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Capítulo 1
Thestructureof

linearmaps

§1.1. Eigenvalues, eigenvectors and eigenspaces

Linear maps

{subsect:eig:maps}

We fix in this section a field k, a vector space V over k and a linear map f ∶ V → V .

A scalar λ ∈ k is an eigenvalue for f if there exists a non-zero vector v inV such that f (v) = λv,
and any such vector is an eigenvector for f corresponding to that eigenvalue. We have to keep in
mind that the eigenvalues of f are elements of the field k: this is very important at the moment of
deciding if an linear map has eigenvalues and finding them. For example, the reader can easily
verify that the R-linear map ( xy ) ∈ R2 ↦ ( −yx ) ∈ R2 has no eigenvalues, while the C-linear map
( xy ) ∈ C2 ↦ ( −yx ) ∈ C2 has two, namely i and −i, even though the two linear maps «have the same
formulas».

For each scalar λ ∈ k we consider in V the subset

Eλ( f ) ∶= {v ∈ V ∶ f (v) = λv}.
{prop:eig:lif }

Proposition 1.1.1. Let f ∶ V → V be a linear map, and let λ be an element of k.
(i) Eλ( f ) is a subspace of V, and it coincides with the kernel of the linear map λ ⋅ idV − f ∶ V → V.

(ii) The subspace Eλ( f ) is non-zero if and only if the scalar λ is an eigenvalue for f .

When Eλ( f ) ≠ 0, so that λ is an eigevalue for f , we call Eλ( f ) the eigenspace of f correspond-
ing to the eigenvalue λ. In that case, the non-zero elements of Eλ( f ) are precisely the eigenvectors
of f corresponding to λ.
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Proof. (i) Let K be the kernel of the map λ ⋅ idV − f ∶ V → V . We will show that Eλ( f ) = K, and
then it will follow immediately that Eλ( f ) is a subspace of V , since the kernel of any linear map is a
subspace of its domain. Now a vector v ∈ V belongs to Eλ( f ) exactly when f (v) = λv = λ ⋅ idV(v),
and this occurs exactly when (λ ⋅ idV − f )(v) = 0, that is, when v ∈ K. This proves what we wanted.

(ii) If Eλ( f ) is not the zero subspace, then there is a non-zero vector v ∈ V such that v ∈ Eλ( f ),
so that f (v) = λv: this vector v is then an eigenvector for f with eigenvalue λ and, in particular,
λ is an eigenvalue of f . Conversely, if λ is an eigenvalue of f then there exists a non-zero vector
v ∈ V such that f (v) = λv, and that vector is a non-zero element of Eλ( f ), so that Eλ( f ) is a
non-zero subspace of V .

An immediate consequence of the proposition is the following criterion:

{coro:eig:lif }
Corollary 1.1.2. Let V be a vector space over a field k, let f ∶ V → V be a linear map, and let λ be

an element of k. The following two statements are equivalent:

(a) The scalar λ is an eigenvalue of f .

(b) The linear map λ ⋅ idV − f ∶ V → V is not injective.
If the vector space V is finite-dimensional, then these two statements are also equivalent to the

following third one:

(c) The linear map λ ⋅ idV − f ∶ V → V is not bijective.

Proof. Proposition 1.1.1 tells us that λ is an eigenvalue for f exactly when the subspace Eλ( f ) is
non-zero, and we also know that the linear map λ ⋅ idV − f ∶ V → V is injective exactly when its
kernel is zero: since Eλ( f ) = ker(λ ⋅ idV − f ), this implies immediately that (a)⇔ (b), and proves
the first part of the proposition.

Let us now suppose that the vector spaceV is finite-dimensional. If the map λ ⋅ idV − f ∶ V → V

is not injective then it is obviously not bijective, and this gives us the implication (b)⇒ (c). On the
other hand, as the vector spaceV is finite-dimensional whenever the linear map λ ⋅ idV − f ∶ V → V

is not bijective it is also not injective, and this gives us the remaining implication (c)⇒ (b).

Observation 1.1.3. When proving the implication (c)⇒ (b) of the corollary we used the following
result:

an endomorphism f ∶ V → V of a finite-dimensional vector space V is injective

if and only if it is bijective.

If we remove the hypothesis of finite-dimensionality then the result is no longer true. For example,
the R-linear map

f ∶ p ∈ R[X] ↦ Xp ∈ R[X]

is injective but not surjective, so it is not bijective — we leave the verification of this as an exercise
for the reader. As a consequence of this fact, if we remove the hypothesis of finite-dimensionality
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from Corollary 1.1.2 then the statement (c) is no longer equivalent to the other two. It is because
of this that in all what follows we will mostly restrict our attention to endomorphisms of finite-
dimensional vector spaces. There is a similar theory for infinite-dimensional vector spaces but it is
more complicated.

Matrices

{subsect:eig:mats}

Let now A ∈Mn(k) be a matrix of size n × n with entries in the field k. We say that a scalar λ ∈ k
is an eigenvalue for A if there is a non-zero vector v ∈ kn such that Av = λv, and any such vector is
an eigenvector for A corresponding to that eigenvalue. Just as for linear maps, for any λ ∈ k we put

Eλ(A) ∶= {v ∈ kn ∶ Av = λv}

and we have the following:

{prop:eig:mats}
Proposition 1.1.4. Let A ∈ Mn(k) and let λ ∈ k. The subset Eλ(A) is a subspace of V, and the

following statements are equivalent:

(a) The scalar λ is an eigenvalue for A.

(b) The subspace Eλ(A) is non-zero.
(c) The determinant of the matrix λ ⋅ In − A is zero.

(d) The rank of the matrix λ ⋅ In − A is less than n.

When the subspace Eλ(A) is non-zero we call it the eigenspace of A corresponding to the
eigenvalue λ. Its elements are the eigenvectors of Awith eigenvalue λ and the zero vector.

Proof. If x and y are two elements of Eλ(A), so that Ax = λx and Ay = λy, and α and β are two
scalars in k, then we have that

A(αx + βy) = αAx + βAy = αλx + βλy = λ(αx + βy),

and this tells us that αx + βy ∈ Eλ(A). It follows from this that Eλ(A) is a subspace of kn.
The scalar λ ∈ k is an eigenvalue for A exactly when there is a non-zero vector v ∈ kn such that

Av = λv, that is, when there is a non-zero element in Eλ(A): this shows that (a)⇔ (b) holds.
On the other hand, a vector v ∈ kn belongs to Eλ(A) if and only if Av = λv or, equivalently,

if and only if (λ ⋅ In − A)v = 0. This means that the subspace Eλ(A) is non-zero exactly when
there are non-zero solutions to the equation (λ ⋅ In − A)v = 0, and this happens exactly when the
determinant of the matrix λ ⋅ In − A is zero, which in turn happens exactly when the rank of that
matrix is less than n. This shows that the statements (b), (c) and (d) are equivalent.
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The connection between the two cases

In all that we will do in what follows we will always have to consider two different but similar
situations: the case in which are working with an endomorphism f ∶ V → V of a finite-dimensional
vector space over a field k, and the case in which we are working with a matrix A ∈Mn(k) with
entries in k. The two cases are closely related, as we know. Let us recall how.

Suppose first that we have a matrix A ∈Mn(k). We can then consider the vector space V = kn
and the linear map

fA ∶ x ∈ V ↦ Ax ∈ V .

The eigenvalues, eigenvectors and eigenspaces of the matrix A that we defined in Section 1.1.2 are
exactly the same as the eigenvalues, eigenvectors and eigenspaces of the linear map fA that we
defined in Section 1.1.1. Indeed,

• a scalar λ is an eigenvalue for A exactly when there is a non-zero vector v in kn such that
Av = λv, and this happens precisely when there is a non-zero vector v in kn such that
fA(v) = λv, that is, when λ is an eigenvalue for fA;

• if λ is a scalar, then a non-zero vector v of kn is an eigenvector for Awith eigenvalue λ if
and only if Av = λv, and clear this occurs exactly when fA(v) = λv, that is, when v is an
eigenvector for fA with eigenvalue λ; and finally

• for each λ in k we have Eλ( fA) = Eλ( fA).
This is very direct — going in the other direction is slightly more elaborated.

Let us suppose now that we have an endomorphism f ∶ V → V of a finite dimensional vector
space V , let n be the dimension of V , and let B = (v1, v2, . . . , vn) an ordered basis for V . Let
moreover A ∶= [ f ]B be the matrix of f with respect to B, so that A = (ai, j) is the unique element
of Mn(k) such that

f (vi) = a1,iv1 + a2,iv2 +⋯ + an,ivn for each i ∈ {1, 2, . . . , n}. (1.1) {eq:fvi}{eq:fvi}

In other words, the entries that appear in ith column of A are the coefficients of the vector f (vi)
in terms of the basis B, in the order given by that ordered basis.

If v is an element of V , then there exist scalars c1, . . . , cn ∈ k, all uniquely determined by v,
such that v = c1v1 + c2v2 +⋯ + cnvn, and as usual we write

[v]B =
⎛
⎜⎜⎜⎜
⎝

c1

c2

⋮
cn

⎞
⎟⎟⎟⎟
⎠
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for the element of kn whose entries are the coordinates of v with respect to the ordered basis B.
In this way we obtain a function

v ∈ V ↦ [v]B ∈ kn {eq:az:a}

that we know to be an isomorphism of vector spaces. In particular, this function is linear, so that

[αv + βw]B = α[v]B + β[w]B (1.2) {eq:az:c1}{eq:az:c1}

whenever v, w ∈ V and α, β ∈ k, and injective, so that

[v]B = 0 Ô⇒ v = 0 (1.3) {eq:az:c2}{eq:az:c2}

for all vectors v in V .

Lemma 1.1.5. Let f ∶ V → V be an endomorphism of a finite-dimensional vector space V, and let n

be the dimension of V, let B be an ordered basis for V, and let A ∶= [ f ]B ∈Mn(k) be the matrix

of f with respect to B. Finally, let λ be a scalar in k.
(i) If v is an element of Eλ( f ), then [v]B is an element of Eλ(A). The function

v ∈ Eλ( f ) ↦ [v]B ∈ Eλ( f )

is an isomorphism of vector spaces.

(ii) The scalar λ is an eigenvalue of the linear map f if and only if it is an eigenvalue of the matrix A.

(iii) A vector v in V is an eigenvector for the linear map f with eigenvalue λ if and only if the vector

of its coordinates [v]B is an eigenvector for the matrix A with eigenvalue λ.

Proof. Suppose that v is an element of Eλ( f ). Since B is an ordered basis for V , there are scalars
c1, c2, . . . , cn ∈ k such that v = c1v1+ c2v2+⋯+ cnvn and, sinceB is linearly independent and v ≠ 0,
not all of those n scalars are zero. Since v ∈ Eλ( f ), we have that f (v) = λv. The right hand side of
this equality is

λc1v1 + λc2v2 +⋯ + λcnvn , (1.4) {eq:az:1}{eq:az:1}

while the left hand side is

f (v) = f (c1v1 + c2v2 +⋯ + cnvn) = c1 f (v1) + c2 f (v2) + ⋯ + cn f (vn),

which according to (1.1) is

= c1(a1,1v1 + a2,1v2 +⋯ + an,1vn) + c2(a1,2v1 + a2,2v2 +⋯ + an,2vn)
+⋯ + cn(a1,nv1 + a2,nv2 +⋯ + an,nvn)

= (c1a1,1 + c2a1,2 +⋯ + cna1,n)v1 + (c1a2,1 + c2a2,2 +⋯ + cna2,n)v2

+⋯ + (c1an,1 + c2an,2 +⋯ + cnan,n)vn .
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Since this last expression is equal to (1.4) and B is linearly independent, we see that

c1a1,1 + c2a1,2 +⋯ + cna1,n = λc1,
c1a2,1 + c2a2,2 +⋯ + cna2,n = λc2,

⋮ ⋮
c1an,1 + c2an,2 +⋯ + cnan,n = λcn .

{eq:az:2}

We can rewrite these n equalities in terms of the matrix A ∶= [ f ]B = (ai, j) and the vector

c ∶= [v]B =
⎛
⎜⎜⎜⎜
⎝

c1

c2

⋮
cn

⎞
⎟⎟⎟⎟
⎠
∈ kn

in the form Ac = λc and, in particular, we see that [v]B is an element of Eλ(A). This proves the
first statement of (i), and shows that we indeed have a function

F ∶ v ∈ Eλ( f ) ↦ [v]B ∈ Eλ(A).

Let us now show that this function is an isomorphism of vector spaces.

• If v and w are two elements of Eλ( f ) and α and β are two scalars in k, then

F(αv + βw) = [αv + βw]B = α[v]B + β[w]B = αF(v) + βF(w),

because (1.2) holds. This tells us that the function F is linear.
• If v ∈ Eλ( f ) is such that F(v) = [v]B = 0, then we know from (1.3) that v = 0, and the linear
function F is therefore injective.

• Finally, we need to check that the function F is surjective. Let us suppose that

c =
⎛
⎜⎜⎜⎜
⎝

c1

c2

⋮
cn

⎞
⎟⎟⎟⎟
⎠

is an element of Eλ(A), so that Ac = λc. This last equality means that the following n

equalities hold:

a1,1c1 + a1,2c2 +⋯ + a1,ncn = λc1,
a2,1c1 + a2,2c2 +⋯ + a2,ncn = λc2,

⋮ ⋮
an,1c1 + an,2c2 +⋯ + an,ncn = λcn .
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Let us now consider the element v ∶= c1v1 + c2v2 +⋯ + cnvn of V . We can compute that

f (v) = f (c1v1 + c2v2 +⋯ + cnvn) = c1 f (v1) + c2 f (v2) +⋯ + cn f (vn)
= c1(a1,1v1 + a2,1v2 +⋯ + an,1vn) + c2(a1,2v1 + a2,2v2 +⋯ + an,2vn)

+ ⋯ + cn(a1,nv1 + a2,nv2 +⋯ + an,nvn)
= (c1a1,1 + c2a1,2 +⋯ + cna1,n)v1 + (c1a2,1 + c2a2,2 +⋯ + cna2,n)v2

+⋯ + (c1an,1 + c2an,2 +⋯ + cnan,n)vn
= λc1v2 + λc2v2 +⋯ + λcnvn
= λv ,

so that v ∈ Eλ( f ). Since of course [v]B = c, we see that c = F(v). This shows that the
function F is surjective.

With this we have completed the proof of part (i) of the lemma.
A scalar λ ∈ k is an eigenvalue for the linear map f if and only if the subspace Eλ( f ) of V

is non-zero, and that subspace is isomorphic to Eλ(A), so it is non-zero exactly when λ is an
eigenvalue for the matrix A. This proves part (ii) of the lemma.

On the other hand, if a vector v in V is an eigenvector for the linear map f with eigenvalue λ,
then it is non-zero and belongs to Eλ( f ), and we know now that implies that [v]B is non-zero
and belongs to Eλ(A), so that it is an eigenvector for the matrix Awith eigenvalue λ. Conversely,
if v ∈ V is such that [v]B is an eigenvector for the matrix A with eigenvalue λ, then [v]B is an
element of Eλ(A) and according to (i) there is a vector w ∈ Eλ( f ) such that [w]B = [v]B . This
implies that v = w, so that v is a non-zero element of Eλ( f ) and, therefore, an eigenvector for f

with eigenvalue λ. This proves the third part of the lemma.

The observations made above allow us to «translate» any problem regarding the eigenvalues
and eigenvectors of a linear map into one regarding the eigenvalues and eigenvalues of a matrix,
and vice versa.

§1.2. Characteristic polynomials

Let n be a positive integer and let A be a matrix in Mn(k). The characteristic polynomial of A is
the polynomial

χA(X) ∶= det(X ⋅ In − A) ∈ k[X].
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The entries of the matrix X ⋅ In − A are polynomials — those that appear along its diagonal are
the polynomials of degree 1 of the form X − a1,1, X − a2,2, . . . , X − an,n, while those that appear in
the other entries are in fact constant polynomials — so the determinant of X ⋅ In − A is itself a
polynomial. We will compute below its degree and some of its coefficients.

Example 1.2.1. If A = (1 2
3 4
) ∈M2(Q), then

X ⋅ In − A = (
X − 1 −2
−3 X − 4) ,

and therefore the characteristic polynomial of A is

χA(X) = ∣
X − 1 −2
−3 X − 4∣ = (X − 1)(X − 4) − 6 = X2 − 5X − 2 ∈ Q[X].

{ex:chi:tri}
Example 1.2.2. Suppose that A = (ai, j) ∈ Mn(k) is an upper triangular matrix, so that for all
choices of i and j in {1, 2, . . . , n} we have that

i < j Ô⇒ ai, j = 0.

In that case, the matrix X ⋅ In − A is also upper triangular, and therefore its determinant is easy to
compute: it is simply the product of the diagonal entries of that matrix. We thus have that

χA(X) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

X − a1,1 −a1,2 −a1,3 ⋯ −a1,n
0 X − a2,2 −a2,3 ⋯ −a2,n

0 0 X − a3,3 ⋯ −a3,n

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ X − an,n

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

= (X− a1,1)(X− a2,2)⋯(X− an,n).

Of course, we can make a similar calculation for lower triangular matrices.

We are interested in the characteristic polynomial of a matrix because its roots are precisely
the eigenvalues of the latter. In order to show this fundamental fact this we will use a simple result
about polynomials and determinants that we will not prove.

Suppose that P = (pi, j) is an n × nmatrix whose entries are polynomials in k[X] and that λ is
an element of k. We can then do two things:

• First, we can construct the matrix (pi, j(λ)) ∈ Mn(k) whose entries are the values of the
polynomials that appear in the original matrix P evaluated at λ, and then compute its
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determinant:

det
⎛
⎜⎜
⎝

p1,1(λ) ⋯ p1,n(λ)
⋮ ⋱ ⋮

pn,1(λ) ⋯ pn,n(λ)

⎞
⎟⎟
⎠

This is an element of k.
• On the other hand, we can instead first compute the determinant det P of the matrix P,
which is polynomial in k[X], and then evaluate the result at λ, obtained again an element
of k that we can write (det P)(λ).

The result we need is that these two scalars are the same.

Example 1.2.3. Let us consider the matrix P = ( X − 1 X + 2
X2 − 3 7

) with entries in Q[X] and the

scalar λ = 2 ∈ Q. If we evaluate the entries of P at 2, we obtained the matrix (1 4
1 7
), whose

determinant is 3. On the other hand, the determinant of P is

∣ X − 1 X + 2
X2 − 3 7

∣ = (X − 1)7 − (X + 2)(X2 − 3) = −X3 − 2X2 + 10X − 1

and the value of this element ofQ[X] at 2 is also 3, as it should be.

Using this fact we can easily prove what we want:

{prop:chi:mats:eig}
Proposition 1.2.4. Let n be a positive integer and let A be a matrix inMn(k). A scalar λ ∈ k is an

eigenvalue of A if and only if χA(λ) = 0.

Proof. Let λ be an element of k. Using the result mentioned above, we see that

the determinant of the matrix λ ⋅ In−A coincides with the value of the polynomial

χA(X) = det(X ⋅ In − A) at λ.
(1.5) {eq:eigdet}{eq:eigdet}

Weknow fromProposition 1.1.4 that λ is an eigenvalue ofA if and only if the determinant of λ⋅In−A
is zero, and (1.5) tells us that this happens exactly when χA(λ) = 0: this is precisely what the
proposition claims.

In cases where we can compute the characteristic polynomial of a matrix, this proposition
gives us an efficient way to check whether a given scalar is an eigenvalue of the matrix or not.

Example 1.2.5. Let us consider the matrix A = (−1 −1
2 −2

) in M2(C). Its characteristic polynomial
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is

χA(X) = det(X + 1 1
−2 X + 2

) = (X + 1)(X + 2) + 2 = X2 + 3X + 4 ∈ C[X],

and the roots of this polynomial are the numbers (−3+ i
√

7)/2 and (−3− i
√

7)/2. The proposition
tells us that these two numbers are precisely the eigenvalues of A.

If we instead view the matrix A as an element of M2(Q) then the characteristic polynomial
is still χA(X) = X2 + 3X + 4, now an element ofQ[X], but is irreducible, so it has no roots inQ.
This tells us that A has no eigenvalues as a matrix over Q.

Example 1.2.6. Let n be a positive integer and let A be a upper triangular matrix in Mn(k),

A =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

a1,1 a1,2 a1,3 ⋯ a1,n

0 a2,2 a2,3 ⋯ a2,n

0 0 a3,3 ⋯ a3,n

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ an,n

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

As we noted in Example 1.2.2, the characteristic of polynomial of A is then

χA(X) = (X − a1,1)(X − a2,2)⋯(X − an,n) ∈ k[X]

and therefore the roots of χA and the eigenvalues of A are the scalars a1,1, a2,2, . . . , an,n that appear
along the diagonal of the matrix.

In Proposition 1.2.8 below we will partially describe the characteristic polynomial of a matrix.
To prove it we will use the following simple observation about polynomials:

Lemma 1.2.7. Let n be a positive integer. If a1, a2, . . . , an are elements of k, then the product

(X − a1)(X − a2) . . . (X − an) is a monic polynomial of degree n in which the coefficient of Xn−1 is

−(a1 + a2 + ⋅ ⋅ ⋅ + an) and whose constant coefficient is (−1)na1a2⋯an.

Proof. We will prove the lemma by induction with respect to the integer n. When n is 1, the claim
is immediate, so there is nothing to do in that case. Let then k be a positive integer, let us suppose
that the claim of the lemma is true when n is k, and let a1, a2, . . . , ak+1 be k + 1 elements of k.
The hypothesis implies that the product (X − a1)(X − a2)⋯(X − ak) is a monic polynomial of
degree k in which the coefficient of Xk−1 is −(a1 + a2 + ⋯ + ak) and the constant coefficient is
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(−1)ka1a2⋯ak . In other words, there are elements b1, b2, . . . , bk−2 in k such that

(X − a1)(X − a2)⋯(X − ak)
= Xk − (a1 + a2 +⋯ + ak)Xk−1 + bk−2X

k−2 +⋯ + b1X + (−1)ka1a2⋯ak .

We therefore have that

(X − a1)(X − a2)⋯(X − ak)(X − ak+1)

= (Xk − (a1 + a2 +⋯ + ak)Xk−1 + bk−2X
k−2 +⋯ + b1X + (−1)ka1a2⋯ak)(X − ak+1)

and distributing we see immediately that this is

= Xk+1 − (a1 + a2 +⋯ + ak + ak+1)Xk−1 +⋯ + (−1)k+1a1a2⋯akak+1.

This tells us that the claim of the lemma is also true when n is k + 1 and, by induction, that it is
actually true for all positive integers n.

Using this lemma and Leibniz’s formula for the determinant of a matrix we can easily compute
the degree of the characteristic polynomial of a matrix and three of its coefficients.

{prop:chi:mats:deg}
Proposition 1.2.8. Let n be a positive integer and let A be a matrix inMn(k). The characteristic

polynomial χA of A is monic and has degree exactly n. Moreover, the coefficient of Xn−1 in χA is

equal to − trA, and the constant coefficient is (−1)n detA, so that

χA(X) = Xn − trA ⋅ X +⋯ + (−1)n detA.

Proof. Let B = (bi, j) be the matrix X ⋅ In −A, so that the characteristic polynomial χA of A is detB.
According to Leibniz’s formula, we have

detB = ∑
σ

sgn(σ) ⋅ b1,σ(1)b2,σ(2) . . . bn,σ(n). (1.6) {eq:lei:1}{eq:lei:1}

In this sum there is one term for each permutation σ of the set JnK, and for each such permutation σ

we have written sgn(σ) for the sign of σ . Let us look in some detail at the terms of the sum.

• If σ is the identity permutation id, so that σ(i) = i for all i ∈ JnK, then we have sgn(σ) = 1
and the term corresponding to σ in the sum above is

sgn(σ) ⋅ b1,σ(1)b2,σ(2) . . . bn,σ(n) = b1,1b2,2⋯bn,n = (X − a1,1)(X − a2,2) . . . (X − a2,2).

According to the lemma, this is a monic polynomial of degree n in which the coefficient
of Xn−1 is −(a1,1 + a2,2 + ⋅ ⋅ ⋅ + an,n) = − trA.

11



• Let now σ be a permutation of JnK that is not the identity permutation. There is then an
element k in JnK such that σ(k) ≠ k. As σ is an injective function JnK→ JnK, we also have
that σ(σ(k)) ≠ σ(k): we thus see that the set {i ∈ JnK ∶ σ(i) = i} has at most n−2 elements,
so that in the product

b1,σ(1)b2,σ(2) . . . bn,σ(n)

at most n−2 of the factors are diagonal entries of the matrix B and therefore are polynomials
of degree 1, while the remaining factors are all elements of k. It follows immediately from
this that this product, and thus the term corresponding to the permutation σ in the sum (1.6),
have both degree at most equal to n − 2.

Of course, we have that

detB = b1,1b2,2 . . . bn,n + ∑
σ≠id

sgn(σ) ⋅ b1,σ(1)b2,σ(2) . . . bn,σ(n).

Our first observation above tells us that the first summand here is a monic polynomial of degree n
in which the coefficient of Xn−1 is − trA, and our second observation implies that the second
summand is a polynomial of degree at most n−2. It follows from all this that detB itself is a monic
polynomial of degree n in which the coefficient of Xn−1 is − trA, and thus that the claim of the
proposition holds.

This proposition has the following very important corollary:

{coro:chi:mats:n}
Corollary 1.2.9. Let n be a positive integer. A matrix inMn(k) has at most n eigenvalues in k.

Proof. Indeed, if A is a matrix in Mn(k), then the characteristic polynomial of χA has degree n,
and the eigenvalues of A are precisely the roots of χA in k, so there are at most n of them.

In the following example we will compute the characteristic polynomials of a family of matrices
that will be very important later.

{ex:companion}

Example 1.2.10. Let n be a positive integer, and let p = a0 + a1X +⋯+ an−1Xn−1 + Xn be a monic

12



polynomial of degree n. The companion matrix of the polynomial p is the n × n matrix

C(p) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 ⋯ 0 0 −a0
1 0 0 ⋯ 0 0 −a1
0 1 0 ⋯ 0 0 −a2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ 0 0 −an−3

0 0 0 ⋯ 1 0 −an−2

0 0 0 ⋯ 0 1 −an−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

For example, when n is 1, 2 or 3, the matrices C(p) are, respectively,

(−a0) , (0 −a0
1 −a1

) ,
⎛
⎜⎜
⎝

0 0 −a0
1 0 −a1
0 1 −a2

⎞
⎟⎟
⎠
.

We want to show that

the characteristic polynomial χC(p) of the companion matrix of p is precisely p.

To do this we need to compute the determinant of the matrix

X ⋅ In − C(p) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X 0 0 ⋯ 0 0 a0

−1 X 0 ⋯ 0 0 a1

0 −1 X ⋯ 0 0 a2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ X 0 an−3

0 0 0 ⋯ −1 X an−2

0 0 0 ⋯ 0 −1 an−1 + X

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

If we add to the first row of this matrix its second row multiplied by X, its third row multiplied
by X2, and so on up to its nth row multiplied by Xn−1 we obtain the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 ⋯ 0 0 p(X)
−1 X 0 ⋯ 0 0 a1

0 −1 X ⋯ 0 0 a2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ X 0 an−3

0 0 0 ⋯ −1 X an−2

0 0 0 ⋯ 0 −1 an−1 + X

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Now, using Laplace’s formula to expand this determinant along its first row we see that that
determinant is

(−1)n+1p(X)

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

−1 X 0 ⋯ 0 0
0 −1 X ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ X 0
0 0 0 ⋯ −1 X

0 0 0 ⋯ 0 −1

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

= (−1)n+1p(X)(−1)n−1 = p(X),

because the last matrix is upper triangular. This proves what we wanted.

{ex:chi:but}
Exercise 1.2.11. Let A be a matrix in Mn(k) that is block upper triangular, that is, such that there is
an integer m with 0 < m < n and matrices A1,1 ∈Mm(k), A2,2 ∈Mn−m(k) and A1,2 ∈Mm,n−m(k)
such that

A = (A1,1 A1,2

0 A2,2
) .

Prove that χA(X) = χA1,1(X) ⋅ χA2,2(X). Extend this results for general block upper triangular
matrices of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A1,1 A1,2 A1,3 ⋯ A1,n−1 A1,n

0 A2,2 A2,3 ⋯ A2,n−1 A2,n

0 0 A3,3 ⋯ A3,n−1 A3,n

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ An−1,n−1 An−1,n

0 0 0 ⋯ 0 An,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

for some choice of positive integers m1, . . . , mn and matrices Ai, j ∈ Mm i ,m j
(k) for each

i, j ∈ {1, 2, . . . , n}.

Wehave defined the characteristic polynomial ofmatrices, andwewill next define characteristic
polynomials for linear maps. We start with a simple observation:

Lemma 1.2.12. Let n be a positive integer. If A and B are two matrices inMn(k) that are similar,

then the characteristic polynomials of A and of B are equal.

In view of Proposition 1.2.8, this lemma implies in particular that two similar matrices have
the same determinant and the same trace — something that we already know, of course.
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Proof. Indeed, if A and B are matrices in Mn(k) that are similar, so that there exists an invertible
matrix C in Mn(k) such that A = CBC−1, then characteristic polynomial of A is

χA(X) = det(X ⋅ In − A) = det(X ⋅ CC−1 − CBC−1) = detC(X ⋅ In − B)C−1

= detC ⋅ det(X ⋅ In − B) ⋅ detC−1 = det(X ⋅ In − B) = χB(X).

Suppose now that V is a non-zero finite-dimensional vector space over a field k, let n be its
dimension, and let B = (v1, 2, . . . , vn) be an ordered basis for V . We can then construct the
matrix [ f ]B of the linear map f with respect to the ordered basis B, and define the characteristic
polynomial χ f of f to be the characteristic polynomial of the matrix [ f ]B ,

χ f ∶= χ[ f ]B .

