
(1)(1)

restart : with LinearAlgebra : with Optimization :
This MAPLE file takes a list of triangulations computed in sage (via TOPCOM package) and gives as

output a series of polynomial expressions.
Each set of expressions f_1,...,f_m can be used to produce a region of multistationarity for the nKsite

phosphorylation system as f_1O0,...,f_mO0.

set n
 nd 3 :
Since the tables are going to be big, increase the maximum allowed size for tables .
 interface rtablesize = 4C2$n :
set T[-1] and the matrices A, C and Csimple.
T K1 d 1 :
Ad Transpose Matrix 1, 0, 0 , 0, 1, 0 , 0, 0, 1 , seq 1, i,Ki , i = 1 ..n , seq 1, i, 1Ki , i = 1

..n , 0, 0, 0 ;
Cd Transpose Matrix 1, 0, 0 , 0, 1, 0 , 0, 0, 1 , seq T i , 0, 0 , i = 0 ..nK1 , seq K i $T i

K1 CL i $T i , K i $T iK1 , L i $T i , i = 0 ..nK1 , KS,KE,KF ;
Csimpled Transpose Matrix 1, 0, 0 , 0, 1, 0 , 0, 0, 1 , seq 1, 0, 0 , i = 0 ..nK1 , seq 1,

M i , 1KM i , i = 0 ..nK1 , KS,KE,KF

1 0 0 1 1 1 1 1 1 0

0 1 0 1 2 3 1 2 3 0

0 0 1 K1 K2 K3 0 K1 K2 0

1 0 0 T0 T1 T2 L0 T0CK0 K1 T0CL1 T1 K2 T1CL2 T2 KS

0 1 0 0 0 0 K0 K1 T0 K2 T1 KE

0 0 1 0 0 0 L0 T0 L1 T1 L2 T2 KF

1 0 0 1 1 1 1 1 1 KS

0 1 0 0 0 0 M0 M1 M2 KE

0 0 1 0 0 0 1KM0 1KM1 1KM2 KF

Here we define the procedure Foundoriginaltriang that we will use in the end of the present script.
This will be used when we need to recover the triangulation in L1 that gave a element in L7 used to

obtain a region of multistationarity.

Foundoriginaltriangdproc original, T
 local k, aux;
 auxd T;
 for k from 1 to numelems original do
 if op T subset op original k 2 then auxd original k 1 fi
 od:
aux;
 end proc:

Here we define validpolytopesindex as the set of triples that index all non zero 3 x3 minors of Csimple.
This will be used to pass from L2 to L3.

validpolytopesindexd :

for i1 from 1 to ColumnDimension Csimple do
for i2 from i1C1 to ColumnDimension Csimple do
for i3 from i2C1 to ColumnDimension Csimple do
if Determinant Csimple 1 ..3, i1, i2, i3 s 0 then validpolytopesindex
d op validpolytopesindex , i1, i2, i3 ;

end if
end do end do end do:
Here we import L1 from a file outputed from SAGE, this is step (1) in the Algorithm.

L1d parse ImportData :
Here we do step (2) of Algorithm to obtain L2 from L1.
The variables "originals","originals2",..., will keep track from the passage from L1 to L2, L2 to L3 and

so on.

L2d :

We define L2 as a empty list and look at the elements of L1 one by one.
In each triangulation of L1 we will take only the simplices that contain the last vertex and insert those

in L2.
In order to pass from L2 to L3 and so on the technique will be the same, start with a empty list and

insert the right elements from the preivous one.

 # The originals list is a link between L2 and L3 used after to recover elements of L1 from L2.
originalsd :

for i from 1 to numelems L1 do
Here we reset the variable ''auxi2'' that will hold the set of simplices of the triangulation L1[i] to be

inserted in L2.
auxi2d ;
for l from 1 to numelems L1 i do
Here we reset the variable ''auxi'' that will hold (the indexes of) the simplex we are testing.
auxid 0, 0, 0, 0 ;
for j from 1 to 4 do
This line is needed because on SAGE the vertex are indexed beginning with 0 and we want that they

start from 1.
auxi j d L1 i l j C1;
od :
The next ''if'' makes Step 2 passing from L1 to L2 only the simplexes with the last vertex.
if auxi 4 = ColumnDimension C then auxi2d op auxi2 , auxi ; fi:
od:
In the next line we indeed insert in L2 the set of simplices ''auxi2'', but only if it is not there yet.
if not member auxi2, L2 then
L2d op L2 , auxi2 ;
originalsd originals union L1 i , auxi2 :
 fi:
od:
Here we do step 3 of Algorithm to obtain L3 from L2

by removing all simplices with a corresponding matrix having a zero 3 x3 minor.
The script is pretty much the same as step (2) but with distinct test condition.

