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restart : with LinearAlgebra :   with Optimization : 
# This MAPLE file takes a list of triangulations computed in sage (via TOPCOM package) and gives as 

output a series of polynomial expressions.
#  Each set of expressions f_1,...,f_m can be used to produce a region of multistationarity for the nKsite 

phosphorylation system as f_1O0,...,f_mO0.

# set n
 nd 3 :
# Since the tables are going to be big, increase the maximum allowed size for tables .
 interface rtablesize = 4C2$n :
# set T[-1] and the matrices A, C and Csimple.
T K1 d 1 :
Ad Transpose Matrix 1, 0, 0 , 0, 1, 0 , 0, 0, 1 , seq 1, i,Ki , i = 1 ..n , seq 1, i, 1Ki , i = 1

..n , 0, 0, 0 ;
Cd Transpose Matrix 1, 0, 0 , 0, 1, 0 , 0, 0, 1 , seq T i , 0, 0 , i = 0 ..nK1 , seq K i $T i

K1 CL i $T i , K i $T iK1 , L i $T i , i = 0 ..nK1 , KS,KE,KF    ;
Csimpled Transpose Matrix 1, 0, 0 , 0, 1, 0 , 0, 0, 1 , seq 1, 0, 0 , i = 0 ..nK1 , seq 1,

M i , 1KM i , i = 0 ..nK1 , KS,KE,KF

1 0 0 1 1 1 1 1 1 0

0 1 0 1 2 3 1 2 3 0

0 0 1 K1 K2 K3 0 K1 K2 0

1 0 0 T0 T1 T2 L0 T0CK0 K1 T0CL1 T1 K2 T1CL2 T2 KS

0 1 0 0 0 0 K0 K1 T0 K2 T1 KE

0 0 1 0 0 0 L0 T0 L1 T1 L2 T2 KF

1 0 0 1 1 1 1 1 1 KS

0 1 0 0 0 0 M0 M1 M2 KE

0 0 1 0 0 0 1KM0 1KM1 1KM2 KF

# Here we define the procedure Foundoriginaltriang that we will use in the end of the present script.
# This will be used when we need to recover the triangulation in L1 that gave a element in L7 used to 

obtain a region of multistationarity. 

Foundoriginaltriangdproc original, T
 local k, aux;
 auxd T;
 for k from 1 to numelems original  do
 if op T  subset op original k 2  then auxd original k 1  fi
 od:
aux;
 end proc:
 
# Here we define validpolytopesindex as the set of triples that index all non zero 3 x3 minors of Csimple.
# This will be used to pass from L2 to L3.

validpolytopesindexd :



for i1 from 1 to ColumnDimension Csimple  do
for i2 from i1C1 to ColumnDimension Csimple  do
for i3 from i2C1 to ColumnDimension Csimple  do
if Determinant Csimple 1 ..3, i1, i2, i3 s 0 then validpolytopesindex
d op validpolytopesindex , i1, i2, i3 ;

end if 
end do end do end do:
# Here we import L1 from a file outputed from SAGE, this is step (1) in the Algorithm.
 
L1d parse ImportData :
# Here we do step (2) of Algorithm to obtain L2 from L1.
# The variables "originals","originals2",..., will keep track from the passage from L1 to L2, L2 to L3 and

so on.
 
L2d :

# We define L2 as a empty list and look at the elements of L1 one by one.
# In each triangulation of L1 we will take only the simplices that contain the last vertex and insert those 

in L2.
# In order to pass from L2 to L3 and so on the technique will be the same, start with a empty list and 

insert the right elements from the preivous one.

 # The originals list is a link between L2 and L3 used after to recover elements of L1 from L2. 
originalsd :
 
for i from 1 to numelems L1  do 
# Here we reset the variable ''auxi2'' that will hold the set of simplices of the triangulation L1[i] to be 

inserted in L2.
auxi2d ;
for l from 1 to numelems L1 i  do
# Here we reset the variable ''auxi'' that will hold (the indexes of) the simplex we are testing.
auxid 0, 0, 0, 0 ;
for j from 1 to 4 do
# This line is needed because on SAGE the vertex are indexed beginning with 0 and we want that they 

start from 1.
auxi j d L1 i l j C1;
od : 
# The next ''if'' makes Step 2  passing from L1 to L2 only the simplexes with the last vertex.
if auxi 4 = ColumnDimension C  then auxi2d op auxi2 , auxi ; fi:
od: 
# In the next line we indeed insert in L2 the set of simplices ''auxi2'', but only if it is not there yet.
if not member auxi2, L2  then
L2d op L2 , auxi2 ;
originalsd originals union L1 i , auxi2 :
 fi: 
od:
# Here we do step 3  of Algorithm to obtain L3 from L2 

by removing all simplices with a corresponding matrix having a zero 3 x3 minor.
# The script is pretty much the same as step (2) but with distinct test condition.
 
