
Algebra and geometry in the study of enzymatic
cascades

Alicia Dickenstein

Abstract In recent years, techniques from computational and real algebraic geom-
etry have been successfully used to address mathematical challenges in systems
biology. The algebraic theory of chemical reaction systems aims to understand their
dynamic behavior by taking advantage of the inherent algebraic structure in the ki-
netic equations, and does not need a priori determination of the parameters, which
can be theoretically or practically impossible. This chapter gives a brief introduc-
tion to general results based on the network structure. In particular, we describe
a general framework for biological systems, called MESSI systems, that describe
Modifications of type Enzyme-Substrate or Swap with Intermediates and include
many post-translational modification networks. We also outline recent methods to
address the important question of multistationarity, in particular in the study of en-
zymatic cascades, and we point out some of the mathematical questions that arise
from this application.

1 Introduction

Westart by introducing the cartoonmechanisms of two enzymatic signalign pathways
depicted in research articles.The important RAS signaling pathway in Figure 1
includes an extracellular ligand and a transmembrane receptor, which trigger a
cascade of protein-protein interactions and enzymatic reactions, then integrated into
key biological responses controlling cell proliferation, differentiation or death.When
this pathway is altered, it can drive to unhealthy cell proliferation [40]. Figure 2
presents a more precise description of the last part of the enzymatic cascade.
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Fig. 1 The RAS signaling pathway, starting in the membrane of the cell

ERK pERK

PH

ppERK

PH

MEK pMEK

PH

ppMEK

PH

RAF pRAF

RAFPH

RAS

Z

PH2

ppERK

Fig. 2 Part of the RAS signaling pathway inside the cell, possibly with retroactivity
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Fig. 3 EnvZ-OmpR bacterial model

Figure 3 depicts an osmolarity regulation network in bacteria, which is imple-
mented in part by the EnvZ/OmpR two-component system [48]. The sensor kinase
EnvZ (denoted by E in the diagram) autophosphorylates on a histidine residue (Ep)
and catalyzes the transfer of the phosphate group to the aspartate residue of the
response regulator OmpR (O), which then acts as an effector. In this mechanism,
when EnvZ is bounded to ATP (ET) also catalyzes hydrolysis of the phosphorylated
OmpR-P (Op), which is a transcription factor that regulates the expression of various
protein pores. This unsual design keeps the limit concentration of OmpR-P at a value
that is independent of the positive initial concentrations.
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When we first look at these biological mechanisms, it does not seem evident that
algebra and geometry can be used to analyze them. But we will argue in this chapter
that this is indeed the case and that we can contribute with these mathematical tools
to the understanding of questions in Systems Biology.

In particular, in the realm of biochemical reaction networks, that is, chemical
reaction networks in biochemistry, the usual mass-action kinetics modeling of the
evolution of the concentrations of the different chemical species along time (as RAS,
RAF, MEK, ERK,E, O, etc. above) yields an autonomous system of polynomial
ordinary differential equations dx

dt = fκ(x) in the unknown vector of concentrations
x of the species as functions of time, for each choice of the (real positive) reaction
rate constants κ (see Definition 1). In fact, these equations are associated to a
labeled directed graph G of reactions. The monomial terms come from the labels
of the nodes of G by complexes in the given species, the coefficients depend on the
(positive) reaction rate constants κ that label the edges of G, and the total production
of each reaction (which is the difference of the labels of the target and source
nodes). The real polynomials fκ(x) carry a combinatorial structure inherited from
G and we will also think of κ as parameters and consider the family of differential
systems parametrized by them. Chemical Reaction Network Theory (CNRT) was
initiated by Horn and Jackson and subsequently by Feinberg and his students and
collaborators [22] and has seen a great development over the last years, when new
combinatorial and algebro-geometric techniques have been introduced. We refer the
reader to the survey article [16] for basic definitions, results and further references,
and we review here some advances developed after that article was published.

In Section 4 we recall the notion of MESSI systems we introduced in [41]. Many
post-translational modification networks are MESSI networks. For example: the
motifs in [23], sequential distributive multisite networks [51], sequential processive
multisite phosphorylation networks [12], phosphorylation cascades or the bacterial
EnvZ/OmpR network from [48] in Figure 3. Our work is inspired by and extends
some results in several previous articles [24, 39, 42, 28, 29, 31, 47, 50]. MESSI is
an acronym for Modifications of type Enzyme-Substrate or Swap with Intermediates
(see Definition 2). Networks with an underlying MESSI structure include many
post-translational modification networks, as well as all linear systems arising from
mass-action kinetics (a.k.a. Laplacian dynamics [38]). We summarize some results
and algorithms based on this structure to predict conservation relations, persistence,
the capacity for multistationarity, and the description of regions of multistationarity.
Once the network has the capacity for multistationarity, the next main question is
how to predict parameters of, if possible, regions in parameter space which give rise
to multistationary systems, which are called multistationarity regions. In Section 5
we comment on several recent approaches to study multistationarity in chemical
reaction networks. Section 6 mentions the mostly unexplored question of the a priori
determination of the occurrence of oscillations in chemical reaction networks, in
particular, in enzymatic networks. We end the paper with two main open questions.
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2 Basics of mass-action kinetics

In this sectionwe set the basic terminology and themathematical conceptsmentioned
in the introduction. In particular, we discuss the notion of multistationarity.

Two-component signal transduction systems enable bacteria to sense, respond,
and adapt to a wide range of environments, stressors, and growth conditions. Before
giving the precise Definition 1, we instantiate mass-action kinetics in a biological ex-
ample of a simple two-componentmechanism. It relies on phosphotransfer reactions.
Upon receiving a signal, the hybrid histidine kinaseHK can self-phosphorylate. This
is a hybrid histidine kinase with two phosphorylatable domains. We denote the phos-
phorylation state of each site by p, if the site is phosphorylated, and 0, if it is not; the
four possible forms are HK00, HKp0, HK0p , HKpp . The response regulator protein
is denoted by RR when it is unphosphorylated and RRp denotes the phosphorylated
form. Given a vector of reaction rate constants k = (k1, . . . , k6) ∈ R

6
>0, the (directed)

graph of reaction equals:

HK00
k1
−→ HKp0

k2
−→ HK0p

k3
−→ HKpp

HK0p + RR
k4
−→ HK00 + RRp

HKpp + RR
k5
−→ HKp0 + RRp

RRp
k6
−→ RR,

where each of the ten nodes corresponds to a complex on the six chemical species,
that we number in the following order: HK00, HKp0, HK0p , HKpp , RR, RRp .
Mass-action kinetics specifies how the respective concentrations x1, . . . , x6 of these
six species evolve with time. The basic principle in this modeling is derived from
the idea that the rate of an elementary reaction is proportional to the probability
of collision of the reactants, which under an independence assumption equals the
product of their concentrations. We derive the following autonomous polynomial
dynamical system dxi

dt = fi(x), i = 1, . . . ,6:

dx1
dt
= −k1 x1 + k4 x3x5,

dx2
dt
= k1 x1 − k2 x2 + k5 x4x5,

dx3
dt
= k2 x2 − k3 x3 − k4 x3x5,

dx4
dt
= k3 x3 − k5 x4x5,

dx5
dt
= −k4 x3x5 − k5 x4x5 + k6 x6,

dx6
dt
= k4 x3x5 + k5 x4x5 − k6 x6.

It is straightforward to check that the following linear dependencies hold and generate
all the linear dependencies among f1, . . . , f6:

f1 + f2 + f3 + f4 = f5 + f6 = 0,
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from which we deduce two linear conservation relations:

x1 + x2 + x3 + x4 = T1, x5 + x6 = T2.

Thus, trajectories lie in a 4-plane in 6-space. The total conservation constants T1,T2
are determined by the initial conditions (x1(0), . . . x6(0)).

Given a numbering of the species as above, we usually identify a complex on these
species with a nonnegative integer vector. For example, the complex y = X3 + X5 is
identified with the vector e3 + e5 = (0,0,1,0,1,0) ∈ Z6

≥0. The general definition is as
follows.

Definition of chemical reaction networks and mass-action kinetics

Definition 1 A chemical reaction network (on a finite set of s species, which we
assume ordered) is a finite labeled directed graphG = (V,E, (κi j)(i, j)∈E, (yi)i=1,...,m),
whose vertices V are labeled by complexes y1, . . . , ym ∈ Z

s
≥0 and whose edges

(i, j) ∈ E are labeled by positive real numbers i
κi j
→ j. We will also say that G is a

network.
Mass-action kinetics specified by the network G gives the following autonomous

system of ordinary differential equations in the concentrations x = (x1, x2, . . . , xs)
of the species as functions of time:

dx
dt

=
∑
(i, j)∈E

κi j xyi (yj − yi) = fκ(x). (1)

Here, dx
dt and yj − yi are column vectors.

Note that the coordinates f1, . . . , fs of fκ are polynomials in R[x1, . . . , xs] (note
that to ease the notation we omit the dependence of fi on κ). Many systems occurring
in population dynamics, for example the oscillatory Lotka-Volterra equations, can be
viewed as arising from a chemical reaction network as in (1), but for instance not the
“chaotic” Lorenz equations. A simple characterization of autonomous dynamical
systems arising from chemical reaction networks under mass-action kinetics has
been given by Hárs and Tóth. We refer to the book [20], which also contains an
introduction to the stochastic modeling of chemical kinetics.

Another direct consequence of the form of the equations in (1) is that for any
trajectory x(t), the vector dx

dt lies for all t (in any interval I containing 0 where it
is defined) in the so called stoichiometric subspace S, which is the linear subspace
generated by the differences {yj − yi | (i, j) ∈ E}. Using the shape of the polynomials
fi it can be seen that the positive orthant Rs

>0 and its closure Rs
≥0 are forward-

invariant for the dynamics. Then, any trajectory x(t) starting at a nonnegative point
x(0) lies for all t ∈ I∩R>0 in the closed polyhedron (x(0)+S)∩Rs

≥0, which is called
a stoichiometric compatibility class, or for short, an S-class.
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Denote by q the codimension of S. Given a basis `1, . . . , `q of linear forms in the
dual of S, let Ti = `i(x(0)), i = 0, . . . ,q. The equations `1(x) = T1, . . . , `q(x) = Tq

of x(0) + S = ST give linear conservation relations and, as above, the constant
coefficient Ti of such a linear equation is called a total conservation constant.

The steady state variety and the notion of multistationarity

The steady state variety Vκ( f ) of the kinetic system (1) equals the nonnegative
real zeros of f1, . . . , fs:

Vκ( f ) = {x ∈ Rs≥0 : f1(x) = · · · = fs(x) = 0}. (2)

An element of Vκ( f ) is called a steady state of the system and corresponds to
a constant trajectory in the nonnegative orthant. We say that system (1) exhibits
multistationarity if there exist at least two positive steady states with the same total
conservation constants, that is, in the same S-class. This is an important property
for chemical reaction networks modeling biological processes, since the ocurrence
of multistationarity allows for different responses of the cell under the same total
conservation constants, depending on the initial conditions.

In fact, our point of view will be the following. The underlying reaction network
(V,E, (yi)i=1,...,m) defines a family of autonomous polynomial dynamical systems
depending on the positive parameters κ ∈ R#E

>0 . We say that it has the capacity for
multistationarity if there is a choice of reaction rate constants κ = (κi j)(i, j)∈E and
total conservation constants T = (T1, . . . ,Tq) for which the intersection of the steady
state variety Vκ( f ) with the positive points of linear variety ST consists of more than
one point (that is: there exist parameters κ andT such that there are at least two points
in the positive orthant lying in the intersection of the steady state variety Vκ( f ) with
the S-class defined by T).

There are many results to decide the capacity for multistationarity of a given
chemical reaction network, starting with [14]. Most of them have been summa-
rized in Theorem 1.4 of [39]. In fact, these results give in general necessary
and sufficient conditions for the stronger condition that the map fκ is injective
on the positive points of all S-classes. There are several implementations of dif-
ferent algorithms, starting with the pioneering algorithm implemented by Fein-
berg and his group in the Chemical Reaction Network Toolbox. The link to the
corresponding webpage together with links to other algorithms can be found at
https://reaction-networks.net/wiki/Mathematics_of_Reaction_Networks. We re-
call some of the tools to address this question in Sections 4 and 5.