L3d :

The originals2 list is a link between L2 and L3 used after to recover elements of L2 from L3.
originals2d :

for i from 1 to numelems L2 do
auxid ;
for l from 1 to numelems L2 i do
The next ''if'' makes Step 3 passing from L2

to L3 only simplexes whose corresponding matrix has no zero 3 x3 minor.
if L2 i l 1 , L2 i l 2 , L2 i l 3 , L2 i l 1 , L2 i l 2 , L2 i l 4 , L2 i l 1 ,

L2 i l 3 , L2 i l 4 , L2 i l 2 , L2 i l 3 , L2 i l 4
subset op validpolytopesindex then

auxid op auxi , L2 i l ;
 fi:
 od:
if not member auxi, L3 then
L3d L3 union auxi ;
 originals2d originals2 union L2 i , auxi :
 fi:
od:
Here we do step 4 of Algorithm to obtain L4 from L3 changing any index 4, 5,..., nC3 to 1.

L4d :

The originals3 list is a link between L2 and L3 used after to recover elements of L3 from L4.

originals3d :

 for i from 1 to numelems L3 do
auxid ;
for l from 1 to numelems L3 i do
auxi2d L3 i l ;
for j from 4 to nC3 do
 # The next line tests if j is a index of L3[i], if it is bb receives true and pp its position.
 bbdmember j, L3 i l ,'pp ' ;
 if bb = true then
 auxi2 pp d 1;fi;od;
 # After changing some index to 1 we sort the list of simplices to keep it in the lexicographic order.
auxid sort op auxi , sort auxi2 ;
 od:
 # The next line is need because after changing some index to we can have duplicates.
if not member auxi, L4 then
L4d L4 union auxi ;
The originals3 list is a link between L3 and L4 used after to recover elements of L3 from L4.
originals3d originals3 union L3 i , auxi :
 fi:
od:
Here we do step 5 of Algorithm to obtain L5 from L4.

L5d :

(2)(2)

for i from 1 to numelems L4 do
 # If the variable ''auxi'' is 0 we insert L4[i] in L5, and if it is 1 we do not.
 # We reset ''auxi'' as 0 in the next line.
auxid 0;
 # The next loop for will test if L4[i] is contained in any L4[j] with jOi, if it is then we set auxi:=1.
for j from iC1 to numelems L4 while auxi = 0 do
if numelems op L4 i intersect op L4 j = numelems L4 i then
auxid 1;
 fi;
 od:
 if auxi = 0 then
L5d L5 union L4 i
 fi;
 od:
The following is just a information check.

print "This list L1 is the whole list." ;
print "This list L2 consider only the simplices having the origin." ;
print "This list L3 takes out the simplices which the corresponding matrix has a zero 3x3 minor." ;
print "This list L4 replaces indexes 4,5,...,nC3 by 1." ;

print "This list L5 takes out the triangulations T such that there is another triangulation T'
containing T." ;

print "Number of elements of L1, L2,L3, L4, and L5 are." ;
nops L1 ; nops L2 ; nops L3 ; nops L4 ; nops L5 ;

"This list L1 is the whole list."

"This list L2 consider only the simplices having the origin."

"This list L3 takes out the simplices which the corresponding matrix has a zero 3x3 minor."

"This list L4 replaces indexes 4,5,...,nC3 by 1."

"This list L5 takes out the triangulations T such that there is another triangulation T' containing T.
"

"Number of elements of L1, L2,L3, L4, and L5 are."