Of course, for this to make sense we need to verify that the polynomial χ[ f ]B depends only on
the linear map f and not on the choice of the ordered basis B. To do that, let us suppose that
B′ = (v′1 , . . . , v′n) is another ordered basis for V . We know then that there exists an invertible
matrix C = (ci, j) in Mn(k), the change of basis matrix, such that v′i = ∑n

j=1 c j,iv j for each
i ∈ {1, 2, . . . , n}, and that moreover [ f ]B ⋅ C = C ⋅ [ f ]B′ . It follows from this, of course, that
[ f ]B = C ⋅ [ f ]B′ ⋅ C−1 and, according to the lemma, that the two matrices [ f ]B and [ f ]B′ have
the same characteristic polynomial. This proves what we needed.

The following proposition combines the results of Proposition 1.2.4, Proposition 1.2.8, and
Corollary 1.2.9 and reinterprets them in terms of linear maps.

{prop:chi:f }
Proposition 1.2.13. Let V be a finite-dimensional vector space, let n be the dimension of V, and let

f ∶ V → V be a linear map.

(i) A scalar λ is an eigenvalue for f if and only if it is a root of the characteristic polynomial χ f .

(ii) The characteristic polynomial χ f is monic and of degree exactly n. The coefficient of Xn−1 in χ f

is − tr f and the constant term is (−1)n det f .
(iii) The map f has at most n eigenvalues.

Exercise 1.2.14. Prove the proposition.

Observation 1.2.15. Wehave defined the characteristic polynomial of an endomorphism f ∶ V → V

only when the vector space V is finite-dimensional, and our definition only makes sense in that
situation. Indeed, if V is infinite-dimensional then any «matrix» for f with respect to a basis of V
will necessarily be an infinite matrix, and we cannot compute determinants of such a thing.
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§1.3. The linear independence of eigenvectors

The purpose of this section is to establish a fundamental property of eigenvectors. To do that we
need the following simple lemma.

{lemma:pfv}
Lemma 1.3.1. Let f ∶ V → V be an endomorphism of a vector space, and let v ∈ V be an eigenvector

of f with eigenvalue λ ∈ k. If p ∈ k[X] is a polynomial, then p( f )(v) = p(λ) ⋅ v.

Proof. As f (v) = λv, we have that f 2(v) = f ( f (v)) = f (λv) = λ2v and, more generally, that
f i(v) = λiv for all i ∈ N0. Let now p ∈ k[X] be a polynomial, so that there is a non-negative
integer d and scalars a0, a1, a2, . . . , ad ∈ k such that p(X) = a0 + a1X + ad f 2 +⋯+ adXd . We can
then compute that

p( f )(v) = (a0idV + a1 f + a2 f
2(v) +⋯ + ad f d)(v)

= a0v + a1 f (v) + a2 f
2(v) +⋯ + ad f d(v)

= a0v + a1λv + a2λ
2
v +⋯ + adλdv

= (a0 + a1λ + a2λ
2 +⋯ + adλd)v

= p(λ) ⋅ v ,

and this is precisely what the lemma claims.

Using this lemma we can prove that eigenvectors with different eigenvalues are always linearly
independent.

{prop:eig:li}
Proposition 1.3.2. Let f ∶ V → V be an endomorphism of a linear map, let v1, v2 . . . , vk be eigenvec-

tors of f , and let λ1, λ2, . . . , λk ∈ k be the corresponding eigenvalues. If the scalars λ1, λ2, . . . , λk are

pairwise different, then the vectors v1, v2, . . . , vk are linearly independent.

Proof. Let us suppose the eigenvalues λ1, λ2, . . . , λk are pairwise different, and that we have
scalars a1, a2, . . . , ak ∈ k such that

0 = a1v1 + a2v2 +⋯ + akvk . {eq:lip}

Let i be an element of {1, 2, . . . , k}, and let us consider the polynomial

pi(X) = (X − λ1)⋯(X − λi−1)(X − λi+1)⋯(X − λk) ∈ k[X]

with is the product of all the differences X − λ j with 1 ≤ j ≤ k and j ≠ i. If l ∈ {1, 2, . . . , k}, then
the lemma implies at once that

pi( f )(vl) = pi(λl) ⋅ vl =
⎧⎪⎪⎨⎪⎪⎩

0 if l ≠ i;
pi(λi) ⋅ vi if l = i.
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It follows from this that

0 = pi( f )(a1v1 + a2v2 +⋯ + akvk) = a1pi( f )(v1) + a2pi( f )(v2) + ⋯ + akpi( f )(vk)
= ai pi(λi) ⋅ vi .

Since vi ≠ 0 and pi(λi) ≠ 0, this allows us to conclude that ai = 0 and, since this is so for all
choices of i in {1, 2, . . . , k}, it proves that the vectors v1, v2, . . . , vk are linearly independent.

Eigenvectors are by definition non-zero vectors, andwe used this in the proof of the proposition.
We can deduce from the proposition a slightly different statement which is often useful:

{coro:eig:lix}
Corollary 1.3.3. Let f ∶ V → V be an endomorphism of a linear map, and let λ1, λ2, . . . , λk ∈ k
be pairwise different eigenvalues of f . If v1 ∈ Eλ1( f ), v2 ∈ Eλ2( f ), . . . , vk ∈ Eλk

( f ) are such that

v1 + v2 +⋯ + vk = 0, then v1 = v2 = ⋯ = vk = 0.

Proof. Let v1 ∈ Eλ1( f ), v2 ∈ Eλ2( f ), . . . , vk ∈ Eλk
( f ) be such that v1+v2+⋯+vk = 0, let us suppose

that the set I ∶= {i ∈ {1, 2, . . . , k} ∶ vi ≠ 0} is not empty, and let i1, . . . , ir be its elements listed
in increasing order. We then have that vi1 , vi2 , . . . , vir are eigenvectors of f with corresponding
eigenvalues λi1 , λi2 , . . . , λir , and that vi1 + vi2 +⋯ + vir = 0: this is absurd, since the proposition
tells us that the vectors vi1 , vi2 , . . . , vir are linearly independent. We thus see that the set I is empty,
and the corollary is therefore true.

Using Proposition 1.3.2 we can give a different proof of the last part of Proposition 1.2.13:

Corollary 1.3.4. An endomorphism of a finite-dimensional vector space V has at most dimV

eigenvalues.

Proof. Let f ∶ V → V be an endomorphism of a finite-dimensional vector space V , and let
λ1, λ2, . . . , λk be pairwise different eigenvalues of f . There exist then eigenvectors v1, v2, . . . , vk of f
with those eigenvalues, and the proposition tells us that these r vectors are linearly independent. It
follows from this that their number k is at most dimV , and this proves the corollary.

Amore technical consequence of the linear independence of eigenvectors that will be extremely
useful below is the following one:

{coro:concat-bases}
Corollary 1.3.5. Let f ∶ V → V be an endomorphism of a linear map, let λ1, . . . , λk ∈ k be pairwise

different eigenvalues of f , let Eλ1( f ), . . . , Eλk
( f ) be the corresponding eigenspaces, and let d1, . . . , dk

be the dimensions of these subspaces. If for each i ∈ {1, 2, . . . , k} the sequence Bi = (vi,1, . . . , vi,d i)
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is an ordered basis for Eλ i
( f ), then the sequence

B = (v1,1, v1,2, . . . , v1,d1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B1

, v2,1, v2,2, . . . , v2,d2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B2

, . . . , . . . , vk,1, vk,2, . . . , vk,dk
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Bk

)

formed by concatenating the ordered bases B1, B2, . . . , Bk in order is an ordered basis for the

subspace

Eλ1( f ) + Eλ2( f ) +⋯ + Eλk
( f )

of V and, in particular, the dimension of this sum is d1 + d2 +⋯ + dk .

Proof. Let us start by verifying that the vectors that appear in the sequence B are linearly
independent. Let us suppose that we have scalars a1,1, a1,2, . . . , a1,d1 , a2,1, a2,2, . . . , a2,d2 , . . . ,
ak,1, ak,2, . . . , ak,dk in k such that

a1,1v1,1 + a1,2v1,2 +⋯ + a1,d1v1,d1 + a2,1v2,1 + a2,2v2,2 +⋯ + a2,d2v2,d2

+ ⋯ +⋯ + ak,1vk,1 + ak,2vk,2 + ⋯ + ak,dkvk,dk = 0. (1.7) {eq:rrx}{eq:rrx}

For each i ∈ {1, 2, . . . , k}we consider the vectorwi ∶= ai,1vi,1+ai,2vi,2+⋯+ai,d ivi,d i , which belongs
to Eλ i

( f ). The equality above then tells us thatw1+w2+⋯+wk = 0, and then Corollary 1.3.3 allows
us to conclude that in fact the k vectorsw1, . . . ,wk are all zero. If now i is an element of {1, 2, . . . , k},
then we have that ai,1vi,1 + ai,2vi,2 + ⋯ + ai,d ivi,d i = 0 and, since Bi = (vi,1, vi,2, . . . , vi,d i) is an
ordered basis for Eλ i

( f ), we have that all the scalars ai,1, ai,2, . . . , ai,d i are zero. All the coefficients
in the linear relation (1.7) are zero, and this proves the linear independence of the sequence of
vectors B.

To complete the proof we need to show that the sequence B generates the subspace
U ∶= Eλ1( f ) + Eλ2( f ) + ⋯ + Eλk

( f ). First of all, each element of the sequence B belongs to
one of the basis B1, B2, . . . , Bk and therefore to one of the subspaces Eλ1( f ), Eλ2( f ), . . . , Eλk

( f ),
so to the subspace U . This implies, of course, that ⟨B⟩ ⊆ U .

Let now u be an element of U , so that there are u1 ∈ Eλ1( f ), u2 ∈ Eλ2( f ), . . . , uk ∈ Eλk
( f ) such

that u = u1+u2+⋯+uk . SinceB1,B2, . . . ,Bk are ordered bases of Eλ1( f ), Eλ2( f ), . . . , Eλk
( f ), we

have that ui ∈ ⟨Bi⟩ ⊆ ⟨B⟩ for each i ∈ {1, 2, . . . , k}, and therefore that u = u1 +u2 +⋯+uk ∈ ⟨B⟩.
This tells us that U ⊆ ⟨B⟩ and, putting everything together, that U = ⟨B⟩, as we wanted.
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§1.4. Diagonalizability

We say that an endomorphism f ∶ V → V of a vector space is diagonalizable if there is a basis B

of V whose elements are eigenvectors for f . This condition means, in a sense, that there are
«enough» eigenvectors of V , and the following result makes this clear:

{prop:diag:2}
Proposition 1.4.1. An endomorphism f ∶ V → V of a vector space V is diagonalizable if and only if

every element of V is a linear combination of eigenvectors of f .

To prove this result we will use the fact that every subset of a vector space that spans it contains
a basis. This is true for all vector spaces, even infinite-dimensional ones — although it is possible
that the reader has only seen it proved under the additional hypothesis of finite-dimensionality.
For most of our purposes, the extra generality can be ignored.

Proof. Let f ∶ V → V be an endomorphism of a vector space V , and let us suppose first that f

is diagonalizable, so that there is a basis B of V whose elements are eigenvectors of f . If v is an
arbitrary element of V , then there exists elements v1, v2, . . . , vk of B and scalars a1, a2, . . . , ak in k
such that v = a1v1 + a2v2 +⋯ + akvk , and therefore v is a linear combination of eigenvectors of f .
This shows that the condition given by the proposition is necessary for the endomorphism f to be
diagonalizable.

It is also sufficient. Indeed, if it is satisfied, then V is the span of the set of eigenvectors of f , so
this set contains a basis of V and therefore the map f is diagonalizable.

The choice of name for this notion is explained by the following lemma.

Lemma 1.4.2. Let f ∶ V → V be an endomorphism of a finite-dimensional vector space V and let B

be an ordered basis for V. The elements of B are eigenvectors for f if and only if the matrix [ f ]B is

diagonal.

In other words, the endomorphism f is diagonalizable if we can pick an ordered basis of V
with respect to which the matrix of f is diagonal.

Proof. Let the ordered basis B be (v1, v2, . . . , vn). If the elements of B are eigenvectors for f ,
then there exist scalars λ1, λ2, . . . , λn in k such that f (vi) = λivi for each i ∈ {1, 2, . . . , n}, and in
that case the matrix of f with respect to B is clearly

[ f ]B =
⎛
⎜⎜⎜⎜
⎝

λ1

λ2

⋱
λn

⎞
⎟⎟⎟⎟
⎠
,
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which is a diagonal matrix. This proves that the condition in the lemma is necessary.
Suppose now that the matrix [ f ]B is (ai, j) ∈Mn(k) is diagonal: this means precisely that for

each i ∈ {1, 2, . . . , n} we have f (vi) = ai,ivi , so that vi , being non-zero, is an eigenvector for f of
eigenvalue ai,i . This shows that the condition in the lemma is also sufficient.

The general idea is that a linearmap is diagonalizable exactly it possesses «enough» eigenvectors
to generate its domain. The following characterization of diagonalizability is a concrete version of
this statement.

{prop:diag:1}
Proposition 1.4.3. Let f ∶ V → V be an endomorphism of a finite-dimensional vector space V, let

λ1, λ2, . . . , λk ∈ k be the eigenvalues of f listedwithout repetitions, and let Eλ1( f ), Eλ2( f ), . . . , Eλk
( f )

be the corresponding eigenspaces. The following statements are equivalent:

(a) The endomorphism f is diagonalizable.

(b) V = Eλ1( f ) + Eλ2( f ) +⋯ + Eλk
( f ).

(c) dimV = dim Eλ1( f ) + dim Eλ2( f ) +⋯ + dim Eλk
( f ).

Proof. Let us writeW ∶= Eλ1( f ) + Eλ2( f ) +⋯ + Eλk
( f ).

(a)⇒ (b) Let us suppose that the endomorphism f is diagonalizable, so that there is a ordered
basis B = (v1, v2, . . . , vn) of V whose elements are eigenvalues for f . If i ∈ {1, 2, . . . , n}, then the
vector vi is an eigenvector for f : since the scalars λ1, λ2, . . . , λk are the eigenvalues of f , there exists
an index j ∈ {1, 2, . . . , k} such that f (vi) = λ jvi , and therefore vi ∈ Eλ j

( f ) ⊆W . We see that the
subspaceW contains all the elements of the basis B: as B spans V , this implies that, in fact, V is
contained inW , so that V =W .

(b)⇒ (c) Let us now suppose that V =W , and for each i ∈ {1, 2, . . . , k} let di ∶= dim Eλ i
( f )

and pick an ordered basis Bi = (vi,1, vi,2, . . . , vi,d i) for Eλ i
( f ). The sequence

B = (v1,1, v1,2, . . . , v1,d1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B1

, v2,1, v2,2, . . . , v2,d2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B2

, . . . , . . . , vk,1, vk,2, . . . , vk,dk
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Bk

)

formed by concatenating the ordered bases B1,B2, . . . ,Bk in order is, according to Corollary 1.3.5,
a basis for W , and, in view of our hypothesis, of V : the dimension of V is then equal to the length
of B, which is, of course, equal to

d1 + d2 +⋯ + dk = dim Eλ1( f ) + dim Eλ2( f ) +⋯ + dim Eλk
( f ).

(c) ⇒ (a) Let us now suppose that dimV = dim Eλ1( f ) + dim Eλ2( f ) + ⋯ + dim Eλk
( f ).

Just as before, for each index i ∈ {1, 2, . . . , k} we let di ∶= dim Eλ i
( f ), pick an ordered basis

Bi = (vi,1, vi,2, . . . , vi,d i) for Eλ i
( f ), and construct the sequence

B = (v1,1, v1,2, . . . , v1,d1 , v2,1, v2,2, . . . , v2,d2 , . . . , . . . , vk,1, vk,2, . . . , vk,dk).
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We know from Corollary 1.3.5 that B is linearly independent. On the other hand, its length is
d1 + d2 +⋯ + dk = dimV , so it is in fact a basis for V : as its elements are eigenvectors for f , this
shows that the endomorphism f is diagonalizable.

We say that a matrix A ∈Mn(k) is diagonalizable if there is an invertible matrix C ∈Mn(k)
such that the product CAC−1 is a diagonal matrix. This notion is connected with the one of
diagonalizability for linear maps in the usual way:

Lemma 1.4.4. Let n be a positive integer. A matrix A ∈Mn(k) is diagonalizable if and only if the

corresponding linear map fA ∶ x ∈ kn ↦ Ax ∈ kn is diagonalizable.

Proof. Let A be a matrix in Mn(k), and let us suppose that the linear map fA ∶ x ∈ kn ↦ Ax ∈ kn
is diagonalizable, so that there is an ordered basis B = (v1, v2, . . . , vn) of kn whose elements are
eigenvectors of fA, and let λ1, λ2, . . . , λn ∈ k be the corresponding eigenvalues. Let P be the matrix
in Mn(k) whose columns are the vectors v1, . . . , vn, and let D be the diagonal matrix there whose
diagonal entries are, in order, the scalars λ1, λ2, . . . , λn.

The matrix P is an invertible matrix because its columns are linearly independent. On the
other hand, the matrix AP has as columns the vectors Av1, Av2, . . . , Avn, which coincide with the
vectors fA(v1), fA(v2), . . . , fA(vn), and these are precisely the vectors λ1v1, λ2v2, . . . , λnvn: a direct
calculation shows that there are the columns of the matrix PD, so that AP = PD. If we let C ∶= P−1,
this tells us that CAC−1 is D, a diagonal matrix, so that the matrix A is diagonalizable.

Let us now suppose, to prove the converse implication, that the matrix A is diagonalizable, so
that there is an invertible matrix C such that the matrix D ∶= CAC−1 is diagonal. Let λ1, λ2, . . . , λn
be the diagonal entries of the matrix D in order, and let v1, v2, . . . , vn be the columns of the
matrix C−1. Clearly the sequence B ∶= (v1, v2, . . . , vn) is a basis for kn. The equality CAC−1 = D
implies that fA(v) = Avi = λivi for each i ∈ {1, 2, . . . , n}, so that the vectors v1, v2, . . . , vn are
eigenvectors. We thus see that the linear map fA is diagonalizable, as there is an ordered basis
for V whose elements are eigenvectors of fA.

As a consequence of this, we have a version of Proposition 1.4.3 for matrices:

Proposition 1.4.5. Let A be a matrix in Mn(k), let let λ1, λ2, . . . , λk ∈ k be the eigenvalues of A

listed without repetitions, and let Eλ1(A), Eλ2(A), . . . , Eλk
(A) be the corresponding eigenspaces. The

following statements are equivalent:

(a) The matrix A is diagonalizable.

(b) V = Eλ1(A) + Eλ2(A) +⋯ + Eλk
(A).

(c) dimV = dim Eλ1(A) + dim Eλ2(A) +⋯ + dim Eλk
(A).

Exercise 1.4.6. Provide the details of the proof of this proposition.
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§1.5. Minimal polynomials

The following result is fundamental in all that follows.

{prop:min:1}
Proposition 1.5.1. Let f ∶ V → V be an endomorphism of a finite-dimensional vector space V. There

exists a unique monic polynomial µ ∈ k[X] such that

• µ( f ) = 0, and
• every polynomial p ∈ k[X] such that p( f ) = 0 is divisible by µ.

We call the polynomial µ described by this proposition theminimal polynomial of f and often
write µ f for it — or simply µ, if there is no risk for confusion. As we will see later, it encodes
useful information about the endomorphism f . In the proof of this proposition we will see that
the degree of µ f is at most (dimV)2, but below we will find a much better bound.

Proof. Let n ∶= dimV . We know that hom(V ,V) is a vector space of dimension n2, so its n2 + 1
elements

idV , f , f
2, . . . , f

n2−1, f
n2

cannot be linearly independent. There exist then n2 scalars a0, a1, . . . , an2 ∈ k not all simultaneously
zero and such that

a0idV + a1 f + a2 f
2 +⋯ + an2 f

n2 = 0

in hom(V ,V). If we consider now the polynomial

p(X) ∶= a0idV + a1X + a2X
2 +⋯ + an2X

n2 ∈ k[X],

which is not the zero polynomial, then we have that p( f ) = 0. This tells us that that the subset

I ∶= {h ∈ k[X] ∶ h( f ) = 0}

of k[X] contains non-zero elements, and that we may therefore consider the integer

d ∶= min{deg h ∶ h ∈ I ∖ 0},

as the set whose minimum we are taking is a non-empty subset of N0. This number is at most
equal to n2, since we constructed above an element of I ∖ 0 whose degree is at most n2.

Let µ0 be an element of I ∖ 0 whose degree is exactly d and let a be its principal coefficient
of µ0. Of course, a ≠ 0, so we can consider the polynomial µ ∶= a−1 ⋅ µ: this is clearly monic of
degree d, and has µ( f ) = a−1 ⋅ µ0( f ) = 0, so it is a monic element of I ∖ 0 of degree d.
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We have, as we observed, that µ is monic and has µ( f ) = 0. Let p be any element of k[X] such
that p( f ) = 0. Since µ is not the zero polynomial, we can find by division two polynomials q and r

in k[X] with p = q ⋅ µ + r such that either r = 0 or deg r < deg µ.
Suppose for a moment that r ≠ 0. Since r = p − q ⋅ µ we have that

r( f ) = p( f ) − q( f ) ○ µ( f ) = 0,

and this tells us that r belongs to I ∖ 0, so that

deg µ > deg r ≥ min{deg h ∶ h ∈ I ∖ 0} = d = deg µ.

This is absurd. We must therefore have that r is zero, and therefore that p = q ⋅ µ, that is, that
µ divides p. This shows that µ has the two properties listed in the statement of the proposition.

To complete the proof of the proposition we have to check that µ is the unique monic polyno-
mial with those two properties. To do that, let us suppose that τ is another element of k[X] that is
monic, has τ( f ) = 0, and divides every polynomial p of k[X] that vanishes on f .

As µ divides every polynomial that vanishes on f and τ( f ) = 0, there exists a polynomial u

such that τ = a ⋅ µ. Similarly, since τ divides every polynomial that vanishes on f and µ( f ) = 0,
there exists a polynomial v such that µ = v ⋅ τ. We have that µ = uv ⋅ µ: since µ is not the zero
polynomial, this implies that uv = 1, and thus that the polynomials u and v are in fact non-zero
scalars. Moreover, since µ = u ⋅ τ and µ and τ are both monic polynomials, we must have that
u = 1. In particular, we see with this that µ = τ, and this proves what we want.

The way in which we found the minimal polynomial in the proof of this proposition does not
lend itself to practical calculation. The following proposition gives a much more calculational
approach.

{prop:min:2}
Proposition 1.5.2. Let f ∶ V → V be an endomorphism of a finite-dimensional vector space V. There

is a smallest non-negative integer d ∈ N0 such that the linear maps

idV , f , f
2, . . . , f

d

are linearly dependent in the vector space hom(V ,V), and there is a unique choice of scalars

a0, a1, . . . , ad−1 such that

a0idV + a1 f + a2 f
2 +⋯ + ad−1 f d−1 + f

d = 0.

The polynomial

a0 + a1X + a2X
2 +⋯ + ad−1Xd−1 + Xd ∈ k[X]

is the minimal polynomial of f .
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Proof. Let µ f ∈ k[X] be the minimal polynomial of f , let d be its degree, and let a0, a1, . . . , ad−1
be the scalars such that µ f (X) = a0 + a1X +⋯ + ad−1Xd−1 + Xd .

Let E be the set of all non-negative integers e such that the linear maps idV , f , f 2, . . . , f e are
linearly dependent. This set is not empty: since 0 = µ f ( f ) = a0idV + a1 f + ⋯ + ad−1 f d−1 + f d ,
the number d belongs to E. Since E is a non-empty subset of N0, we may therefore consider its
minimum є ∶= min E. We noted above that d ∈ I, so that є ≤ d.

Since є belongs to E, the linear maps idV , f , . . . , f є are linearly independent, and there exist
scalars b0, b1, . . . , bє ∈ k that are not all zero and have b0idV + b1 f + ⋯ + bє f є = 0. We must
have that bє ≠ 0: if that were not the case, we would have that the scalars b0, b1, . . . , bє−1 are
not all zero and have b0idV + b1 f + ⋯ + bє−1 f є−1 = 0, so that є − 1 ∈ I: this is absurd, since є is
the minimal element of I. Let ci ∶= bi/bє for each i ∈ {1, 2, . . . , є} and let p be the polynomial
c0 + c1X +⋯ + cє−1Xє−1 + Xє, then we have that

p( f ) = c0 + c1 f +⋯ + cє−1 f є−1 + f
є = b−1є (b0idV + b1 f +⋯ + bє f є) = 0.

It follows from this that the minimal polynomial µ f divides p. In particular, since p is not the
zero polynomial, this tells us that є = deg p ≥ deg µ f = d. As also є ≤ d, we in fact have that d = e,
and then, since µ f divides p and both polynomials are monic, we have that µ f = p. We claim that
the scalars c0, c1, . . . , cє−1 are the only ones for which c0 + c1 f +⋯ + cє−1 f є−1 + f є = 0. Indeed, if
c′0, c′1, . . . , c′є−1 is another sequence of elements of k such that c′0 + c′1 f +⋯+ c′є−1 f є−1 + f є = 0, then
we have that

(c0 − c′0) + (c1 − c′1) f +⋯ + (cє−1 − c′є−1) f є−1 = 0,

so that the polynomial q(X) = (c0 − c′0) + (c1 − c′1)X +⋯ + (cє−1 − c′є−1)Xє−1 vanishes on f and
is therefore divisible by µ f : as its degree is strictly smaller that the degree of µ f , we can deduce
from this that it is actually the zero polynomial and thus that ci = c′i for all i ∈ {1, 2, . . . , є − 1}. The
proposition follows from these observations.

As usual, there are versions of these results for matrices. We collect them in the following
proposition.

{prop:min:mats}
Proposition 1.5.3. Let n be a positive integer and let A be a matrix inMn(k). There exists a unique

monic polynomial µA ∈ k[X] such that

• µA(A) = 0, and
• every polynomial p ∈ k[X] such that p(A) = 0 is divisible by µ.

The degree of µA is the smallest non-negative integer d ∈ N0 such that the d + 1matrices

In , A, A2, . . . , Ad
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are linearly independent, there is exactly one choice of scalars a0, a1, . . . , ad−1 in k such that

a0In + a1A+ a2A
2 +⋯ + ad−1Ad−1 + Ad = 0,

and those scalars are such that µA(X) = a0 + a1X + a2X
2 +⋯ + ad−1Xd−1 + Xd .

Of course, we call the polynomial µA theminimal polynomial of the matrix A.

Exercise 1.5.4. Deduce this proposition from Propositions 1.5.1 and 1.5.2.

In practice, we use Proposition 1.5.2 and its analogue for matrices when trying to compute the
minimal polynomial of endomorphisms and matrices. The following is a typical example of how
that calculation is carried out.

Example 1.5.5. Let us consider the matrix

A =
⎛
⎜⎜⎜⎜
⎝

1 0 1 0
1 1 0 0
1 0 −1 0
1 0 1 1

⎞
⎟⎟⎟⎟
⎠

The list of matrices of length 1

I =
⎛
⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟
⎠

is linearly independent, the list of matrices of length 2

I =
⎛
⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟
⎠
, A =

⎛
⎜⎜⎜⎜
⎝

1 0 1 0
1 1 0 0
1 0 −1 0
1 0 1 1

⎞
⎟⎟⎟⎟
⎠

is also linearly independent, and the list of length 3

I =
⎛
⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟
⎠
, A =

⎛
⎜⎜⎜⎜
⎝

1 0 1 0
1 1 0 0
1 0 −1 0
1 0 1 1

⎞
⎟⎟⎟⎟
⎠
, A2 =

⎛
⎜⎜⎜⎜
⎝

2 0 0 0
2 1 1 0
0 0 2 0
3 0 1 1

⎞
⎟⎟⎟⎟
⎠
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is also linearly independent. On the other hand, the list of length 4

I =
⎛
⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟
⎠
, A =

⎛
⎜⎜⎜⎜
⎝

1 0 1 0
1 1 0 0
1 0 −1 0
1 0 1 1

⎞
⎟⎟⎟⎟
⎠
, A2 =

⎛
⎜⎜⎜⎜
⎝

2 0 0 0
2 1 1 0
0 0 2 0
3 0 1 1

⎞
⎟⎟⎟⎟
⎠
, A3 =

⎛
⎜⎜⎜⎜
⎝

2 0 2 0
4 1 1 0
2 0 −2 0
5 0 3 1

⎞
⎟⎟⎟⎟
⎠

is not linearly independent, since

2I − 2A− A2 + A3 = 0.

According to the proposition, then, the minimal polynomial of A is

µA(X) = 2 − 2X − X2 + X3.

The idea we used in the proof of Proposition 1.5.1 to find the minimal polynomial of a linear
map is extremely useful. The following exercise gives its general form.

{ex:mgen}
Exercise 1.5.6. Let I be a subspace of the vector space k[X] which is an ideal, that is, such that

whenever p ∈ I and q ∈ k[X] we have that pq ∈ I.

Prove that if I is not the zero subspace if k[X] there is in I a unique monic element m such that
I = {pm ∶ p ∈ k[X]}. We call m themonic generator of the ideal I.

If f ∶ V → V is an endomorphism of a finite-dimensional vector space, then the subspace
{p ∈ k[X] ∶ p( f ) = 0} of k[X] is a non-zero ideal and its monic generator is precisely the minimal
polynomial of f .

Observation 1.5.7. Proposition 1.5.1 states that an endomorphism of a finite-dimensional vector
space has a well-determined minimal polynomial with the properties described there. The hypoth-
esis of finite-dimensionality is important for that. In general, if f ∶ V → V is an endomorphism of
an arbitrary vector space, we can consider the subspace

I ∶= {p ∈ k[X] ∶ p( f ) = 0}

of k[X], as in the proof of that proposition, and if I is not the zero subspace we call the unique
monic generator of I, in the sense of Exercise 1.5.6, the minimal polynomial of f . The thing is,
without some hypothesis on V or on f it may well be the case that I is actually the zero subspace
of k[X]. In that case, of course, there is certainly no monic element in I, and the only sensible
candidate for a minimal polynomial is the zero polynomial.