In Figure 4, there is a range of values ofT for which there are three positive steady
states on the corresponding translate ST of S (i.e., in an S-class) for a fixed value
κ∗ of positive rate constants. So, the chemical reaction network has the capacity for
multistationarity and κ∗ is a choice of multistationarity parameter.
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Fig. 4 The green curve rep-
resents the steady state va-
riety Vκ∗ ( f ). The subspace
S = {` = 0} is a line.
The number of points of in-
tersection of the translates
ST = {` = T } of S with
Vκ∗ ( f ) in the positive orthant
depends on the total conserva-
tion constant T .

{` = T }{` = 0}

Stoichiometric
compatibility class

Steady state varietyVκ∗( f )

We feature two kinds of multistationarity pictures from the literature. One way
to find the special values rendering these figures is by measurements in experiments
or by exhaustive (and lucky) simulations of the trajectories taking sample values
in the space of parameters and initial conditions. Instead, one can try to develop
algebro-geometric tools to analyze the mathematical models arising from biochem-
ical reaction networks, with the goal of making predictions from the structure of the
networks.

Figure 5 corresponds to a 2-site sequential phosphorylation and dephosphory-
lation that we describe in Section 3 below. This network has 15 parameters: 12
reaction constants and 3 total conservation constants. In the picture, all the reaction
rate constants and two of the total conservation constants have been specialized and
only the total conservation constant Etot of one enzyme is varying. This is considered
to be the input variable (or stimulus) and it is represented on the x-axis. The number
of chemical species is equal to 9, but only one of the phosphorylated substrates s∗ at
steady state is represented, which is consider the response of the system. It happens
that in this case any positive value of s∗ is one coordinate of a positive steady state
and different steady states in the same S-class have different s∗ coordinates. The
steady state s∗-coordinate represented on the y-axis. For small or big values of Etot,
only one value of s∗ is possible, so this is a monostationary regime. In the middle
zone, there are three steady states, two stable and one unstable, so this is the bistable
regime (stability of steady states is determined by the negativity of the real part of
the eigenvalues of the Jacobian). This figure corresponds to a two dimensional very
particular “slice” of points originally in 24 = 15 + 9 variables, where 14 variables
have been specialized and 8 variables are not shown.

Figure 6 represents a two dimensional “slice”, but in parameter space, of another
mechanism that we do not specify, but in which only two of the parameters (a, b) are
allowed to vary. For each of the values of (a, b) outside the line segments separating
the regions, there are either one or three positive steady states, which could be stable
or unstable. In fact, in most biochemical networks these curves separating the regions
are far from being line segments; they are high order algebraic hypersurfaces that
separate different semialgebraic regions where the qualitative dynamics is the same,
in a high dimensional parameter space. Moreover, regions with interesting behaviour
could be small.
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Fig. 5 Only one parameter is allowed to vary

1 stable steady state

2 unstable + 1 stable steady states

1 unstable steady state

3 unstable steady states

a

b

Fig. 6 Only two of the parameters are allowed to vary

The separating hypersurfaces related to the question of multistationarity are de-
scribed by the union of the discriminant associated to the equations describingVκ( f )
and ST with respect to the x variables (which vanishes whenever there is a point
where the intersection of the steady state variety and the S-class is non-transversal),
and the union for any i ∈ {1, . . . , s} of the resultant describing the fact that there is a
common point with xi = 0. In each chamber (connected component) of the comple-
ment of the union of these algebraic varieties, the number of real roots is the same and
moreover, for each of the real roots it holds that the sign of each of the coordinates
does not change as the parameters are moved, and thus the number of real roots with
a fixed sign (for instance, positive roots) is constant along the chamber. We refer the
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reader to the book [26] for the notions of discriminant and resultant, which are in
general not linear. These polynomials in the parameters can be computed effectively
-in theory- via different computational algebraic geometry methods of elimination of
variables, but standard computations are not feasible when there are many variables.
Even if one can compute these equations, it is a very complicated task to describe
then all the possible chambers in the complement of its zero locus, or at least to find
one representative in each chamber. There are implementations by M. Safey El Din,
which work very well in small examples using his package RAGlib [46].

3 Two important families of enzymatic networks

In this section, we introduce common enzymatic mechanisms that will help us
exemplify and clarify the concepts we will introduce in Section 4.

Sequential phosphorylations

The multisite n-phosphorylation system describes the site phosphorylation of a
protein (with n sites where a phosphate group can be absorbed or emitted) by a pair
of enzymes (a kinase and a phosphatase) in a sequential and distributive mecha-
nism. The Nobel Prize in Physiology or Medicine was awarded in 1992 to Edmond
Fischer and Edwin Krebs “for their discoveries concerning reversible protein phos-
phorylation as a biological regulatory mechanism." The kinase and the phosphatase
speed up the transformation of other proteins without being incorporated in the
final products of the process, which is crucial in the regulation of metabolism in
the body. Multi-site phosphorylation plays important regulatory roles in cell cy-
cle regulation and inflammation pathways, and is implicated in multiple disorders,
including Alzheimer disease. Because of the important role played by these sys-
tems in signal transduction networks inside the cell, there is a body of work on the
mathematics of phosphorylation systems (which belong to the more general class of
post-translationalmodification systems).We refer the reader to the papers [33, 42, 49]
and the references therein.

We now describe the special case of a sequential phosphorylation/dephosphory-
lation with n = 2 sites, which is also known as the dual futile cycle. There are
nine species: three substrates (the unphosphorylated substrate S0, the substrate with
one and two phosphorylated sites S1 and S2), two enzymes (the kinase E and the
phosphatase F), and four intermediate species (ES0, ES1,FS2 and FS1). We give to
the twelve rate constants the usual names in the literature [51].
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S0 + E
kon0 // ES0
koff0

oo
kcat0 // S1 + E

kon1 // ES1
koff1

oo
kcat1 // S2 + E

S2 + F
lon1 // FS2
loff1

oo
lcat1 // S1 + F

lon0 // FS1
loff0

oo
lcat0 // S0 + F

We number the species and their concentrations as follows: x1, x2, x3 denote the
respective concentrations of S0,S1,S2; y1, y2, y3, y4 denote the respective concentra-
tions of the intermediate species ES0,ES1,FS2,FS1, x4 is the concentration of the
kinase E , and x5 the concentration of the phosphatase F. The associated system of
ODE’s defined in (1) equals in this case:

dx1
dt
=−kon0 x1x4 + koff0y1 + lcat0y4

dx4
dt
=−kon0 x1x4−kon1 x2x4 + (koff0 + kcat0 )y1

dx2
dt
=−kon1 x2x4 + kcat0y1 + koff1y2 + (koff1 + kcat1 )y2

−lon0 x2x5 + lcat1y3 + loff0y4
dx5
dt
=−lon0 x2x5 − lon1 x3x5 + (loff1 + lcat1 )y3

dx3
dt
=kcat1y2 − lon1 x3x5 + loff1y3 + (loff0 + lcat0 )y4

dy1
dt
=kon0 x1x4 − (koff0 + kcat0 )y1

dy3
dt
=lon1 x3x5 − (loff1 + lcat1 )y3

dy2
dt
=kon1 x2x4 − (koff1 + kcat1 )y2

dy4
dt
=lon0 x2x5 − (loff0 + lcat0 )y4.

