxi2", but only if it is not there yet.

if not(member(auxi2, L2)) then

L2 = {op(L2), auxi2};

originals = originals union {[L1[i], auxi2]} :

fi:

od:

# Here we do step (3) of Algorithm to obtain L3 from L2
by removing all simplices with a corresponding matrix having a zero 3 x3 minor.

# The script is pretty much the same as step (2) but with distinct test condition.

L3:={}:



# The originals?2 list is a link between L2 and L3 used after to recover elements of L2 from L3.
originals2 == { } :

for i from 1 to numelems(L2) do

auxi == [ ];

for [ from 1 to numelems(L2[i]) do

# The next "if" makes Step (3) passing from L2
to L3 only simplexes whose corresponding matrix has no zero 3 x3 minor.

if {[L20]001 ) L2002 ), L2003 10, TL20000L ], L210002]), L21E]0I0410, TL20401400 L ],
L2[][703 ], L2[]UI00410, [L2000002 ), L20]U003 L, L2[A]1I0411}
subset {op (validpolytopesindex) } then

auxi == [op(auxi), L2[i][/]];

fi:

od:

if not(member(auxi, L3)) then

L3 = L3 union {auxi};

originals2 = originals2 union {[L2[i], auxi]} :

fi:

od:

# Here we do step (4) of Algorithm to obtain L4 from L3 changing any index4, 5,....,n +3 to 1.

L4:= {}:
# The originals3 list is a link between L2 and L3 used after to recover elements of L3 from L4.
originals3 == { } :

for i from 1 to numelems(L3) do
auxi == [ ];
for / from 1 to numelems(L3[i]) do
auxi2 == L3[i][!],
forjfrom4 ton + 3 do
# The next line tests if j is a index of L3[i], if it is bb receives true and pp its position.
bb = member(j, L3[i][!],pp');
if bb = true then
auxi2[ pp] = 1:fi;od;
# After changing some index to 1 we sort the list of simplices to keep it in the lexicographic order.
auxi := sort( [op (auxi), sort(auxi2) ]);
od:
# The next line is need because after changing some index to we can have duplicates.
if not(member(auxi, L4)) then
L4 = L4 union {auxi};
# The originals3 list is a link between L3 and L4 used after to recover elements of L3 from LA4.
originals3 = originals3 union {[L3[i], auxi]} :
fi:
od:
# Here we do step (5) of Algorithm to obtain L5 from L4.

L5:= {}:



for i from 1 to numelems(L4) do
# If the variable "auxi" is 0 we insert L4[i] in L5, and if it is 1 we do not.
# We reset "auxi" as 0 in the next line.
auxi == 0;
# The next loop for will test if L4[i] is contained in any L4[j] with j >i, if it is then we set auxi:=1.
for j from i + 1 to numelems(L4) while auxi =0 do
if numelems({op(L4[i])} intersect {op(L4[j])}) =numelems(L4[i]) then
auxi == 1;
fi;
od:
if auxi =0 then
L5 := L5 union {L4[i]}
fi,
od:
# The following is just a information check.

print("This list L1 is the whole list.");
print("This list L2 consider only the simplices having the origin.");
print("This list L3 takes out the simplices which the corresponding matrix has a zero 3x3 minor.");
print("This list L4 replaces indexes 4,5,....n+3 by 1.");

print("This list L5 takes out the triangulations T such that there is another triangulation T'

containing T.");
print("Number of elements of L1, L2,L.3, L4, and L5 are." );
nops(L1); nops(L2); nops(L3); nops(L4); nops(L5);

"This list L1 is the whole list."
"This list L2 consider only the simplices having the origin."
"This list L3 takes out the simplices which the corresponding matrix has a zero 3x3 minor."
"This list L4 replaces indexes 4,5,....,n+3 by 1."

"This list L5 takes out the triangulations T such that there is another triangulation T' containing T.

"Number of elements of L1, L2,.3, L4, and L5 are."
9094
2728
682
62
53 )

# The following counts and displays how many elements of L5 has a determinated size.
# This can be used to guess what will be a good candidate for k.

count? = [seq(0,i=1..nops(L5[nops(L5)]))]:

for i from 1 to numelems(L5) do

count := nops(L5[i]) :

count2[ count] = count2[count] +1 :

od:

for i from 1 to nops(count2) do

printf ("There is %d configurations with %d valid polytopes.\n", count2[i], i);
od;



for Jin L5 do

print(J);

od:

There is 0 configurations with 1 valid polytopes.

There is 0 configurations with 2 valid polytopes.

There is 6 configurations with 3 valid polytopes.