It is easy to construct examples of this situation. For example, the maps L, R, S ∶ R[X] → R[X]
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such that

L(p) = Xp, R(p) = p′, S(p) = p(2X)

for all p ∈ R[X] have vanishing minimal polynomial. On the other hand, and endomorphism of
an infinite-dimensional vector space may have a non-zero minimal polynomial: a simple example
of this is the map

T ∶ p ∈ R[X] ↦ p(−X) ∈ R[X],

whose minimal polynomial is X2 − X.

§1.6. The Cayley–Hamilton theorem

Theminimal polynomial and the characteristic polynomial of an endomorphism are closely related.
We will explore that relation in this section. We start with the fact that they have the same roots.

{prop:chimu:roots}
Proposition 1.6.1. Let f ∶ V → V be a endomorphism of a finite-dimensional vector space. The

characteristic polynomial χ of f and the minimal polynomial µ of f have the same roots in k.

Proof. Let λ be a root of the minimal µ of f , so that there is a polynomial q ∈ k[X] such that
µ(X) = (X − λ)q(X). As µ ≠ 0, we have that q ≠ 0 and that deg q < deg µ. In particular, µ does
not divide q and we know that the linear map q( f ) ∶ V → V is not zero, so that there is a vector v
in V such that w ∶= q( f )(v) ≠ 0. Now µ( f ) = 0, and therefore

0 = µ( f )(v) = (( f − λ ⋅ idV) ○ q( f ))(v) = ( f − λ ⋅ idV)(w),

so f (w) = λw. As w is not zero, this tells us that λ is an eigenvalue of f and, in particular, that it is
a root of the characteristic polynomial χ of f .

Let now λ be a root of the characteristic polynomial χ. It is then an eigenvalue of f , so there
exists a non-zero vector v in V such that f (v) = λv. Now Lemma 1.3.1 tells us that

0 = µ( f )(v) = µ(λ) ⋅ v ,

and this implies that µ(λ) = 0, since v ≠ 0. This proves the proposition.

Next we pass on to the Cayley–Hamilton theorem, one of the fundamental results of linear
algebra.
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{thm:CH}
Theorem 1.6.2 (Cayley–Hamilton). Let f ∶ V → V be an endomorphism of a finite-dimensional

vector space, and let χ f and µ f be its characteristic and minimal polynomials, respectively. We have

that χ f ( f ) = 0, and that µ f divides χ f .

Proof. We want to show that χ f ( f ) = 0. Since χ f ( f ) is a linear map V → V , to do this we have to
check that χ f ( f )(v) = 0 for all non-zero vectors v of V . Let us do that.

Let us put n ∶= dimV , and let v be a non-zero vector of V . Let us consider the set E of all
non-negative integers e ∈ N such that the vectors d vectors

v , f (v), f 2(v), . . . , f e−1(v)

are linearly independent. This set is non-empty because it contains 1, since we are supposing that
v is non-zero. On the other hand, the set E is finite: if e > n then no e vectors of V are linearly
independent. We may therefore consider the number d ∶= max E.

We clearly have that 1 ≤ d ≤ n, that the d vectors

v , f (v), f 2(v), . . . , f d−1(v) (1.8) {eq:vs}{eq:vs}

are linearly independent, and that the d + 1 vectors

v , f (v), f 2(v), . . . , f d(v)

are linearly dependent. It follows easily from this that we can find scalars a0, a1, . . . , ad−1 ∈ k such
that

a0v + a1 f (v) + a2 f
2(v) + ⋯ + ad−1 f d−1(v) + f

d(v) = 0. (1.9) {eq:vs:2}{eq:vs:2}

If we let p be the polynomial a0 + a1X + a2X
2 +⋯+ ad−1Xd−1 + Xd ∈ k[X], then what we have is

that p( f )(v) = 0.
As the d vectors listed in (1.8) are linearly independent, we can find other vectors w1, . . . , wn−d

in V such that

B = (v , f (v), . . . , f d−1(v),w1, . . . ,wn−d)

is an ordered basis for V . Since we have that

f ( f i(v)) = f
i+1(v) for each i ∈ {0, . . . , d − 1}

and

f ( f d−1(v)) = −a0v − a1 f (v) − a2 f
2(v) −⋯ − ad−1 f d−1(v)
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because of (1.9), the matrix of f with respect to the ordered basis B is of the form

0 0 0 ⋯ 0 −a0 ∗ ⋯ ∗
1 0 0 ⋯ 0 −a1 ∗ ⋯ ∗
0 1 0 ⋯ 0 −a2 ∗ ⋯ ∗
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 0 −an−2 ∗ ⋯ ∗
0 0 0 ⋯ 1 −an−1 ∗ ⋯ ∗
0 0 0 ⋯ 0 0 ∗ ⋯ ∗
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ∗ ⋱ ∗
0 0 0 ⋯ 0 0 ∗ ⋯ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

.

In other terms, there exist matrices A ∈Mn−d(k) and B ∈Md ,n−d(k) such that we have a block
decomposition

[ f ]B = (
C(p) B

0 A
) ,

with C(p) the companion matrix of the polynomial p. It then follows from the results in Ex-
ercise 1.2.11 and Example 1.2.10 that the characteristic polynomial χ f , which is the same as the
characteristic polynomial of the matrix [ f ]B , is

χ f (X) = χC(p)(X) ⋅ χA(X) = p(X) ⋅ χA(X).

In particular, we can now compute that

χ f ( f )(v) = (χA( f ) ○ p( f ))(v) = χA( f )(p( f )(v)) = 0,

since p( f )(v) = 0. As we noted at the beginning of the proof, the first claim of the theorem, that
χ f ( f ) = 0, follows from this. Finally, since the minimal polynomial µ f divides every polynomial
that vanishes on f , the second claim of the theorem follows from the first one.

An immediate consequence of this theorem is a bound for the degree of theminimal polynomial
of a linear map:

Corollary 1.6.3. If f ∶ V → V is an endomorphism of a finite-dimensional vector space V and µ f is

its minimal polynomial, then deg µ f ≤ dimV.

Proof. Indeed, in that situation the theorem tells us that µ f divides the characteristic polynomial χ f
of f , and we know the degree of the latter is dimV .
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This bound is in fact tight: there exist endomorphism f ∶ V → V of finite-dimensional vector
spaces whose minimal and characteristic polynomials coincide, so that the degree of their minimal
polynomial is equal to dimV —we say such endomorphisms are non-derogatory.

Example 1.6.4. Let n be a positive integer, let p = a0 + a1X + ⋯ + an−1Xn−1 + Xn be a monic
polynomial in k[X] of degree n, and let f ∶ kn → kn be the linear map whose matrix with respect
to the standard basis of kn is C(p), the companion matrix of the polynomial p,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 ⋯ 0 0 −a0
1 0 0 ⋯ 0 0 −a1
0 1 0 ⋯ 0 0 −a2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ 0 0 −an−3

0 0 0 ⋯ 1 0 −an−2

0 0 0 ⋯ 0 1 −an−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Let µ = c0 + c1X +⋯+ cd−1Xd−1 + Xd be the minimal polynomial of f , and suppose for a moment
that its degree d is strictly smaller than n. If (e1, . . . , en) is the standard ordered basis of kn, then
f (ei) = ei+1 for each i ∈ {1, 2, . . . , n − 1}, and therefore f i(e1) = e1+i whenever 0 ≤ i < n − 2. It
follows from this that

0 = µ( f )(e1) = c0e1 + c1 f (e1)+⋯+ cd−1 f d−1(e1)+ f
d(e1) = c0e1 + c1e2 +⋯+ cd−1ed + ed+1.

This is of course impossible, and the contradiction arose from our hypothesis that d < n. It follows
then that the degree of µ is n, the degree of the characteristic polynomial χ of f , and since µ

divides χ and both polynomials are monic, we have that µ = χ.

The minimal polynomial of an endomorphism f ∶ V → V of a finite-dimensional vector
space V has the property that it divides all polynomials that vanish on f . The characteristic
polynomials of f has a closely related property: to prove this, we start by considering the case of
matrices. To obtain this, in turn, we will need the following simple observation.

{lemma:aibi}
Lemma 1.6.5. Let n be a positive integer, and let A and B be two square matrices of size n with

entries in k[X]. If AB = BA, then for all positive integers i we have that

A
i − Bi = (A− B)

i−1
∑
j=0

A
i−1− j

B
j

Proof. Let us suppose that the two matrices A and B are such that AB = BA, and let i be a positive
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integer. We have that

(A− B)
i−1
∑
j=0

A
i−1− j

B
j =

i−1
∑
j=0

A
i− j

B
j −

i−1
∑
j=0

BA
i−1− j

B
j .

Since AB = BAwe have that BAk = AkB for all k ∈ N0, and therefore this is

=
i−1
∑
j=0

A
i− j

B
j −

i−1
∑
j=0

A
i−1− j

B
j+1

=
i−1
∑
j=0

A
i− j

B
j −

i

∑
j=1

A
i− j

B
j

= Ai − Bi .

This proves the lemma.

This lemma and a simple calculation with matrices proves what we want:

Proposition 1.6.6. Let n be a positive integer, and let A be an element ofMn(k). If g is an element

of k[X] such that g(A) = 0, then the characteristic polynomial χA of A divides gn.

Proof. Let g be an element of k[X] such that g( f ) = 0. If g is the zero polynomial then it is obvious
that χA divides gn, so we may suppose that that is not the case. There are then a non-negative
integer d and scalars g0, g1, . . . , gd in k such that g = ∑d

i=0 giX
i and gd ≠ 0.

Let us consider the matrix X ⋅ In, which is a square matrix of size n whose entries are elements
of k[X]. We can evaluate the polynomial g at X ⋅ In: as this matrix is diagonal, we have that
g(X ⋅ In) = g(X) ⋅ In, and therefore it is clear that

det g(X ⋅ In) = g(X)n . {eq:detgxin}

On the other hand, we have that, since g(A) = 0,

g(X ⋅ In) = g(X ⋅ In) − g(A) =
d

∑
i=0

gi ⋅ ((X ⋅ In)i − Ai) =
d

∑
i=1

gi ⋅ ((X ⋅ In)i − Ai),

because the term corresponding to i = 0 in the first sum vanishes. Using Lemma 1.6.5 and the fact
that the matrices X ⋅ In and A commute, we see from this that

g(X ⋅ In) =
d

∑
i=1

gi ⋅ (X ⋅ In − A) ⋅
i−1
∑
j=0

X
i−1− j

A
j = (X ⋅ In − A) ⋅ C ,

with C the matrix∑d
i=1 gi ⋅ ∑i−1

j=0 X
i−1− jAj. In particular, we have that

g(X)n = det(X ⋅ In) = det(X ⋅ In − A) ⋅ detC ,
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and we can conclude that the characteristic polynomial χA divides gn: this is what the proposition
claims.

We can now deduce as a corollary the correspoding fact about linear maps.

{coro:mugn}
Corollary 1.6.7. Let V be a non-zero finite-dimensional vector space, let n be the dimension of V,

and let f ∶ V → V be an endomorphism of V. If g is any polynomial in k[X] such that g( f ) = 0,
then the characteristic polynomial χ f of f divides g

n.

Proof. Let g be an element of k[X] such that g( f ) = 0. Let B be an ordered basis for the vector
space V , let n be the dimension of V , and let A ∶= [ f ]B ∈Mn(k) be the matrix of f with respect
to B. As g( f ) = 0, we have that g(A) = 0, and the proposition we have just proved tells us that
the characteristic polynomial χA of A, which coincides with the characteristic polynomial χ f of f ,
divides gn. This proves the corollary.

Themost important application of this result is the following generalization of Proposition 1.6.1:

Proposition 1.6.8. Let f ∶ V → V be an endomorphism of a non-zero finite dimensional vector

space V. The characteristic polynomial χ f of f and the minimal polynomial µ f of f have the same

irreducible factors in k[X].

Proof. Let n be the dimension ofV . The Cayley–HamiltonTheorem 1.6.2 tells us that µ f divides χ f ,
and Corollary 1.6.7 that χ f divides µn

f
.

• If p is an irreducible factor of µ f , then p ∣ µ f ∣ χ f , and thus p divides χ f and is, therefore,
one of its irreducible factors.

• If p is an irreducible factor of χ f , then we have that p ∣ χ f ∣ µnf and, since p is irreducible,
that in fact p divides µ f .

These two observations prove the proposition.

Corollary 1.6.9. Let f ∶ V → V be an endomorphism of a non-zero finite dimensional vector space V.

If the minimal polynomial µ f of f is irreducible, then deg µ f divides dimV and there is a positive

integer k such that the characteristic polynomial of f is χ f = µkf .

Proof. Let us suppose that the minimal polynomial µ f of f is irreducible. Since µ f and the
characteristic polynomial χ f have the same irreducible factors, this tells us that µ f is the only
irreducible factor of χ f , and thus, since both polynomials are monic, that there is a positive
integer k such that χ f = µkf . In particular, this implies that dimV = deg χ f = k ⋅ deg µ f , so that
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the degree of µ f divides dimV .

Example 1.6.10. Let V be a non-zero finite dimensional real vector space. A complex structure
on V is a linear map f ∶ V → V such that f 2 = −idV . Clearly, such a linear map is a zero of the
polynomial p ∶= X2 + 1 ∈ R[X] and thus its minimal polynomial µ f divides p. As V is a non-zero
space, the polynomial µ f is not constant: as it is a non-constant factor of p and p is irreducible
in R[X], we see that in fact µ f = X2 + 1. In particular, the minimal polynomial µ f is irreducible:
since the degree of µ f is 2, the corollary allows us to conclude that dimV is an even positive integer.
In this way we obtain the following important observation:

the dimension of a finite-dimensional real vector space that admits a complex

structure is even.

§1.7. Invariant subspaces and restrictions

Let f ∶ V → V be an endomorphism of a vector space V . A subspaceW of V is f -invariant if for
all vectors w ofW we have that also f (w) ∈W . The following lemma exhibits simple examples of
such subspaces.

{lemma:finv:1}
Lemma 1.7.1. Let f ∶ V → V be an endomorphism of a vector space V.

(i) The subspaces 0 and V of V are f -invariant of V.

(ii) The kernel ker f and the image img f of f are f -invariant subspaces of V.

(iii) If λ ∈ k is a scalar, then the subspace Eλ( f ) = {v ∈ V ∶ f (v) = λv} is an f -invariant subspace

of V.

(iv) If p ∈ k[X] is a polynomial, then the subspace ker p( f ) is f -invariant.

We call 0 and V the trivial f -invariant subspaces, and all other invariant subspaces non-trivial.
Notice that if in (iv) we take p(X) = X − λ, then the subspace ker p( f ) is precisely the same as
Eλ( f ), so this fourth part of the lemma generalizes the third one.

Proof. That the subspaces 0 and V are f -invariant is obvious. If v is in ker f , then f (v) = 0 ∈ ker f ,
because ker f is a subspace of V , and this shows that ker f is an f -invariant subspace. On the
other hand, if v is in img f , then f (v) is also in img f , simply because it is the image of v, and this
tells us that img f is also an f -invariant subspace. This proves the first two claims of the lemma.

Let λ ∈ k be a scalar. If v is an element of Eλ( f ), so that f (v) = λv, then f (v) ∈ Eλ( f )
because Eλ( f ) is a subspace of V and contains v: this shows that Eλ( f ) is an f -invariant subspace
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of V , and thus that the third claim of the lemma holds.
Finally, let p = a0 + a1X + ⋯ + adXd ∈ k[X] be a polynomial, and suppose that v ∈ V is an

element of ker p( f ), so that 0 = p( f )(v) = a0v + a1 f (v) +⋯ + ad f d(v). We then have that

p( f )( f (v)) = a0 f (v)+a1 f 2(v)+⋯+ad f d+1(v) = f (a0v+a1 f (v)+⋯+ad f d(v)) = f (0) = 0,

so that f (v) ∈ ker p( f ). This shows that ker p( f ) is an p-invariant subspace.

Example 1.7.2. Let us consider theQ-linear map

f ∶ (x , y) ∈ Q2 ↦ (2x , 3y) ∈ Q2.

We know that 0 andQ2 are f -invariant subspaces. Also, since 2 and 3 are the eigenvalues of f , the
eigenspaces E2( f ) = ⟨e1⟩ and E2( f ) = ⟨e2⟩ are also f -invariant subspaces. We claim that these
four are the only f -invariant subspaces of V .

Indeed, suppose that W is an f -invariant subspace ofQ2 that is different from 0 and fromQ2.
The dimension ofW is therefore equal to 1, and if we let v = (a, b) be any non-zero vector inW

we have that W = ⟨(a, b)⟩. As W is f -invariant and (a, b) belongs to W , we must have that
(2a, 3b) = f (a, b) also belongs toW , and this implies that there exists a scalar λ ∈ Q such that
(2a, 3b) = λ(a, b). Since (a, b) is not the zero vector inQ2, this tells us that λ is an eigenvalue of f ,
so it is equal to 2 or to 3, and that (a, b) is an eigenvector of f corresponding to that eigenvalue,
so that it is a non-zero multiple of e1 or a non-zero multiple of e2. It follows from this that W is
equal to E2( f ) or to E3( f ). This proves what we want.

Lemma 1.7.1 tells us that the zero subspace is always invariant. The next one characterizes
the one-dimensional invariant subspaces, and shows that, in some sense, the notion of invariant
subspaces generalizes that of eigenvectors.

Lemma 1.7.3. Let f ∶ V → V be an endomorphism of a vector space V. A one-dimensional

subspace W of V is f -invariant if and only if there is an eigenvector v of f such that W = ⟨v⟩.

Proof. Suppose first that W is a one-dimensional f -invariant subspace of V , and let v be any
non-zero element ofW . We have that W = ⟨v⟩, because dimW = 1, and, sinceW is invariant, that
f (v) ∈W = ⟨v⟩, so that there is a scalar λ ∈ k such that f (v) = λv: we thus see that W is the span
of an eigenvector of f . The condition given by the lemma is therefore necessary.

Suppose now, to check that that condition is also sufficient, that there is an eigenvector v
of f such that W = ⟨v⟩, and let λ ∈ k be the eigenvalue corresponding to v, so that f (v) = λv.
If w is an arbitrary element of W , then there is a scalar a ∈ k such that w = av, and then
f (w) = f (av) = a f (v) = aλv ∈W . This shows that W is f -invariant.
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Using this lemma as a starting point we can easily describe the linear maps that have the
maximum possible number of invariant subspaces.

Example 1.7.4. Let us suppose that f ∶ V → V is an endomorphism of a vector space such that every
subspace of V is f -invariant. If v is a non-zero vector, then the one-dimensional subspace ⟨w⟩ is
thus invariant and the lemma implies immediately that w is an eigenvector for f . We see with this
that all non-zero elements of V are eigenvectors of f .

For each non-zero vector v in V there is then a scalar λv such that f (v) = λvv. We claim that,
in fact, the scalar λv is independent of v. Indeed, let v and w be two non-zero elements of V . To
check that λv = λw we consider two cases:

• If v and w are linearly dependent, then there is a non-zero scalar a in k such that v = aw,
and then we have that λvv = f (v) = f (aw) = a f (w) = aλww = λwv: as v ≠ 0, this implies
that λv = λw in this case.

• If instead v and w are linearly independent, then in particular v + w ≠ 0, so that
f (v +w) = λv+w(v +w), and therefore

λv+wv + λv+ww = λv+w(v +w) = f (v +w) = f (v) + f (w) = λvv + λww .

The linear independence of v and w then tells us that λv = λv+w = λw .
The conclusion of this is that there exists a scalar λ such that f (v) = λv for all non-zero elements v
in V . We of course also have that f (0) = λ0, so in fact we see that f = λ ⋅ idV . We have showed
part of the following statement:

all subspaces of V are f -invariant if and only if f is a scalar multiple of idV .

What remains to verify in order to establish this statement is that if λ ∈ k is a scalar and f ∶ V → V

is the map λ ⋅ idV , then all subspaces of V are f -invariant. This is immediate.

Example 1.7.5. For each m ∈ N0 we write R[X]≤m for the real vector space of all polynomials of
degree at most m. We fix n ∈ N0, put V ∶= R[X]≤n, and the linear map

f ∶ p ∈ V ↦ p
′ ∈ V .

Suppose that W is a non-zero f -invariant subspace of V . Since W is not the zero subspace, it
contains non-zero polynomials; on the other hand, all non-zero elements of W have degree at
most n. This implies that we we can consider the number d ∶= max{deg p ∶ p ∈W ∖ 0}, as the set
whose maximumwe are taking is a bounded and non-empty subset ofN0. Since d is the maximum
degree of the non-zero elements ofW , it is clear that W ⊆ R[X]≤d , and we want to show that in
fact we have that W = R[X]≤d . To do this it is enough to check that W has dimension at least d + 1,
since we know that dimR[X]≤d = d + 1.
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There is some polynomial q inW of degree exactly d. SinceW is f -invariant, we have that
the d + 1 polynomials q, f (q) = q′, f 2(q) = q′′, . . . , f d(q) = q(d) all belong to W . They are all
non-zero and their degrees are exactly d, d − 1, d − 2, . . . , 0. It follows from this that those d + 1
polynomials are linearly independent. Indeed, suppose that they are not, so that there are are
scalars a0, a1, . . . , ad in k, not all zero, such that

a0q + a1q′ + a2q
′′ +⋯ + adq

(d) = 0.

As not all of those scalars are zero, it makes sense to consider the smallest index i ∈ {0, . . . , d}
such that ai ≠ 0: we then have that

−aiq(i) = ai+1q(i+1) +⋯ + adq
(d)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
degree at most d − i − 1

.

This is absurd, since auq(i) is a polynomial of degree exactly d − i, strictly greater than d − i − 1.
It follows from this that W contains the d + 1 polynomial q, q′, . . . , q(d) that are linearly

independent and therefore that dimW ≥ d + 1, as we wanted to show. We have proved the
following statement

every f -invariant subspace of V is of the form R[X]≤d for some d ∈ {0, . . . , n}.

On the other hand, it is easy to check that each of the d + 1 subspaces R[X]≤0,R[X]≤1, . . . ,R[X]≤d
is f -invariant, so putting everything together we can conclude that those d+1 subspaces ofR[X]≤n
are all the f -invariant subspaces.

Example 1.7.6. Let us next consider the endomorphism f ∶ (x , y) ∈ Q2 ↦ (−y, x) ∈ Q2. If
W is a non-zero f -invariant subspace of Q2, then we can pick a non-zero vector v = (a, b)
in W , and the f -invariance of W implies that also w = (−b, a) = f (a, b) belongs to W . As
det( a −b

b a
) = a2 + b2 ≠ 0, the two vectors v and w are linearly independent and therefore the

subspaceW has dimension at least 2. Of course, this implies that in fact W = Q2. We see with this
that there are exactly two f -invariant subspaces inQ2, the zero subspace andQ2 itself.

This example provides us with an endomorphism f ∶ V → V of a 2-dimensional vector space
that only admits trivial f -invariant subspaces. We will see later in Example 1.7.14 that we can
construct examples with this property of arbitrary finite dimension, but to do this we will need a
better way to verify that there are no non-trivial invariant subspaces.

When we have a subspace given as the span of some set of vectors, the following result provides
a convenient criterion to check its invariance.
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{lemma:finv:gens}
Lemma 1.7.7. Let f ∶ V → V be an endomorphism of a vector space V, and let v1, v2, . . . , vn ∈ V be

elements of V. The span W ∶= ⟨v1, v2, . . . , vn⟩ is f -invariant if and only if for each i ∈ {1, 2, . . . , n}
we have that f (vi) ∈W.

Proof. IfW is f -invariant, then we have that f (v1), f (v2), . . . , f (vn) ∈W , as v1, v2, . . . , vn ∈W .
To prove the converse, let us suppose that f (v1), f (v2) . . . , f (vn) ∈W , and letw be an arbitrary

element ofW . As W is the span of {v1, v2, . . . , vn}, there are scalars a1, a2, . . . , an ∈ k such that
w = a1v1 + a2v2 +⋯ + anvn, and then

f (w) = f (a1v1 + a2v2 +⋯ + anvn) = a1 f (v1) + a2 f (v2) +⋯ + an f (vn) ∈W ,

since the vectors f (v1), f (v2), . . . , f (vn) are all in W and W is a subspace, so that W is an
f -invariant subspace. This proves the lemma.

The result of the following exercise tells us that invariant subspaces interact nicely with the
standard operations of subspaces.

{ex:finv:oplus}
Exercise 1.7.8. Let f ∶ V → V be an endomorphism of a vector space V .
(1) Show that ifW1 andW2 are f -invariant subspaces of V , then so areW1 +W2 andW1 ∩W2.
(2) Show that if W is an f -invariant subspace of V , then for all polynomials p ∈ k[X] the

subspaceW is also p( f )-invariant.

Let f ∶ V → V be an endomorphism of a vector spaceW and let W be an f -invariant subspace
of V . We have that f (w) ∈W for each vector w inW , and this implies that we can consider the
function

fW ∶ w ∈W ↦ f (w) ∈W .

It is immediate to check that this is in fact a linear function. We call it the restriction of f to the
f -invariant subspaceW . Even though the original map f and the restriction fW «do the same» to
elements ofW we will insist in distinguishing them, because their domains and codomains are
different. In this situation we of course have that fW(w) = f (w) for all w ∈W . More generally,
we have the following simple result:

{lemma:res:pol}
Lemma 1.7.9. Let f ∶ V → V be an endomorphism of a vector space V and let W be an f -invariant

subspace of V. If p ∈ k[X] and w ∈W, then

p( fW)(w) = p( f )(w).

Proof. We claim that

f i
W
(u) = f i(u) for all u ∈W and all i ∈ N0.
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When i = 0, this is clear: for all u ∈W we have that f 0
W
(u) = idW(u) = u = idV(u) = f 0(u). On

the other hand, if i ∈ N0 is such that f i
W
(u) = f i(u) for all u ∈W , then also for all u ∈W we have

that

f
i+1
W (u) = fW( f iW(u)) = fW( f i(u)) because of the hypothesis

= f ( f i(u)) = f
i+1(u) because f

i(u) ∈W .

Our claim therefore follows by induction.
Now suppose that p = a0 + a1X + a2X

2 + ⋯ + adXd is an element of k[X]. If w is a vector
inW , we then have that

p( fW)(w) = (a0idV + a1 fW + a2 f
2
W +⋯ + ad f dW)(w)

= a0w + a1 fW(w) + a2 f
2
W(w) +⋯ + ad f dW(w)

= a0w + a1 f (w) + a2 f
2(w) +⋯ + ad f d(w)

= (a0idV + a1 f + a2 f
2 +⋯ + ad f d)(w)

= p( f )(w).

This is what the lemma asserts.

The result of the following exercise describes what happens when we restrict a restriction.

{exer:restrict-iterated}
Exercise 1.7.10. Let f ∶ V → V be an endomorphism of a vector space V . IfW is an f -invariant
subspace of V , and U is an fW-invariant subspace ofW , then U is an f -invariant subspace of V
and we have that ( fW)U = fU .

There is a useful and instructive way of expressing the invariance of subspaces in terms of basis
and matrices that we next explain. Let f ∶ V → V be an endomorphism of a finite-dimensional
vector space and let us suppose that W is an f -invariant subspace of V . We put n ∶= dimV and
m ∶= dimW . We let BW = (v1, v2, . . . , vm) be an ordered basis of W , write fW ∶ W → W for
the restriction of f toW , and (ai, j) for the matrix [ fW]BW

∈Mm(k) of that restriction fW with
respect to the ordered basis BW . As usual, this means that

f (vi) = a1,iv1 +⋯ + am,ivm

for each i ∈ {1, 2, . . . ,m}. As we know, we can completeBW to a basis of the whole space V : there
exist vectors vm+1, . . . , vn in V such that B = (v1, v2, . . . , vm , vm+1, . . . , vn) is an ordered basis of V .
If i is an element of {1, 2, . . . ,m}, then the ith vector of the ordered basis B is vi , and this is an
element ofW : sinceW is f -invariant, we know that the image f (vi) is also an element ofW , and
it can therefore we written as a linear combination of the elements of the basis BW of W with
which we started: in fact, we have that

f (vi) = a1,iv1 +⋯ + am,ivi + 0vm+1 +⋯ + 0vn ,

38



and this tells us that the ith column of the matrix [ f ]B of f with respect to the basis B has its last
n −m entries all equal to zero. This is true for all the first m columns of that matrix, so that matrix
has in fact the following block upper triangular decomposition:

[ f ]B =

a1,1 ⋯ a1,m ∗ ⋯ ∗
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

am,1 ⋯ am,m ∗ ⋯ ∗
0 ⋯ 0 ∗ ⋯ ∗
⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 ⋯ 0 ∗ ⋯ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

in which the block at the top leftmost position is precisely the matrix [ fW]BW
.

This argument shows that whenever a linear map admits a non-trivial invariant subspace
we can find bases with respect to which the matrix of the linear map is block upper triangular.
Moreover, this observation allows us to prove the first claim of the following proposition that
establishes the relation between the characteristic polynomial of a linear map and that of a its
restriction to an invariant subspace.

{prop:res:chi}
Proposition 1.7.11. Let f ∶ V → V be an endomorphism of a finite-dimensional vector space V. If

W is an f -invariant subspace of V and fW ∶W →W is the restriction of f to W, then χ fW ∣ χ f .

Proof. Let W be an f -invariant subspace of V and let fW ∶W →W be the restriction of the map f

toW . Set n ∶= dimV , m ∶= dimW , and let BW = (v1, v2, . . . , vm) be an ordered basis ofW and
let vm+1, . . . , vn be vectors of V such that B = (v1, v2, . . . , vm , vm+1, . . . , vn) is an ordered basis
for V . As we observed above, the matrix of f with respect to B is block upper triangular, of the
form

[ f ]B = (
[ fW]BW

C

0 B
) ,

for some matrices B ∈ Mn−m(k) and C ∈ Mm,n(k). If follows from this, of course, that the
matrix X ⋅ In − [ f ]B is also block upper triangular,

X ⋅ In − [ f ]B = (
X ⋅ Im − [ fW]BW

−C
0 X ⋅ In−m − B

) ,

and therefore that

χ f (X) = det(X ⋅ In − [ f ]B)
= det(X ⋅ Im − [ fW]BW

) ⋅ det(X ⋅ In−m − B)
= χ fW (X) ⋅ det(X ⋅ In−m − B).
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This tells us that the characteristic polynomial χ fW of the restriction fW divides the characteristic
polynomial χ f of f , and proves the proposition.

