```
restart: with(LinearAlgebra): with(Optimization):
# This MAPLE file takes a list of triangulations computed in sage (via TOPCOM package) and gives as
             output a series of polynomial expressions.
# Each set of expressions f 1,...,f m can be used to produce a region of multistationarity for the n —site
            phosphorylation system as f 1>0,...,f m>0.
# set n
 n := 2:
# Since the tables are going to be big, increase the maximum allowed size for tables.
 interface(rtablesize = 4 + 2 \cdot n):
\# set T[-1] and the matrices A, C and Csimple.
T[-1] := 1:
A := Transpose(Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1], seq([1, i, -i], i = 1 ..n), seq([1, i, 1 - i], i = 1))
              ..n), [0, 0, 0]));
C := Transpose(Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1], seq([T[i], 0, 0], i = 0..n - 1), seq([K[i] \cdot T[i], i = 0..n - 1)))
              -1] + L[i] \cdot T[i], K[i] \cdot T[i-1], L[i] \cdot T[i]], i = 0..n - 1), [-S, -E, -F]]));
\textit{Csimple} := \textit{Transpose}(\textit{Matrix}([[1, 0, 0], [0, 1, 0], [0, 0, 1], \textit{seq}([1, 0, 0], \textit{i} = 0..n - 1), \textit{seq}([1, 0, 0], \textit{i} = 0..n
            M[i], 1 - M[i], i = 0..n - 1), [-S, -E, -F])
                                                                                           \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 2 & 1 & 2 & 0 \\ 0 & 0 & 1 & -1 & -2 & 0 & -1 & 0 \end{bmatrix}
                                                                 \begin{bmatrix} 1 & 0 & 0 & T_1 & L_0 & T_0 + K_0 & K_1 & T_0 + L_1 & T_1 & -S \\ 0 & 1 & 0 & 0 & 0 & K_0 & K_1 & T_0 & -E \\ 0 & 0 & 1 & 0 & 0 & L_0 & T_0 & L_1 & T_1 & -F \end{bmatrix}
\begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 1 & -S \\ 0 & 1 & 0 & 0 & 0 & M_0 & M_1 & -E \\ 0 & 0 & 1 & 0 & 0 & 1 - M_0 & 1 - M_1 & -F \end{bmatrix}
                                                                                                                                                                                                                                                                                                                 (1)
# Here we define the procedure Foundariginaltriang that we will use in the end of the present script.
# This will be used when we need to recover the triangulation in L1 that gave a element in L7 used to
            obtain a region of multistationarity.
Foundoriginal triang := proc(original, T)
 local k, aux;
 aux := T:
 for k from 1 to numelems(original) do
 if \{op(T)\}\ subset \{op(original[k][2])\}\ then aux := original[k][1]\ fi
 od:
aux;
 end proc:
```

Here we define validpolytopesindex as the set of triples that index all non zero 3 x3 minors of Csimple. # This will be used to pass from L2 to L3.

validpolytopesindex := []:

```
for il from 1 to ColumnDimension(Csimple) do
for i2 from i1 + 1 to ColumnDimension (Csimple) do
for i3 from i2 + 1 to ColumnDimension (Csimple) do
if Determinant(Csimple [1..3, [i1, i2, i3]]) \neq 0 then validpolytopesindex
     := [op(validpolytopesindex), [i1, i2, i3]];
end if
end do end do end do:
# Here we import L1 from a file outputed from SAGE, this is step (1) in the Algorithm.
L1 := parse(ImportData()):
# Here we do step (2) of Algorithm to obtain L2 from L1.
# The variables "originals", "originals2",..., will keep track from the passage from L1 to L2, L2 to L3 and
    so on.
L2 := \{ \} :
# We define L2 as a empty list and look at the elements of L1 one by one.
# In each triangulation of L1 we will take only the simplices that contain the last vertex and insert those
    in L2.
# In order to pass from L2 to L3 and so on the technique will be the same, start with a empty list and
    insert the right elements from the preivous one.
# The originals list is a link between L2 and L3 used after to recover elements of L1 from L2.
originals := \{ \} :
for i from 1 to numelems(L1) do
# Here we reset the variable "auxi2" that will hold the set of simplices of the triangulation L1[i] to be
    inserted in L2.
auxi2 := [];
for l from 1 to numelems(L1[i]) do
# Here we reset the variable "auxi" that will hold (the indexes of) the simplex we are testing.
auxi := [0, 0, 0, 0];
for j from 1 to 4 do
# This line is needed because on SAGE the vertex are indexed beginning with 0 and we want that they
    start from 1.
auxi[j] := L1[i][l][j] + 1;
od:
# The next "if" makes Step (2) passing from L1 to L2 only the simplexes with the last vertex.
if auxi[4] = ColumnDimension(C) then auxi2 := [op(auxi2), auxi]; fi:
od:
# In the next line we indeed insert in L2 the set of simplices "auxi2", but only if it is not there yet.
if not(member(auxi2, L2)) then
L2 := \{op(L2), auxi2\};
originals := originals union \{ [L1[i], auxi2] \} :
fi:
od:
# Here we do step (3) of Algorithm to obtain L3 from L2
    by removing all simplices with a corresponding matrix having a zero 3 x3 minor.
# The script is pretty much the same as step (2) but with distinct test condition.
```