There is 0 configurations with 4 valid polytopes.

There is 23 configurations with 5 valid polytopes.
There is 0 configurations with 6 valid polytopes.

There is 20 configurations with 7 valid polytopes.
There is 0 configurations with 8 valid polytopes.

There is 4 configurations with 9 valid polytopes.

[r1,2,3,121,11,2,9,12],[1, 2,9, 12]]
[r1,2,3,121,11,2,10,12], [1, 2, 10, 12]]
[r1,2,3,121, 11,2, 11,121, 1,2, 11, 12]]

[r1,2,3,121,11,3,8,12], [1, 3,8, 12]]

[r1,2,3,121,11,3,9,12], [1,3,9, 12]]
[r1,2,3,121,11,3,10,12], [1, 3, 10, 12]]

(r1,2,3,121,11,2,9,121,11,2,9,12], [ 1,2, 11, 12], [1, 2, 11, 12]]
[r1,2,3,121,11,2,9,121, 11, 2,10,12], 1,9, 10, 12], [2, 9, 10, 12]]
[r1,2,3,121,11,2,9,121, 1,2, 11,12], [1,9, 11, 12], [2,9, 11, 12]]
[r1,2,3,121, 11,2, 10,121, 1,2, 11, 12], [1, 10, 11, 12], [2, 10, 11, 12]]
(r1,2,3,121, 11,2, 11,121, 1,2, 11, 12], [ 1, 3,8, 12], [1, 3, 8, 12]]
(r1,2,3,121,11,3,8,12],[1,3,8,12], [ 1,3, 10, 12], [1, 3, 10, 12]]
[r1,2,3,121,11,3,8,12],[1,3,9,12], [1,8,9,12], [3, 8,9, 12]]
[r1,2,3,121,11,3,8,12],[1,3,10,12], [1, 8,10, 12], [3, 8, 10, 12]]
[r1,2,3,121,11,3,9,12],[1,3,10,12], 1,9, 10, 12], [3, 9, 10, 12]]
[r1,2,8,121,11,2,10,12], [1,2,10,12], [1, 3,8, 12], [2, 3, 8, 12]]
(r1,2,8,121,11,2,11,12], [1,2,11,12], [1, 3,8, 12], [2, 3, 8, 12]]
(r1,2,9,121, 11,2, 11,121, 1,2, 11, 12], [ 1, 3,9, 12], [2, 3,9, 12]]
[r1,2,10,121,11,3,8,12], [1,3,8,12], [1, 3,10, 12], [2, 3, 10, 12]]
[r1,2,10,121,11,3,8,12], [1, 8,10, 12], [2, 3,8, 12], [2, &, 10, 12]]
[r1,2,10,12],11,3,8,12], [1, 8, 10, 12], [2, 3, 10, 121, [3, &, 10, 12]]
[r1,2,10,121,11,3,9,12], [1,9, 10, 12], [2, 3,9, 12], [2, 9, 10, 12]]
[r1,2,10,121,11,3,9,12], [1,9, 10, 12], [2, 3, 10, 121, [3, 9, 10, 12]]
[(r1,2,11,121,11,3,8,12], [1,3,8,12], [1,3, 11, 12], [2, 3, 11, 12]]
[(r1,2,11,121,11,3,8,12], [1, 8,11, 12], [2, 3,8, 12], [2, 8, 11, 12]]
(r1,2,11,121,11,3,8,12], [1,8, 11, 12], [2,3, 11, 12], [3, 8, 11, 12]]
(r1,2,11,121,11,3,9,121, [1,3,9,12], [1, 3, 11, 12], [2, 3, 11, 12]]
(r1,2,11,121,11,3,9,12]1, 1,9, 11, 12], [2, 3,9, 12], [2,9, 11, 12]]
(r1,2,11,121,11,3,9,12], [1,9, 11, 12], [2, 3, 11, 12], [3,9, 11, 12]]



[[1,2,3,12],[1,2,9,12], [1,2,11,12],[1,9, 10, 121, [1, 10, 11, 121, [2, 9, 10, 121, [2, 10,
11,127]

[[1,2,3,12],[1,3,8,12], [1,3, 10,121, [1,8,9, 121, [1,9, 10, 121, [3, 8, 9, 121, [3, 9, 10,
121]

[[1,2,8,12],[1,2,10,12], [1,2, 11,121, [1,3,8, 12, [1, 10, 11, 12], [2, 3, 8, 12], [2, 10,
11,127]]

[[1,2,9,12],[1,2, 11,121, [1,2, 11,121, [1,3,8, 121, [1,8,9, 121, [2,3, 8, 121, [2, 8, 9,
127]