There are 3 independent linear conservation laws, for instance:

x1 + x2 + x3 + y1 + y2 + y3 + y4 =Stot

x4 + y1 + y2 =Etot

x5 + y3 + y4 =Ftot,

where Stot,Etot,Ftot are positive real numbers for any choice of initial condition in the
positive orthant. As we pointed out in Section 1, there are 12 + 3 = 15 parameters.
The n-site sequential mechanism is similar, with 3n + 3 variables, 6n reaction rate
constants and always 3 total conservation constants, so a total of 6n + 3 parameters.

Phosphorylation cascades

We have already encountered a coarse diagram of an enzymatic cascade in Figure 2.
MAPkinase cascades are important signal transduction systems inmolecular biology
for which there is also a body of mathematical work, see for instance [35, 40]
and the references therein. These cascades correspond to a network of enzymatic
reactions arranged in layers, where usually in each of them there is a futile cycle of
sequential phosphorylations and such that the fully phosphorylated substrate serves
as an enzyme for the next layer.
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The simplest case of a cascade with the capacity of multistationarity [23] consists
of a cascade with two layers and a single phosphorylation/dephosphorylation at
each layer, with one phosphatase. It corresponds to the a labeled digraph, with 9
variables and 18 parameters, where each single phosphorylation follows the same
mechanism as in our previous example, with an intermediate species. The nine
species are the substrates S0,S1 in the first layer, the substrates P0,P1 in the second
layer, four intermediate complexes, a kinase E and the same phosphatase F to
dephosphorylate the substrates in both layers. The forward enzyme in the second
layer is the phosphorylated substrate S1 from the first layer.

S0 + E
k1

on0 // ES0
k1

off0

oo
k1

cat0 // S1 + E

S1 + F
l1on0 // FS1
l1off0

oo
l1cat0 // S0 + F

P0 + S1
k2

on0 // S1P0
k2

off0

oo
k2

cat0 // P1 + S1

P1 + F
l2on0 // FP1
l2off0

oo
l2cat0 // P0 + F .

This mechanism is usually depicted as follows, hiding the reaction rate constants and
the intermediate species:

S0 S1

F

E

P0 P1

F

In this case, there are 4 linearly independent conservation relations. Denotingwith
small letters the concentration of each of the species, these conservation relations
can be chosen as follows, as predicted in Theorem 3.2 in [41] (see (4) below):

s0 + s1 + es0 + f s1 + s1p0 =Stot

p0 + p1 + s1p0 + f p1 =Ptot

e + es0 =Etot

f + f s1 + f p1 =Ftot,

where Stot,PtotEtot,Ftot are positive real numbers for any choice of initial condition
in the positive orthant.
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We can also consider cascades with any number n of layers. In this case, the
number of variables, the number of reaction rate constants and the number of inde-
pendent linear conservation relations (as well as the number of linear conservation
constants) grow linearly with n.

4 MESSI systems

In this section we recall the notion of MESSI networks from [41], to describe a
common structure underlying the four examples above in their different variants as
well as many “popular” biological networks, that consist of Modifications of type
Enzyme-Substrate or Swap with Intermediates. The occurrence of this structure
allows us to prove general results for quite differentmechanisms. The basic ingredient
of a MESSI structure is a partition of the set of species, which reflects the different
chemical behaviors. This grouping of the chemical species into disjoint subsets is in
accordance with the intuitive partition of the species according to their function that
biochemists have. We will denote the disjoint union of sets with the symbol

⊔
.

Definition of a MESSI system

Definition 2 A MESSI network is a chemical reaction network satisfying the fol-
lowing properties. First of all, there exists a partition of the set S of species

S = S(0)
⊔
S(1)

⊔
S(2)

⊔
· · ·

⊔
S(m), (3)

where m ≥ 1, S(0) is the subset of intermediate species and could be empty, and
all S(i) with i ≥ 1 are nonempty subsets, formed by what we call core species.
We requiere that the complexes and reactions satisfy the following conditions. An
intermediate species can only be part of amonomolecular complex consisting only of
this speces (called an intermediate complex). Non-intermediate complexes are called
core complexes and consist of one or otherwise two chemical species belonging to
different subsets of the partition. Denote by y →◦ y′ the existence of an edge
from complex y to complex y′ or a directed path of reactions from y to y′ through
intermediate complexes. We require that for any intermediate complex y0, there exist
core complexes y, y′ such that y →◦ y0 →◦ y

′. If there are two monomolecular core
complexes y →◦ y′, then both should consist of a species in the same S(α).We further
ask that if there is a reaction between a monomolecular and a bimolecular complex,
the monomolecular complex is an intermediate, and that if y, y′ are bimolecular core
complexes such that y →◦ y′, then there exist two different core subsets S(α),S(β)
in the partition, such that both y and y′ consist of a species in each of them.

When endowedwithmass-action kinetics, aMESSI network gives rise to aMESSI
system of polynomial autonomous ODE’s.
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All the networks we mentioned are MESSI

All the networks we mentioned in the text (plus many other common biochemical
networks) can be endowed with the structure of a MESSI system. We gave different
colors to the different subsets in a possible partition of the species.

For instance, in the cascade depicted in Figure 2 in the Introduction, the interme-
diate species (complexes) are not displayed, but we presented with different colors a
possible partition of the core species that defines a MESSI structure. In the network
depicted in Figure 3 the partition into a subset of intermediate species (in black),
and two subsets of core species (in red and blue) also defines a MESSI structure.