649

260

100

21

18
The following counts and displays how many elements of L5 has a determinated size.
This can be used to guess what will be a good candidate for k.

count2d seq 0, i = 1 ..nops L5 nops L5 :
 for i from 1 to numelems L5 do
countd nops L5 i :
count2 count d count2 count C1 :
od:
 for i from 1 to nops count2 do
printf "There is %d configurations with %d valid polytopes.\n", count2 i , i ;
 od;

(3)(3)

 for J in L5 do
 print J ;
 od:
There is 0 configurations with 1 valid polytopes.
There is 0 configurations with 2 valid polytopes.
There is 5 configurations with 3 valid polytopes.
There is 0 configurations with 4 valid polytopes.
There is 10 configurations with 5 valid polytopes.
There is 0 configurations with 6 valid polytopes.
There is 3 configurations with 7 valid polytopes.

1, 2, 3, 10 , 1, 2, 8, 10 , 1, 2, 8, 10

1, 2, 3, 10 , 1, 2, 9, 10 , 1, 2, 9, 10

1, 2, 3, 10 , 1, 3, 7, 10 , 1, 3, 7, 10

1, 2, 3, 10 , 1, 3, 8, 10 , 1, 3, 8, 10

1, 2, 8, 10 , 1, 3, 8, 10 , 2, 3, 8, 10

1, 2, 3, 10 , 1, 2, 8, 10 , 1, 2, 9, 10 , 1, 8, 9, 10 , 2, 8, 9, 10

1, 2, 3, 10 , 1, 3, 7, 10 , 1, 3, 8, 10 , 1, 7, 8, 10 , 3, 7, 8, 10

1, 2, 7, 10 , 1, 2, 9, 10 , 1, 2, 9, 10 , 1, 3, 7, 10 , 2, 3, 7, 10

1, 2, 8, 10 , 1, 3, 7, 10 , 1, 7, 8, 10 , 2, 3, 7, 10 , 2, 7, 8, 10

1, 2, 8, 10 , 1, 3, 7, 10 , 1, 7, 8, 10 , 2, 3, 8, 10 , 3, 7, 8, 10

1, 2, 9, 10 , 1, 3, 7, 10 , 1, 3, 7, 10 , 1, 3, 9, 10 , 2, 3, 9, 10

1, 2, 9, 10 , 1, 3, 7, 10 , 1, 7, 9, 10 , 2, 3, 7, 10 , 2, 7, 9, 10

1, 2, 9, 10 , 1, 3, 7, 10 , 1, 7, 9, 10 , 2, 3, 9, 10 , 3, 7, 9, 10

1, 2, 9, 10 , 1, 3, 8, 10 , 1, 8, 9, 10 , 2, 3, 8, 10 , 2, 8, 9, 10

1, 2, 9, 10 , 1, 3, 8, 10 , 1, 8, 9, 10 , 2, 3, 9, 10 , 3, 8, 9, 10

1, 2, 9, 10 , 1, 3, 7, 10 , 1, 7, 8, 10 , 1, 8, 9, 10 , 2, 3, 7, 10 , 2, 7, 8, 10 , 2, 8, 9, 10

1, 2, 9, 10 , 1, 3, 7, 10 , 1, 7, 8, 10 , 1, 8, 9, 10 , 2, 3, 8, 10 , 2, 8, 9, 10 , 3, 7, 8, 10

1, 2, 9, 10 , 1, 3, 7, 10 , 1, 7, 8, 10 , 1, 8, 9, 10 , 2, 3, 9, 10 , 3, 7, 8, 10 , 3, 8, 9, 10
In the following we check for each element of L5 the conditions that are needed for it to be positively

decorated by Csimple.

allsolutionsd :

 for J in L5 do

 # We only work with J in L5 with at least 2$ floor
n
2

C1 simplices.

 if numelems J R 2$ floor
n
2

C1 then

 Jusedd :
The variable ''solutions'' will have pairs [I,C].
Each I is a list of indexes of simplices.
The corresponding C is a list of expressions f1,..., fm such that the simplices

in I are simultaneously positively decorated by Csimple if and only if f1O 0,.., fmO 0.
Each C has at least the conditions E, F and S that is EO 0, FO 0, S
O 0 because these are total concentrations of chemical species.