L3d :



# The originals2 list is a link between L2 and L3 used after to recover elements of L2 from L3.
originals2d  :

for i from 1 to numelems L2  do  
auxid ;
for l from 1 to numelems L2 i  do
# The next ''if'' makes Step 3  passing from L2 

to L3 only simplexes whose corresponding matrix has no zero 3 x3 minor. 
if L2 i l 1 , L2 i l 2 , L2 i l 3 , L2 i l 1 , L2 i l 2 , L2 i l 4 , L2 i l 1 ,

L2 i l 3 , L2 i l 4 , L2 i l 2 , L2 i l 3 , L2 i l 4  
subset op validpolytopesindex  then

auxid op auxi , L2 i l ;
 fi:
 od:
if not member auxi, L3  then
L3d L3 union auxi ;
 originals2d originals2 union L2 i , auxi :
 fi: 
od: 
# Here we do step 4  of Algorithm to obtain L4 from L3 changing any index 4, 5,..., nC3 to 1.
 
 
L4d :
 
# The originals3 list is a link between L2 and L3 used after to recover elements of L3 from L4. 

originals3d :

 for i from 1 to numelems L3  do  
auxid ; 
for l from 1 to numelems L3 i  do
auxi2d L3 i l  ;
for j from 4 to nC3 do
 # The next line tests if j is a index of L3[i], if it is bb receives true and pp its position.
 bbdmember j, L3 i l ,'pp ' ; 
 if bb = true then
 auxi2 pp d 1;fi;od; 
 # After changing some index to 1 we sort the list of simplices to keep it in the lexicographic order.
auxid sort op auxi , sort auxi2 ; 
 od:
 # The next line is need because after changing some index to we can have duplicates.
if not member auxi, L4  then
L4d L4 union auxi ;
# The originals3 list is a link between L3 and L4 used after to recover elements of L3 from L4. 
originals3d originals3 union L3 i , auxi :
 fi:
od:
# Here we do step 5  of Algorithm to obtain L5 from L4.
 
L5d : 
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for i from 1 to numelems L4  do  
 # If the variable ''auxi'' is 0 we insert L4[i] in L5, and if it is 1 we do not.
 # We reset ''auxi'' as 0 in the next line.
auxid 0;
 # The next loop for will test if L4[i] is contained in any L4[j] with jOi, if it is then we set auxi:=1.
for j from iC1 to numelems L4  while auxi = 0 do  
if  numelems op L4 i  intersect op L4 j = numelems L4 i  then
auxid 1;
 fi;
  od:
 if auxi = 0 then 
L5d L5 union L4 i  
  fi; 
  od: 
# The following  is just a information check.
 
print "This list L1 is the whole list." ;
print "This list L2 consider only the simplices having the origin." ;
print "This list L3 takes out the simplices which the corresponding matrix has a zero 3x3 minor." ;
print "This list L4 replaces indexes 4,5,...,nC3 by 1." ;   

print "This list L5 takes out the triangulations T such that there is another triangulation T' 
containing T." ;   

print "Number of elements of L1, L2,L3, L4, and L5 are." ;
nops L1 ; nops L2 ; nops L3 ; nops L4 ; nops L5 ;

"This list L1 is the whole list."

"This list L2 consider only the simplices having the origin."

"This list L3 takes out the simplices which the corresponding matrix has a zero 3x3 minor."

"This list L4 replaces indexes 4,5,...,nC3 by 1."

"This list L5 takes out the triangulations T such that there is another triangulation T' containing T.
"

"Number of elements of L1, L2,L3, L4, and L5 are."