 $L3 := \{ \} :$

```
# The originals 2 list is a link between L2 and L3 used after to recover elements of L2 from L3.
originals2 := \{ \} :
for i from 1 to numelems(L2) do
auxi := [\ ];
for l from 1 to numelems(L2[i]) do
# The next "if" makes Step (3) passing from L2
    to L3 only simplexes whose corresponding matrix has no zero 3 x3 minor.
if { [L2[i][l][1], L2[i][l][2], L2[i][l][3]], [L2[i][l][1], L2[i][l][2], L2[i][l][4]], [L2[i][l][1],
    L2[i][l][3], L2[i][l][4]], [L2[i][l][2], L2[i][l][3], L2[i][l][4]]}
    subset { op(validpolytopesindex) } then
auxi := [op(auxi), L2[i][l]];
fi:
od:
if not(member(auxi, L3)) then
L3 := L3 \text{ union } \{auxi\};
originals2 := originals2  union \{ [L2[i], auxi] \} :
fi:
od:
# Here we do step (4) of Algorithm to obtain L4 from L3 changing any index 4, 5,..., n + 3 to 1.
L4 := \{ \}:
# The originals 3 list is a link between L2 and L3 used after to recover elements of L3 from L4.
originals 3 := \{ \}:
for i from 1 to numelems(L3) do
auxi := [\ ];
for l from 1 to numelems(L3[i]) do
auxi2 := L3[i][l]:
for j from 4 to n + 3 do
# The next line tests if j is a index of L3[i], if it is bb receives true and pp its position.
bb := member(j, L3[i][l], pp');
if bb = true then
auxi2[pp] := 1; \mathbf{fi}; \mathbf{od};
# After changing some index to 1 we sort the list of simplices to keep it in the lexicographic order.
auxi := sort([op(auxi), sort(auxi2)]);
od:
# The next line is need because after changing some index to we can have duplicates.
if not(member(auxi, L4)) then
L4 := L4 \text{ union } \{auxi\};
# The originals 3 list is a link between L3 and L4 used after to recover elements of L3 from L4.
originals3 := originals3  union \{[L3[i], auxi]\}:
fi:
od:
# Here we do step (5) of Algorithm to obtain L5 from L4.
L5 := \{ \} :
```

```
for i from 1 to numelems (L4) do
# If the variable "auxi" is 0 we insert L4[i] in L5, and if it is 1 we do not.
# We reset "auxi" as 0 in the next line.
auxi := 0:
# The next loop for will test if L4[i] is contained in any L4[j] with j > i, if it is then we set auxi:=1.
for j from i + 1 to numelems(L4) while auxi = 0 do
if numelems(\{op(L4[i])\}\) intersect \{op(L4[j])\}) = numelems(L4[i]) then
auxi := 1;
fi;
 od:
if auxi = 0 then
L5 := L5 \text{ union } \{L4\lceil i\rceil\}
 fi:
 od:
# The following is just a information check.
print("This list L1 is the whole list.");
print("This list L2 consider only the simplices having the origin.");
print("This list L3 takes out the simplices which the corresponding matrix has a zero 3x3 minor.");
print("This list L4 replaces indexes 4,5,...,n+3 by 1.");
    print("This list L5 takes out the triangulations T such that there is another triangulation T'
    containing T.");
print("Number of elements of L1, L2,L3, L4, and L5 are.");
nops(L1); nops(L2); nops(L3); nops(L4); nops(L5);
                                  "This list L1 is the whole list."
                   "This list L2 consider only the simplices having the origin."