In the two-component system in Section 2, we could take S(0) = ∅, S(1) =
{HK00,HKp0,HK0p,HKpp}, and S(2) = {RR,RRp}.

In the example of the sequential phosphorilation in Section 3, we could take
S(0) = {ES0,ES1,FS2,FS1}, S(1) = {S0,S1,S2}; S(2) = {E}, and S(3) = F. It can be
checked that all conditions are satified. Note that if we consider the coarser partition
with the same set of intermediate species S(0), the same set S(1) of core species, and
just one other set {E,F} of core species, we also have a MESSI structure. In fact,
there is in general a poset of possible partitions (and in other examples there could
be non-comparable partitions).

On the other side, in the example of the cascade in Section 3, we can partition
the set of nine species as follows to define a MESSI structure in the 2-layer cascade:
S(0) consists of the four intermediate species {ES0,FS1,S1P0,FP1}, plus the core
subsets S(1) = {S0,S1}, S(2) = {P0,P1}, S(3) = {E}, and S(4) = {F}.

Conservation laws

The first general results about MESSI systems is that we can describe enough
(explicit) conservation linear relationswith positive coefficients. Given a partition (3)
of the set S of variables into one intermediate subset and m ≥ 1 nonempty core
subsets defining a MESSI structure in a given network G, note that the associated
autonomous polynomial dynamical system defined in (1) is linear in the variables of
each S(i) union the subset Inti consisting of those intermediate species y′ for which
there exists a core complex y containing one species of S(i) such that y →◦ y′ (for
any fixed i = 1, . . . ,m). The union of these subsets Inti equals S(0), but they are in
general not disjoint, because if in the recent notation y also contains a species in
another S(j), then y′ also belongs to Intj . These intersections account for several
important properties of the systems.

Theorem 3.2 in [41] asserts that given a partition of S = {x1, . . . , xs} defining a
MESSI structure as in (3), the following linear forms `1, . . . , `m belong to the dual
of the stoichiometric subspace S:
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`i(x) =
∑

x j ∈S
(i)

xj +
∑

x j ∈Inti

xj, i = 1, . . . ,m. (4)

We refer the reader to Section 3 in [41] for conditions ensuring that these are a basis
of conservation relations (and examples where this is not the case). We conclude
that all MESSI systems are conservative. Thus, all S-classes are compact, and all
trajectories are bounded and defined for any positive time. In fact, given a MESSI
network, if x is a trajectory of the associated mass-action kinetics dynamical system
Ûx(t) = f (x(t)), for all t in an open interval containing R≥0) with x(0) ∈ Rs

>0, let
(T1, . . . ,Tm) = (`1(x(0)), . . . , `m(x(0)). Then, we have that for any t ≥ 0 it holds that
`i(x(t)) = Ti for any i. Then, all the coefficients of the linear form ` =

∑m
i=1 `i are

positive and `(x(t)) =
∑m

i=1 Ti > 0.

The associated digraphs

In order to state some other general results for MESSI networks, we introduce
three associated digraphs G1,G2,GE associated with a givenMESSI network G with
a vector of rate constants k. We refer the reader to Section 3 in [41] for complete
definitions, explanations and examples.

We eliminate all intermediate species to define G1, which naturally inherits a
MESSI structure: the species of G1 are the core species of G, its complexes are
the core complexes of G and there is an edge between two core complexes y, y′

precisely when y →◦ y
′ in G. The rate constants of G1 are rational functions τ(κ)

with nonzero denominator over all positive κ, in such a way that when viewed with
mass action kinetics gives raise to a system of the form Ûx ′ = f 1(x ′), the steady state
variety Vτ(κ)( f 1) of the system defined by G1 is a projection of the steady state variety
Vκ( f ) of the original system. They have been explicitly defined in display (15) of
the Supplementary Material in [24], see displays (5.3) and (5.8) in [6]. To define the
digraph G2, we first consider for any i = 1, . . . ,m the linear network obtained by
“hiding” in the rate constants the concentration of all species xj < S(i). For instance,
an edge Xj + Xk → Xj1 + Xk1 with Xj,Xj1 ∈ S

(i1), Xk,Xk1 ∈ S
(i2), with rate constant

c, gives raise to the following two edges in G2: the edge Xj → Xj1 with rate constant
cxk , and the edge Xk → Xk1 , with rate constant cxj . Note that we get this way a
multidigraph MG2 with possibly repeated edges and loops. We then denote by G2
the digraph derived from MG2 after collapsing multiple edges into a single edge,
with label equal to the sum of the labels of the different edges. The nodes in each
connected component of G2 correspond to the species in one of the subsets S(i) of
the partition if and only if this partition is minimal (in the poset of partitions of S
definining a MESSI structure on G). The digraph G2 is linear (each node is labeled
with a monomolecular complex with a single species) and again, if we formally
associate to it mass-action kinetics, its steady state variety coincides with that of G1.
Finally, we denote by G◦2 the multidigraph obtained from G2 after deleting all loops.
On the other side, the nodes of the digraph GE are the subsets S(1), . . . ,S(m) and
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G1: G◦2 : GE :

S0 + E
τ1
→ S1 + E

S1 + F
τ2
→ S0 + F

P0 + S1
τ3
→ P1 + S1

P1 + F
τ4
→ P0 + F

⇒
S0

τ1e
�
τ2 f

S1

P0
τ3s1
�
τ4 f

P1

S(3) S(1) S(2)

S(4)

Fig. 7 The graphs G1, G◦2 and GE for the phosphorylation cascade in Section 3

G1: G◦2 : GE :

X
τ1
�
τ2

XT
τ3
→ Xp

Xp +Y
τ4
→ X +Yp

XT +Yp
τ5
→ XT +Y ⇒

X
τ1
�
τ2

XT
τ3
→ Xp

τ4y

Y
τ4xp

�
τ5xt

Yp

S(1) � S(2)

Fig. 8 The graphsG1,G◦2 andGE for the EnvZ/OmpR two-component network in the Introduction

there is an edge fromS(i1) toS(i2) with a label contaning as a factor the concentration
of any species in S(i1).

The graphs G1,G◦2 and GE associated to two of the networks in the previous
sections are depicted in Figures 7 and 8.