649

260

100

21

18
# The following counts and displays how many elements of L5 has a determinated size.
# This can be used to guess what will be a good candidate for k.

count2d seq 0, i = 1 ..nops L5 nops L5 :
 for i from 1 to numelems L5  do  
countd nops L5 i :
count2 count d count2 count C1 :
od: 
 for i from 1 to nops count2  do
printf "There is %d  configurations with %d valid polytopes.\n", count2 i , i ; 
 od;
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 for J in L5 do
 print J ;
 od:  
There is 0  configurations with 1 valid polytopes.
There is 0  configurations with 2 valid polytopes.
There is 5  configurations with 3 valid polytopes.
There is 0  configurations with 4 valid polytopes.
There is 10  configurations with 5 valid polytopes.
There is 0  configurations with 6 valid polytopes.
There is 3  configurations with 7 valid polytopes.

1, 2, 3, 10 , 1, 2, 8, 10 , 1, 2, 8, 10

1, 2, 3, 10 , 1, 2, 9, 10 , 1, 2, 9, 10

1, 2, 3, 10 , 1, 3, 7, 10 , 1, 3, 7, 10

1, 2, 3, 10 , 1, 3, 8, 10 , 1, 3, 8, 10

1, 2, 8, 10 , 1, 3, 8, 10 , 2, 3, 8, 10

1, 2, 3, 10 , 1, 2, 8, 10 , 1, 2, 9, 10 , 1, 8, 9, 10 , 2, 8, 9, 10

1, 2, 3, 10 , 1, 3, 7, 10 , 1, 3, 8, 10 , 1, 7, 8, 10 , 3, 7, 8, 10

1, 2, 7, 10 , 1, 2, 9, 10 , 1, 2, 9, 10 , 1, 3, 7, 10 , 2, 3, 7, 10

1, 2, 8, 10 , 1, 3, 7, 10 , 1, 7, 8, 10 , 2, 3, 7, 10 , 2, 7, 8, 10

1, 2, 8, 10 , 1, 3, 7, 10 , 1, 7, 8, 10 , 2, 3, 8, 10 , 3, 7, 8, 10

1, 2, 9, 10 , 1, 3, 7, 10 , 1, 3, 7, 10 , 1, 3, 9, 10 , 2, 3, 9, 10

1, 2, 9, 10 , 1, 3, 7, 10 , 1, 7, 9, 10 , 2, 3, 7, 10 , 2, 7, 9, 10

1, 2, 9, 10 , 1, 3, 7, 10 , 1, 7, 9, 10 , 2, 3, 9, 10 , 3, 7, 9, 10

1, 2, 9, 10 , 1, 3, 8, 10 , 1, 8, 9, 10 , 2, 3, 8, 10 , 2, 8, 9, 10

1, 2, 9, 10 , 1, 3, 8, 10 , 1, 8, 9, 10 , 2, 3, 9, 10 , 3, 8, 9, 10

1, 2, 9, 10 , 1, 3, 7, 10 , 1, 7, 8, 10 , 1, 8, 9, 10 , 2, 3, 7, 10 , 2, 7, 8, 10 , 2, 8, 9, 10

1, 2, 9, 10 , 1, 3, 7, 10 , 1, 7, 8, 10 , 1, 8, 9, 10 , 2, 3, 8, 10 , 2, 8, 9, 10 , 3, 7, 8, 10

1, 2, 9, 10 , 1, 3, 7, 10 , 1, 7, 8, 10 , 1, 8, 9, 10 , 2, 3, 9, 10 , 3, 7, 8, 10 , 3, 8, 9, 10
# In the following we check for each element of L5 the conditions that are needed for it to be positively 

decorated by Csimple.
 
allsolutionsd :
 
 for J in L5 do

 # We  only work with J in L5 with at least 2$ floor
n
2

C1 simplices.

 if numelems J R 2$ floor
n
2

C1 then 

 Jusedd : 
# The variable ''solutions'' will have pairs [I,C].
# Each I is a list of indexes of  simplices.
# The corresponding C is a list of expressions f1,..., fm such that the simplices 

in I are simultaneously positively decorated by Csimple if and only if f1O 0,.., fmO 0.
# Each C has at least the conditions E, F and S that is EO 0, FO 0, S
O 0  because these are total concentrations of chemical species.