   "This list L3 takes out the simplices which the corresponding matrix has a zero 3x3 minor."
                         "This list L4 replaces indexes 4,5,...,n+3 by 1."
"This list L5 takes out the triangulations T such that there is another triangulation T' containing T.
                       "Number of elements of L1, L2,L3, L4, and L5 are."
                                                44
                                                25
                                                 15
                                                                                                        (2)
# The following counts and displays how many elements of L5 has a determinated size.
# This can be used to guess what will be a good candidate for k.
count2 := [seq(0, i = 1 ..nops(L5[nops(L5)]))]:
for i from 1 to numelems(L5) do
count := nops(L5[i]) :
count2[count] := count2[count] + 1:
for i from 1 to nops(count2) do
printf ("There is %d configurations with %d valid polytopes.\n", count2[i], i);
od:
```

```
for J in L5 do
print(J);
od:
                 configurations with 1 valid polytopes.
There is 0
There is 0
                 configurations with 2 valid polytopes.
                 configurations with 3 valid polytopes.
There is 4
There is 0
                 configurations with 4 valid polytopes.
There is 2
                 configurations with 5 valid polytopes.
                              [[1, 2, 3, 8], [1, 2, 7, 8], [1, 2, 7, 8]]
                             [[1, 2, 3, 8], [1, 3, 6, 8], [1, 3, 6, 8]]
                             [[1, 2, 6, 8], [1, 3, 6, 8], [2, 3, 6, 8]]
                             [[1, 2, 7, 8], [1, 3, 7, 8], [2, 3, 7, 8]]
                 [[1, 2, 7, 8], [1, 3, 6, 8], [1, 6, 7, 8], [2, 3, 6, 8], [2, 6, 7, 8]]
                 [[1, 2, 7, 8], [1, 3, 6, 8], [1, 6, 7, 8], [2, 3, 7, 8], [3, 6, 7, 8]]
# In the following we check for each element of L5 the conditions that are needed for it to be positively
    decorated by Csimple.
all solutions := \{ \} :
for J in L5 do
# We only work with J in L5 with at least 2 \cdot \text{floor}\left(\frac{n}{2}\right) + 1 simplices.
if numelems(J) \ge 2 \cdot floor(\frac{n}{2}) + 1 then
Jused := [ ]:
# The variable "solutions" will have pairs [I,C].
# Each I is a list of (indexes of) simplices.
# The corresponding C is a list of expressions f1,..., fm such that the simplices
    in I are simultaneously positively decorated by Csimple if and only if fl > 0,..., fm > 0.
# Each C has at least the conditions E, F and S (that is E > 0, F > 0, S
     > 0) because these are total concentrations of chemical species.
# Each C also has 1-M[1],...,1-M[n-1] sinse these M[i] must be less than 1.
# We include in each C the expression 1 as well since the obvious condition 1 > 0 will help us to
    eliminate had candidates.
solutions := \{ [Jused, \{1, E, F, S, seq(1 - M[i], i = 0 ..n - 1)\}] \} :
solutionsaux := \{ \} :
```