The following is a simple and useful application of the proposition we have just proved.

Corollary 1.7.12. Let f ∶ V → V be an endomorphism of a finite-dimensional vector space V. If λ is

an element of k and n is the dimension of the subspace Eλ( f ), then the polynomial (X − λ)m divides

the characteristic polynomial χ f of f .

Proof. Let λ be an element of k, let n be the dimension of the subspace Eλ( f ), and let B be an
ordered basis for Eλ( f ). The matrix [ fEλ( f )

]B of the restriction of f to Eλ( f ) with respect to B

is λ ⋅ In, so the characteristic polynomial of that restriction is

χ fEλ( f )
= (X − λ)n .

As the subspace Eλ( f ) is f -invariant, the proposition tells us then that (X − λ)n divides χ f , and
this is what the corollary claims.

The same relation holds for minimal polynomials, in fact, as we show next. The argument to
do this is rather different, though.

{prop:res:mu}
Proposition 1.7.13. Let f ∶ V → V be an endomorphism of a finite-dimensional vector space V. If

W is an f -invariant subspace of V and fW ∶W →W is the restriction of f to W, then µ fW
∣ µ f .

Proof. Let W be an f -invariant subspace of V and let fW ∶W →W be the restriction of f toW .
According to Lemma 1.7.9, for all w ∈ W we have that µ f ( fW)(w) = µ f ( f )(w) = 0, so that in
fact µ f ( fW) = 0. Because of the characteristic property of the minimal polynomial µ fW

of the
restriction fW , then, we have that µ fW

divides µ f , as the proposition claims.

We can use these results about divisibility to produce examples of non-derogatory linear maps.

{ex:res:none}
Example 1.7.14. Let n be a positive integer. The polynomial p(X) = Xn + 2 ∈ Q[X] is monic and
irreducible. Let C ∶= C(p) ∈Mn(Q) be the companion matrix of p, and let us consider the linear
map f ∶ x ∈ Qn ↦ Cx ∈ Qn. The matrix of f with respect to the standard ordered basis of Qn

is precisely C, so the characteristic polynomial χ f of f is the characteristic polynomial of C(p),
which we computed in Example 1.2.10 to be p.

Now suppose that W is a non-zero f -invariant subspace ofQn. According to Proposition 1.7.11,
the characteristic polynomial χ fW of the restriction fW divides χ f . Since p is irreducible and
deg χ fW = dimW > 0, this implies that in fact χ fW = p, so that dimW = deg χ fW = deg p = n. We
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thus see that W = Qn. This shows that there are no non-trivial f -invariant subspaces inQn.

§1.8. Criteria for triangularizability and diagonalizability

In this section we will establish criteria for the triangularizability and diagonalizability of linear
maps and matrices in terms of their minimal polynomials.

We say that a non-zero polynomial p in k[x] splits completely over k if it has a factorization of
the form

a(X − λ1)r1(X − λ2)r2⋯(X − λk)rk ,

with a ∈ k, k ∈ N0, r1, r2, . . . , rk ∈ N, and λ1, λ2, . . . , λk ∈ k pairwise different. In that case,
of course, the scalars λ1, . . . , λk are precisely the roots of p, listed without repetitions, and the
numbers r1, . . . , rk are their respective multiplicities. If the multiplicity of one of those roots is 1,
we say that root is simple, and if all the roots of p are simple we say that p is without multiplicities
or separable. We will use the following lemma a few times.

Lemma 1.8.1. Let p and q be two polynomials in k[X] and suppose that p divides q.

(i) If q splits completely over k, then so does p.

(ii) If additionally q is without multiplicities, then so is p.

Exercise 1.8.2. Prove the lemma.

Let us recall that, more generally, any non-zero element p of k[x] has a factorization of the
form

aq
r1
1 q

r2
2 ⋯q

rk
k

(1.10) {eq:fact}{eq:fact}

with a ∈ k, r1, r2, . . . , rk ∈ N, and q1, q2, . . . , qk pairwise different monic polynomials that are
irreducible in k[x], and that moreover that factorization is uniquely determined by p, except for
the ordering of the factors. As in the previous case, we say that p is without multiplicities is without
multiplicities or separable if each of the numbers r1, r2, . . . , rk is equal to 1. The polynomial p
splits completely over k exactly when each of the irreducible factors q1, q2, . . . , qk that appear in
its factorization (1.10) has degree 1.
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Observation 1.8.3. The polynomial X2 + 1 can be viewed both as an element of C[X] and as an
element of R[X]: it splits completely over C, as it can be factored as (X − i)(X + i) in C[X], but
it does not split completely over R. We thus see that the field plays an important role in deciding
whether a polynomial splits completely or not.

On the other hand, it can be shown that a polynomial p in k[X] is separable if and only if
it is coprime with its derivative or, equivalently, if gcd(p, p′) = 1. It follows from this that if we
have two fields k andK, and one is a subfield of the other, so that k ⊆ K, then a polynomial with
coefficients in k is separable in k[X] if and only if it is separable inK[X].

The condition that k is a subfield ofK here is important. For example, the polynomial X2 + 1
can be viewed as an element of R[X], and there is is separable as it is in fact irreducible, and as
an element of F2[X], where F2 denotes a field with two elements, and in this last case it is not
separable, as X2 + 1 splits as (X + 1)2 when working over F2.

The key step to do what we want is the following technical lemma:

{lemma:tech}
Lemma 1.8.4. Let f ∶ V → V be an endomorphism of a finite-dimensional vector space V whose

minimal polynomial µ splits completely over k. If W is a proper f -invariant subspace of V, then

there exists a vector v in V ∖W and an eigenvalue λ of f such that ( f − λ ⋅ idV)(v) ∈W.

Proof. As µ splits completely over k, it has a factorization of the form

(X − λ1)r1(X − λ2)r2⋯(X − λk)rk ,

with k ∈ N and λ1, λ2, . . . , λk ∈ k pairwise different. Let W be a proper f -invariant subspace of V ,
let u be a vector in V ∖W , and let us consider the set

I ∶= {p ∈ k[X] ∶ p( f )(u) ∈W}.

Since µ( f ) = 0, we have that µ( f )(u) = 0 ∈W , so that µ ∈ I: as µ ≠ 0, this tells us that the set I∖0
is not empty, so that neither is the set {deg p ∶ p ∈ I ∖ 0}. This is then a non-empty subset of N0,
and we may therefore consider its minimum element, which we will write d, and an element q

of I ∖ 0 such that deg q = d.
The polynomial q is not constant: if it were, it would be equal to a non-zero scalar α, and then

we would have that W ∋ q( f )(u) = (α ⋅ idV)(u) = αu, which is absurd, as u /∈W and α ≠ 0.
Also, since q is not zero, we can divide the minimal polynomial µ by q: there exist polynomials

s and r in k[X] such that µ = s ⋅ q+ r and either r = 0 or r ≠ 0 and deg r < deg q. Let us suppose for
a moment that the second alternative holds: as r = µ− s ⋅q, we have that r( f ) = µ( f )− s( f )○q( f )
and

r( f )(u) = µ( f )(u) − s( f )(q( f )(u)) = 0 ∈W .
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This is impossible, since r ∈ I ∖ 0 and deg r is strictly smaller than the degree of µ, which is d, the
minimal degree of an element of I ∖ 0. This contradiction implies that we must have that r = 0, so
that

s ⋅ q = µ = (X − λ1)r1(X − λ2)r2⋯(X − λk)rk .

In particular, this tells us that the polynomial q, which is not constant, divides the product
(X − λ1)r1(X − λ2)r2⋯(X − λk)rk , and we can conclude that there is an index i ∈ {1, 2, . . . , k}
such that q(λi) = 0. Of course, this implies that there is a polynomial b ∈ k[X] such that
q(X) = (X − λi)b(X). Clearly b is not the zero polynomial, because q is not the zero polynomial,
and the degree of b is deg q − 1 = d − 1. In view of the way we chose the number d we therefore
have that b /∈ I, that is, that b( f )(u) /∈W .

If we now put v ∶= b( f )(u), then we have that v /∈W and, as q( f ) = ( f − λi ⋅ idV) ○ b( f ), that

( f − λi)(v) = ( f − λi ⋅ idV)(b( f )(u)) = q( f )(u) ∈W .

This proves the lemma, since the scalar λi , being a root of the minimal polynomial of f , is an
eigenvalue of f .

We will also need the following easy criterion for linear independence, whose proof we will
leave to the reader.

{lemma:td:li}
Lemma 1.8.5. Let V be a vector space, let v1, . . . , vm be linearly independent vectors in V, and let v

be an element of V. The following two statements are equivalent:

(a) The vectors v1, . . . , vm, v are linearly dependent.

(b) The vector v belongs to ⟨v1, v2, . . . , vm⟩.

Exercise 1.8.6. Prove this lemma.

The idea that we used in the proof of Lemma 1.8.4 can be generalized a bit, as in the following
exercise.

Exercise 1.8.7. Let f ∶ V → V be an endomorphism of a finite-dimensional vector space, let
W be an f -invariant subspace and let v be a vector in V . Show that if v is not in W , then the
set I ∶= {p ∈ k[X] ∶ p( f )(v) ∈ W} is a non-zero ideal of k[X], so that there is a unique monic
polynomial c in I such that I = {pc ∶ p ∈ k[X]}. We call this polynomial c the f -conductor of v
intoW .
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Triangularizability

Our first application of Lemma 1.8.4 is a criterion to decide if a map is triangularizable. Of course,
we say that an endomorphism f ∶ V → V of a vector space is triangularizable if there is an ordered
basis B of V such that the matrix [ f ]B of f with respect to B is upper triangular.

{prop:tri}
Proposition 1.8.8. Let f ∶ V → V be an endomorphism of a finite-dimensional vector space V. If

the minimal polynomial µ of f splits completely over k, then f is triangularizable.

Proof. Let us suppose that the minimal polynomial µ splits completely over k. Since it is monic,
there are then a positive integer k ∈ N, pairwise different scalars λ1, . . . , λk ∈ k pairwise different,
and positive integers r1, . . . , rk ∈ N such that

(X − λ1)r1(X − λ2)r2⋯(X − λk)rk .

If V is the zero space, then the claim of the proposition is obvious, so we may suppose that
V is non-zero. Let W be the set of all f -invariant subspaces W of V such that the restriction
fW ∶ W → W is triangularizable. The zero subspace belongs to W , so that W is not the empty
set. As all elements of W have dimension at most equal to dimV , we can therefore consider the
number

d ∶= max{dimW ∶W ∈ W }

and choose an element U inW such that dimU = d. As U is inW , it is f -invariant and the restric-
tion fU ∶ U → U is triangularizable, so that there exists an ordered basis BU = (u1, u2, . . . , un)
of U such that the matrix [ fU]BU

is upper triangular.
Let us suppose for a moment that U is a proper subspace of V . In that case, Lemma 1.8.4

tells us that there is a vector v in V ∖U and an eigenvalue λ of f such that ( f − λ ⋅ idV)(v) ∈ U .
Since v is not in U and (u1, u2, . . . , un) is an ordered basis for U , we know from Lemma 1.8.5
that B ∶= (u1, u2, . . . , un , v) is a linearly independent sequence of elements of V . Let
U ′ ∶= ⟨u1, u2, . . . , un , v⟩ be the span of B, so that B is in fact a basis for U ′. Now we can make
the following observations.

• As U ⊆ U ′, we have that f (ui) ∈ U ⊆ U ′ for all i ∈ JnK. On the other hand, if we put
u ∶= ( f − λ ⋅ idV)(v), then f (v) = u + λv ∈ U ′ because v ∈ U ′ and u ∈ U ⊆ U ′. It follows
then from Lemma 1.7.7 that U ′ is an f -invariant subspace of V .

• The vector u is inU , so there are scalars a1, a2, . . . , an ink such that u = a1u1+a2u2+⋯+anun.
f (v) = λv + u, with u ∈ U , the matrix of fU with respect to the basis B of U ′ is the upper
triangular block matrix

[ fU ′]B = (
[ fU]BU

∗
0 λ

)
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in which ∗ denotes the column vector with components (a1, a2, . . . , an). As the matrix
[ fU]BU

is upper triangular, we see that the matrix [ fU ′]B is also upper triangular, so that
the restriction fU ′ is triangularizable.

With this we see that U ′ is an element of the set W , but this is absurd, since

dimU
′ = dimU + 1 > dimU = d = max{dimW ∶W ∈ W }.

This contradiction arose from our supposition that the subspace U is a proper subspace of V , and
we can therefore conclude that U is equal to V . As then V belongs to the set W , this tells us that
the linear map f is triangularizable, which is what we wanted to show.

The condition in the proposition is in fact also necessary for triangularizability:

Corollary 1.8.9. An endomorphism f ∶ V → V of a finite-dimensional vector space V is triangular-

izable if and only if its minimal polynomial splits completely over k.

Proof. The proposition states precisely that the condition given in the corollary is sufficient for the
triangularizability of f , so we need only check that it is also necessary.

In order to do that, let us suppose that the linear map f is diagonalizable, so that there is
an ordered basis B such that the matrix [ f ]B is upper triangular, and let n be the dimension
of V . If a1,1, a2,2, . . . , an,n are the entries of [ f ]B that appear along its diagonal, we know that
the characteristic polynomial of f is (X − a1,1)(X − a2,2)⋯(X − an,n). In particular, the minimal
polynomial of f is a divisor of that product, and is thus splits completely over k. This proves what
we wanted.

We say that the field k is algebraically closed if every non-constant polynomial in k[X] has
a root in k, and when that is the case, in fact, every polynomial in k[X] factors as a product of
polynomials of degree 1 and therefore splits completely over k. For example, the fieldC of complex
numbers is algebraically closed — this is precisely the content of the celebrated Fundamental

Theorem of Algebra. There are many algebraically closed fields, even though the reader, at this stage,
probably knows only of C.

For algebraically closed fields the hypothesis that appears in Proposition 1.8.8 holds automati-
cally, so we have the following result:

Corollary 1.8.10. Suppose that the field k is algebraically closed. Every endomorphism f ∶ V → V of

a finite-dimensional vector space is triangularizable.

Exercise 1.8.11. Let V be a finite-dimensional vector space, let n be the dimension of f , and
let f ∶ V → V be a linear map. Prove that there exists an ordered basis B of V such that the

45



matrix [ f ]B is strictly upper triangular if and only if the characteristic polynomial of f is Xn.

Exercise 1.8.12. Let V be a finite-dimensional vector space, and let f ∶ V → V be a linear map.
Show that f is triangularizable if and only if there is an ordered basis B of V such that the
matrix [ f ]B of f with respect to B is lower triangular.

Diagonalizability

Next we deal with diagonalizability of linear maps. A diagonalizable map is, of course, triangular-
izable, so what we have already done tells us that its minimal polinomial has to split completely,
but this is not enough.

{prop:diag}
Proposition 1.8.13. Let f ∶ V → V be an endomorphism of a finite-dimensional vector space V.

If the minimal polynomial µ of f splits completely over k and is without multiplicities, then f is

diagonalizable.

Proof. Let us suppose that there are a positive integer k and pairwise different scalars λ1, λ2, . . . , λk
in k such that the minimal polynomial of f is

µ = (X − λ1)(X − λ2)⋯(X − λk).

For each i ∈ {1, 2, . . . , k} let Eλ i
( f ) be the eigenspace of f corresponding to λi , and let us consider

the subspace

W ∶= Eλ1( f ) + Eλ2( f ) +⋯ + Eλk
( f )

of V . We know that the subspaces Eλ1( f ), Eλ2( f ), . . . , Eλk
( f ) are f -invariant from Lemma 1.7.1,

and the result of Exercise 1.7.8 implies that their sumW is also f -invariant.
Let us suppose that W is a proper subspace of V . Lemma 1.8.4 then tells us that there is a

vector v ∈ V and an eigenvalue λ of f such that v /∈W and ( f − λ ⋅ idV)(v) ∈W . Let us put

w ∶= f (v) − λv ,

which is an element ofW . Since λ is an eigenvalue of f , it is a root of the characteristic polynomial
of f and, according to Proposition 1.6.1, it is therefore also a root of the minimal polynomial of f .
It follows from this that there is a polynomial p ∈ k[X] such that

µ(X) = (X − λ)p(X). (1.11) {eq:mux}{eq:mux}

This implies that

0 = µ( f )(v) = (( f − λ ⋅ idV) ○ p( f ))(v) = f (p( f )(v)) − λp( f )(v),
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so that p( f )(v) belongs to the eigenspace Eλ( f ) and, therefore, that

p( f )(v) ∈W . {eq:pfv}

On the other hand, the polynomial p(X)− p(λ) also has λ as a root, so there is another polynomial
q ∈ k[X] such that

p(X) − p(λ) = q(X)(X − λ),

and using this we see that

p( f )(v) − p(λ) ⋅ v = (p( f ) − p(λ) ⋅ idV)(v) = (q( f ) ○ ( f − λ ⋅ idV))(v)
= q( f )( f (v) − λv) = q( f )(w).

Rearranging this equality, we find that

p(λ) ⋅ v = p( f )(v) + q( f )(w)

and — since p( f )(v) ∈ W and also q( f )(w), because w ∈ W and W is f -invariant — we
conclude that p(λ) ⋅ v ∈W . As v /∈W , this allows us to conclude that p(λ) = 0. Going back to the
equality (1.11) we see that λ is a root of µ of multiplicity at least 2: this is absurd, since by hypothesis
all the roots of µ are simple.

This contradiction arouse from our hypothesis that the subspaceW is a proper subspace of V .
We must therefore have that W = V , and this implies, according to Proposition 1.4.3, that the
linear map f is diagonalizable.

An easy application of the proposition is the following corollary.

Corollary 1.8.14. Let f ∶ V → V be a diagonalizable endomorphism of a finite-dimensional

vector space V. If W is an f -invariant subspace of V, then the restriction fW ∶ W → W is also

diagonalizable.

Proof. Let W be an f -invariant subspace of V . Since f is diagonalizable, the minimal polyno-
mial µ f of f splits completely over k and has simple roots. The minimal polynomial of the
restriction µ fW

divides µ f , according to Proposition 1.7.13, and then it also splits completely over k
and has simple roots. Proposition 1.8.13 allows us then to conclude that the restriction fW is also
diagonalizable.

Another extremely useful application of the proposition to linear maps satisfying a rather
special condition is:
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Corollary 1.8.15. If f ∶ V → V is an endomorphism of a finite-dimensional complex vector space

and there exists a positive integer n such that f n = idV , then f is diagonalizable.

In this situation we say that the endomorphism f has finite order.

Proof. Let f ∶ V → V be an endomorphism of a finite-dimensional complex vector space and
suppose that there is a positive integer n such that f n = idV . This means that the polyno-
mial p(X) ∶= Xn − 1 ∈ C[X] has p( f ) = 0 and is therefore divisible by the minimal polynomial µ f

of f . That polynomial p can be factored as

X
n − 1 =

n−1
∏
k=0
(X − e2πik/n),

so it splits completely over C and has simple roots. As µ f divides it, the same is true of µ f and
Proposition 1.8.13 tells us that f is diagonalizable.

The sufficient condition given by Proposition 1.8.13 for diagonalizability is in fact also necessary,
so we have a complete characterization of diagonalizability in terms of minimal polynomials:

Corollary 1.8.16. An endomorphism of a finite-dimensional vector space is diagonalizable if and

only if its minimal polynomial splits completely over k and is without multiplicities.

Proof. The proposition tells us that an endomorphism of a finite-dimensional vector space is
diagonalizable if its minimal polynomial splits completely without multiplicities. We therefore
only have to prove that the necessity of this condition.

Let us suppose that f ∶ V → V is an endomorphism of a finite-dimensional vector space
that is diagonalizable, so that there is an ordered basis B = (v1, v2, . . . , vn) for V whose elements
are eigenvectors of f . Let λ1, . . . , λk be the eigenvalues of f listed without repetitions, and let us
consider the polynomial

p(X) = (X − λ1)(X − λ2)⋯(X − λk) ∈ k[X].

We claim that p( f ) = 0, and to verify this claim is is enough that we check that p( f )(vi) = 0 for
all i ∈ {1, 2, . . . , n}, since B is a basis for V . Let i ∈ {1, 2, . . . , n}. As vi is an eigenvector for f

and since λ1, . . . , λk are the eigenvalues of f , there exists some index j in {1, 2, . . . , k} such that
f (vi) = λ jvi . We therefore have that p( f )(vi) = p(λ j) ⋅ vi = 0, as we wanted.

Now, since p( f ) = 0, the characteristic property of the minimal polynomial µ of f implies at
once that µ divides f : it follows from this, since the polynomial p completely splits over k and is
without multiplicities, that µ has the same two properties. This proves the corollary.
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§1.9. Direct sum decompositions

Let V be a vector space. We say that a finite family of subspaces W1,W2, . . . ,Wk is independent if
the following condition holds:

if w1 ∈W1, w2 ∈W2, . . . , wk ∈Wk are such thatw1+w2+⋯+wk = 0, thenw1 = w2 = ⋯ = wk = 0.

This notion of independence of subspaces generalizes the usual one of linear independence of
vectors, in the following precise way:

{lemma:indep:one}
Lemma 1.9.1. Let V be a vector space, and let v1, v2, . . . , vk be non-zero vectors in V. The sub-

spaces ⟨v1⟩, ⟨v2⟩, . . . , ⟨vk⟩ are independent if and only if the vectors v1, v2, . . . , vk are linearly

independent.

Proof. Let us suppose first that the subspaces ⟨v1⟩, ⟨v2⟩, . . . , ⟨vk⟩ are independent, and that
a1, a2, . . . , ak ∈ k are scalars such that a1v1 + a2v2 + ⋯ + akvk = 0. If for each i ∈ JkK we put
wi ∶= aivi , then we havewi ∈ ⟨vi⟩ for each i ∈ JkK andw1+w2+⋯+wk = 0: the hypothesis implies
then that w1 = w2 = ⋯ = wk = 0. As the vectors v1, v2, . . . , vk are all non-zero, this implies in turn
that a1 = a2 = ⋯ = ak = 0. This proves that the condition given by the lemma for the subspaces
⟨v1⟩, ⟨v2⟩, . . . , ⟨vk⟩ to be independent is necessary.

Let us now show that it is also sufficient. Let us suppose that the vectors v1, v2, . . . , vk are
linearly independent, and let w1, w2, . . . , wk be elements of the subspaces ⟨v1⟩, ⟨v2⟩, . . . , ⟨vk⟩ such
that w1 +w2 +⋯ +wk = 0. There are scalars a1, a2, . . . , ak in k such that w1 = a1v1, w2 = a2v2, . . . ,
wk = akvk , and the hypothesis is then that a1v1+a2v2+⋯+akvk = 0: since the vectors v1, v2, . . . , vk
are linearly independent, we see that a1 = a2 = ⋯ = ak = 0 and thus that w1 = w2 = ⋯ = wk = 0.
This shows that the subspaces ⟨v1⟩, ⟨v2⟩, . . . , ⟨vk⟩ are independent, as we want.

Lemma 1.9.1 is a special case of part of the following characterization of independence:

{lemma:indep:many}
Proposition 1.9.2. Let W1, W2, . . . , Wk be non-zero subspaces of a vector space V. The following

two statements are equivalent:

(a) The subspaces W1, W2, . . . , Wr are independent.

(b) Whenever w1, w2, . . . , wr are non-zero elements of W1, W2, . . . , Wr , respectively, we have that

w1, w2, . . . , wr are linearly independent.

Proof. Let us suppose first that the subspacesW1,W2, . . . ,Wk are independent, and letw1,w2, . . . ,wr

be non-zero elements of W1, W2, . . . , Wk , respectively, and let a1, a2, . . . , ak ∈ k be scalars such
that a1w1 + a2w2 + ⋯ + akwk = 0. The vectors a1w1, a2w2, . . . , akwk belong to W1, W2, . . . , Wk ,
respectively, and their sum is 0, so the hypothesis on the subspaces W1,W2, . . . ,Wk implies that
a1w1 = a2w2 = ⋯ = akwk = 0. As the vectors w1, w2, . . . , wk are all non-zero, this allows us to
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concldue that in fact a1 = a2 = ⋯ = ak = 0. We thus see that the vectors w1, w2, . . . , wk are linearly
independent, and this proves the implication (a)⇒ (b).

In order to prove the converse implication, let us suppose the statement (b) holds, and let w1,
w2, . . . , wk be elements ofW1,W2, . . . ,Wk , respectively, such that w1 +w2 +⋯ +wk = 0. For each
i ∈ JkK,

• either wi ≠ 0, and then we put vi ∶= wi and ai ∶= 1,
• or wi = 9, and in this case we chose an arbitrary non-zero element vi inWi and put ai ∶== 0.

In this way we have that v1, v2, . . . , vk are non-zero elements ofW1,W2, . . . ,Wk , respectively, so that
they are linearly independent, and that aivi = wi for all i ∈ JkK, so that a1v1 + a2v2 +⋯+ akvk = 0.
We therefore have that a1 = a2 = ⋯ = ak = 0, so that w1 = w2 = ⋯ = wk = 0. This shows that the
subspaces W1,W2, . . . ,Wk are independent.

Let W1 andW2 be two subspaces of a vector space V , and let us prove that

the subspaces W1 and W2 are independent if and only if W1 ∩W2 = 0. (1.12) {eq:indep:2}{eq:indep:2}

First, let us suppose that W1 and W2 are independent and consider a vector v in W1 ∩W2. As
v + (−v) = 0, v ∈ W1 and −v ∈ W2, then hypothesis implies at once that v = 0: this shows that
W1 ∩W2 = 0 and, therefore, that the condition in (1.12) is necessary. To prove the converse, let us
suppose that W1 ∩W2 = 0 and that w1 ∈W1 and w2 ∈W2 are vectors such that w1 +w2 = 0. In that
case we have that W1 ∋ w1 = −w2 ∈W2, so that w1 ∈W1 ∩W2 = 0: this tells us that w1 = 0 and, of
course, that then also w2 = −w1 = 0, so that W1 andW2 are independent subspaces.

Our claim (1.12) shows that the independence of two subspaces has a very simple restatement
in terms of their intersection. A similar result is false for families of subspaces with more than two
elements, as the following example shows.

Example 1.9.3. Let V = Q2, let k ∈ N, and for each i ∈ {1, 2, . . . , k} let Wi ∶= ⟨e1 + ie2⟩. We have
that W1 ∩W2 ∩ ⋯ ∩Wk = 0 and, in fact, that Wi ∩Wj = 0 whenever i and j are two different
elements of {1, 2, . . . , k}, but the family of k subspaces W1, . . . ,Wk is not independent unless k ≤ 2.
This follows immediately from Lemma 1.9.1.

The equivalence of the two statements listed in the following proposition provides a way to fix
this, giving a criterion for independence in terms of intersections and sums.

Proposition 1.9.4. Let V be a vector space, and let W1, W2, . . . , Wk be subspaces of V. The following

statements are equivalent:

(a) The subspaces W1, W2, . . . , Wk are independent.

(b) For each j ∈ {2, . . . , k} we have that (W1 +W2 +⋯ +Wj−1) ∩Wj = 0.
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Proof. Let us suppose that the statement (a) is true, so that the subspaces W1,W2, . . . ,Wk are inde-
pendent, and let j be an element of {2, . . . , k}. Let v be an element of (W1 +W2 +⋯+Wj−1) ∩Wj.
Since v is in W1 + W2 + ⋯ + Wj−1, there exist w1 ∈ W1, w2 ∈ W2, . . . , w j−1 ∈ Wj−1 such
that v = w1 + w2 + ⋯ + w j−1. Let us put w j ∶= −v, and wi = 0 for each i ∈ { j + 1, . . . , j}.
As w1 + w2 + ⋯ + wk = 0, the independence of the subspaces W1, W2, . . . , Wk implies that
w1 = w2 = ⋯ = wk = 0 and, in particular, that v = −w j = 0. This shows that the only element of
(W1 +W2 +⋯ +Wj−1) ∩Wj is the zero vector, so that the statement (b) holds.

Let us now suppose that the statement (b) holds, let w1 ∈ W1, w2 ∈ W2, . . . , wk ∈ Wk be
vectors such that w1 +w2 +⋯ +wk = 0, and, to reach a contradiction, let us suppose that the set
I ∶= {i ∈ JkK ∶ wi ≠ 0} is not empty. In that case we may consider the number j ∶= max I.

The definition of j implies that wi+1 = wi+2 = ⋯ = wk = 0, so that w1 +w2 +⋯ +w j = 0 and
therefore that −w j = w1 + w2 + ⋯ + w j−1: this implies that w j is an element of the intersection
(W1 +W2 +⋯ +Wj−1) ∩Wj, and this is absurd for that intersection is zero while w j is not. This
contradiction arose from out supposition that the set I is not empty, so we see that we must have
w1 = w2 = ⋯ = wk = 0. This shows that the subspaces W1,W2, . . . ,Wk are independent, so that the
statement (a) holds. The proof of the proposition is therefore complete.

There is a third condition equivalent to independence that is often useful — we leave the proof
of this as an exercise for the reader — and that, in fact, is used in many textbooks as the definition
of independence.

Exercise 1.9.5. A finite family of subspaces W1,W2, . . . ,Wk of a vector space V is independent if
and only if for each i ∈ {1, 2, . . . , k} we have that Wi ∩ (W1 +⋯ +Wi−1 +Wi+1 +⋯ +Wk) = 0.

We can also give conditions for independence in terms of bases:

Proposition 1.9.6. Let V be a vector space, let W1, W2, . . . , Wk be finite-dimensional subspaces of V,

and let d1, d2, . . . , dk be their dimensions. The following statements are equivalent:

(a) The subspaces W1, W2, . . . , Wk are independent.