# Each C also has 1-M[1],...,1-M[n-1] sinse these M[i] must be less than 1.
# We include in each C the expression 1 as well since the obvious condition 1O0 will help us to 

eliminate bad candidates.

solutionsd Jused, 1, E, F, S, seq 1KM i , i = 0 ..nK1 :
solutionsauxd :
 
 

# The next loop does the following. Start with the first element of J, if it gives viable solutions keep it
and discard it otherwise. 

 
# Then if the second gives condities compatible with the first one keep it and discard it otherwise, 
and so on.

 for j in J do
# Now we compute two sets of conditions for j to be positively decorated by Csimple, conditionsnewa 

and conditionsnewb, these correspond to the two possibilites of the alternating signs of the four 3x3 
minors.

 for i from 1 to 4 do  det i dDeterminant Csimple 1 ..3, subsop i = NULL, j :  od:
 conditionsnewad Kdet 1 , det 2 ,Kdet 3 , det 4 ; 
 conditionsnewbd det 1 ,Kdet 2 , det 3 ,Kdet 4 ; 
 solutionsauxd :
 

# Next we compare conditionsnewa and conditionsnewb with the previous conditions. We include 
only one of them, if there is a compatible one.

 for l in solutions do
  Jusedd l 1 ; conditionsd l 2 ;
if  evalb numelems conditions intersect conditionsnewa R 1 and numelems conditions 

intersect conditionsnewb R 1  = true then
 solutionsauxd solutionsaux union Jused, conditions ;
 fi:
if  evalb numelems conditions intersect conditionsnewb = 0  = true then
 solutionsauxd solutionsaux union op Jused , j , conditions union  conditionsnewa ;
 fi:
 if evalb numelems conditions intersect conditionsnewa = 0  = true then
  solutionsauxd solutionsaux union op Jused , j , conditions union  conditionsnewb ; 
 fi: 
 od: 
 
 solutionsd solutionsaux;
  od: 

  # Finally, in the variable ''allsolutions'' we keep the candidates that give at least k=2$ floor
n
2

C1 regions.

 for k in solutions do

 if numelems k 1 R 2$ floor
n
2

C1 then allsolutionsd allsolutions union k ; fi:

 od:
  



  fi:
  od:

 printf "Number of solutions to try: %d.", numelems allsolutions ;
Number of solutions to try: 15.
# In this part we obtain L7 from ''allsolutions''.
# We do this searching in ''allsolutions'' for the elements for which there are viable parameters 

satisfying the conditions.
# This is the only numerical part of the whole script.
# In the end each J in L7 will contain:
# J 1 = list of simplexes;
# J[2]= corresponding conditions;
# J[3]= a list of real numbers which are viable values for the parameters.
 
interface displayprecision = 6 : L7d :

for j in allsolutions do
conditionsd j 2 :
Jusedd j 1 :
# The next command ''Minimize'' is used to find a numerical solution for the condition.
# If the "Minimize" is able to find one solution then the conditions are viable and are included in L7.

# Since "Minimize" works only with closed conditions we use R 
1

10000
 instead of O 0.  

# If "Minimize" is unable to find a solution it returns a error, because of that we need the ''try'' 
command. In this case the conditions are discarded. 

try

MindMinimize 1, seq conditions j R
1

10000
, j = 1 ..numelems conditions , assume

= nonnegative, iterationlimit = 100 :

 L7d L7 union j 1 , j 2 , Min 2 :
 catch:
 end try:
 end do:
 
 
 

# The next loop for is used to remove the conditions 1O0,EO0,...,1-M[i]O0,M[i]O0 from the 
elements of L7.

 solutionsauxd :
 for k from 1 to numelems L7  do
  solutionsauxd solutionsaux union L7 k 1 , L7 k 2  minus 1, E, F, S, seq 1KM i , i = 0 ..n

K1 , seq M i , i = 0 ..nK1 , L7 k 3 :
 od:
  L7d solutionsaux :
 

 
# The next two loops are used to remove a set of conditions C if it is contained in another. In this 
way we get only maximal regions.

  solutionsauxd :



 for k from 1 to numelems L7  do
 auxd 0 :
 for j from kC1 to numelems L7  do
 if evalb L7 k 2  subset L7 j 2  then
 auxd 1
 fi:
 od:
 if aux = 0 then
 solutionsauxd solutionsaux union L7 k 1 , L7 k 2 , L7 k 3 :
 fi:
 od:
  L7d solutionsaux :
 