Persistence

A chemical reaction system (1) is persistent if any trajectory starting from a point
with positive coordinates stays at a positive distance from any point in the boundary,
or informally, if no species which is present can tend to be eliminated in the course
of the reaction. A steady state lying in the boundary of the nonnegative orthant (that
is, with some coordinates equal to zero) is called relevant if it lies in the intersection
of the boundary of the nonnegative orthant with a stoichiometric compatibility class
through a point inRs

>0. AsMESSI systems are conservative, Theorem 2 in [1] proves
that a MESSI system is persistent when there are no relevant boundary steady states.

Given a MESSI network G, we identify the following hypotheses:

(A) The associated digraph G2 is weakly reversible.
(B) The associated digraph GE has no directed cycles.

Hypothesis (A) means that for any pair of nodes in the same connected component,
there is a directed path from one to the other. For instance, in the two examples
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considered in Figures 7 and 8, hypothesis (A) is verified. Hypothesis (B) is also ver-
ified in the case of the cascade network, but not in the EnvZ/OmpR two-component
network. However, even if they sound restrictive, there is a big range of signaling
pathways that satisfy both hypotheses.

Theorem 3.15 in [41] asserts that a MESSI network G which satisfies hypotheses
(A) and (B) does not have relevant boundary steady states, and is thus persistent.
Moreover, as MESSI systems are conservative, a version of Brouwer’s fixed point
theorem ensures the existence of a non-negative steady state in each S-class. So, the
abscence of relevant boundary steady states implies the existence of a positive steady
state in each S-class.

Explicit rational parametrizations

We want to describe the intersection Vκ( f ) ∩ ST in the positive orthant. The
steady state variety is defined in principle by s polynomial equations. Assume the
dimension of S (and thus of ST for any T) equals s − q and can thus be defined by
q linear equations. This implies that there are (at most) s − q linearly independent
polynomials among f1, . . . , fs . A finite number of common solutions is expected,
but this might not be true.

One way to simplify the computation of the intersection is the following. As ST
are linear varieties, they can be parametrized by s − q parameters. One could then
parametrize ST solving for q variables in terms of the other ones and then replace
this in the equations of the steady state variety. This reduces the number of variables
to from s to s − q, but the polynomials f1, . . . , fs are particular, with a monomial
structure that comes from G and we would in general destroy the sparsity.

Denote by V>0,κ( f ) = Vκ( f ) ∩ Rs>0. One could then try to parametrize V>0,κ( f )
but general algebraic varieties do not have rational parametrizations. This is a very
uncommon property for general algebraic varieties. However, rational parametriza-
tions do exist for the positive points of the steady state variety in certain enzymatic
biochemical networks, as proved by Thomson and Gunawardena in [50]. We ex-
tended this result for many other networks of biological interest which are MESSI.
Theorem 4.1 in [41] proves the existence of an explicit and algorithmically con-
structible rational parametrization of V>0,κ( f ) for any MESSI network G satisfying
conditions (A) and (B) above. Moreover, if the partition is minimal with m subsets
of core species, we have that dim V>0,κ( f ) = m = s − dim S.

Moreover, we identify conditions that ensure that this parametrization is mono-
mial, or equivalently, that V>0,κ( f ) can be cut out by binomial equations (that is,
polynomials with two terms) and, in this case, we give explicit binomials in The-
orem 4.8 in [41] for what we call s-toric MESSI systems. Again, the conditions
seem to be very restrictive, but there are plenty of interesting signaling pathways that
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satisfy them; for instance the n-site phosphorilation networks and many enzymatic
cascades, as the ones we presented in Section 3. In the case of the n-sequential phos-
phorilation network (which has 3n + 3 variables) we can parametrize the positive
steady state variety with 3 parameters for any value of n. To compute the intersection
Vκ( f ) ∩ ST (which equals V>0,κ( f ) ∩ ST due to the abscence of relevant boundary
steady states, as we pointed out before), we can write 3 of the variables in terms
of the remaining 3n variables from the 3 conservation relations and replace them
into 3n linearly independent fi (which exist in this case). We could substitute the
parametrization into the conservation relations and thus get 3 equations in 3 vari-
ables. This is what makes the n-site amenable to computations even if in principle
the number or variables tends to infinity with n. Note that if instead we plug in a
parametrization of ST into the equations of the steady state variety, we get a system,
that besides losing sparsity, consists of 3n equations in 3n variables.

Recognizing the existence of a MESSI structure on a given network, checking the
hypotheses in all our results and finding the rational parametrization are algorithmic
and only depend on the structure and not on the particular parameters.

Deciding mulstationarity

The important biologicalmechanismof n sequential phospho-dephosphorylations
has the capacity for multistationarity for n = 2, that is, there can be up to 3 positive
steady states in Vκ( f ) ∩ ST (for particular choices of the rate constants κ and positive
linear conservation constants T). This system has been first studied by L. Wang and
E. Sontag in [51]. They proved that the maximal possible number of positive steady
states is 2n − 1 and identified parameters for which there are n + 1 positive steady
states for n even (and n for n odd). Note that n + 1 = 2n − 1 for n = 2. It has
been proved in [36] that the upper bound 2n − 1 is attained for n = 3,4, and it is
probable that 2n − 1 is a sharp upper bound, but this has not been proven yet for
n ≥ 5. See also [33, 34, 35] for a discussion of other dynamical features (stability
and oscillations).

In fact, the steady states of most popular MESSI systems (including all those
recalled above) present an s-toric structure, andwe gave in this case a characterization
of the capacity for multistationarity, which lead to an algorithm based on tools from
oriented matroid theory. The main ideas in this approach, which go back to [14]
and several other papers, including articles in other applied areas, are collected and
clarified in the paper [39]. We give below a simple version of the multistationarity
results in Section 5 in [41], which is valid for other biochemical reaction networks
for which the positive steady states can be defined by binomials in a parametric
way and satisfying certain conditions (that we can ensure from the structure of the
network, see e.g. Proposition 5.6 in [41]). In particular, these binomials are of the
form pκ = a(κ)xα − b(κ)xβ , with α, β ∈ Zs

≥0, and a, b polynomial functions on the
vector of rate constants κ ∈ Rr>0 taking positive values over Rr>0.
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Given such a binomial pκ , consider the vector vpκ = a − b ∈ Zs (note that
vpκ = −v−pκ , so indeed vpκ are integer vectors defined up to sign). Also, given
a matrix M of size m1 × m2 of rank m1, a subset J of indices of cardinality m1
determines a maximal minor of M , which we denote by MJ .