(3)

The next loop does the following. Start with the first element of J, if it gives viable solutions keep it and discard it otherwise.

Then if the second gives condities compatible with the first one keep it and discard it otherwise, and so on.

for j in J do

Now we compute two sets of conditions for j to be positively decorated by Csimple, conditionsnewa and conditionsnewb, these correspond to the two possibilites of the alternating signs of the four 3x3 minors.

```
for i from 1 to 4 do det[i] := Determinant(Csimple[1..3, subsop(i=NULL, j)]): od:
conditionsnewa := \{-det[1], det[2], -det[3], det[4]\};
conditionsnewb := \{det[1], -det[2], det[3], -det[4]\};
solutionsaux := \{ \} :
    # Next we compare conditionsnewa and conditionsnewb with the previous conditions. We include
    only one of them, if there is a compatible one.
for l in solutions do
 Jused := l[1]; conditions := l[2];
if evalb(numelems(conditions intersect conditions newa) \geq 1 and numelems(conditions
    intersect conditionsnewb ) \ge 1 ) = true then
solutionsaux := solutionsaux union \{ [Jused, conditions] \};
if evalb(numelems(conditions intersect conditions newb) = 0) = true then
solutions aux := solutions aux union \{ [[op(Jused), j], conditions union conditions newa] \};
if evalb(numelems(conditions intersect conditions newa) = 0) = true then
 solutions aux := solutions aux union \{ [[op(Jused), j], conditions union conditions newb] \};
fi:
od:
solutions := solutions aux;
 od:
 # Finally, in the variable "all solutions" we keep the candidates that give at least k=2 \cdot floor\left(\frac{n}{2}\right)
     +1 regions.
for k in solutions do
if numelems(k[1]) \ge 2 \cdot floor(\frac{n}{2}) + 1 then all solutions := all solutions union \{k\}; fi:
od:
 fi:
 od:
printf ("Number of solutions to try: %d.", numelems(allsolutions));
Number of solutions to try: 3.
# In this part we obtain L7 from "allsolutions".
# We do this searching in "all solutions" for the elements for which there are viable parameters
    satisfying the conditions.
# This is the only numerical part of the whole script.
# In the end each J in L7 will contain:
\# J[1] = list of simplexes;
\# J[2] = corresponding conditions;
\# J[3] = a list of real numbers which are viable values for the parameters.
interface(displayprecision = 6) : L7 := \{ \} :
for j in all solutions do
conditions := j[2]:
```

```
# The next command "Minimize" is used to find a numerical solution for the condition.
# If the "Minimize" is able to find one solution then the conditions are viable and are included in L7.
# Since "Minimize" works only with closed conditions we use \geq \frac{1}{10000} instead of > 0.
# If "Minimize" is unable to find a solution it returns a error, because of that we need the "try"
     command. In this case the conditions are discarded.
trv
\mathit{Min} := \mathit{Minimize}\Big(1, \Big\{\mathit{seq}\Big(\mathit{conditions}[j] \geq \frac{1}{10000}, j = 1 \; ... \mathit{numelems}(\mathit{conditions})\;\Big)\Big\}, \mathit{assume}
     = nonnegative, iterationlimit = 100):
 L7 := L7 \text{ union } \{ [j[1], j[2], Min[2]] \} :
 catch:
 end try:
 end do:
     # The next loop for is used to remove the conditions 1 > 0, E > 0, ..., 1-M[i] > 0, M[i] > 0 from the
     elements of L7.
 solutionsaux := \{ \} :
 for k from 1 to numelems(L7) do
 solutions aux := solutions aux union \{ [L7[k][1], L7[k][2] minus \{ 1, E, F, S, seq(1-M[i], i=0 ... n \} \} \}
      -1), seq(M[i], i=0..n-1)}, L7[k][3]]}:
 od:
 L7 := solutionsaux:
     # The next two loops are used to remove a set of conditions C if it is contained in another. In this
     way we get only maximal regions.
 solutionsaux := \{ \} :
 for k from 1 to numelems(L7) do
 aux := 0:
 for j from k + 1 to numelems(L7) do
 if evalb(L7[k][2] subset L7[j][2]) then
 aux := 1
 fi:
 od:
 if aux = 0 then
 solutions aux := solutions aux union \{ [L7[k][1], L7[k][2], L7[k][3]] \} :
 fi:
 od:
 L7 := solutionsaux:
printf | "There are %d maximal regions, in which there are %d positive solutions each. \n",
    numelems(L7), 2 \cdot \text{floor}\left(\frac{n}{2}\right) + 1;
```

Jused := j[1]:

printf("The original triangulations, simplices positively decorated, regions, and a point on each one
are:");

for i from 1 to numelems(L7) do

 $-FM_0 + FM_1 + SM_0 - SM_1$

This line recovers the original triangulations from the final sets obtained.

Foundoriginaltriang(originals, Foundoriginaltriang(originals2, Foundoriginaltriang(originals3, L7[i][1]));

L7[i][1];

L7[i][2];

L7[i][3];

od;

There are 1 maximal regions, in which there are 3 positive solutions each.

The original triangulations, simplices positively decorated, regions, and a point on each one are:

$$[[0, 2, 5, 7], [0, 4, 6, 7], [0, 5, 6, 7], [1, 2, 6, 7], [1, 4, 6, 7], [2, 5, 6, 7]]$$

 $[[1, 2, 7, 8], [1, 3, 6, 8], [1, 6, 7, 8]]$

$$\{M_0 - M_1, S M_0 - E, E M_0 + F M_0 - E, -E M_1 - F M_1 + E, -S M_1 - F + S, -E M_0 + E M_1 + E M_2 + E M_1 + E M_2 + E M_2 + E M_1 + E M_2 + E M_2$$

$$[E = 0.399860, F = 0.000234, S = 2.200280, M_0 = 0.999708, M_1 = 0.999166]$$
 (4)