(b) Whenever (v1,1, v1,2, . . . , v1,d1), (v2,1, v2,2, . . . , v2,d2), . . . , (vk,1, vk,2, . . . , vk,dk) are ordered

bases for the subspaces W1, W2, . . . , Wk the sequence

(v1,1, v1,2, . . . , v1,d1 , v2,1, v2,2, . . . , v2,d2 , . . . , . . . , vk,1, vk,2, . . . , vk,dk)

is an ordered basis for W1 +W2 +⋯ +Wk .

(c) There exist ordered bases (v1,1, v1,2, . . . , v1,d1), (v2,1, v2,2, . . . , v2,d2), . . . , (vk,1, vk,2, . . . , vk,dk)
of the subspaces W1, W2, . . . , Wk such that the sequence

(v1,1, v1,2, . . . , v1,d1 , v2,1, v2,2, . . . , v2,d2 , . . . , . . . , vk,1, vk,2, . . . , vk,dk)

is an ordered basis for W1 +W2 +⋯ +Wk .
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When these conditions hold, then we have that

dim(W1 +W2 +⋯ +Wk) = dimW1 + dimW2 +⋯ + dimWk .

This proposition has an easy yet long and notationally annoying proof.

Proof. Let us writeW for the subspaceW1 +W2 +⋯ +Wk .
(a) ⇒ (b) Let us suppose that the statement (a) holds, and that B1 = (v1,1, v1,2, . . . , v1,d1),

B2 = (v2,1, v2,2, . . . , v2,d2), . . . , Bk = (vk,1, vk,2, . . . , vk,dk) are ordered bases for the subspaces
W1,W2, . . . ,Wk , and let us consider the sequence

B ∶= (v1,1, v1,2, . . . , v1,d1 , v2,1, v2,2, . . . , v2,d2 , . . . , . . . , vk,1, vk,2, . . . , vk,dk).

We have to show that B is an ordered basis for W .
Let w be an element ofW , so that there are vectors w1, w2, . . . , wk inW1,W2, . . . ,Wk such that

w = w1 + w2 + ⋯ + wk . If i ∈ JkK, then the span of the sequence Bi is Wi , so there exist scalars
ai,1, ai,2, . . . , ai,d i in k such that wi = ai,1vi,1 + ai,2vi,2 +⋯ + ai,d ivi,d i . We therefore have that

w = w1 +w2 +⋯ +wk

= a1,1v1,1 + a1,2v1,2 +⋯ + a1,d1v1,d1 + a2,1v2,1 + a2,2v2,2 +⋯ + a2,d2v2,d2

+⋯ + ak,1vk,1 + ak,kvk,k +⋯ + ak,dkvk,dk
and we see that w is in the span of the sequence B.

Next, let us suppose that

a1,1, a1,2, . . . , a1,d1 , a2,1, a2,2, . . . , a2,d2 , . . . , ai,1, ai,2, . . . , ai,d i (1.13) {eq:as}{eq:as}

are scalars in k such that

0 = a1,1v1,1 + a1,2v1,2 +⋯ + a1,d1v1,d1 + a2,1v2,1 + a2,2v2,2 +⋯ + a2,d2v2,d2

+⋯ + ak,1vk,1 + ak,kvk,k +⋯ + ak,dkvk,dk .

We can then consider the vectors

w1 ∶= a1,1v1,1 + a1,2v1,2 +⋯ + a1,d1v1,d1 ,
w2 ∶= a2,1v2,1 + a2,2v2,2 +⋯ + a2,d2v2,d2 ,
⋮ ⋮

wk ∶= ak,1vk,1 + ak,2vk,2 +⋯ + ak,dkvk,dk ,

which belong to the subspaces W1,W2, . . . ,Wk , respectively. We have that w1 +w2 +⋯+wk = 0, so
the hypothesis (a) implies that w1 = w2 = ⋯ = wk = 0. In particular, for each i ∈ JkK we have that
ai,1vi,1 + ai,2vi,2 +⋯ + ai,d1vi,d i = 0 and therefore, since the sequence Bi is linearly independent,
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we have that ai,1 = ai,2 = ⋯ = ai,d i = 0. This tells us that each the the scalars listed in (1.13) is zero
and thus that the sequence B is linearly independent.

Putting everything together, we can conclude that the sequence B is a basis for W , so that the
statement (b) holds.

(b) ⇒ (c) Let us suppose that the statement (b) holds, and let us choose ordered bases
B1 = (v1,1, v1,2, . . . , v1,d1), B2 = (v2,1, v2,2, . . . , v2,d2), . . . , Bk = (vk,1, vk,2, . . . , vk,dk) for the sub-
spaces W1,W2, . . . ,Wk arbitrarily — this is, of course, possible. The hypothesis then tells us that
the sequence

B ∶= (v1,1, v1,2, . . . , v1,d1 , v2,1, v2,2, . . . , v2,d2 , . . . , . . . , vk,1, vk,2, . . . , vk,dk)

is an ordered basis for the subspaceW , and we see that the statement (c) holds.

(c) ⇒ (a) Finally, let us suppose that there exist ordered bases B1 = (v1,1, v1,2, . . . , v1,d1),
B2 = (v2,1, v2,2, . . . , v2,d2), . . . , Bk = (vk,1, vk,2, . . . , vk,dk) for the subspaces W1,W2, . . . ,Wk such
that the sequence

B ∶= (v1,1, v1,2, . . . , v1,d1 , v2,1, v2,2, . . . , v2,d2 , . . . , . . . , vk,1, vk,2, . . . , vk,dk) (1.14) {eq:bsbs}{eq:bsbs}

is an ordered basis for the subspace W and prove that the subspaces W1, W2, . . . , Wk are inde-
pendent. To do that, let us suppose that w1, w2, . . . , wk are element of those subspaces such that
w1 +w2 +⋯ +wk = 0. For each i ∈ JkK the sequence Bi is an ordered basis for Wi , so there exist
scalars ai,1, ai,2, . . . , ai,d i in k such that wi = ai,1vi,1 + ai,2vi,2 + ⋯ + ai,d ivi,d i , and therefore we
have that

0 = w1 +w2 +⋯ +wk

= a1,1v1,1 + a1,2v1,2 +⋯ + a1,d1v1,d1 + a2,1v2,1 + a2,2v2,2 +⋯ + a2,d2v2,d2

+⋯ + ak,1vk,1 + ak,kvk,k +⋯ + ak,dkvk,dk .

Since the sequence B of (1.14) is linearly independent, we see that all the scalars a1,1, a1,2, . . . , a1,d1 ,
a2,1, a2,2, . . . , a2,d2 , . . . . . . , ak,1, ak,2, . . . , ak,dk are equal to 0, and therefore, of course, all the
vectors w1, w2, . . . , wk are zero. This proves that the subspaces W1,W2, . . . ,Wk are independent,
and thus that the statement (a) holds.

If V is a vector space andW ,W1, . . . ,Wk are subspaces of V , we write

W =W1 ⊕W2 ⊕⋯⊕Wk (1.15) {eq:decom}{eq:decom}

to mean that

• W is equal to the sumW1 +W2 +⋯ +Wk , and
• the subspaces W1,W2, . . . ,Wk are independent.

53



In this situation we say that W is the direct sum of the subspaces W1,W2, . . . ,Wk , and that (1.15) is
a direct sum decomposition ofW .

The key reason for which this notion is interesting is that direct sum decompositions play a
role similar in linear algebra as partitions of sets in set theory or combinatorics. The following
lemma makes explicit one of the ways we often use direct sums:

{lemma:oplus:desc}
Lemma 1.9.7. Let V is a vector space, let W, W1, . . . , Wk be subspaces of V, and suppose that

W = W1 ⊕ W2 ⊕ ⋯ ⊕ Wk . If v is an element of V, then there is a unique choice of w1 ∈ W1,

w2 ∈W2, . . . , wk ∈Wk such that v = w1 +w2 +⋯ +wk .

Proof. Let v be an element ofW . As W =W1 +W2 +⋯ +Wk , there are vectors w1 ∈W1, w2 ∈W2,
. . . , wk ∈Wk such that w = w1 +w2 +⋯ +wk . This proves the existence claim of the lemma.

Let us now suppose that the vectors w′1 ∈ W1, w′2 ∈ W2, . . . , w′k ∈ Wk are also such that
w = w1 +w2 +⋯ +wk . In that case we have that w1 −w′1 ∈W1, w2 −w′2 ∈W2, . . . , wk −w′k ∈Wk ,
and that

(w1 −w′1) + (w2 −w′2) +⋯ + (wk −w′k) = 0,

and since the hypothesis implies that the subspaces W1, W2, . . . , Wk are independent we can
conclude that w1 −w′1 = w2 −w′2 = ⋯ = wk −w′k = 0, so that wi = w′i for all i ∈ JkK. This proves the
uniqueness claim of the lemma.

Direct sum decompositions, in some sense, generalize bases, as the result of the following
exercise suggests.

Exercise 1.9.8. Let V be a vector space, and let v1, v2, . . . , vn be non-zero elements of V . We have a
direct sum decomposition V = ⟨v1⟩ ⊕ ⟨v2⟩ ⊕⋯⊕ ⟨vn⟩ if and only if the sequence (v1, v2, . . . , vn)
is an ordered basis for V .

The following is a well-known example of a direct sum decomposition.

{ex:mats:as}
Example 1.9.9. Let n be a positive integer. Let us write S+ and S− for the subspaces of Mn(R) of
the symmetric and anti-symmetric matrices, respectively, so that

S+ = {A ∈Mn(R) ∶ At = A}, S− = {A ∈Mn(R) ∶ At = −A}.

If A is an element of S+ ∩ S−, then we have that At = A and that At = −A, so that in fact A = −A
and thus that A = 0: this shows that S+ ∩ S− = 0. As we observed above, this implies that S+ and S−

are independent subspaces of Mn(R). On the other hand, if A is an arbitrary element of Mn(R)
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then we have that

A = (A+ A
t

2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈S+

+(A− A
t

2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈S−

∈ S+ + S−,

and we see with thus that Mn(R) = S+ + S−. Putting everything together, we can conclude that we
have a direct sum decomposition

Mn(R) = S+ ⊕ S−

of the space of all real n × n matrices. The exact same statement, with the exact same proof, is true
if we replace the field R by any other field in which 2 is non-zero.

We leave the details of a very similar example to the responsability of the reader.

{exer:pols:eo}
Exercise 1.9.10. Let R[X] be the vector space of all real polynomials, and let E and O be the
subspaces of all even and odd polynomials, respectively, so that

E = {p ∈ R[X] ∶ p(−X) = p(X)}, O = {p ∈ R[X] ∶ p(−X) = −p(X)}.

Prove that R[X] = E ⊕O .

For us, the most relevant example of a direct sum decomposition is the one described in the
following proposition.

{prop:oplus:eig}
Proposition 1.9.11. Let f ∶ V → V be a diagonalizable endomorphism of a vector space V that has

finitely many eigenvalues. If λ1, λ2, . . . , λk are the eigenvalues of f listed without repetitions, then

V = Eλ1( f ) ⊕ Eλ2( f ) ⊕⋯⊕ Eλk
( f ).

Proof. Let λ1, λ2, . . . , λk be the eigenvalues of f listed without repetitions. If w1, w2, . . . , wk are
non-zero elements of Eλ1( f ), Eλ2( f ), . . . , Eλk

( f ), respectively, then they are in fact eigenvectors
with eigenvalues λ1, λ2, . . . , λk , and Proposition 1.3.2 tells us that they are linearly independent.
It follows from this and Proposition 1.9.2 that the eigenspaces Eλ1( f ), Eλ2( f ), . . . , Eλk

( f ) are
independent subspaces of V .

Let now v be an arbitrary element of V . As f is diagonalizable, we know from Proposition 1.4.1
that v is equal to a linear combination of eigenvectors of f , and this tells us that it is in the span of
the union Eλ1( f )∪Eλ2( f )∪⋯∪Eλk

( f ), which is precisely the sum Eλ1( f )+Eλ2( f )+⋯+Eλk
( f ).

This tells us that this last sum coincides with V , and therefore, with what we proved above, that in
fact V = Eλ1( f ) ⊕ Eλ2( f ) ⊕⋯⊕ Eλk

( f ), as we want.
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This proposition, in fact, has as special cases the direct sum decompositions that we described
in Example 1.9.9 and in Exercise 1.9.10. Let us see how.

Example 1.9.12. Let n be a positive integer, and let T ∶Mn(R) →Mn(R) be the linear map such
that T(A) = At for each matrix A ∈Mn(R). We clearly have that T2 = idMn(R), so the polynomial
X2− 1 = (X− 1)(X+ 1) vanishes on T and is therefore divisible by the minimal polynomial µT of T .
As (X − 1)(X + 1) splits completely over R without multiplicities, so does µT , and this implies, as
we know, that T is a diagonalizable map. Since Mn(R) is finite-dimensional, T has finitely many
eigenvalues, and the proposition thus applies to T . The eigenspace E1(T) of T corresponding to
the eigenvalue 1 is the space of all matrices A such that T(A) = A, that is, such that At = A, and
that is the space S+ of all symmetric matrices. Similarly, the eigenspace E−1(T) corresponding
to the eigenvalue −1 is the space S− of all anti-symmetric matrices. It follows from this that the
direct sum decomposition Mn(R) = E1(T) ⊕ E−1(T) given by Proposition 1.9.11 coincides with
the direct sum decomposition Mn(R) = S+ ⊕ S− that we described in Example 1.9.9.

Exercise 1.9.13. Let S ∶ R[X] → R[X] be the linear map such that S(p) = p(−X) for all
p ∈ R[X]. Show that S has exactly two eigenvalues, 1 and −1, that it is diagonalizable, and
that the eigenspaces E1(S) and E−1(S) coincide with the subspaces E and O of even and odd
polynomials of Exercise 1.9.10. Conclude that the direct sum decomposition R[X] = E ⊕O of
that exercise is a special case of the decompositions given by Proposition 1.9.11.

Observation 1.9.14. In Proposition 1.9.11 we have the hypothesis that the linear map f ∶ V → V

have finitely many eigenvalues. This hypothesis holds automatically if the vector space V is
finite-dimensional, as we know, but in general need not be true. For example, the linear map
Q ∶ R[X] ↦ R[X] such that Q(p) = p(2X) for each polynomial p ∈ R[X] is diagonalizable and
its eigenvalues are precisely the integers of the form 2i with i ∈ N0. For such a linear map a result
exactly like Proposition 1.9.11 holds, but with an infinite direct sum. Since we have not defined
this, we omit the details.

{lemma:oplus-assoc}
Lemma 1.9.15. Let W be a finite-dimensional vector space, and let U and V be subspaces of W such

that W = U ⊕V. If U1, U2, . . . , Ur and V1, V2, . . . , Vs are subspaces of U and of V, respectively, such

that U = U1 ⊕U2 ⊕⋯⊕Ur and V = V1 ⊕ V2 ⊕⋯⊕ Vr , then

V = U1 ⊕U2 ⊕⋯⊕Ur ⊕ V1 ⊕ V2 ⊕⋯⊕ Vs .

Proof.
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§1.10. Indecomposable endomorphisms

We say that an endomorphism f ∶ V → V is decomposable if there exist non-zero f -invariant
subspaces W1 andW2 of V such that V =W1 ⊕W2, and that it is indecomposable if V ≠ 0 and f is
not decomposable. These two notions have straightforward interpretations in terms of matrices.

Indeed, if f ∶ V → V is a decomposable endomorphism of a finite-dimensional vector space V
and W1 and W2 are two non-zero f -invariant subspaces of V such that V = W1 ⊕ W2, and
B1 = (v1, v2, . . . , vr) and B2 = (w1, . . . ,ws) are ordered bases ofW1 and ofW2, then

B = (v1, v2, . . . , vr ,w1, . . . ,ws)

is an ordered basis of V with respect to which the matrix of f is of the form

[ f ]B = (
[ fW1]B1 0

0 [ fW2]B2

) ,

with fW1 ∶W1 →W1 and fW2 ∶W2 →W2 the restrictions of f to the subspaces W1 andW2, as usual.
This tells us that when the linear map f is decomposable we can find a basis of V with respect to
which the matrix of f is a block diagonal matrix in a non-trivial way, and it is easy to check that
this is in fact also a sufficient condition for decomposability. In other words, we have that

a linear map f ∶ V → V is decomposable if and only if there is an ordered basis of V

with respect to which the matrix of f is a block diagonal matrix in a non-trivial way.

Of course, it follows from this that an endomorphism f ∶ V → V of a non-zero finite-dimensional
vector space V is indecomposable if and only if there is no way to choose a basis of V with respect
to which its matrix is block diagonal.

Observation 1.10.1. According to our definitions, an endomorphism f ∶ 0 → 0 of a zero vector
space is neither decomposable nor indecomposable. On the other hand, an endomorphism
f ∶ V → V of a non-zero vector space is either decomposable or indecomposable, and not both.

The following lemma gives a convenient criterion to check the indecomposability of linear
maps:

{lemma:indec:suf }
Lemma 1.10.2. Let V be a vector space, and let f ∶ V → V be a linear map whose characteristic

polynomial splits completely over the field k. If f has exactly one eigenvalue λ and the corresponding

eigenspace Eλ( f ) is one-dimensional, then f is an indecomposable endomorphism.

Proof. Let us suppose that the linear map f has exactly one eigenvalue λ and that it is not inde-
composable. Since V ≠ 0, this means that there exist non-zero f -invariant subspaces W1 andW2

such that V =W1 ⊕W2, and we can consider the restrictions fW1 ∶W1 →W1 and fW2 ∶W2 →W2
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of f to those two invariant subspaces. The characteristic polynomials of fW1 and of fW2 divide
the characteristic polynomial of f , so they split completely over k because χ f does: since they are
non-constant because the subspaces W1 andW2 are non-zero, this tells us that they have roots in k,
and the hypothesis on f implies that, in fact, the scalar λ is a root of both. This means that λ is
an eigenvalue of fW1 and of fW2 , so there exist non-zero vectors w1 ∈W1 and w2 ∈W2 such that
f (w1) = λw1 and f (w2) = λw2. SinceV =W1⊕W2, the vectorsw1 andw2 are linearly independent.
As they clearly belong to the eigenspace Eλ( f ), it follows from this that dim Eλ( f ) ≥ 2. This
proves the lemma.

Using the lemma we can exhibit indecomposable endomorphism with ease. Let n be a positive
integer, let λ be a scalar in k, and let f ∶ kn → kn be the linear map whose matrix with respect to
the standard ordered basis (e1, e2, . . . , en) of kn is

Jn(λ) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ 1 0 ⋯ 0 0
0 λ 1 ⋯ 0 0
0 0 λ ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ λ 1
0 0 0 ⋯ 0 λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

so that for each i ∈ {1, . . . , n} we have that

f (ei) =
⎧⎪⎪⎨⎪⎪⎩

λe1 if i = 1;
λei + ei−1 if 1 < i ≤ n.

The matrix above is upper triangular, so it is immediate that the characteristic polynomial of f is
χ f (X) = (X − λ)n: this polynomial splits completely over k and has λ as its only root. Moreover,
the linear map f − λidV clearly has rank n − 1, so its kernel has dimension 1, and this tells us that
the eigenspace Eλ( f ) has dimension 1. We are thus in the hypotheses of the lemma, and we can
conclude that the linear map f is indecomposable. We remark that the minimal polynomial of
this linear map is also (X − λ)n.

The main objective of this section is to show that, in fact, all indecomposable endomorphisms
are of this form. To get to that result, we will need a few preliminary lemmas. We start with the
easy observation that «shifting» a linear map preserves indecomposability.

{lemma:indec:shift}
Lemma 1.10.3. If f ∶ V → V is an indecomposable linear map and λ ∈ k is a scalar, then the linear

map f − λ ⋅ idV ∶ V → V is also indecomposable.

Proof. Let f ∶ V → V be a linear map, let λ ∈ k be a scalar, and suppose that V is not zero and that
the linear map f − λ ⋅ idV ∶ V → V is not indecomposable, so that there exist non-zero subspaces
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W1 andW2 that are ( f − λ ⋅ idV)-invariant and such that V =W1 ⊕W2. If v is an element ofW1,
then the ( f − λ ⋅ idV)-invariance ofW1 tells us that f (v) − λv ∈W1, and that therefore f (v) is an
element ofW1: we see with this that W1 is f -invariant. Of course, the same argument shows that
W2 is f -invariant and, since V =W1 ⊕W2 and both subspaces are non-zero, we see that the linear
map f is not indecomposable. The lemma follows from this.

The second lemma that we need is a well-known property of coprime polynomials, a special
case of the so-called Bézout’s identity.

{lemma:bezout}
Lemma 1.10.4. Let p and q be two polynomials in k[X]. If p and q are coprime, then there exists

polynomials u and v in k[X] such that up + vq = 1.

Proof. Let us suppose that the polynomials p and q are coprime and consider the subset
I ∶= {up+vq ∶ u, v ∈ k[X]} of k[X], which is in fact a subspace. Since p and q are coprime, at least
one of the two is non-zero: as it belongs to I, we see that there are non-zero elements in I. We may
therefore pick a polynomial m in I that is monic and whose degree is d ∶= min{deg h ∶ h ∈ I ∖ 0}.
Since m belongs to I, there are polynomials u0, v0 ∈ k[X] such that m = u0p + v0q.

There are polynomials a, r ∈ k[X] such that p = am + r and either r = 0 or deg r < d. In fact,
as

r = p − am = p − au0p − av0q = (1 − au0)p + (−av0)q ∈ I,

the choice of d implies that we must have that r = 0, for otherwise we would have in I a non-zero
polynomial of degree strictly smaller than that of m: this means that m divides p. Of course, the
same argument can be used to show that m also divides q, so that m is a common divisor of p
and q: since p and q are coprime, we thus see that m = 1. This proves the lemma, since it tells us
that u0p + v0q = 1.

Third, we need an easy fact about invariant subspaces:

{ex:finv:ker}
Exercise 1.10.5. Let f ∶ V → V be a linear map. Show that if p ∈ k[X] is a polynomial, then the
subspace ker p( f ) of V is f -invariant.

In order to describe indecomposable morphisms we start by showing that their minimal
polynomials are of a very simple form.

{lemma:indec:min}
Lemma 1.10.6. If f ∶ V → V is an indecomposable endomorphism of a finite-dimensional vector

space whose characteristic polynomials splits completely over k, then the minimal polynomial of f is

of the form (X − λ)ℓ for some scalar λ in k and some positive integer ℓ.
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Proof. Let f ∶ V → V be an indecomposable endomorphism of a finite-dimensional vector space,
let us suppose that the characteristic polynomial of f splits completely over k, and let µ ∈ k[X]
be its minimal polynomial. Since V is not the zero vector space, the degree of µ is positive and,
as the characteristic polynomial of f splits completely over k, there is a λ ∈ k such that µ(λ) = 0.
There are then ℓ ∈ N and p ∈ k[X] such that µ(X) = (X − λ)ℓp(X) and p(λ) ≠ 0, and, according
to Lemma 1.10.4, there are polynomials r, s ∈ k[X] such that 1 = s ⋅ p + r ⋅ (X − λ)ℓ. Evaluating
both sides of this equality at f we find that

idV = s( f ) ○ p( f ) + r( f ) ○ ( f − λ ⋅ idV)ℓ . (1.16) {eq:fgcd}{eq:fgcd}

If we consider the linear maps π1 ∶= s( f ) ○ p( f ) ∶ V → V and π2 ∶= r( f ) ○ ( f − λ ⋅ idV)ℓ ∶ V → V ,
we can rewrite the equality (1.16) in the form

idV = π1 + π2. (1.17) {eq:pi:1}{eq:pi:1}

Let us consider now the subspaces W1 ∶= ker( f − λ ⋅ idV)ℓ andW2 ∶= ker p( f ) of V , and show that
V =W1 ⊕W2:

• Letw be a vector in the intersectionW1∩W2. Sincew ∈W1, we have that ( f −λ⋅idV)ℓ(w) = 0
and therefore that π2(w) = 0; since w ∈W2, we have that p( f )(w) = 0 and therefore that
π1(w) = 0. According to (1.17), then,w = idV(w) = π1(w)+π2(w) = 0. This tells us that the
intersectionW1 ∩W2 is zero and therefore that the subspaces W1 andW2 are independent.

• Let now w be an arbitrary vector in V . We have that

( f − λ ⋅ idV)ℓ(π1(w)) = (( f − λ ⋅ idV)ℓ ○ s( f ) ○ p( f ))(w) = (µ( f ) ○ s( f ))(w) = 0,

so that π1(w) ∈W1, and that

p( f )(π2(w)) = (p( f ) ○ r( f ) ○ ( f − λ ⋅ idV)ℓ)(w) = (µ( f ) ○ r( f ))(w) = 0,

so that π2(w) ∈W2. In view of (1.17), this implies that w = π1(w) + π2(w) ∈W1 +W2, and
we can conclude that V =W1 +W2.

According to Exercise 1.10.5, the subspaces W1 and W2 are f -invariant: since we have that
V =W1 ⊕W2 and the map f is indecomposable, one ofW1 or W2 has to be the zero subspace. As
λ is an eigenvalue of f , there is a non-zero vector w ∈ V such that f (w) = λw, and clearly we have
that ( f − λ ⋅ idV)ℓ(w) = 0, so that w ∈W1. It follows from this that W2 = ker p( f ) = 0, and we see
that the linear map p( f ) ∶ V → V is bijective. This and the fact that 0 = µ( f ) = p( f )○( f −λ ⋅idV)ℓ
imply together that ( f − λ ⋅ idV)ℓ = 0, so that the minimal polynomial µ, which is of the form
(X − λ)ℓp(X), divides (X − λ)ℓ. Of course, we can conclude from this that p = 1 , so that
µ = (X − λ)ℓ, as the lemma claims.

Using the information about the minimal polynomial that this lemma gives, we can now
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completely describe indecomposable endomorphisms:

{prop:block}
Proposition 1.10.7. Let f ∶ V → V be an indecomposable endomorphism of a finite-dimensional

vector space V such that the characteristic polynomial of f splits completely over k. There exist an

ordered basis B of V and a scalar λ ∈ k such that the matrix of f with respect to B is the matrix

Jn(λ) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ 1 0 ⋯ 0 0
0 λ 1 ⋯ 0 0
0 0 λ ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ λ 1
0 0 0 ⋯ 0 λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

with n = dimV.

Proof. Let n be the dimension of V . According to Lemma 1.10.6, there is a scalar λ ∈ k and a
positive integer ℓ such that the minimal polynomial of f is µ f (X) = (X − λ)ℓ.

Step 1. Let us consider the linear map h ∶= f − λ ⋅ idV ∶ V → V . We know from Lemma 1.10.3
that h is also an indecomposable endomorphism of V , and it is clear that its minimal polynomial
is µh(X) = Xℓ. This implies that hℓ is the zero map and that hℓ−1 is not the zero map, so that there
exists a vector x ∈ V such that hℓ−1(x) ≠ 0. We claim that the ℓ vectors

x , h(x), h2(x), . . . , hℓ−1(x) (1.18) {eq:hix}{eq:hix}

are linearly independent. Indeed, let us suppose that we have scalars a0, a1, . . . , aℓ−1 ∈ k, not all
zero, such that

a0x + a1h(x) + a2h
2(x) +⋯ + aℓ−1hℓ−1(x) = 0.

We can then consider the number k ∶= min{i ∈ {0, . . . , ℓ − 1} ∶ ai ≠ 0}: of course, we have that
akh

k(x) + ak+1hk+1(x) + ⋯ + aℓ−1hℓ−1(x) = 0 and therefore that

0 = hℓ−k−1(akhk(x) + ak+1hk+1(x) +⋯ + aℓ−1hℓ−1(x)) = akhℓ−1(x).

Since hℓ−1(x) ≠ 0 and ak ≠ 0, this is absurd. This proves our claim.

Step 2. Let U be the subspace of V generated by the ℓ vectors listed in (1.18), which has
dimension ℓ. As we know, we can find n − ℓ vectors v1, v2, . . . , vn−ℓ such that the sequence

(x , h(x), h2(x), . . . , hℓ−1(x), v1, v2, . . . , vn−ℓ)

is an ordered basis for V . There is a unique linear map Φ ∶ V → k such that

Φ(hi(x)) =
⎧⎪⎪⎨⎪⎪⎩

0 if 0 ≤ i < ℓ − 1;
1 if i = ℓ − 1;

for each i ∈ {0, . . . , ℓ − 1}
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and
Φ(vi) = 0 for each i ∈ {1, 2, . . . , n − ℓ}.

Using all this we can define a linear function π ∶ V → V putting, for each v ∈ V ,

π(v) ∶=
ℓ−1
∑
i=0

Φ(hi(v)) ⋅ hℓ−1−i(x).

Step 3. Let W ∶= ker π be the kernel of the linear map π. We want to show now that U andW

are h-invariant subspaces of V .

• Since U is generated by the vectors x, h(x), h2(x), . . . , hℓ−1(x) and the image under h of
each of them is either one of them or zero, it is clear that U is h-invariant.

• Suppose that w is an element ofW , so that

0 = π(w) =
ℓ−1
∑
i=0

Φ(hi(w)) ⋅ hℓ−1−i(x).

We can then compute that

π(h(w)) =
ℓ−1
∑
i=0

Φ(hi+1(w)) ⋅ hℓ−1−i(x)

=
ℓ

∑
j=1

Φ(h j(w)) ⋅ hℓ− j(x) changing the index of summation

=
ℓ−1
∑
j=0

Φ(h j(w)) ⋅ hℓ− j(x) because hℓ(x) = 0 and h
ℓ(w) = 0

= h
⎛
⎝
ℓ−1
∑
j=0

Φ(h j(w)) ⋅ hℓ−1− j(x)
⎞
⎠

= h(π(w)) = 0,

so that h(w) ∈W . This shows that W is also an h-invariant subspace.

Step 4. We will show next that V = U ⊕W .

• We claim that π(u) = u for all u ∈ U and to check this, since U is generated by the ℓ vectors
listed in (1.18), it is enough that we show that π(hk(x)) = hk(x) for each k ∈ {0, . . . , ℓ − 1}.