Deciding mono/multistationarity: Let G be a chemical reaction network. Denote
by S⊥ a matrix whose rows define the dual of the stoichiometric subspace S with
rank(S⊥) = d. Assume thatV>0,κ( f ) is cut out by s−d binomials pj ,κ, j = 1, . . . , s−d,
with exponents vp j ,κ which form the columns of a matrix B. Assume moreover that
rank(B) = s − d. Then, the following statements are equivalent

1. Monostationarity: There is at most a single positive solution in V>0,κ(F) ∩ ST , for
any S-class intersecting the positive orthant, for any κ ∈ Rr>0.

2. For all subsets J ⊆ {1, . . . , s} of cardinality d, the product

(−1)
∑

j∈J j det(S⊥J ) det(B{1,...,s}\J )

either is zero or has the same sign as all other nonzero products, and at least one
such product is nonzero.

The previous result can be turned into an algorithm to decide if a network has
the capacity for multistationarity, together with an algorithm to produce vectors
of rate constants k for which multistationarity occurs (in case the network is not
monostationary).

5 Other approaches to the question of multistationarity

The reader might have noticed that within a reasonable extension for a survey, we
cannot properly define and explain all concepts. This section will then be only a
pointer to some recent papers addressing the question of multistationarity, besides
the articles and tools we have mentioned before. We also refer the reader to the recent
survey [13] and the references therein.

Craciun, Helton and Williams applied in [15] the homotopy invariance of degree
to determine the number of equilibria of biochemical reaction networks and how
this number depends on parameters in the model. Conradi, Feliu, Mincheva and
Wiuf give in [8] necessary and sufficient conditions for the multistationarity of
networks having a positive rational parametrization, in terms of the reaction rate
constants, also based on degree theory. This approach is very interesting since
they can describe open multistationarity regions in rate constant space. However, it
does not describe particular stoichiometric compatibility classes for which there is
multistationarity, as it is also the case with the methods based on signs as the result
we described about mono/multistationarity. The reason is that all these approaches
are related (in more explicit or hidden ways) to properties of a Jacobian, for instance
of an appropriate choice of the polynomials f1, . . . , fs and linear functions `1 −
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T1, . . . , `q−Tq giving equations for ST with respect to the x variables, and so the linear
conservation constants T1, . . . ,Tq do not appear. In [18] we considered extensions
and simplifications of this approach via critical functions, for networks with special
structure, in particular for special MESSI networks which are commonly used in
modeling enzymatic pathways. We also propose a method based on the existence of
triangular forms, relying on techniques from computational algebra.

Sadeghimanesh and Feliu provide in [45] a new determinant criterion to de-
cide whether a network is multistationary, when the network obtained by removing
intermediates has a binomial steady state ideal. In this case, they characterize the
multistationarity structure of the network, i.e. which subsets of complexes are respon-
sible for multistationarity. In particular, they compute the multistationarity structure
of the n-site sequential distributive phosphorylation cycle for any n.

Together with Bihan and Giaroli, we incorporated in [6] a new tool from real
algebraic geometry based on the article [7] by Bihan, Santos, and Spaenlehauer. The
basi idea is the following. Given a sparse polynomial system, that is, with exponents
in a specified finite set of integer points A, if it is possible to find p decorated
simplices in a regular subdivision of A, then it is possible to scale the coefficients
of the given system in an explicit way to get at least p nondegenerate positive real
roots. This gives a lower bound on the number of positive roots. The hypotheses
of regularity of the subdivision means that it comes from a lifting of the points in
A after considering the projection of the domains of linearity of the lower convex
hull of the lifted points. This is what gives the necessary compatibility to find a
common open set in the space of coefficients where the p positive solutions can
be jointly continued. The meaning that a simplex is decorated is the following. Let
{a0, . . . ,ad} ⊂ A denote the set of vertices of a maximal dimensional simplex in
dimension d. Given (Laurent) polynomials g1, . . . ,gd with support A, consider their
subsums of monomials corresponding only to these exponents. So one gets a system
with d polynomials in d variables and d + 1 monomials of the form:

d∑
j=0

cij xai = 0, i = 1, . . . , d.

This system has at most one positive root and it does have a (nondegenerate) positive
root exactly when the following linear system does:

ci0 +
d∑
j=1

cij xi = 0, i = 1, . . . , d.

This condition is equivalent to an alternance of signs of the minors of the d × (d + 1)
real matrix with coefficients ci j . The simplex is said to be decorated by a choice
of coefficients of the input polynomials when this is the case. It is interesting to
note that, differently from the case of complex roots with nonzero coordinates, it
is not always true that the lower bound in the case of positive solutions matches
the maximum number of positive real roots for any regular subdivision. A simple
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example is the following. Assume A = {(0,0), (1,0), (1,2), (2,1)} are the vertices of
a paralellogram of Euclidean volume 2 in the plane. A sparse polynomial system
(g1 = g2 = 0) with this support can have 2 · 2 = 4 isolated complex solutions with
nonzero coordinates by Kouchnirenko’s theorem and 3 positive solutions (and this
number can be attained, see [5] and the references therein). But it is clear that the
support can only have three regular subdivisions: either nothing is subdivided or we
get any of the two subdivisions depicted in Figure 9, so the maximum lower bound
p that one can obtain is 2. Nevertheless, this is up to now the only systematic way to
find conditions on jointly on all the parameters that ensure the existence of several
positive steady states, as for instance degree considerations are eventually based on
parity considerations. But the best advantage of this approach is that it allows us to
describe multistationarity regions in the space of all parameters, both reaction rate
constants and linear conservation constants. Remark however that our conditions are
only sufficient.