[[1,2,9,12],[1,2, 11,121, [1,2, 11,121, [1,3,8, 121, [1,8,9, 121, [2,3,9, 121, [3, 8, 9,
121]

[[1,2,10,12],1,3,8,12],[1,8,9, 121, [1,9, 10, 121, [2,3, 8, 121, [2,8,9, 121, [2, 9, 10,
121]

[[1,2,10,12],[1,3,8,121,[1,8,9, 121, [1,9, 10, 12, [2,3,9, 121, [2,9, 10, 121, [3, 8, 9,
121]

[[1,2, 10,121, [1,3,8, 121, [1,8,9, 121, [1,9, 10, 121, [2, 3, 10, 121, [3, 8, 9, 121, [3, 9, 10,
121]

[[1,2,11,12],[1,3,8,12],[1,3,8,12], [1,3, 10, 121, [1, 10, 11, 121, [2, 3, 10, 12], [2, 10,
11,127]]

[[1,2,11,121,[1,3,8,121,[1,3,8, 121, [1,3, 10, 121, [1, 10, 11, 121, [2, 3, 11, 121, [3, 10,
11,127]

[[1,2, 11,121, [1,3,8, 121, [1,3,9, 121, [1,3, 11,121, [1,8,9, 121, [2, 3, 11, 121, [3, 8, 9,
121]

[[1,2,11,12],[1,3,8,12],[1,8,9, 121, [1,9, 11, 121, [2,3, 8,121, [2,8,9, 121, [2,9, 11,
121]

[[1,2,11,12],[1,3,8,121,[1,8,9, 121, [1,9, 11, 12, [2,3,9, 121, [2,9, 11, 121, [3, 8, 9,
127]

[[1,2,11,121,[1,3,8, 121, [1,8,9, 121, [1,9, 11, 121, [2,3, 11, 121, [3, 8,9, 121, [3, 9, 11,
121]

[[1,2,11,12],[1,3,8,12], [1,8, 10, 121, [1, 10, 11, 121, [2, 3, 8, 121, [2, 8, 10, 12], [2, 10,
11,127]]

[[1,2,11,121,[1,3,8, 121, [1,8, 10, 12, [1, 10, 11, 127, [2, 3, 10, 12], [2, 10, 11, 121, [3, 8,
10, 127]

[[1,2, 11,121, [1,3,8, 121, [1,8, 10, 121, [1, 10, 11, 127, [2, 3, 11, 12], [3, 8, 10, 121, [3, 10,
11,127]]

[[1,2,11,12],[1,3,9, 121, [1,9, 10, 121, [1, 10, 11, 121, [2, 3,9, 121, [2, 9, 10, 12], [2, 10,
11,127]]

[[1,2,11,121,[1,3,9, 121, [1,9, 10, 121, [1, 10, 11, 127, [2, 3, 10, 12], [2, 10, 11, 121, [3, 9,
10, 127]

[[1,2, 11,121, [1,3,9, 121, [1,9, 10, 121, [1, 10, 11, 127, [2, 3, 11, 12], [3, 9, 10, 121, [3, 10,
11,127]]



(r1,2,11,12], 1, 3,8,121, [1,8,9,121, 1,9, 10, 12], [1, 10, 11,121, [2, 3, 8, 12], [2, 8, 9,
121, [2,9,10,12], [2, 10, 11, 12]]
(r1,2,11,12], 1, 3,8,12], 1, 8,9,12], 1,9, 10, 12], [1, 10, 11, 12], [2, 3,9, 12], [2, 9, 10,
121, [2,10,11,12], [3,8,9, 12]]
(r1,2,11,12],1,3,8,121, (1,8,9,12], [1,9, 10, 12], [1, 10, 11, 12], [2, 3, 10, 12], [2, 10,
11,121, [3,8,9,12], [3,9, 10, 12]]
(r1,2,11,12],1,3,8,121, 11, 8,9, 121, 1,9, 10, 12], [1, 10, 11,127, [2, 3, 11, 12], [3, 8,9, A3
121, [3,9,10,12], [3, 10, 11, 12]]

# In the following we check for each element of L5 the conditions that are needed for it to be positively
decorated by Csimple.

allsolutions == { }:

for Jin L5 do
# We only work with J in L5 with at least 2 - ﬂoor( % ) + 1 simplices.

if numelems(J) > 2- ﬂoor(%) + 1 then

Jused == [ ]:
# The variable "solutions" will have pairs [I,C].
# Each 1 is a list of (indexes of ) simplices.
# The corresponding C is a list of expressions f1,..., fm such that the simplices
in [ are simultaneously positively decorated by Csimple if and only if f1 > 0,.., fm > 0.
# Each C has at least the conditions E, F and S (thatis E > 0, F > 0, S
> 0) because these are total concentrations of chemical species.
# Each C also has 1-M[1],...,1-M[n-1] sinse these M[i] must be less than 1.
# We include in each C the expression I as well since the obvious condition 1 >0 will help us to
eliminate bad candidates.

solutions = {[Jused, {1, E, F, S, seq(1 —M[i],i=0..n—1)}]}:
solutionsaux == { } :

# The next loop does the following. Start with the first element of J, if it gives viable solutions keep it
and discard it otherwise.