Let the k be an element of {0, . . . , ℓ − 1}. We have that

π(hk(x)) =
ℓ−1
∑
i=0

Φ(hi+k(x))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⋅hℓ−1−i(x).

If an element i of {0, . . . , ℓ − 1} is such that i + k ≥ ℓ, then hi+k(x) = 0 since hℓ = 0, and if
instead i + k < ℓ − 1 then Φ(hi+k(x)) = 0: it follows from this and the formula above that
π(hk(x)) = Φ(hℓ−1(x)) ⋅ hk(x) = hk(x), as we want.
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• Let v be a vector in V . The value π(v) is a linear combination of the ℓ vectors listed
in (1.18), so π(v) belongs to the subspace U , and what we have shown implies then that
π(π(v)) = π(v). We therefore have that π(v − π(v)) = 0, so that v − π(v) ∈W , and thus
that v = π(v) + (v − π(v)) ∈ U +W . We see with this that V = U +W .

• On the other hand, if v is an element of U ∩W , then on one hand we have that π(v) = 0,
because v ∈ W , and on the other that π(v) = v, because v ∈ U : putting the two things
together we see that v = 0. This shows that the subspaces U andW are independent, so that
in fact V = U ⊕W .

Step 5. We have that V = U ⊕W and that U and W are h-invariant: as h ∶ V → V is an
indecomposable endomorphism and U ≠ 0 because 0 ≠ x ∈ U , we must have that W = 0. This tells
us that V = U , so that the sequence of ℓ linearly independent vectors listed in (1.18) generate V . It
follows from this, of course, that the sequence

B = (hℓ−1(x), hℓ−2(x), . . . , h(x), x)

is an ordered basis of V , and the matrix of the linear map h with respect to this ordered basis is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
0 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 0 1
0 0 0 ⋯ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

This implies that the matrix of the linear map f = h + λ is the matrix Jn(λ) described in the
statement of the proposition. This proves what we wanted.

As a corollary, we can show that the condition for indecomposability given in Lemma 1.10.2 is
also necessary:

Corollary 1.10.8. An endomorphism f ∶ V → V of a finite-dimensional vector space whose char-

acteristic polynomial splits completely over k is indecomposable if and only if it has exactly one

eigenvalue λ whose corresponding eigenspace Eλ( f ) is one-dimensional.

Proof. Lemma 1.10.2 tells us that the condition is suficient. Suppose, on the other hand, that
f ∶ V → V is an indecomposable endomorphism of a finite-dimensional vector space whose
characteristic polynomial splits completely over k: according to Proposition 1.10.7 there are a
scalar λ ∈ k and an ordered basis B = (v1, v2, . . . , vn) of V such that the matrix [ f ]B is the
matrix Jn(λ) with n = dimV . The characteristic polynomial of f is then clearly (X − λ)n, so
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that λ is the unique eigenvalue of f , and the corresponding eigenspace is Eλ( f ) = ⟨v1⟩, which is
one-dimensional.

§1.11. The Jordan canonical form of an endomorphism

In the previous section we have carried out all the hard work needed to obtain the Jordan canonical
form of an endomorphism. In this one we will put the pieces together.

{lemma:jcf:desc}
Lemma 1.11.1. Let f ∶ V → V be an endomorphism of a non-zero finite-dimensional vector space.

There exist non-zero f -invariant subspaces W1, W2, . . . , Wr of V such that

• V =W1 ⊕W2 ⊕⋯⊕Wr and

• for each index i ∈ {1, 2, . . . , r} the restriction fWi
∶Wi →Wi of f to Wi is an indecomposable

endomorphism of Wi .

Proof. Let us suppose that the lemma is not true, so that there exists an endomorphism f ∶ V → V

of a non-zero finite dimensional vector space V such that

there is no collection of non-zero f -invariant subspaces W1, W2, . . . , Wr of V such that

V =W1⊕W2⊕⋯⊕Wr and each of the restrictions fW1 , fW2 , . . . , fWr
is indecomposable.

(1.19) {eq:cihip}{eq:cihip}

We can moreover suppose that the endomorphism f is such that the number dimV is as small as
possible.

The endomorphism f ∶ V → V is not indecomposable: if it were, we could take r = 1,W1 = V
and then have that V = W1 and that the restriction fW1 , which is simply f , is indecomposable,
contradicting (1.19). As V is a non-zero space, we thus see that there exist two non-zero f -invariant
subspaces P and Q of V such that V = P ⊕ Q.

As dimV = dim P + dimQ and the subspaces P and Q are non-zero, we have dim P < dimV

and dimQ < dimV . In view of the way we chose the endomorphism f , this implies that the claim
of the lemma is true for the restrictions fP and fQ , that is, there exist

• non-zero fP-invariant subspaces P1, P2, . . . , Pr of P such that P = P1 ⊕ P2 ⊕⋯⊕ Pr and each
of the restrictions ( fP)P1 , ( fP)P2 , . . . , ( fP)Pr

is indecomposable, and
• non-zero fQ-invariant subspaces Q1, Q2, . . . , Qs of Q such that Q = Q1 ⊕ Q2 ⊕⋯⊕ Qs and
each of the restrictions ( fQ)Q1 , ( fQ)Q2 , . . . , ( fQ)Qs

is indecomposable.

As V = P⊕Q, P = P1 ⊕ P2 ⊕⋯⊕ Pr and Q = Q1 ⊕Q2 ⊕⋯⊕Qs , we know from Lemma 1.9.15 that

V = P1 ⊕ P2 ⊕⋯⊕ Pr ⊕ Q1 ⊕ Q2 ⊕⋯⊕ Qs .
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On the other hand, we know from Exercise 1.7.10 that the subspaces P1, P2, . . . , Pr are f -invariant,
because they are fP-invariant, and that the restrictions fP1 , fP2 , . . . , fPr

are indecomposable, because
they coincide with the restrictions ( fP)P1 , ( fP)P2 , . . . , ( fP)Pr

. Similarly, we know that the subspaces
Q1, Q2, . . . , Qs is f -invariant, because they are fQ-invariant, and that the restrictions fQ1 , fQ2 , . . . ,
fQs

are indecomposable, because they coincide with the restrictions ( fQ)Q1 , ( fQ)Q2 , . . . , ( fQ)Qs
.

This contradicts (1.19), and this contradiction proves the lemma.

This lemma almost immediately gives us the existence of the Jordan canonical form of an
endomorphism. As in the previous section, for each positive integer n and each scalar λ ∈ k we
consider the matrix

Jn(λ) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ 1 0 ⋯ 0 0
0 λ 1 ⋯ 0 0
0 0 λ ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ λ 1
0 0 0 ⋯ 0 λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈Mn(k),

which we call a Jordan block of size n and eigenvalue λ.

{thm:jordan:f:exist}
Theorem 1.11.2. Let f ∶ V → V be an endomorphism of a non-zero finite-dimensional vector space

whose characteristic polynomial splits completely over k. There exist

• positive integers r and n1, n2, . . . , nr such that n1 + n2 +⋯ + nr = dimV,

• scalars λ1, λ2, . . . , λr , and

• an ordered basis B of V

such that the matrix of f with respect to B is the block diagonal matrix

[ f ]B =
⎛
⎜⎜⎜⎜
⎝

Jn1(λ1)
Jn2(λ2)

⋱
Jnr
(λr)

⎞
⎟⎟⎟⎟
⎠
,

and the scalars λ1, λ2, . . . , λr are the eigenvalues of f , possibly listed with repetitions.

A matrix of this form— a block diagonal matrix whose diagonal blocks are Jordan blocks of
various sizes and eigenvalues — is called amatrix in Jordan form.

Proof. According to Lemma 1.11.1, there exists a positive integer r and non-zero f -invariant sub-
spaces W1,W2, . . . ,Wr of V with V =W1 ⊕W2 ⊕⋯⊕Wr and such that each of the restrictions
fW1 ∶ W1 → W1, . . . , fWr

∶ Wr → Wr is an indecomposable endomorphism. The characteristic
polynomials of these r restrictions divide the characteristic polynomial of f , so they split com-
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pletely over the field k, and then, according to Proposition 1.10.7, if we put ni ∶= dimWi for each
i ∈ {1, 2, . . . , r}, there exist scalars λ1, . . . , λr ∈ k and ordered bases B1 = (v1,1, v1,2, . . . , v1,n1),
B2 = (v2,1, v2,2, . . . , v2,n2), . . . , Br = (vr,1, vr,2, . . . , vr,nr

) of the subspaces W1,W2, . . . ,Wr , respec-
tively, such that [ fWi

]Bi
= Jn i
(λi) for each i ∈ {1, 2, . . . , r}. Since V = W1 ⊕W2 ⊕⋯ ⊕Wr , we

know that the sequence

B = (v1,1, v1,2, . . . , v1,n1 , v2,1, v2,2, . . . , v2,n2 , . . . , . . . , vr,1, vr,2, . . . , vr,nr
)

is an ordered basis for V , and it is easy to see that the matrix of f with respect to it is

[ f ]B =
⎛
⎜⎜⎜⎜
⎝

[ fW1]B1

[ fW2]B2

⋱
[ fWr
]Br

⎞
⎟⎟⎟⎟
⎠
=
⎛
⎜⎜⎜⎜
⎝

Jn1(λ1)
Jn2(λ2)

⋱
Jnr
(λr)

⎞
⎟⎟⎟⎟
⎠
.

This proves the first claim of theorem, and the second one follows immediately from it.

The existence theorem we have proved has an accompanying uniqueness result. The key to
obtaining it is a very simple observation about the ranks of powers of Jordan blocks. In general,
for each matrix A in Mn(k), each k ∈ N0 and each scalar λ ∈ k we set

ρk(A, λ) ∶= rank(A− λ ⋅ In)k ,
∆k(A, λ) ∶= ρk−1(A, µ) − 2ρk(A, µ) + ρk+1(A, µ).

Similarly, if f ∶ V → V is an endomorphism of a finite-dimensional vector space, then for each
λ ∈ k and each k ∈ N0 we put

ρk( f , λ) ∶= rank( f − λ ⋅ idV)k ,
∆k( f , λ) ∶= ρk−1( f , µ) − 2ρk( f , µ) + ρk+1( f , µ).

As usual, these two definitions — one for matrices and one for endomorphisms — are closely
related:

{ex:ranks:sim}
Exercise 1.11.3. Let V be finite-dimensional vector space, and let B be an ordered basis for V .
Prove that if f ∶ V → V is an endomorphism of V , then for all k ∈ N0 and all λ ∈ k we have that

ρk( f , λ) = ρk([ f ]B , λ), ∆k( f , λ) = ∆k([ f ]B , λ),

These numbers are additive in the following sense:

{ex:ranks}
Exercise 1.11.4. Let n and n1, n2, . . . , nr be positive integers such that n = n1 + n2 +⋯ + nr . Show
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that if A is a matrix in Mn(k) that is a block diagonal matrix of the form

A =
⎛
⎜⎜⎜⎜
⎝

A1

A2

⋱
Ar

⎞
⎟⎟⎟⎟
⎠
,

with A1 ∈Mn1(k), A2 ∈Mn2(k), . . . , Ar ∈Mnr
(k), then

ρk(A, λ) = ρk(A1, λ) + ρk(A2, λ) + ⋯ + ρk(Ar , λ)
and

∆k(A, λ) = ∆k(A1, λ) + ∆k(A2, λ) +⋯ + ∆k(Ar , λ),

for all λ ∈ k and all k ∈ N0.

The third important observation that we need to make about these ranks is that they are
invariant under similarly:

Exercise 1.11.5. {exer:delta-sim}

(1) Let V be a finite-dimensional vector space, and let f , g ∶ V → V be an endomorphism of V .
If f and g are similar, so that there exists a bijective endomorphism h ∶ V → V such that
f = h ○ g ○ h−1, then

ρk( f , λ) = ρk(g , λ), ∆k( f , λ) = ∆k(g , λ)

for all k ∈ N0 and all λ ∈ k.
(2) Let n be a positive integer. If A and B are two matrices in Mn(k) that are similar, so that

there exists an invertible matrix C in Mn(k) such that A = CBC−1, then

ρk(A, λ) = ρk(B, λ), ∆k(A, λ) = ∆k(B, λ)

for all k ∈ N0 and all λ ∈ k.

It is easy to compute these numbers when the matrix A is a Jordan block. We start with the
ranks:

{lemma:ranks:block}
Lemma 1.11.6. Let n be a positive integer, let λ ∈ k be a scalar, and let A be the matrix Jn(λ).

(i) For each k ∈ N0 and each µ ∈ k we have that

ρk(A, µ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n if µ ≠ λ;

n − k if µ = λ and 0 ≤ k ≤ n;

0 if µ = λ and k > n.
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(ii) For each k ∈ N and each µ ∈ k we have that

∆k(A, µ) =
⎧⎪⎪⎨⎪⎪⎩

1 if µ = λ and k = n;

0 in any other case.

Proof. (i) Let µ ∈ k be a scalar. The matrix A− µ ⋅ In is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ − µ 1 0 ⋯ 0 0
0 λ − µ 1 ⋯ 0 0
0 0 λ − µ ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ λ − µ 1
0 0 0 ⋯ 0 λ − µ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

If µ ≠ λ, then this matrix and all its powers are invertible, so that their rank is n. If instead µ = λ,
then the matrix is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
0 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 0 1
0 0 0 ⋯ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

and a direct calculation shows that the ranks of its powers are as described in the statement lemma.

(ii) We can compute the expression that appears in the statement in the various cases.

• If µ ≠ λ, then ρk(A, µ) = n for all k ∈ N0, so that clearly

∆k(A, µ) = ρk−1(A, µ) − 2ρk(A, µ) + ρk+1(A, µ) = 0

for all k ∈ N.
• If 0 ≤ k < n, then ρk−1(A, λ) = n−(k− 1), ρk(A, λ) = n− k and ρk+1(A, λ) = n−(k+ 1), so

∆k(A, µ) = ρk−1(A, λ) − 2ρk(A, λ) + ρk+1(A, λ)
= (n − (k − 1)) − 2(n − k) + (n − (k + 1)) = 0.

• We have ρn−1(A, λ) = 1, ρn(A, λ) = 0 and ρn+1(A, λ) = 0, so

∆n(A, µ) = ρn−1(A, λ) − 2ρn(A, λ) + ρn+1(A, λ) = 1 − 2 ⋅ 0 + 0 = 1.

• Finally, if k > n, then ρk−1(A, λ) = 0, ρk(A, λ) = 0 and ρk+1(A, λ) = 0, so

∆k(A, µ) = ρk−1(A, λ) − 2ρk(A, λ) + ρk+1(A, λ) = 0.

These observations taken together prove the lemma.
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This lemma, together with the results of the exercises that precede it, leads us very easily to the
uniqueness of the Jordan form of an endomorphism.

{thm:jordan:f:unique}
Theorem 1.11.7. Let f ∶ V → V be an endomorphism of a non-zero finite-dimensional vector space

and let us suppose there are positive integers r and n1, n2, . . . , nr such that n1 + n2 +⋯+ nr = dimV,

scalars λ1, λ2, . . . , λr , and an ordered basis B of V such that the matrix of f with respect to B is the

block diagonal matrix

[ f ]B =
⎛
⎜⎜⎜⎜
⎝

Jn1(λ1)
Jn2(λ2)

⋱
Jnr
(λr)

⎞
⎟⎟⎟⎟
⎠
. (1.20) {eq:fbjx}{eq:fbjx}

The number of Jordan blocks in this matrix with eigenvalue µ and size m is ∆k( f , µ).

Proof. Let A be the matrix that appears in (1.20). Using the result of Exercises 1.11.3 and 1.11.4 we
see that for each µ ∈ k and each k ∈ k we have

∆k( f , µ) = ∆k(A, µ) = ∆k(Jn1(λ1), µ) + ∆k(Jn2(λ2), µ) +⋯ + ∆k(Jnr
(λr), µ).

It follows from Lemma 1.11.6 that for each i ∈ {1, 2, . . . , r} the ith term appearing in this sum is
equal to 1 if λi = µ and ni = k, and to 0 in any other case. This tells us that ∆k( f , µ) is precisely
the number of Jordan blocks of size k and eigenvalue µ that appear in the matrix (1.20).

We view this theorem as a uniqueness result for the Jordan form of an endomorphism. Indeed,
let us suppose that f ∶ V → V is an endomorphism of a finite-dimensional vector space such that

• there are positive integers r and n1, n2, . . . , nr such that n1+n2+⋯+nr = dimV , and scalars
λ1, λ2, . . . , λr and an ordered basis B of V such that the matrix of f with respect to B is the
block diagonal matrix

[ f ]B =
⎛
⎜⎜⎜⎜
⎝

Jn1(λ1)
Jn2(λ2)

⋱
Jnr
(λr)

⎞
⎟⎟⎟⎟
⎠
, (1.21) {eq:fbj:xb1}{eq:fbj:xb1}

• there are positive integers s and m1, m2, . . . , ms such that m1 +m2 +⋯ +ms = dimV , and
scalars µ1, µ2, . . . , µr and an ordered basis B′ of V such that the matrix of f with respect
to B′ is the block diagonal matrix of the form

[ f ]B′ =
⎛
⎜⎜⎜⎜
⎝

Jn1(µ1)
Jn2(µ2)

⋱
Jns
(µs)

⎞
⎟⎟⎟⎟
⎠
. (1.22) {eq:fbj:xb2}{eq:fbj:xb2}
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It then follows from the theorem that for all k ∈ N and all µ ∈ k the matrices (1.21) and (1.22)
have the same number of Jordan blocks of size k and eigenvalue µ, since that number is ∆k( f , µ).
Clearly this implies that the total number of Jordan blocks in the two matrices coincide, so that
r = s, and that the two lists of pairs

(n1, λ1), (n2, λ2), . . . , (nr , λr)

and

(m1, µ1), (m2, µ2), . . . , (ms , µs)

have the same elements — taking into account repetitions — but possibly in different order. We
therefore say that the two matrices (1.21) and (1.22) coincide up to permutation of the blocks.

We have been working throughout with endomorphisms, but as usual all our results have
analogues about matrices. The following proposition states the end result:

{thm:jordan:mats}
Theorem 1.11.8. Let n be a positive integer and let A be an element inMn(k) whose characteristic

polynomial χA splits completely over k. There exist

• an invertible matrix C inMn(k),
• positive integers r and n1, n2, . . . , nr such that n1 + n2 +⋯ + nr = n, and
• scalars λ1, λ2, . . . , λr in k

such that

CAC
−1 =
⎛
⎜⎜⎜⎜
⎝

Jn1(λ1)
Jn2(λ2)

⋱
Jnr
(λr)

⎞
⎟⎟⎟⎟
⎠
.

For each positive integer k and each scalar µ ∈ k the number of Jordan blocks appearing in this matrix

of size k and eigenvalue µ is exactly ∆k(A, µ).

Proof. The characteristic polynomial of the linear map f ∶ x ∈ kn ↦ Ax ∈ kn coincides with χA,
so it splits completely over k. We can therefore apply Theorems 1.11.2 and 1.11.7 to f . According to
the first of these two theorems there exists an ordered basis B = (v1, v2, . . . , vn) of kn, positive
integers r and n1, n2, . . . , nr such that n1 + n2 +⋯ + nr = n, and scalars λ1, λ2, . . . , λr ∈ k such that
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the matrix of f with respect to B is

[ f ]B =
⎛
⎜⎜⎜⎜
⎝

Jn1(λ1)
Jn2(λ2)

⋱
Jnr
(λr)

⎞
⎟⎟⎟⎟
⎠
. (1.23) {eq:j1}{eq:j1}

Let S be the standard ordered basis of kn. We know that the matrix of f with respect to S is

[ f ]S = A. (1.24) {eq:j2}{eq:j2}

On the other hand, if C ∈Mn(k) is the change-of-basis matrix from S to B, which is of course
invertible, then

C ⋅ [ f ]S ⋅ C−1 = [ f ]B . (1.25) {eq:j3}{eq:j3}

Putting together the three equalities (1.23), (1.24) and (1.25) we see that the first claim of the
theorem holds. The second claim, in turn, follows immediately from Theorem 1.11.7 and the fact
that ∆k( f , µ) = ∆k(A, µ) for all k ∈ N0 and all µ ∈ k.

Theorems 1.11.2, 1.11.7 and 1.11.8 give enough information to actually compute in practice the
Jordan canonical forms of endomorphisms and matrices. This often requires a lot of calculation,
though.

Example 1.11.9. Let us consider the following element of M12(Q),

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0 0 1 0 1 1 0 0
0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

This is a strictly upper triangular matrix, so its characteristic polynomial is easy to compute: we
have χA(X) = X12, which is a polynomial that splits completely over Q, and therefore its only
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eigenvalue is 0. A calculation shows that the ranks of the powers of A are

k 0 1 2 3 4 5 6 ⋯
ρk(A, 0) 12 7 4 1 0 0 0 ⋯

and therefore we can compute the following table:

k 1 2 3 4 5 ⋯
∆k(A, 0) 2 0 2 1 0 ⋯

There are therefore five Jordan blocks in the Jordan canonical form of A, all with eigenvalue 0, and
their sizes are 1, 1, 3, 3, and 4. The Jordan canonical form of A is thus the matrix

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Example 1.11.10. Let us now consider the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−7 −4 −5 1 −7 3 4 4
7 5 3 3 3 2 −4 −4
−1 −1 2 −1 1 −1 2 1
7 3 3 4 4 1 −3 −4
4 2 2 −1 6 −3 −2 −2
−5 −3 −3 0 −2 1 3 2
−2 −2 −2 3 −2 3 4 0
0 1 0 0 −1 1 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Using a computer we find that its characteristic polynomial is

χA(X) = x8 − 17x7 + 118x6 − 424x5 + 800x4 − 592x3 − 416x2 + 1024x − 512
= (x + 1)(x − 4)2(x − 2)5,
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so that its eigenvalues are −1, 4 and 2. We can also compute the following table of ranks

k 0 1 2 3 4 5 6 7 8 ⋯
ρk(A,−1) 8 7 7 7 7 7 7 7 7 ⋯
ρk(A, 4) 8 7 6 6 6 6 6 6 6 ⋯
ρk(A, 2) 8 6 4 3 3 3 3 3 3 ⋯

and therefore we have the following table

k 1 2 3 4 5 ⋯
∆k(A,−1) 1 0 0 0 0 ⋯
∆k(A, 4) 0 1 0 0 0 ⋯
∆k(A, 2) 0 1 1 0 0 ⋯

The Jordan canonical form of the matrix A therefore has four blocks in total: 1 of size 1 with
eigenvalue −1, 1 of size 2 with eigenvalue 4, and 2 of sizes 2 and 3 with eigenvalue 2. That Jordan
canonical form is thus

−1 0 0 0 0 0 0 0
0 4 1 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 2 1 0 0 0
0 0 0 0 2 1 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

.

Essentially all the information about an endomorphism or a matrix can be read off its Jordan
canonical form. The following proposition describes how to do this for some of the invariants we
have studied in these notes.

{prop:jordan:apps}
Proposition 1.11.11. Let f ∶ V → V be an endomorphism of a non-zero finite-dimensional vector

space whose characteristic polynomial splits completely over k and let λ be an eigenvalue of f .

(i) The sum of the sizes of the Jordan blocks with eigenvalue λ that appear in the Jordan canonical

form of f is equal to the multiplicity of λ as a root of the characteristic polynomial of f .

(ii) The number of Jordan blocks with eigenvalue λ that appear in the Jordan canonical form of f

is equal to the dimension of the eigenspace Eλ( f ).
(iii) The size of the largest Jordan block with eigenvalue λ that appears in the Jordan canonical form

of f is equal to the multiplicity of λ as a root of the minimal polynomial of f .
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Proof.

It follows immediately from the third part of this proposition that if the minimal polynomial
of the linear map f is without multiplicities then f is diagonalizable, as we already know from
Proposition 1.8.13: indeed, the proposition tells us that in that case all the Jordan blocks that appear
in the Jordan canonical form of f are of size 1, so that this matrix is in fact diagonal.

The information given by Proposition 1.11.11 can often be used to simplify the process of finding
the Jordan canonical form of endomorphisms and matrices. Let us give some examples of this.

Example 1.11.12. Let f ∶ V → V be an endomorphism of a complex vector space of dimen-
sion 5 whose characteristic polynomial is (X − 5)3(X + 7)2 and whose minimal polynomial
is (X − 5)2(X + 7)2, and let J be the Jordan canonical form of f .

• The sum of the sizes of the Jordan blocks of J with eigenvalue 5 is 3, and the maximum size
of those blocks is 2: it follows that those blocks are 2, of sizes 1 and 2.

• On the other hand, the sum of the sizes of the blocks of eigenvalue −7 is 2, and the maximum
size of those blocks is also 2: this tells us that there is exactly one block of eigenvalue −7, of
size 2.

We can therefore conclude that the Jordan canonical form of the map f is the matrix

5 0 0 0 0 0
0 5 1 0 0 0
0 0 5 0 0 0
0 0 0 −7 1 0
0 0 0 0 −7 1
0 0 0 0 0 −7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

.

In this example we were able to determined the Jordan form of the map f using only informa-
tion about its characteristic and minimal polynomials. That is not possible in general, as our next
example shows.

Example 1.11.13. If f ∶ Q6 → Q6 is aQ-linear map with characteristic andminimal polynomials X6

and X3, respectively, both of which split completely over Q, then the only eigenvalue of f is 0, and
the maximal size of a Jordan block of f with that eigenvalue is 3. This information is not enough to
find the Jordan canonical form of f : indeed, there are three possible canonical forms compatible
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with this information, namely the matrices

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

,

0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

.

and

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

.

Notice that if we knew the dimension of the kernel of f , which is the eigenspace E0( f ), then we
could determine the canonical form of f , for this number coincides with the number of Jordan
blocks in that canonical form.

Example 1.11.14. Let n be a positive integer and let f ∶ Cn → Cn be a linear map whose only
eigenvalue is 0. This tells us that the only root of the characteristic polynomial χ f is 0, and since
the field C is algebraically closed this implies that in fact χ f (X) = Xn. We let r be the number
of Jordan blocks in the canonical form of f , and write n1, n2, . . . , nr for their sizes. Clearly, we
can suppose that the indices the blocks are chosen so that n1 ≥ n2 ≥ ⋯ ≥ nr . Since 0 is the only
eigenvalue of f , the sequence (n1, n2, . . . , nr) completely determines the Jordan canonical form
of f . That sequence is called the Jordan type of f .

A decreasing sequence (n1, . . . , nr) of positive integers with n = n1 + n2 + ⋯ + nr is called
a partition of the number n, and the integers n1, n2, . . . , nr are called the parts of the partition.
Table 1.1 on page 76 lists the partitions of the first few positive integers. The sequences that appear
in it thus describe the possible shapes of the Jordan canonical form of the map f . From this table
we see immediately, for example, that

• if n = 7, µ f = X3, and the kernel of f has dimension 4, then the Jordan canonical form of f
has four blocks of sizes 3, 2, 1 and 1.

• if n = 8, µ f = X4 and the kernel of f 2 has dimension 5, then the Jordan canonical form of f
has three blocks of sizes 4, 3 and 1.
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n partitions of n

1 (1)

2 (2), (1, 1)

3 (3), (2, 1), (1, 1, 1)

4 (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)
5 (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)

6 (6), (5, 1), (4, 2), (4, 1, 1), (3, 3), (3, 2, 1), (3, 1, 1, 1), (2, 2, 2), (2, 2, 1, 1),
(2, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1)

7 (7), (6, 1), (5, 2), (5, 1, 1), (4, 3), (4, 2, 1), (4, 1, 1, 1), (3, 3, 1), (3, 2, 2),
(3, 2, 1, 1), (3, 1, 1, 1, 1), (2, 2, 2, 1), (2, 2, 1, 1, 1), (2, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1)

8 (8), (7, 1), (6, 2), (6, 1, 1), (5, 3), (5, 2, 1), (5, 1, 1, 1), (4, 4), (4, 3, 1),
(4, 2, 2), (4, 2, 1, 1), (4, 1, 1, 1, 1), (3, 3, 2), (3, 3, 1, 1), (3, 2, 2, 1), (3, 2, 1, 1, 1),
(3, 1, 1, 1, 1, 1), (2, 2, 2, 2), (2, 2, 2, 1, 1), (2, 2, 1, 1, 1, 1), (2, 1, 1, 1, 1, 1, 1),
(1, 1, 1, 1, 1, 1, 1, 1)

Table 1.1. The partitions of the first few integers.
{table:partitions}

The number of partitions of an integer n is usually written p(n) and called the partition
number. There is an immense amount of work devoted to understanding these partition numbers.
We can tabulate the first few:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

p(n) 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231

These numbers grow very fast: for example,

p(100) = 190 569 292 ∼ 2 ⋅ 108,
p(1 000) = 24 061 467 864 032 622 473 692 149 727 991 ∼ 2 ⋅ 1031,
p(10 000) = 36 167 251 325 636 293 988 820 471 890 953 695 495 016 030 339 315 650 422

081 868 605 887 952 568 754 066420 592 310 556 052 906 916 435 144 ∼ 3 ⋅ 10106,

and it can be proved, in fact, that

p(n) ∼ 1
4n
√

3
exp
⎛
⎝
π

√
2n
3
⎞
⎠

as n tends to infinity.