Each C also has 1-M[1],...,1-M[n-1] sinse these M[i] must be less than 1.
We include in each C the expression 1 as well since the obvious condition 1O0 will help us to

eliminate bad candidates.

solutionsd Jused, 1, E, F, S, seq 1KM i , i = 0 ..nK1 :
solutionsauxd :

The next loop does the following. Start with the first element of J, if it gives viable solutions keep it
and discard it otherwise.

Then if the second gives condities compatible with the first one keep it and discard it otherwise,
and so on.

 for j in J do
Now we compute two sets of conditions for j to be positively decorated by Csimple, conditionsnewa

and conditionsnewb, these correspond to the two possibilites of the alternating signs of the four 3x3
minors.

 for i from 1 to 4 do det i dDeterminant Csimple 1 ..3, subsop i = NULL, j : od:
 conditionsnewad Kdet 1 , det 2 ,Kdet 3 , det 4 ;
 conditionsnewbd det 1 ,Kdet 2 , det 3 ,Kdet 4 ;
 solutionsauxd :

Next we compare conditionsnewa and conditionsnewb with the previous conditions. We include
only one of them, if there is a compatible one.

 for l in solutions do
 Jusedd l 1 ; conditionsd l 2 ;
if evalb numelems conditions intersect conditionsnewa R 1 and numelems conditions

intersect conditionsnewb R 1 = true then
 solutionsauxd solutionsaux union Jused, conditions ;
 fi:
if evalb numelems conditions intersect conditionsnewb = 0 = true then
 solutionsauxd solutionsaux union op Jused , j , conditions union conditionsnewa ;
 fi:
 if evalb numelems conditions intersect conditionsnewa = 0 = true then
 solutionsauxd solutionsaux union op Jused , j , conditions union conditionsnewb ;
 fi:
 od:

 solutionsd solutionsaux;
 od:

 # Finally, in the variable ''allsolutions'' we keep the candidates that give at least k=2$ floor
n
2

C1 regions.

 for k in solutions do

 if numelems k 1 R 2$ floor
n
2

C1 then allsolutionsd allsolutions union k ; fi:

 od:

 fi:
 od:

 printf "Number of solutions to try: %d.", numelems allsolutions ;
Number of solutions to try: 15.
In this part we obtain L7 from ''allsolutions''.
We do this searching in ''allsolutions'' for the elements for which there are viable parameters

satisfying the conditions.
This is the only numerical part of the whole script.
In the end each J in L7 will contain:
J 1 = list of simplexes;
J[2]= corresponding conditions;
J[3]= a list of real numbers which are viable values for the parameters.

interface displayprecision = 6 : L7d :

for j in allsolutions do
conditionsd j 2 :
Jusedd j 1 :
The next command ''Minimize'' is used to find a numerical solution for the condition.
If the "Minimize" is able to find one solution then the conditions are viable and are included in L7.

Since "Minimize" works only with closed conditions we use R
1

10000
 instead of O 0.

If "Minimize" is unable to find a solution it returns a error, because of that we need the ''try''
command. In this case the conditions are discarded.

try

MindMinimize 1, seq conditions j R
1

10000
, j = 1 ..numelems conditions , assume

= nonnegative, iterationlimit = 100 :

 L7d L7 union j 1 , j 2 , Min 2 :
 catch:
 end try:
 end do:

The next loop for is used to remove the conditions 1O0,EO0,...,1-M[i]O0,M[i]O0 from the
elements of L7.

 solutionsauxd :
 for k from 1 to numelems L7 do
 solutionsauxd solutionsaux union L7 k 1 , L7 k 2 minus 1, E, F, S, seq 1KM i , i = 0 ..n

K1 , seq M i , i = 0 ..nK1 , L7 k 3 :
 od:
 L7d solutionsaux :

The next two loops are used to remove a set of conditions C if it is contained in another. In this
way we get only maximal regions.

 solutionsauxd :

 for k from 1 to numelems L7 do
 auxd 0 :
 for j from kC1 to numelems L7 do
 if evalb L7 k 2 subset L7 j 2 then
 auxd 1
 fi:
 od:
 if aux = 0 then
 solutionsauxd solutionsaux union L7 k 1 , L7 k 2 , L7 k 3 :
 fi:
 od:
 L7d solutionsaux :

 printf "There are %d maximal regions, in which there are %d positive solutions each. \n",

numelems L7 , 2$ floor
n
2

C1 ;

 printf "The original triangulations, simplices positively decorated, regions, and a point on each one
are:" ;

for i from 1 to numelems L7 do
This line recovers the original triangulations from the final sets obtained.
Foundoriginaltriang originals, Foundoriginaltriang originals2, Foundoriginaltriang originals3,