# Then if the second gives condities compatible with the first one keep it and discard it otherwise,
and so on.

for jin J do

# Now we compute two sets of conditions for j to be positively decorated by Csimple, conditionsnewa
and conditionsnewb, these correspond to the two possibilites of the alternating signs of the four 3x3
MInors.

for i from 1 to4 do det[i] := Determinant(Csimple[1..3, subsop(i=NULL, j)]) : od:

conditionsnewa = {-det[1], det[2],-det[3], det[4]};

conditionsnewb = {det[1],-det[2], det| 3 ],-det|4]};

solutionsaux ‘= { } :

# Next we compare conditionsnewa and conditionsnewb with the previous conditions. We include



only one of them, if there is a compatible one.
for /in solutions do
Jused = [[1]; conditions == I[2];
if evalb(numelems(conditions intersect conditionsnewa) > 1 and numelems(conditions
intersect conditionsnewb) > 1) = true then
solutionsaux = solutionsaux union { [Jused, conditions]};
fi:
if evalb(numelems(conditions intersect conditionsnewb) =0) = true then
solutionsaux = solutionsaux union { [ [op (Jused), j], conditions union conditionsnewa};
fi:
if evalb(numelems(conditions intersect conditionsnewa) =0) = true then
solutionsaux = solutionsaux union { [ [op (Jused), j], conditions union conditionsnewb]};
fi:
od:

solutions ‘= solutionsaux;
od:

# Finally, in the variable "allsolutions" we keep the candidates that give at least k=2 - ﬂoor( % )

+ 1 regions.

for kin solutions do
if numelems(k[1]) > 2- ﬂoor( n ) + 1 then allsolutions := allsolutions union {k}; fi

2
od:

fi:
od:

printf ("Number of solutions to try: %d.", numelems(allsolutions) );

Number of solutions to try: 14.

# In this part we obtain L7 from "allsolutions".

# We do this searching in "allsolutions" for the elements for which there are viable parameters
satisfying the conditions.

# This is the only numerical part of the whole script.

# In the end each J in L7 will contain:

# J[ 1] =list of simplexes;

# J[2]= corresponding conditions;

# J[3]= a list of real numbers which are viable values for the parameters.

interface(displayprecision=6) : L7 == { }:

for j in allsolutions do

conditions = j[2]:

Jused == j[1]:

# The next command "Minimize" is used to find a numerical solution for the condition.

# If the "Minimize" is able to find one solution then the conditions are viable and are included in L7.

instead of > 0.

# Since "Minimize" works only with closed conditions we use > 1 0(1)00

# If "Minimize" is unable to find a solution it returns a error, because of that we need the "try"



command. In this case the conditions are discarded.
try

Min == Minimize(l, {seq(conditions[j] >

1 . ..
10000 ,J =1 ..numelems(conditions) ) }, assume

= nonnegative, iterationlimit = 100) :

L7 = L7union {[j[1],j[2], Min[2]]}:
catch:

end try:

end do:

# The next loop for is used to remove the conditions 1 >0,E >0,...,1-M[i] >0,M[i] >0 from the
elements of L7.

solutionsaux = { } :

for k from 1 to numelems(L7) do

solutionsaux = solutionsaux union { [L7[k][1], L7[k][2] minus {1, E, F,, S, seq(1 — M[i],i=0..n
—1),seq(M[i],i=0.n—1)} L7[k][3]]}:

od:

L7 = solutionsaux :

# The next two loops are used to remove a set of conditions C if it is contained in another. In this
way we get only maximal regions.

solutionsaux == { } :

for & from 1 to numelems(L7) do

aux == 0:

for j from k + 1 to numelems(L7) do

if evalb(L7[k][2] subset L7[ j][2]) then

aux =1

fi:

od:

if aux =0 then

solutionsaux = solutionsaux union { [L7[k][1], L7[k][2], L7[k][3]]}:

fi:

od:

L7 := solutionsaux :

printf ( "There are %d maximal regions, in which there are %d positive solutions each. \n",

numelems(L7), 2+ ﬂoor( %) + 1);

printf ("The original triangulations, simplices positively decorated, regions, and a point on each one
are:");

for i from 1 to numelems( L7) do
# This line recovers the original triangulations from the final sets obtained.