In this way we find information about the possible Jordan forms of matrices of size n whose
characteristic polynomial is Xn. We can also inquire about those matrices of size n whose char-
acteristic polynomial is Xn and whose minimal polynomial is Xm for some m ∈ {1, . . . , n}. The
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p(n,m) m

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

n 1 1
2 1 2
3 1 2 3
4 1 3 4 5
5 1 3 5 6 7
6 1 4 7 9 10 11
7 1 4 8 11 13 14 15
8 1 5 10 15 18 20 21 22
9 1 5 12 18 23 26 28 29 30
10 1 6 14 23 30 35 38 40 41 42
11 1 6 16 27 37 44 49 52 54 55 56
12 1 7 19 34 47 58 65 70 73 75 76 77
13 1 7 21 39 57 71 82 89 94 97 99 100 101
14 1 8 24 47 70 90 105 116 123 128 131 133 134 135

Table 1.2. Thenumber p(n,m) of partitions of the number nwith parts not larger thanm.
{table:pnm}

Jordan form of such a matrix only has Jordan blocks of eigenvalue 0 and, as we have seen above,
the maximum size of those blocks is m. The type of such a matrix is thus a partition of n of the
form (n1, n2, . . . , nr) in which nr = m, and clearly then (n2, . . . , nr) is a partition of n −m whose
parts are not larger than m. It follows from these observations if n and m are two positive integers
such that 1 ≤ m ≤ n, then

there are as many matrices in Jordan form with characteristic polynomial Xn and

minimal polynomial Xm as there are partitions of n −m with parts not larger than m.
(1.26) {eq:resp}{eq:resp}

We usually write p(n, k) for the number of partitions of n with parts not larger than m, so the
number of matrices in Jordan form described in (1.26) is p(n, n −m). Table 1.2 on page 1.2 gives
these numbers for small values of n and m.

This and a lot more of information about this beautiful subject can be found in George
Andrews’s classical book [And98].
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§1.12. Similarity

Let us recall that two endomorphisms f , g ∶ V → V of a vector space V are similar if there exists a
bijective endomorphism h ∶ V → V such that f = h ○ g ○ h−1 and that in that case we write f ∼ f .
Analogously, two matrices A and B in Mn(k) are similar if there exists an invertible matrix C

in Mn(k) such that A = CBC−1, and in that case we write A ∼ B.

Exercise 1.12.1.
(1) Let V be a vector space. Prove that similarity is an equivalence relation on the set End(V)

of all endomorphisms of V .
(2) Let n be a positive number. Prove that similarity is an equivalence relation on the set Mn(k)

of all matrices of size n with entries in k.
(3) Let n be a positive number, and let A and B be two matrices in Mn(k). Prove that the

matrices A and B are similar if and only if the associated linear maps fA ∶ x ∈ kn ↦ Ax ∈ kn
and fB ∶ x ∈ kn ↦ Bx ∈ kn are similar.

The following proposition gives the basic characterization of similarity for endomorphisms.

Proposition 1.12.2. Let V be a finite-dimensional vector space, and let f , g ∶ V → V be two

endomorphisms of V. The following statements are equivalent:

(a) The endomorphisms f and g are similar.

(b) For every ordered basis B of V the matrices [ f ]B and [g]B are similar.

(c) For every ordered basis B of V there exists another ordered basis B′ of V such that

[ f ]B = [g]B′ .

Proof. Let n be the dimension of V .
(a)⇒ (b) Let us suppose that the endomorphisms f and g are similar, so that there exists a

bijective endomorphism h ∶ V → V such that f = h ○ g ○ h−1, and let B be an ordered basis for V .
The matrix C ∶= [h]B is then invertible, its inverse is [h−1]B , and we have that

[ f ]B = [h ○ g ○ h−1]B = [h]B ⋅ [g]B ⋅ [h−1]B = C ⋅ [g]B ⋅ C−1,

so the matrices [ f ]B and [g]B are similar.
(b) ⇒ (c) Let us suppose that the statement (b) holds, and let B = (v1, v2, . . . , vn) be any

ordered basis for V . According to the hypothesis, there exists an invertible matrix C = (ci, j)
inMn(k) such that [ f ]B = C ⋅ [g]B ⋅C−1. If for every i ∈ JnKwe putwi ∶= c1,iv1+c2,iv2+⋯+cn,ivn,
then the sequence B′ ∶= (w1,w2, . . . ,wn) is an ordered basis for V because the matrix C is
invertible, and C and C−1 are, in fact, the change of basis matrices C(B′,B) and C(B,B′) . It
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follows from this that

[g]B′ = C(B,B′) ⋅ [g]B ⋅ C(B′,B)
= C(B,B′) ⋅ C ⋅ [ f ]B ⋅ C−1 ⋅ C(B′,B)
= [ f ]B .

We thus see that the statement (c) also holds.
(c) ⇒ (a) Let us finally suppose that the statement (c) holds, let us consider any ordered

basis B = (v1, v2, . . . , vn) for V , and let B′ = (w1,w2, . . . ,wn) be an ordered basis for V such that
[ f ]B = [g]B′ , whose existence is guaranteed by the hypothesis. Since B′ is a basis for V , there
exists exactly one linear map h ∶ V → V such that h(wi) = vi for all i ∈ JnK, and since the image
of h clairly contains B we see that the map h is surjective and this bijective. If the matrix [ f ]B is
the matrix (ai, j) ∈Mn(k), then we have that f (vi) = ∑n

j=1 a j,ivi and g(wi) = ∑n
j=1 a j,iwi for all

i ∈ JnK, and therefore that

h(g(wi)) = h
⎛
⎝

n

∑
j=1

a j,iwi

⎞
⎠
=

n

∑
j=1

a j,ih(wi) =
n

∑
j=1

a j,ivi = f (vi) = f (h(wi))

for all i ∈ JnK. As B′ is a basis for V , this implies that, in fact, h ○ g = f ○ h or, equivalently, that
f = h ○ g ○ h−1, so that the endomorphisms f and g are similar.

An important special case that we need to understand well is that of similarity of Jordan
matrices:

Proposition 1.12.3. Let r, s, n1, n2, . . . , nr and m1, m2, . . . , ms be positive integers such that

n1 + n2 +⋯ + nr = m1 +m2 +⋯ +ms ,

and let λ1, λ2, . . . , λr and µ1, µ2, . . . , µs be elements of k. The Jordan matrices

J ∶=
⎛
⎜⎜⎜⎜
⎝

Jn1(λ1)
Jn2(λ2)

⋱
Jnr
(λr)

⎞
⎟⎟⎟⎟
⎠

and K ∶=
⎛
⎜⎜⎜⎜
⎝

Jm1(µ1)
Jm2(µ2)

⋱
Jms
(µs)

⎞
⎟⎟⎟⎟
⎠

are similar if and only if r = s and there exists a bijective function π ∶ JrK→ JsK such that ni = mπ(i)

and λi = µπ(i) for all i ∈ JrK.

Proof. Let us suppose first that r = s and that there is a bijective function π ∶ JrK→ JsK such that
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ni = mπ(i) and λi = µπ(i) for all i ∈ JrK, and let us consider the block matrix

C ∶=
⎛
⎜⎜
⎝

C1,1 ⋯ C1,r

⋮ ⋱ ⋮
Cr,1 ⋯ Cr,r

⎞
⎟⎟
⎠

that for each choice of i and j in JrK has

Ci, j =
⎧⎪⎪⎨⎪⎪⎩

I ∈Mn j
(k) if π(i) = j;

0 ∈Mn i ,n j
(k) if π(i) ≠ j.

Each column and each row of the matrix C has exactly one non-zero entry, so C is an invertible
matrix. In fact, by computing directly we can easily veryfy that its inverse matrix is the block
matrix

C
−1 ∶=
⎛
⎜⎜
⎝

D1,1 ⋯ D1,r

⋮ ⋱ ⋮
Dr,1 ⋯ Dr,r

⎞
⎟⎟
⎠

with

Di, j =
⎧⎪⎪⎨⎪⎪⎩

I ∈Mn j
(k) if π−1(i) = j;

0 ∈Mn i ,n j
(k) if π−1(i) ≠ j

for each choice of i and j in JrK.

Using the results of the previous section we can provide a much better criterion for similarity.
Doing this is, in fact, the original motivation that lead Camille Jordan to develop the theory.

Proposition 1.12.4. Let V be a finite-dimensional vector space, and let f , g ∶ V → V be two endo-

morphisms of V whose characteristic polynomials split completely over k. The following statements

are equivalent:

(a) The endomorphisms f and g are similar.

(b) The Jordan forms of f and of g are the same up to the ordering of the blocks.

(c) For all k ∈ N and all λ ∈ k we have that ∆k( f , µ) = ∆k(g , µ).

Notice that since we are supposing that the characteristic polynomials of f and g split com-
pletely over k the two maps do have Jordan forms, so the statement of the proposition makes
sense.
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Proof. (a)⇒ (c) If the endomorphisms f and g are similar, then we know from Exercise 1.11.5 that
for all k ∈ N and all λ ∈ k we have that ∆k( f , µ) = ∆k(g , µ).

(c)⇒ (b) Let B andB′ be ordered bases ofV such that the matrices J ∶= [ f ]B and K ∶= [g]B′
are Jordan matrices. Exercise 1.11.3 tells us that ∆k( f , µ) = ∆k(J , µ) and ∆k(g , µ) = ∆k(K , µ) for
all k ∈ N and all λ ∈ k. If the statement (c) holds, then all this implies that ∆k(J , µ) = ∆k(K , µ)
for all k ∈ N and all µ ∈ k, so that the matrices J and K have the same Jordan blocks, so that the
statement (b) also holds.

(c) ⇒ (a) Let us suppose that the statement (b) holds. There are ordered bases B and B′

for V such that the matrices J ∶= [ f ]B and K ∶= [g]B′ are in Jordan form and, up to a permutation
of the blocks, equal. There is then an ordered basis B′′ that is a rearrangement of the basis B′ for
which the matrices [ f ]B and [g]B′′ are in Jordan form and equal: this implies, as we know, that
the endomorphisms f and g are equal.
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Capítulo 2
Innerproduct

spaces

§2.1. Inner products

In this chapter we will write k to refer either to the field R of real numbers or to the field C of
complex numbers. In both cases, if λ is an element of k we will write λ for the complex conjugate
of λ. Of course, if k is R then we have that λ = λ for all λ ∈ k.

If V is a vector space over the field k, then an inner product on V is a function

⟨−,−⟩ ∶ V × V → k

that for all x, x′, y ∈ V and all λ ∈ k has
{ax:pi:1}

(IP1) ⟨x + x′, y⟩ = ⟨x , y⟩ + ⟨x′, y⟩,
{ax:pi:2}

(IP2) ⟨λx , y⟩ = λ⟨x , y⟩,
{ax:pi:3}

(IP3) ⟨x , y⟩ = ⟨y, x⟩,
{ax:pi:4}

(IP4) ⟨x , x⟩ > 0 if x ≠ 0.
Let us remark that for all x ∈ V the third condition implies that ⟨x , x⟩ = ⟨x , x⟩ and, therefore,
that the scalar ⟨x , x⟩ is a real number: in particular, this tells us that the fourth condition in this
definition makes sense. On the other hand, conditions (IP1) and (IP2) imply that an inner product
is a linear function of its first argument, that is, that for each v ∈ V the map

u ∈ V ↦ ⟨u, v⟩ ∈ k

is linear. If k = R, then condition (IP3) in turn implies immediately that ⟨−,−⟩ is also a linear
function of its second argument. If instead k = C, then an inner product is a semilinear function
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of its second argument: this means that for all u, v, v′ ∈ V and all λ ∈ k we have that

⟨u, v + v′⟩ = ⟨u, v⟩ + ⟨u, v′⟩, ⟨u, λv⟩ = λ⟨u, v⟩.

In any case, it follows from the linearity with respect to the first variable that

⟨0, 0⟩ = ⟨0 ⋅ 0, 0⟩ = 0 ⋅ ⟨0, 0⟩ = 0

and this, together with (IP4), implies that in fact for each x ∈ V we have

⟨x , x⟩ = 0 ⇐⇒ x = 0.

An inner product space is an ordered pair (V , ⟨−,−⟩) in which V is a vector space over k
and ⟨−,−⟩ is an inner product defined on V . Except in special situations we will write simply V
instead of the pair (V , ⟨−,−⟩) and we will say that V itself is an inner product space, leaving the
notation for the inner product implicit.

The following examples present important families of inner product spaces.

Example 2.1.1. Let n be a positive integer, and let us consider the real vector space Rn and on it
the function

⟨−,−⟩ ∶ Rn ×Rn → R

that on each pair of vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) of Rn takes the value

⟨x , y⟩ = x1y1 + x2y2 +⋯ + xn yn .

This is an inner product on Rn, and we call it the standard inner product on that vector space. Let
us verify in detail that the conditions of the definition are indeed satisfied:

• If x = (x1, x2, . . . , xn), x′ = (x′1 , x′2, . . . , x′n) and y = (y1, y2, . . . , y′n) are elements of Rn,
then of course we have that x + y = (x1 + x′1 , x2 + x′2, . . . , xn + x′n) and therefore

⟨x + x′, y⟩ = (x1 + x′1)y1 + (x2 + x′2)y2 +⋯ + (xn + x′n)yn
= (x1y1 + x2y2 +⋯ + xn yn) + (x′1 y1 + x′2y2 +⋯ + x′n yn)
= ⟨x , y⟩ + ⟨x′, y⟩.

• If x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , y′n) are elements ofRn, and λ one ofR, then that
λx = (λx1, λx2, . . . , λxn) and therefore

⟨λx , y⟩ = (λx1)y1 + (λx2)y2 +⋯ + (λxn)yn
= λ(x1y1 + x2y2 +⋯ + xn yn)
= λ⟨x , y⟩.
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• If x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , y′n) are elements of Rn, then

⟨x , y⟩ = x1y1 + x2y2 +⋯ + xn yn
= y1x1 + y2x2 +⋯ + ynxn
= ⟨y, x⟩.

• Finally, if x = (x1, x2, . . . , xn) is a non-zero element of Rn, then we have that

⟨x , x⟩ = x1x1 + x2x2 +⋯ + xnxn = x2
1 + x2

2 +⋯ + x2
n > 0,

because all the terms in the sum x2
1 + x2

2 +⋯+ x2
n are non-negative and, since x ≠ 0, at least

one of them is strictly positive.

Example 2.1.2. Let n be a positive integer, and let us now consider the complex vector space Cn

and on it the function

⟨−,−⟩ ∶ Cn ×Cn → C

that on each pair of vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) of Cn takes the value

⟨x , y⟩ = x1y1 + x2y2 +⋯ + xn yn .

This is an inner product on Cn, and we call it, as in the previous example, the standard inner
product on that vector space. Let us check that the conditions of the definition are indeed satisfied:

• If x = (x1, x2, . . . , xn), x′ = (x′1 , x′2, . . . , x′n) and y = (y1, y2, . . . , y′n) are elements of Cn,
then x + y = (x1 + x′1 , x2 + x′2, . . . , xn + x′n) and thus

⟨x + x′, y⟩ = (x1 + x′1)y1 + (x2 + x′2)y2 +⋯ + (xn + x′n)yn
= (x1y1 + x2y2 +⋯ + xn yn) + (x′1 y1 + x′2y2 +⋯ + x′n yn)
= ⟨x , y⟩ + ⟨x′, y⟩.

• If x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , y′n) are elements of Cn, and λ is a complex
number, then λx = (λx1, λx2, . . . , λxn) and therefore

⟨λx , y⟩ = (λx1)y1 + (λx2)y2 +⋯ + (λxn)yn
= λ(x1y1 + x2y2 +⋯ + xn yn)
= λ⟨x , y⟩.

• If x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , y′n) are elements of Cn, then

⟨x , y⟩ = x1y1 + x2y2 +⋯ + xn yn
= y1x1 + y2x2 +⋯ + ynxn
= ⟨y, x⟩.
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• Finally, if x = (x1, x2, . . . , xn) is a non-zero element of Rn, then we have that

⟨x , x⟩ = x1x1 + x2x2 +⋯ + xnxn = ∣x1∣ + ∣x2∣ + ⋯ + ∣xn∣ > 0,

because all the terms in the sum ∣x1∣2 + ∣x2∣2 +⋯ + ∣xn∣2 are non-negative and, since x ≠ 0,
at least one of them is strictly positive.

Example 2.1.3. Let us now fix a non-negative integer n and consider the real vector space R[X]≤n
of all real polynomials of degree at most n. If p and q are two elements of R[X]≤n, then we can
consider p and q as functions R→ R as usual, and as such they are both continuous: in particular,
it makes sense to consider the integral ∫ 1

−1 p(x)q(x)dx. It follows from this that there is a function

⟨−,−⟩ ∶ R[X]≤n ×R[X]≤n → R

that for each choice of p and q in R[X]≤n has

⟨p, q⟩ = ∫
1

−1
p(x)q(x)dx .

This is an inner product on the real vector space R[X]≤n.
• If p, q and r are three elements of R[X]≤n, then

⟨p + q, r⟩ = ∫
1

−1
(p(x) + q(x))r(x)dx

= ∫
1

−1
p(x)r(x)dx + ∫

1

−1
q(x)r(x)dx

= ⟨p, r⟩ + ⟨q, r⟩.

• If p and q are elements of R[X]≤n and λ is a real number, then

⟨λp, q⟩ = ∫
1

−1
λp(x)q(x)dx = λ∫

1

−1
p(x)q(x)dx = λ⟨p, q⟩.

• If p and q are elements of R[X]≤n, then

⟨p, q⟩ = ∫
1

−1
p(x)q(x)dx = ∫

1

−1
q(x)x(x)dx = ⟨q, p⟩.

• Finally, let p be a non-zero element of R[X]≤n. There exists a number x0 in the inter-
val (−1, 1) such that p(x0) ≠ 0: if that were not the case, then all elements of that interval
would be roots of p, and a polynomial with an infinite number of roots is identically zero.
Of course p(x0)2 > 0 and, since the function x ∈ R↦ p(x)2 ∈ R is continuous, this implies
that there is a positive number є such that (x0 − є, x0 + є) ⊆ (−1, 1) and p(x)2 > 1

2 p(x0)
2

for all x ∈ (x0 − є, x0 + є).
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We have that

⟨p, p⟩ = ∫
1

−1
p(x)2 dx

≥ ∫
x0+є

x0−є
p(x)2 dx because p2 is a non-negative function

≥ ∫
x0+є

x0−є

1
2 p(x0)

2 dx

= єp(x0)2 > 0.

We will now present a final example of an inner product space that will be useful in what
follows to construct certain counterexamples.

{exam:F0X}
Example 2.1.4. Let X be a set, and let us consider the set F (X) of all functions X → k, with its
usual structure of a vector space over k. Let us recall that whenever f ∶ X → k and g ∶ X → k are
two elements of F (X) and a and b are two elements of k the function a f + bg ∶ N0 → k takes on
each element x of X the value

(a f + bg)(x) = a ⋅ f (x) + b ⋅ g(x).

Similarly, if f ∶ X → k and g ∶ X → k are two elements of F (X) we can define a new function,
the product f ⋅ g ∶ X → k, putting, for every x ∈ X,

( f ⋅ g)(x) ∶= f (x) ⋅ g(x).

The support of an element f ∶ X → k of F (X) is the set

σ( f ) ∶= {x ∈ X ∶ f (x) ≠ 0}.

It is easy to check that

if f ∶ X → k and g ∶ X → k are two elements of F (X) and a and b are two scalars in k,
then the sets σ(a f + bg) and σ( f ⋅ g) are both contained in σ( f ) ∪ σ(g),

and it follows at once from this that if two elements f ∶ X → k and g ∶ X → k of F (X) are
such that the sets σ( f ) and σ(g) are finite, then the set σ(a f + bg) is also finite. This implies
immediately that the set

F0(X) ∶= { f ∈F (X) ∶ the set σ( f ) is finite}

is a subspace of F (X). We call it the space of functions of finite support on X.

If f and g are two elements of the subspace F0(X), then the function g ∶ x ∈ X ↦ g(x) ∈ k
has the same support as g, so it also belongs to F0(X), and therefore the support σ( f ⋅ g) of the
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product f ⋅ g is a finite set contained in σ( f ) ∪ σ(g): we may therefore consider the scalar

⟨ f , g⟩ ∶= ∑
x∈σ( f )∪σ(g)

f (x)g(x).

In this way we obtain a function

⟨−,−⟩ ∶F0(X) ×F0(X) → k.

This is, in fact, an inner product on the vector space F0(X). We will leave the details of the
verification of this claim to the reader.

Exercise 2.1.5. Prove that the function ⟨−,−⟩ ∶F0(X) ×F0(X) → k constructed in the previous
example is an inner product on the vector space F0(X).

A very basic application of inner products is that they allow us to recognize the zero vector
and to compare vectors:

{prop:zero}
Proposition 2.1.6. Let V be an inner product space, and let x and x′ be two elements of V.

(i) ⟨x , y⟩ = 0 for all y ∈ V if and only if x = 0.
(ii) ⟨x , y⟩ = ⟨x′, y⟩ for all y ∈ V if and only if x = x′.

The interest of these two statements is that they allow us to compare vectors by comparing
numbers: for example, the second part says that two vectors x and x′ are equal exactly when for
all vectors y the two numbers ⟨x , y⟩ and ⟨x′, y⟩ are equal.

Proof. If x = 0, then, as we observed above, ⟨x , x⟩ = 0. On the other hand, if ⟨x , y⟩ = 0 for all
y ∈ V , then in particular we have that ⟨x , x⟩ = 0, and therefore, according to the condition (IP4),
we must have x = 0. This proves the first part of the proposition. On the other hand, since
⟨x , y⟩ − ⟨x′, y⟩ = ⟨x − x′, y⟩ for all y ∈ V , the second part follows immediately from the first
one.

We can restrict an inner product defined on a vector space to any subspace, and in this way we
can construct examples of inner product spaces:

Proposition 2.1.7. Let V be an inner product space and let W be a subspace of V. The function

⟨−,−⟩W ∶ (w ,w′) ∈W ×W ↦ ⟨w ,w′⟩ ∈ k

that is obtained by restricting the inner product ⟨−,−⟩ ∶ V × V → k of V to the subset W ×W
of V × V is an inner product on W.

From now on we will always consider a subspace of an inner product space to be an inner
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product space itself with respect to this restricted inner product.

Proof. We have to show that the function ⟨−,−⟩W defined in the statement of the proposition
satisfies the four properties (IP1)–(IP4) of the definition, and this is immediate because the
function ⟨−,−⟩ does.

Let us finish this section by describing all inner products on the vector space R2.

{exam:r2}

Example 2.1.8. Let us suppose that ⟨−,−⟩ ∶ R2×R2 → R is an inner product on the vector spaceR2,
and let (e1, e2) be the standard ordered basis for R2. We can consider the four numbers

a ∶= ⟨e1, e1⟩, b ∶= ⟨e1, e2⟩, c ∶= ⟨e2, e1⟩, d ∶= ⟨e2, e2⟩.

Condition (IP4) tells us that a > 0 and d > 0, and condition (IP3) that b = c, and it follows from
this that the real matrix

A ∶= (a b

c d
)

is symmetric and has positive diagonal entries. On the other hand, for all t ∈ R we have that

0 ≤ ⟨te1 + e2, te1 + e2⟩ = ⟨te1, te1⟩ + ⟨e2, te1⟩ + ⟨te1, e2⟩ + ⟨e2, te2⟩ = at
2 + 2bt + c.

We thus see that the polynomial function

t ∈ R↦ at
2 + 2bt + c ∈ R

is everywhere non-negative, so that it has at most one real root and therefore its discriminant
∆ = 4b2 − 4ac is non-positive. The conclusion of this is that

if ⟨−,−⟩ ∶ R2 ×R2 → R is an inner product on R2 and we put a ∶= ⟨e1, e1⟩, b ∶= ⟨e1, e2⟩,
c ∶= ⟨e2, e1⟩, and d ∶= ⟨e2, e2⟩, then the matrix A ∶= ( a b

c d
) is symmetric and its diagonal

entries and determinant are positive.

Let us now show that, conversely,

if A ∶= ( a b
c d
) is symmetric matrix whose diagonal entries and determinant are

positive, then there is an inner product ⟨−,−⟩ ∶ R2 ×R2 → R is an inner product

on R2 such that a = ⟨e1, e1⟩, b = ⟨e1, e2⟩, c = ⟨e2, e1⟩, and d = ⟨e2, e2⟩.

To do this, let us suppose A ∶= ( a b
c d
) is a matrix that is symmetric and has positive diagonal entries

and determinant, and let us consider the function

⟨−,−⟩ ∶ R2 ×R2 → R2
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such that

⟨(x1, x2), (y1, y2)⟩ = ax1y1 + bx2y1 + cx1y2 + dx2y2

for all choices of two elements (x1, x2) and (y1, y2) of R2. It is immediately clear that a = ⟨e1, e1⟩,
b = ⟨e1, e2⟩, c = ⟨e2, e1⟩, and d = ⟨e2, e2⟩, so to prove what we want we need only verify that ⟨−,−⟩
is an inner product on R2.

• If x = (x1, x2), x′ = (x1, x2) and y = (y1, y2) are three elements of R2, then

⟨x + x′, y⟩ = ⟨(x1 + x′1 , x2 + x′2), (y1, y2)⟩
= a(x1 + x′1)y1 + b(x2 + x′2)y1 + c(x1 + x′1)y2 + d(x2 + x′2)y2

= (ax1y1 + bx2y1 + cx1y2 + dx2y2) + (ax′1 y1 + bx′2y1 + cx′1 y2 + dx′2y2)
= ⟨x , y⟩ + ⟨x′, y⟩.

• If x = (x1, x2) and y = (y1, y2) are two elements of R2 and λ is a rea number, then

⟨λx , y⟩ = ⟨(λx1, λx2), (y1, y2)⟩
= a(λx1)y1 + b(λx2)y1 + c(λx1)y2 + d(λx2)y2

= λ(ax1y1 + bx2y1 + cx1y2 + dx2y2)
= λ⟨x , y⟩.

• If x = (x1, x2) and y = (y1, y2) are two elements of R2, then

⟨(x1, x2), (y1, y2)⟩ = ax1y1 + bx2y1 + cx1y2 + dx2y2

= ay1x1 + by2x1 + cy1x2 + dy2x2 because b = c
= ⟨(y1, y2), (x1, x2)⟩.

• If x = (x1, x2) is a non-zero element of R2, then, since b = c, we have that

⟨x , x⟩ = ax2
1 + 2bx1x2 + dx2

2 .

If x2 = 0, then we must have x1 ≠ 0 and therefore ⟨x , x⟩ = ax2
1 > 0 since a > 0. If instead

x2 ≠ 0, then putting t ∶= x1/x2 we have that

⟨x , x⟩ = x2
2(at

2 + 2bt + d)

and again this is a positive: we have that x2
2 > 0 and that at2 + 2bt + d > 0, as the polynomial

aX2 + 2bX + d has negative discriminant and positive constant term.

These observations provide a description of all the inner products on R2. One way to phrase
the result is the following. Let us write I (R2) for the set of all inner products on R2, and S2 for
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the set of all symmetric matrices in M2(R) with positive diagonal entries and determinant. What
we have proved above implies immediately that we have a function

Φ ∶ ⟨−,−⟩ ∈ I (R2) z→ (⟨e1, e1⟩ ⟨e1, e2⟩
⟨e2, e1⟩ ⟨e2, e2⟩

) ∈S2,

and that it is surjective. In fact, it is a bijection — this is a consequence of the following exercise.

Exercise 2.1.9. Prove that the function Φ defined at the end of Example 2.1.8 is injective.

§2.2. Norms and metrics

When we have an inner product on a vector space V we are able to talk about the size of the
elements of V and about the distance that separates two elements of V . In this section we will
explain how this is done. In the next one, moreover, we will show how to measure angles in an
inner product space, and with all this structure we will be able to do geometry in inner product
spaces much as we do in the Euclidean plane.

Let V be a vector space over k. A norm on V is a function ∥−∥ ∶ V → R≥0 that for each choice
of x, y ∈ V and λ ∈ k satisfies the following conditions:

{ax:norm:1}

(N1) ∥x∥ = 0 if and only if x = 0;
{ax:norm:2}

(N2) ∥λx∥ = ∣λ∣∥x∥; and
{ax:norm:3}

(N3) ∥x + y∥ ≤ ∥x∥ + ∥y∥.
We call (N3) the triangular inequality. Usually we view the norm ∥v∥ of a vector v of V as a
measure of its size or, more directly, as its length.

0

v

∥v∥

The interest of this notion for us is that on every inner product space we can define, in a
canonical way, a norm:

{prop:norm}
Proposition 2.2.1. Let V be an inner product space. The function

∥−∥ ∶ x ∈ V ↦ ⟨x , x⟩1/2 ∈ R
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is a norm on V and for each x, y ∈ V we have that

∣⟨x , y⟩∣ ≤ ∥x∥∥y∥. (2.1) {eq:cs}{eq:cs}

Moreover, the equality appearing here holds if and only if the set {x , y} is linearly dependent.

From now on we will consider on every inner product space the the norm described in this
proposition, which we call the norm associated to the inner product. The inequality (2.1) that
appears in this proposition is the Cauchy–Bunyakovsky–Schwartz inequality, after Augustin-Louis
Cauchy (1789–1857, France), Viktor Bunyakovsky (1804–1889, Russia) and Hermann Schwarz
(1843–1921, Germany). The first of these three authors proved the inequality in the special case of
the vector space kn with its standard inner product, the second one for vector spaces of functions
with an inner product given by an integral, and the third one proved essentially the general case
considered here.

Proof. We have to verify that the three conditions of the definition of norms are satisfied. The first
two are immediate, and in order to prove the third one we will first establish the inequality (2.1).

Let x, y ∈ V . If y = 0, then the inequality (2.1) is obvious, so we may suppose that y ≠ 0. For
each λ ∈ k we have that

0 ≤ ∥x − λy∥2 = ⟨x − λy, x − λy⟩ = ⟨x , x⟩ − λ⟨y, x⟩ − λ(⟨x , y⟩ − λ⟨y, y⟩).

In particular, if we take λ = ⟨x , y⟩/⟨y, y⟩, the expression between parenthesis becomes zero and
therefore we see that

0 ≤ ⟨x , x⟩ − ⟨x , y⟩⟨y, x⟩⟨y, y⟩ = ∥x∥2 − ∣⟨x , y⟩∣
2

∥y2∥ .

This is equivalent to the inequality (2.1). Moreover, if the equality holds then clearly ∥x − λy∥2 = 0,
so that x = λy and x and y are linearly dependent.