Fig. 9 The two proper subdivisions of a circuit

We refer the reader to Section 3 in [27] for a simple example explaining the techical
results in [6]. These tools allowed us to find in that article precise multistationarity
regions in enzyme cascades with any number n of layers of Goldbeter-Koshland
loops (with a single phosphorylation/dephosphorylation in each layer), which are
multistationary as soon as the two first phosphatases are the same. Interestingly, the
number of variables is of the order of 4n and the dimension of the stoichiometric
subspace S is of the order of 2n, so it is cut out by roughly 2n linear equations and
parametrized by a similar number of variables. So, even taking advantage of the
parametrizations of the steady state variety and a translate ST of S, we need to deal
with of the order of 2n equations in 2n variables. When the two layers with the same
phosphatase are the last ones, it is possible to find particular multstationarity reaction
rate constants for the cascade following the approach in [4]. Other papers based on
the study of extrapolation of multistationarity from that of simpler subnetworks are
for instance [9, 37].

In ongoing work with Giaroli, Pérez Millán and Rickster [17], we are able to
use this setting to give a precise region in the space of all parameters for which the
n-sequential phospho/dephosphorylation mechanism can have n+1 for n even (and n
for n odd) positive steady states, assuming that only 1

4 of the intermediate complexes
are part of the reactions. In another recent work Conradi, Iosif, and Kahle [10] also
use tools from polyhedral geometry. They show that for reaction networks whose



Algebra and geometry in the study of cascades 21

positive steady states can be cut out by binomials, multistationarity is scale invariant
in the space of linear conservation constants (that is, if there is multistationarity for
some value of the linear concentration constants, then there is multistationarity on the
entire ray containing this value (possibly for different reaction rate constants). They
consider the chamber decomposition in linear conservation constant space, which
allows them to show that for values of these constants in one of the five chambers
the 2-site sequential phosphorylation network cannot be multistationary.

Other approaches use numeric or symbolic methods to detect points in different
chambers of the complement of the discriminant and the resultants that wementioned
before, see for instance [30, 32]. The general mathematical problem is the search
of positive roots of sparse polynomial systems; see for instance [21] where these
techniques have been applied to a geometric problem.

Stability and convergence

The important question of deciding stability of a given steady state x∗ of a chem-
ical reaction network with fixed constants k∗ can be formalized via Routh-Hurwitz
theorem by means of the satisfiability of certain polynomial inequalities which cor-
respond to minors of the Jacobian matriz at the point x∗, as a pattern of signs of
these minors corresponds to all eigenvalues of the Jacobian having negative real
part. However, this is a difficult question if the point x∗ is given implicitly and if one
tries to trace these inequalities as the parameters vary. So, only in few cases there is
a complete analysis (see for instance [33]).

Another important question is to ensure convergence of the trajectories. Note that
if a trajectory defined on the whole positive real line converges for t → +∞ to a
point p, then p is a steady state. A first question is to decide global convergence
in the presence of a single steady state in each S-class. We refer the reader to the
results (and the references) in [19] for diverse architectures of processive multisite
phoshorylation networks, which are based on previous work by Angeli, De Leenher
and Sontag [2].

6 Oscillations

Another important biological feature is the possible occurence of oscillations. Oscil-
lations have been observed experimentally in signaling networks formed by phospho-
rylation and dephosphorylation, which seems to be the main mechanism in the 24-
hour period in eukaryotic circadian clocks (see for instance [43, 11] and the references
therein). Despite the many articles studying sequential phospho/dephosphorylation
networks, it is not currently known whether in the 2-site sequential mechanism there
could be trajectories which oscillate.

Instead, Suwanmajo and Krishnan showed recently in [49] that oscillations occur
intrinsically in the the dual-site phosphorylation and dephosphorylation network, in
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which the mechanism for phosphorylation is processive while the one for dephos-
phorylation is distributive (or vice-versa), arising from a Hopf bifurcation. We also
refer to the interesting paper [44], where the authors propose a systematic analysis
of the long-term dynamics of phosphorylations systems. They describe bistability
and oscillations when the network has nonzero levels of reaction processivity. Pro-
cessivity means that the intermediate complex does not dissociate into substrate plus
enzime after a phospho/dephosphorylation, but only after two or more. Conradi,
Mincheva, and Shiu showed in [11] for the mixed mechanism in [49] that in the
three-dimensional space of linear conservation constants, the border between the
existence of a stable or an unstable steady state is defined by the vanishing of a
single Hurwitz determinant, which consists generically of simple Hopf bifurcations.
Besides the Routh-Hurwitz criterion, their analysis relies on an algebraic Hopf-
bifurcation criterion due to Yang and a monomial parametrization of the positive
steady state variety. It would be very interesting to extend these kind of analyses to
other mechanisms, in particular, in other phosphorylation networks.

Rendall and Hell studied in [34, 35] the existence of parameters for which Hopf
bifurcations occur and generate periodic orbits in the case of (MAP kinase) cascades.
They also explain how geometric singular perturbation theory allows to generalize
results from simple models to more complex ones. Also Banaji presents in [3] some
results are presented on how oscillation is inherited by chemical reaction networks
(CRNs) when they are built in natural ways from smaller oscillatory networks, show-
ing a particularly nice result for fully open networks (where for any species X , there
are reactions 0 → X and X → 0), also based on regular and singular perturba-
tion theory. We also mention the pioneering work of Karin Gatermann introducing
algebraic and combinatorial techniques for the search of Hopf bifurcations [25].

7 Mathematical challenges

In this section we enumerate some of the main open questions in this area. They
involve difficult mathematical questions and moreover, systems of biological interest
usually have a big number of variables and parameters.

1. Give general precise bounds for the number of positive solutions of (parametric
families of) sparse polynomial systems and apply them to find the number of
positive steady states: (a) develop tools to obtain better lower bounds for the
number of positive steady states; (b) develop tools to get good upper bounds for
the number of positive steady states. Moreover, find regions in parameter space
with the predicted number of positive steady states, or at least where lower/upper
bounds apply.

2. Predict or preclude oscillations from structure: how do (sustained) oscillations
arise in phosphorylation networks? can we find “atoms of oscillation”?Moreover,
describe “regions of oscillation” in parameter space.
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Conclusion

We can use algebro-geometric notions and methods to analyze system biology
models. Algebraic and combinatorial methods allow us to predict (some) qualita-
tive dynamic behaviours of our models from the structure of the network, without
simulations and without measuring all the parameters a priori. We do have several
promising results, but in many cases they tend to be too complex to be understood
or computed. Answers to the above questions would require to develop a combina-
tion of tools from dynamical systems, real algebraic geometry, computational and
numerical algebraic geometry, differential algebra, and biochemistry!
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