Foundoriginaltriang (originals, Foundoriginaltriang (originals2, Foundoriginaltriang (originals3,
L71i1[11D));

L7i][1];

L7Ti][2];

L7Ti1[31];

od;

There are 5 maximal regions, in which there are 5 positive

solutions each.

The original triangulations, simplices positively decorated,
regions, and a point on each one are:

[[0,1,2,7], 10, 1,2,11], {0, 1,7,8], [0, 1, 8, 11], [0, 6, 10, I1], [0, 8,9, 11], [0, 9, 10, 11],
[1,6,10,11],[1,8,9,11],[1,9, 10, I1]]

[[1,2,3,12],[1,2,9,12], [1,2, 11,121, [1,9, 10,121, [1, 10, 11, 12]]

(My— My, My — My, ~-EM, — FM, + E,EMy+ F M, —E, -EM; — FMy + E, -SM, — F +35,
-SMy—F+S,EM, —EM,+FM, —FM,—SM, +SM, -EM,+EM,—FM,+FM,
+S M, — S M)

[£=0.399860, F =0.000197, § =2.200280, M, =0.999900, M, =0.999258, M, =0.999782, M,
=0.999258]

[[0,2,7,11],[0,6,9,11],[0,7,8,111,[0,8,9, 111, [1,2,6,91, [1,2,6,11], [1,6,9, 10],
[2,6,9,117,[2,7,8,11],[2,8,9, 11]]

[[1,2,3,12],[1,3,8,12], [1,3, 10, 12], [1,8,9, 121, [1, 9, 10, 12]]

(My— My, My — M,, S My— E, S My — E, E My + F My— E, -EM, — F M, + E, E M, + F M,
—E, ~-EMy+EM, —FM,+FM,+SM,—SM,EM, —EM,+FM, —FM,—SM,
+S M)

[E£=0.449981, F =0.082246, S=2.301131, My =0.917170, M, =0.845280, M, =0.910353, M,
=0.999900]

[[0,2,7,11],[0,4,8,11],[0,7,8, 111, [1,2,8, 111, [1,4,8,10], [1,4,8,11], [1,4, 10, 11],
[1,6,10,11],[2,7,8,11], [4,6, 10, 11]]

[[1,2,9,12], [1,2,11,12], [1,2, 11,12, [1,3, 8, 121, [1, 8, 9, 12]]

{My—M,, S My—E, EMy+FMy,—E, -EM, —F M, + E, -EM; — F My +E, -S M, = F +5,
-SMy—F+S, -EMy+EM, —FMy+FM +SM,—SM)

[£=0.399860, F=0.000212, § =2.200280, M, =0.999744, M, =0.999220, M, =0.999900, M,
=0.999220]

[[0,2,7,11],[0,4,7,11],[1,2,10, 111, [1,6, 10, 111, [2,4,7,9], [2,4,7, 111, [2,4,9, 11],
[2,9,10,11], [4,6,10,11], [4,9, 10, 11]]

[[1,2,11,12],[1,3,8,12], [1,3,8, 121, [1,3, 10, 12], [1, 10, 11, 12]]

(My— My, S My— E, S My — E, E My + F My— E, EMy + F My — E, -E My — F My + E, -S M,

—F+S, -EMy +E M, —F My + F My + S My — S M)



[ E=0.399860, F =0.000234, S =2.200280, M, =0.999900, M, =0.999900, M, =0.999708, M,
=0.999166]
[[0,2,7,11],10,6,10, 111, [0,7,8, 111, [0,8,9, 111, [0,9, 10,117, [1,2, 10, 111, [1, 6, 10,
111,12,7,8,111,[2,8,9, 111,[2,9, 10, 11]]
[[1,2,11,12],[1,3,8,12], [1,8,9, 121, [1,9, 10, 12], [1, 10, 11, 12]]
{My — My, My — M, My — My, S My — E, E My + F My— E, -EM, — F M, + E, E M, + F M,
—E, -EM,—FM,+E, -SMy —F+S, -EM,+EM, —F My +FM, + S M, — S M,
EM, —EMy+FM, —FM,—SM, +SM, -EM,+EM—FM,+F M, +5M—S M)
[E£=0.399861, F =0.000213, $ =2.200280, M, = 0.999746, M, =0.999217, M, =0.999746, M @)
=0.999217]