 

 printf "There are %d maximal regions, in which there are %d positive solutions each. \n",

numelems L7 , 2$ floor
n
2

C1 ;

 printf "The original triangulations, simplices positively decorated, regions, and a point on each one 
are:" ;

  

for i from 1 to numelems  L7  do
# This line recovers the original triangulations from the final sets obtained. 
Foundoriginaltriang originals, Foundoriginaltriang originals2, Foundoriginaltriang originals3,

L7 i 1 ;
L7 i 1 ;
L7 i 2 ;
L7 i 3 ;  
od;
There are 6 maximal regions, in which there are 3 positive 
solutions each. 
The original triangulations, simplices positively decorated, 
regions, and a point on each one are:

0, 1, 2, 6 , 0, 1, 2, 9 , 0, 1, 6, 7 , 0, 1, 7, 9 , 0, 5, 8, 9 , 0, 7, 8, 9 , 1, 5, 8, 9 , 1, 7, 8,
9

1, 2, 3, 10 , 1, 2, 8, 10 , 1, 2, 9, 10

KE M1KF M1CE,KE M2KF M2CE,KS M1KFCS,KS M2KFCS

E = 1.000000, F = 0.333333, S = 1.000067, M0 = 0.999900, M1 = 0.666567, M2 = 0.666567

0, 2, 6, 9 , 0, 5, 7, 9 , 0, 6, 7, 9 , 1, 2, 5, 7 , 1, 2, 5, 9 , 1, 5, 7, 8 , 2, 5, 7, 9 , 2, 6, 7,
9

1, 2, 3, 10 , 1, 3, 7, 10 , 1, 3, 8, 10

S M0KE, S M1KE, E M0CF M0KE, E M1CF M1KE

E = 0.999900, F = 1.000000, S = 1.000100, M0 = 0.999900, M1 = 0.999900, M2 = 0.999900

0, 2, 6, 9 , 0, 3, 6, 9 , 1, 2, 6, 9 , 1, 3, 6, 8 , 1, 3, 6, 9 , 1, 3, 8, 9 , 1, 5, 8, 9 , 3, 5, 8,
9
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1, 2, 7, 10 , 1, 2, 9, 10 , 1, 2, 9, 10

KE M0KF M0CE,KE M2KF M2CE,KS M0KFCS,KS M2KFCS

E = 1.000000, F = 0.333333, S = 1.000067, M0 = 0.666567, M1 = 0.999900, M2 = 0.666567

0, 2, 6, 9 , 0, 4, 7, 9 , 0, 6, 7, 9 , 1, 2, 7, 9 , 1, 4, 5, 7 , 1, 4, 5, 9 , 1, 4, 7, 9 , 1, 5, 7,
8 , 2, 6, 7, 9

1, 2, 8, 10 , 1, 3, 7, 10 , 1, 7, 8, 10

M0KM1, S M0KE, E M0CF M0KE,KE M1KF M1CE,KS M1KFCS,KE M0CE M1

KF M0CF M1CS M0KS M1

E = 0.399860, F = 0.000234, S = 2.200280, M0 = 0.999708, M1 = 0.999166, M2 = 0.999900

0, 2, 6, 9 , 0, 5, 8, 9 , 0, 6, 8, 9 , 1, 2, 8, 9 , 1, 5, 8, 9 , 2, 6, 8, 9

1, 2, 9, 10 , 1, 3, 7, 10 , 1, 7, 9, 10

M0KM2, S M0KE, E M0CF M0KE,KE M2KF M2CE,KS M2KFCS,KE M0CE M2

KF M0CF M2CS M0KS M2

E = 0.399860, F = 0.000234, S = 2.200280, M0 = 0.999708, M1 = 0.999900, M2 = 0.999166

0, 2, 6, 7 , 0, 2, 7, 9 , 0, 5, 8, 9 , 0, 7, 8, 9 , 1, 2, 8, 9 , 1, 5, 8, 9 , 2, 7, 8, 9

1, 2, 9, 10 , 1, 3, 8, 10 , 1, 8, 9, 10

M1KM2, S M1KE, E M1CF M1KE,KE M2KF M2CE,KS M2KFCS,KE M1CE M2

KF M1CF M2CS M1KS M2

E = 0.399860, F = 0.000234, S = 2.200280, M0 = 0.999900, M1 = 0.999708, M2 = 0.999166