L7 i 1 ;
L7 i 1 ;
L7 i 2 ;
L7 i 3 ;
od;
There are 6 maximal regions, in which there are 3 positive
solutions each.
The original triangulations, simplices positively decorated,
regions, and a point on each one are:

0, 1, 2, 6 , 0, 1, 2, 9 , 0, 1, 6, 7 , 0, 1, 7, 9 , 0, 5, 8, 9 , 0, 7, 8, 9 , 1, 5, 8, 9 , 1, 7, 8,
9

1, 2, 3, 10 , 1, 2, 8, 10 , 1, 2, 9, 10

KE M1KF M1CE,KE M2KF M2CE,KS M1KFCS,KS M2KFCS

E = 1.000000, F = 0.333333, S = 1.000067, M0 = 0.999900, M1 = 0.666567, M2 = 0.666567

0, 2, 6, 9 , 0, 5, 7, 9 , 0, 6, 7, 9 , 1, 2, 5, 7 , 1, 2, 5, 9 , 1, 5, 7, 8 , 2, 5, 7, 9 , 2, 6, 7,
9

1, 2, 3, 10 , 1, 3, 7, 10 , 1, 3, 8, 10

S M0KE, S M1KE, E M0CF M0KE, E M1CF M1KE

E = 0.999900, F = 1.000000, S = 1.000100, M0 = 0.999900, M1 = 0.999900, M2 = 0.999900

0, 2, 6, 9 , 0, 3, 6, 9 , 1, 2, 6, 9 , 1, 3, 6, 8 , 1, 3, 6, 9 , 1, 3, 8, 9 , 1, 5, 8, 9 , 3, 5, 8,
9

(4)(4)

1, 2, 7, 10 , 1, 2, 9, 10 , 1, 2, 9, 10

KE M0KF M0CE,KE M2KF M2CE,KS M0KFCS,KS M2KFCS

E = 1.000000, F = 0.333333, S = 1.000067, M0 = 0.666567, M1 = 0.999900, M2 = 0.666567

0, 2, 6, 9 , 0, 4, 7, 9 , 0, 6, 7, 9 , 1, 2, 7, 9 , 1, 4, 5, 7 , 1, 4, 5, 9 , 1, 4, 7, 9 , 1, 5, 7,
8 , 2, 6, 7, 9

1, 2, 8, 10 , 1, 3, 7, 10 , 1, 7, 8, 10

M0KM1, S M0KE, E M0CF M0KE,KE M1KF M1CE,KS M1KFCS,KE M0CE M1

KF M0CF M1CS M0KS M1

E = 0.399860, F = 0.000234, S = 2.200280, M0 = 0.999708, M1 = 0.999166, M2 = 0.999900

0, 2, 6, 9 , 0, 5, 8, 9 , 0, 6, 8, 9 , 1, 2, 8, 9 , 1, 5, 8, 9 , 2, 6, 8, 9

1, 2, 9, 10 , 1, 3, 7, 10 , 1, 7, 9, 10

M0KM2, S M0KE, E M0CF M0KE,KE M2KF M2CE,KS M2KFCS,KE M0CE M2

KF M0CF M2CS M0KS M2

E = 0.399860, F = 0.000234, S = 2.200280, M0 = 0.999708, M1 = 0.999900, M2 = 0.999166

0, 2, 6, 7 , 0, 2, 7, 9 , 0, 5, 8, 9 , 0, 7, 8, 9 , 1, 2, 8, 9 , 1, 5, 8, 9 , 2, 7, 8, 9

1, 2, 9, 10 , 1, 3, 8, 10 , 1, 8, 9, 10

M1KM2, S M1KE, E M1CF M1KE,KE M2KF M2CE,KS M2KFCS,KE M1CE M2

KF M1CF M2CS M1KS M2

E = 0.399860, F = 0.000234, S = 2.200280, M0 = 0.999900, M1 = 0.999708, M2 = 0.999166