We will now prove, using the Cauchy–Bunyakovsky–Schwartz inequality, that the third condi-
tion in the definition of norms is also satisfied. If x, y ∈ V , then

∥x + y∥2 = ⟨x + y, x + y⟩
= ⟨x , x⟩ + ⟨x , y⟩ + ⟨y, x⟩ + ⟨y, y⟩
= ∥x∥2 + 2 Re⟨x , y⟩ + ∥y, y∥
≤ ∥x∥2 + 2∣⟨x , y⟩∣ + ∥y, y∥
≤ ∥x∥2 + 2∥x∥∥y∥ + ∥y, y∥

= (∥x∥ + ∥y∥)2

and clearly this implies that the triangular inequality holds.
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x + y

0

x
y

Figure 2.1. The Parallelogram Law tells us that the sum of the squares of the lengths of the
diagonals of a parallelogram is equal to the sum of the squares of the lenths of its sides.

{fig:parallelogram}

We say that an element v of an inner product space V is a unit vector if ∥v∥ = 1. Clearly, a
unit-vector is necessarily non-zero. On the other hand, if w is an arbitrary non-zero element
of V , then the vector v ∶= w/∥w∥ is immediately seen to be a unit vector: we say that v is obtained
from w by normalization.

A norm that is constructed from an inner product satisfies certain geometric conditions of
which the following one is the most important:

{prop:pi:para}
Proposition 2.2.2. Let V be an inner product space and let ∥−∥ be the norm on V associated to the

inner product of V.

(i) (Parallelogram law) If x, y ∈ V, then

∥x + y∥2 + ∥x − y∥2 = 2∥x∥2 + 2∥y∥2.

(ii) If k = R, then for each x, y ∈ V we have that

⟨x , y⟩ = 1
4∥x + y∥

2 − 1
4∥x − y∥

2.

If instead k = C, then for each x, y ∈ V we have that

⟨x , y⟩ = 1
4∥x + y∥

2 − 1
4∥x − y∥

2 + i

4∥x + iy∥
2 − i

4∥x − iy∥
2.

The Parallelogram Law has a very direct geometrical interpretation which we have represented
graphically in Figure 2.1. On the other hand, the second part of this proposition tells us that the
inner product of an inner product space is completely determined by the associated norm.
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Proof. To prove the first part we let x and y be any two vectors in V and compute:

∥x + y∥2 + ∥x − y∥2 = ⟨x + y, x + y⟩ + ⟨x − y, x − y⟩
= (⟨x , x⟩ + ⟨x , y⟩ + ⟨y, x⟩ + ⟨y, y⟩) + (⟨x , x⟩ − ⟨x , y⟩ − ⟨y, x⟩ + ⟨y, y⟩)
= 2⟨x , x⟩ + 2⟨y, y⟩
= 2∥x∥2 + 2∥y∥2.

If k = R, we can also compute that

∥x + y∥2 − ∥x − y∥2 = ⟨x + y, x + y⟩ − ∥x − y, x − y∥
= (⟨x , x⟩ + ⟨x , y⟩ + ⟨y, x⟩ + ⟨y, y⟩) − (⟨x , x⟩ − ⟨x , y⟩ − ⟨y, x⟩ + ⟨y, y⟩)
= 4⟨x , y⟩,

and this proves the statement about real inner product spaces made in the second part of the
proposition. The statement about complex inner product spaces can be proved in the same way:
we leave that to the reader.

Exercise 2.2.3. Complete the proof of Proposition 2.2.2.

The first part of Proposition 2.2.2 tells us that the Parallelogram Law is a necessary condition for
a norm to be associated to an inner product. The following result que of Pascual Jordan (1902–1980,
Germany) and John von Neumann (1903–1957, Hungary) published in [JVN35] states that it is also
a sufficient condition.

Proposition 2.2.4. Let V be a vector space, and let ∥−∥ ∶ V → R≥0 be a norm on V. There exists an

inner product on V whose associated norm is ∥−∥ if and only if ∥−∥ satisfies the Parallelogram Law,
that is, if for every choice of x and y in V we have that

∥x + y∥2 + ∥x − y∥2 = 2∥x∥2 + 2∥y∥2.

We will only prove this result in the case of real inner product spaces — the argument for the
complex case is similar but more involved. We will not make use if this result in what follows, so
the reader may wish to skip this proof.

Proof. Aswe noted above, we only have to show that the condition is sufficient, and wewill suppose
that k = R. If the condition hold, then for all x, x′ and y in V we have that

∥x + x′ + y∥2 = ∥(x + y) + x′∥2 = 2∥x + y∥2 + 2∥x′∥2 − ∥x + y − x′∥2

and that
∥x + x′ − y∥2 = ∥x + (x′ − y)∥2 = 2∥x∥2 + 2∥x′ − y∥2 − ∥x − x′ + y∥2.
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Substracting we see that

∥x + x′ + y∥2 − ∥x + x′ − y∥2 = 2∥x + y∥2 + 2∥x′∥2 − 2∥x∥2 − 2∥x′ − y∥2

and interchanging the roles of x and x′ we conclude that also

∥x + x′ + y∥2 − ∥x + x′ − y∥2 = 2∥x′ + y∥2 + 2∥x∥2 − 2∥x′∥2 − 2∥x − y∥2.

From this two equalities we see that

∥x + x′ + y∥2 − ∥x + x′ − y∥2 = ∥x + y∥2 − ∥x − y∥2 + ∥x′ + y∥2 − ∥x′ − y∥2 (2.2) {eq:jvn:0}{eq:jvn:0}

Let ⟨−,−⟩ ∶ V × V → R be the function such that

⟨x , y⟩ = 1
4∥x + y∥

2 − 1
4∥x − y∥

2

whenever x and y are in V , and let us check that it is an inner product on V .

• If x, x′, y ∈ V , then ⟨x + x′, y⟩ = ⟨x , y⟩ + ⟨x′, y⟩, since this equality is, according to
the definition of the function ⟨−,−⟩, equivalent to (2.2). This means, of course, that the
condition (IP1) is satisfied.

• If x and y are elements of V , then

⟨x , y⟩ = 1
4∥x + y∥

2 − 1
4∥x − y∥

2 = 1
4∥y + x∥

2 − 1
4∥y − x∥

2 = ⟨y, x⟩
and

⟨x , x⟩ = 1
4∥x + x∥

2 − 1
4∥x − x∥

2 = ∥x∥2 ≥ 0, (2.3) {eq:jvn:x}{eq:jvn:x}

so the conditions (IP3) and (IP4) are satisfied.
• For each rational number r ∈ Q let P(r) be the statement

for all x, y ∈ V we have ⟨rx , y⟩ = r⟨x , y⟩.

We want to show that the statement P(r) holds for all r ∈ Q, and we will do so in several
steps.

– First, let us note that if r is a rational number and the statement P(r) holds, then for
each x, y ∈ V we have that

⟨(r + 1)x , y⟩ = ⟨rx + x , y⟩ = ⟨rx , y⟩ + ⟨x , y⟩ = r⟨x , y⟩ + ⟨x , y⟩ = (r + 1)⟨x , y⟩,

so that the statement P(r + 1) also holds. Since P(1) evidently holds, this implies that,
in fact, P(r) holds for all r ∈ N.
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– We claim that the statement P(r) holds if r is a positive rational number. Indeed, if
r = p

q
with p, q ∈ N, then for each x, y ∈ V we have that

p⟨x , y⟩ = ⟨px , y⟩ = ⟨q( p
q
x), y⟩ = q⟨ p

q
x , y⟩,

because P(p) and P(q) hold, so that ⟨ p
q
x , y⟩ = p

q
⟨x , y⟩.

– The statement P(0) holds, since

⟨0x , y⟩ = 1
4∥0x + y∥

2 − 1
4∥0x − y∥

2 = 1
4∥y∥

2 − 1
4∥y∥

2 = 0 = 0⟨x , y⟩.

On the other hand, if the statement P(r) holds for some r ∈ Q then the statement
P(−r) also holds: for all x and y in V we have in that case that

0 = ⟨0, y⟩ = ⟨rx − rx , y⟩ = ⟨rx + (−r)x , y⟩ = ⟨rx , y⟩ + ⟨−rx , y⟩,

so that ⟨−rx , y⟩ = −⟨rx , y⟩ = −r⟨x , y⟩.
Putting all this together we see at once that we can conclude that P(r) holds for al r ∈ Q, as
we wanted.

• Let again x and y be two elements V and let us show now that

∣⟨x , y⟩∣ ≤ ∥x∥∥y∥. (2.4) {eq:jvn:cs}{eq:jvn:cs}

This is obvious if y is 0, so we may suppose that is not the case. In view of what we have
already proved, we know that for every r ∈ Q we have that

0 ≤ ∥x − r y∥2 = ⟨x − r y, x − r y⟩ = ⟨x , x⟩ − 2r⟨x , y⟩ + r
2⟨y, y⟩.

This tells us that the polynomial

∥y∥2X2 − 2⟨x , y⟩X + ∥x∥2 ∈ R[X]

does not take negative values onQ: since it is a continuous function, it follows from this that
in fact it does not take negative values on any point in R and, in particular, its discriminant
is non-negative, that is, we have that ⟨x , y⟩2 − ∥x∥2∥y∥2 ≤ 0. The inequality (2.4) is a
consequence of this.

• If x, y ∈ V , then the function ζ ∶ t ∈ R↦ ⟨tx , y⟩ ∈ R is continuous. To see this it is enough
to note that, according to what we already know abut the function ⟨−,−⟩, we have that

∣ζ(s) − ζ(t)∣ = ∣⟨sx , y⟩ − ⟨tx , y⟩∣ = ∣⟨(s − t)x , y⟩∣ ≤ ∥(s − t)x∥∥y∥ ≤ ∣s − t∣∥x∥∥y∥.

• Finally, let x and y be two elements of V . According to the two last steps me made we
know that the function ζ ∶ t ∈ R↦ ⟨tx , y⟩ − t⟨x , y⟩ ∈ R is continuous and that it vanishes
on Q: this implies, of course, that it is identically zero and thus that for all t ∈ R we have
⟨tx , y⟩ = t⟨x , y⟩. The function ⟨−,−⟩ therefore satisfies the condition (IP2).
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We can conclude from all this that the function ⟨−,−⟩ is an inner product on V , and according to
the equality (2.3) the norm assocated to that inner product is precisely the norm ∥−∥ with which
we started. This proves the proposition.

As the Parallelogram Law is a necessary condition on a norm for it to be associated to an inner
product, we can use to to exhibit examples of norms which do not have that property.

{exam:notinner}
Example 2.2.5. The function

∥−∥ ∶ (x , y) ∈ R2 ↦ ∣x∣ + ∣y∣ ∈ R≥0

is a norm on R2, as the reader can easily verify. If e1 = (1, 0) y e2 = (0, 1) are the vectors in the
standard basis of R2, then

∥e1 + e2∥2 + ∥e1 − e2∥2 = 8 ≠ 4 = ∥e1∥2 + 2∥e2∥2.

This shows that the norm ∥−∥ does not satisfy the Parallelogram Law and, therefore, that there
does not exists an inner product on R2 for which it is the associated norm,

Exercise 2.2.6. Prove that the function ∥−∥ defined in the Example 2.2.5 is a norm on the vector
space R2.

Norms allow us to measure the length of vectors, and thanks to that we can also measure the
distance between two vectors. We end this section explaining how this works.

If V is a vector space, then a function d ∶ V ×V → R≥0 is a distance function on V if whenever
x, y, and z are elements of V we have that

(M1) d(x , y) = d(y, x);
(M2) d(x , y) = 0 if and only if x = y; and

(M3) d(x , z) ≤ d(x , y) + d(y, z).
We say that that distance function is invariant if additionally

(M4) d(x , y) = d(x + z, y + z)
and that it is homogenous if for each λ ∈ k we have that

(M5) d(λx , λy) = ∣λ∣ d(x , y).
{prop:dist}

Proposition 2.2.7. Let V be a vector space, and let ∥−∥ ∶ V → R be a norm on V. The function

d ∶ (v ,w) ∈ V × V ↦ ∥v −w∥ ∈ R≥0

is a homogenous and invariant distance function on V.
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Proof. This follows immediately from the definitions. We leave the verification of the details of
this to the reader as an exercise.

If V is a vector space, then there are many distance functions d ∶ V × V → R≥0 that do not
arise from a norm as in the proposition above. Let us see a simple example of this.

{exam:notnorm}
Example 2.2.8. Let us consider the one-dimensional real vector space R, and the function
d ∶ R ×R→ R≥0 such that

d(x , y) = max{∣x − y∣, 1}

whenever x and y are in R. It is easy to check that this is a distance function on R. It does not
arise from a norm because it is a bounded function and

if d ∶ V × V → R≥0 is a distance function on a non-zero vector space that arises

from a norm as in Proposition 2.2.7, then d is not bounded.

We leave the verification of these facts as an exercise for the reader.

Exercise 2.2.9. Verify all the claims of Example 2.2.8.

§2.3. Orthogonality

Let V be an inner product space. Two vectors x and y are orthogonal if ⟨x , y⟩ = 0, and in that
case we write x ⊥ y. It follows immediately from the condition (IP3) in the definition of inner
products that ⊥ is a symmetric relation on the set V .

Lemma 2.3.1. Let V be an inner product space.

(i) Every vector in V is orthogonal to 0.
(ii) If x ∈ V is such that x ⊥ y for all y ∈ V, then x = 0.

Proof. The first claim is immediate, and the second one follows at once from the first part of
Proposition 2.1.6.

We extend the usage of the relation ⊥ to sets: if A and B are two subsets of an inner product
space V , then we will write A ⊥ B to indicate that every vector of A is orthogonal to every vector
of B. Again, this is a symmetric relation on the set of all subsets of V .
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The geometric idea behind the definition of orthogonality is very simple: two vectors are
orthogonal if the angle they form is a straight angle. Of course, at this point this statement does
not make sense because we have no definition of what the angle determined by two vectors is. In
any case, we have the following result, whose first part should remind the reader of Pythagoras’
Theorem on right triangles.

{prop:pi:pitagoras}
Proposition 2.3.2. Let V be an inner product space, and let x and y be two vectors in V. {prop:pi:pitagoras:1}

(i) If x ⊥ y, then ∥x + y∥2 = ∥x∥2 + ∥y∥2.
More generally, we have that {prop:pi:pitagoras:2}

(ii) ∥x + y∥2 = ∥x∥2 + ∥y∥2 + 2 Re⟨x , y⟩.

Proof. The first part of the proposition follows immediately from the second one, so it will be
enough that we check the latter. This can be done by direct calculation: if x and y are two vectors
in V , then the definition of the norm associated to the inner product of V implies that

∥x + y∥2 = ⟨x + y, x + y⟩
= ⟨x , x⟩ + ⟨x , y⟩ + ⟨y, x⟩ + ⟨y, y⟩
= ∥x∥2 + ∥y∥2 + ⟨x , y⟩ + ⟨x , y⟩
= ∥x∥2 + ∥y∥2 + 2 Re⟨x , y⟩.

With the second part of Proposition 2.3.2 as motivation, we can make the following definition:
ifV is an inner product space and x and y are two non-zero vectors inV , then the angle determined
by x and y is the unique real number θ(x , y) ∈ [0, π] such that

cos θ(x , y) = Re⟨x , y⟩
∥x∥ ⋅ ∥y∥ . (2.5) {eq:pi:angulo}{eq:pi:angulo}

This definition does make sense: from the Cauchy–Bunyakovsky–Schwartz inequality we know
that

∣Re⟨x , y⟩∣ ≤ ∣⟨x , y⟩∣ ≤ ∥x∥∥y∥,

so the quotient that appears on the right of the definition (2.5) is an element of the interval [−1, 1]
and, therefore, is the cosine of exactly one number in the interval [0, π].

Using this definition our intuition becomes a fact: two non-zero vectors in an inner product
space are orthogonal if and only if the angle determined by them is π/2. Similarly, we can reinterpret
the second part of Proposition 2.3.2 as a version of the Law of cosines from Euclidean geometry:

Proposition 2.3.3. Let V be an inner product space. If x and y are two non-zero vectors in V

and θ(x , y) is the angle they determine, then

∥x − y∥2 = ∥x∥2 + ∥y2∥ − 2 ⋅ ∥x∥ ⋅ ∥y∥ ⋅ cos θ(x , y).
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Proof. This equality can be obtained by replacing y by −y in the equality of Proposition (ii) and
using the definition of θ(x , y).

If V is an inner product space and A is a subset of V , then we say that

• A is orthogonal if for each choice of two different elements x and y of Awe have that x ⊥ y,

and that

• A is orthonormal if it is orthonormal and additionally ∥x∥ = 1 for each x ∈ A.
There is a useful relation between orthogonality, which is a geometric condition, and linear
independence, which is an algebraic condition:

{prop:pi:ortogonal}
Proposition 2.3.4. Let V be an inner product space and let A be a subset of V. {prop:pi:ortogonal:1}

(i) If A is orthogonal and 0 /∈ A, then A is linearly independent. {prop:pi:orthogonal:1.5}

(ii) If A is orthonormal, then it is linearly independent.

Proof. Let us suppose that the set A is orthogonal and does not contain 0. Let n be a positive
integer, let x1, x2, . . . , xn be pairwise different elements of A, and let λ1, λ2, . . . , λn ∈ k be scalars
such that∑n

i=1 λixi = 0. If j ∈ {1, . . . , n}, then

0 = ⟨0, x j⟩ = ⟨
n

∑
i=1

λixi , x j⟩ =
n

∑
i=1

λi⟨xi , x j⟩.

Since A is orthonormal, the only term in this sum which is possibly non-zero is the one in which
the index i is equal to j, so we have that λ j⟨a j , a j⟩ = 0. Now 0 /∈ A, so a j ≠ 0 and therefore
⟨a j , a j⟩ ≠ 0, and we can conclude that λ j = 0. As this is true for each j ∈ {1, . . . , n}, we see that the
set A is linearly independent. This proves part (i) of the proposition, and the second one follows
immediately from it since an orthonormal set is orthogonal and does not contain 0.

If A is an orthonormal set of an inner product space, then we know that every element in the
span ⟨A⟩ of A can be written in a unique way as a linear combination of the elements of A. In fact,
we can describe exactly what the coefficients that appear in that linear combination are: this is the
content of the first part of the following result.

{prop:pi:ortogonal-coefs}
Proposition 2.3.5. Let V be an inner product space and let A be an orthonormal subset of V. {prop:pi:ortogonal:2}

(i) Let n be a positive integer, let x1, x2, . . . , xn be pairwise different elements of A, let λ1, λ2, . . . , λn

be scalars in k, and put x ∶= ∑n
i=1 λixi . For every j ∈ {1, . . . , n} we have that λ j = ⟨x , x j⟩. {prop:pi:ortogonal:3}

(ii) For each x ∈ ⟨A⟩ the set Ax = {y ∈ A ∶ ⟨x , y⟩ ≠ 0} is finite and x = ∑y∈Ax
⟨x , y⟩y.
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Proof. (i) If j ∈ {1, . . . , n}, then

⟨x , x j⟩ = ⟨
n

∑
i=1

λixi , x j⟩ =
n

∑
i=1

λi⟨xi , x j⟩.

As the set A is orthonormal, the only term in this sum which is possibly non-zero is the one in
which the index i is equal to j, and it is equal to λ j⟨x j , x j⟩ = λ j. This proves what we want.

(ii) Let x be an element of ⟨A⟩, so that there exist a non-negative integer n, pairwise different
elements x1, x2, . . . , xn of A, and non-zero scalars λ1, λ2, . . . , λn in k such that x = ∑n

i=1 λixi .
If y ∈ A, then ⟨x , y⟩ = ∑n

i=1 λi⟨xi , y⟩: as A is orthonormal, all terms in this sum are zero if
y /∈ {x1, x2, . . . , xn}, and this shows that the set Ax described in the statement of the proposition
is contained on {x1, x2, . . . , xn} and, in particular, finite. Finally, the fact that λi = ⟨x , xi⟩ for each
i ∈ {1, . . . , n} is now a consequence of (i).

A very important special case of the previous results is that of orthonormal bases:

{corol:coefs}
Corollary 2.3.6. Let V be an finite-dimensional inner product space, let n be the dimension of V,

and let B = {x1, x2, . . . , xn} be an orthonormal basis for V. For each x ∈ V we have that

x =
n

∑
i=1
⟨x , xi⟩xi .

Proof. This is just a special case of the first part of Proposition 2.3.5.

This corollary tells us that it is very easy to write a vector as a linear combination of an
orthonormal basis, as the needed coefficients can be directly computed as inner products. Of
course, for this to be actually useful we need to have orthonormal bases at our disposal. The
purpose of the following section is establishing the fact that finite-dimensional inner product
spaces always have orthonormal bases.

§2.4. The Gram–Schmidt orthonormalization process

For the results of the previous section to be useful we have to be able to construct orthonormal
bases for our finite-dimensional inner product spaces: the following proposition shows that it is
very easy.
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{prop:pi:gs}
Proposition 2.4.1. Let V be an inner product space, let n be a positive integer, and let (v1, v2, . . . , vn)
be a linearly independent sequence of elements of V of length n. We can define the vectors

w1 ∶=
v1

∥v1∥
,

and recursively, for each i in {2, . . . , n},

w̃i ∶= vi −
i−1
∑
j=1
⟨vi ,w j⟩w j , wi ∶=

w̃i

∥w̃i∥
,

and the sequence (w1,w2, . . . ,wn) that we obtain in this way is orthonormal and has the same span

in V as (v1, v2, . . . , vn).

We say that the sequence (w1,w2, . . . ,wn) is obtained from the sequence (v1, v2, . . . , vn) by
the Gram–Schmidt orthonormalization algorithm— the name remembers Jørgen Pedersen Gram
(1850–1916, Denmark) and Erhard Schmidt (1876–1959, Germany). Let us remark that the claim
made in the proposition that we can define the vectors w1, w2, . . . , wn is really saying that each of
the vectors v1, w̃2, w̃3, . . . , w̃n is non-zero, as we can then divide them by their norms to find the
vectors w1, w2, . . . , wn.

Proof. We will prove the proposition by induction with respect to the positive integer n.
Suppose first that n = 1. That the sequence (v1) is linearly independent means simply that

the vector v1 is not 0, and therefore its norm ∥v1∥ is not 0 and it makes sense to construct the
vector w1 = v1/∥v1∥. This is clearly a unit vector, and the span of the sequence (w1) is obviously
the same as the span of the origina sequence (v1). This proves the proposition in this case.

Let us suppose next that n > 1. Since the sequence (v1, v2, . . . , vn) is linearly independent, so is
the sequence (v1, v2, . . . , vn−1) of length n− 1. The inductive hypothesis then allows us to conclude
that the sequence (w1,w2, . . . ,wn−1) is orthonormal and has the same span as (v1, v2, . . . , vn−1).
This implies that the vectors w1, w2, . . . , wn−1, vn are linearly independent, as they span the same
subspace of V as the vectors v1, v2, . . . , vn−1, vn. In particular, the vector

w̃n = vn −
n−1
∑
i=1
⟨vn ,wi⟩wi

is non-zero and ∥w̃n∥ ≠ 0. We claim that w̃n is orthogonal to each of the vectors w1, w2, . . . , wn−1.
Indeed, if k ∈ {1, . . . , n − 1} we have that

⟨w̃n ,wk⟩ = ⟨vn −
n−1
∑
j=1
⟨vn ,w j⟩w j ,wk⟩ = ⟨vn ,wk⟩ −

n−1
∑
j=1
⟨vn ,w j⟩⟨w j ,wk⟩,

and the orthonormality of (w1,w2, . . . ,wn−1) implies that ⟨w j ,wk⟩ is 0 if j ≠ k and 1 if j = k, so
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that this sum reduces to

⟨vn ,wk⟩ − ⟨vn ,wk⟩ = 0.

Of course, it then follows from this that

⟨wn ,wk⟩ = ⟨
w̃n

∥w̃n∥
,wk⟩ =

⟨w̃n ,wk⟩
∥w̃n∥

= 0.

We thus see that the sequence (w1,w2, . . . ,wn) is orthonormal. This completes the induction and
proves the proposition.

The main application of this proposition is the result we are looking for:

{coro:bon}
Corollary 2.4.2. Every finite-dimensional inner product space has orthonormal bases.

Proof. Let V be a finite-dimensional inner product space, let n be its dimension, and let
B = (v1, v2, . . . , vn) be an ordered basis for V . The proposition tells us that there is an orthonormal
sequence

is, an ordered basis, so it is an orthonormal ordered basis for V . This proves the corollary.

{ex:g-s:1}

Example 2.4.3. Let us consider the vector spaceR3 with its standard inner product and the ordered
basis B ∶= (v1, v2, v3) of R3, with

v1 = (1, 1, 1), v2 = (1, 1, 0), v3 = (0, 1, 1).

We will carry out the Gram–Schmidt orthonormalization algorithm stating from B. Since

∥v1∥2 = ⟨v1, v2⟩ = 3,

we have that

w1 =
v1

∥v1∥
= ( 1√

3
,
1√
3
,
1√
3
) .

Next, we compute that

⟨v1,w1⟩ =
2√
3
,

w̃2 = v2 − ⟨v1,w1⟩w1 = (1, 1, 0) −
2√
3
( 1√

3
,
1√
3
,
1√
3
) = ( 1

3
,
1
3
,−2

3
) ,

and

∥w2∥2 =
√

2
3
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so that

w2 =
w̃2

∥w2∥
=
⎛
⎝

1√
6
,

1√
6
,−
√

2
3
⎞
⎠
.

Finally,

⟨v3,w1⟩ =
2√
3
,

⟨v3,w2⟩ = −
1√
6
,

so that
w̃3 = (−

1
2
,
1
2
, 0) ,

∥w̃3∥ =
1√
2
,

and

w3 =
w3

∥w̃3∥
= (− 1√

2
,
1√
2
, 0) .

We thus see that the orthonormal ordered basis that we can construct from B applying the
Gram–Schmidt orthonormalization procedure is that of the three vectors

( 1√
3
,
1√
3
,
1√
3
) ,

⎛
⎝

1√
6
,

1√
6
,−
√

2
3
⎞
⎠
, (− 1√

2
,
1√
2
, 0) .

This example shows that as we move along the Gram–Schmidt orthonormalization procedure
the entries of the vectors with which we deal get messier and messier. This is due, of course, to the
normalization which we apply each time to go from the vector w̃i to the vector wi . Sometimes it is
more convenient to leave all this normalizations to the end. The resulting procedure is described
in the following exercise.

Exercise 2.4.4. Let V be an inner product space, let n be a positive integer, let (v1, v2, . . . , vn) be a
linearly independent sequence of elements of V of length n, and define recursively the vectors

u1 ∶= v1,

u2 ∶= v2 −
⟨v2, u1⟩
⟨u1, u1⟩

u1,

u3 ∶= v3 −
⟨v3, u1⟩
⟨u1, u1⟩

u1 −
⟨v3, u2⟩
⟨u2, u2⟩

u2,
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and, more generally, for each i ∈ {2, . . . , n},

ui ∶= v1 −
i−1
∑
j=1

⟨vi , u j⟩
⟨u j , u j⟩

u j .

Prove that the sequence (u1, u2, . . . , un) is orthogonal, does not contain 0 and spans the same sub-
space as (v1, v2, . . . , vn), so that the sequence (u1/∥u1∥, u2/∥u2∥, . . . , un/∥un∥) is an orthonormal
ordered basis for that subspace. In fact, this last orthonormal ordered basis coincides with the one
that the Gram–Schmidt procedure constructs.

Example 2.4.5. Let us show how the algorithm described in the exercise works in the situation of
Example 2.4.3, so that we work with the vector space R3 endowed with its standard inner product
and the ordered basis B ∶= (v1, v2, v3) with

v1 = (1, 1, 1), v2 = (1, 1, 0), v3 = (0, 1, 1).

Now we have that u1 = v1 = (1, 1, 1), that ⟨u1, u1⟩ = 3 and ⟨v2, u1⟩ = 2, so that

u2 = v2 −
⟨v2, u1⟩
⟨u1, u1⟩

u1 = (
1
3
,
1
3
,−2

3
) .

Finally, we have that ⟨u2, u2⟩ = 2/3, ⟨v3, u1⟩ = 2 and ⟨v3, u2⟩ = −1/3, so that

u3 = v3 −
⟨v3, u1⟩
⟨u1, u1⟩

u1 −
⟨v3, u2⟩
⟨u2, u2⟩

u2 = (−
1
2
,
1
2
, 0) .

We have therefore obtained an orthogonal ordered basis (u1, u2, u3) with vectors

(1, 1, 1), ( 1
3
,
1
3
,−2

3
) , (− 1

2
,
1
2
, 0) .

If we normalize them to obtain an orthonormal basis, we will obtain the same one that we found
in Example 2.4.3.

Example 2.4.6. Let us consider the vector space R[X]≤4 of real polynomials of degree at most 4
endowed with the inner product ⟨−,−⟩ such that

⟨p, q⟩ = ∫
1

−1
p(x)q(x)dx

for all p and q in R[X]≤4, and carry out the modified Gram–Schmidt orthonormalization proce-
dure starting from the basis B = (1, X , X2, X3, X4) of monic monomials ordered by degree. Let
us write vi = X i for each i ∈ {0, . . . , 4}.
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• We put

u0 ∶= v0 = 1,

so

⟨u0, u0⟩ = ∫
1

−1
1 ⋅ 1 dx = 2.

• We have

⟨v1, u0⟩ = ∫
1

−1
x ⋅ 1 dx = 0,

so we set

u1 ∶= v1 −
⟨v1, u0⟩
⟨u0, u0⟩

u0 = v1 = X .

We then have that

⟨u1, u1⟩ = ∫
1

−1
x ⋅ x dx = 2

3
.

• As

⟨v2, u0⟩ = ∫
1

−1
x

2 ⋅ 1 dx = 2
3
,

⟨v2, u1⟩ = ∫
1

−1
x

2 ⋅ x dx = 0

we put

u2 ∶= v2 −
⟨v2, u0⟩
⟨u0, u0⟩

u0 −
⟨v2, u1⟩
⟨u1, u1⟩

u1 = X2 − 1
3
,

and thus

⟨u2, u2⟩ = ∫
1

−1
(x2 − 2

3
)

2
dx = 8

45
.

• Next, we have that

⟨v3, u0⟩ = ∫
1

−1
x

3 ⋅ 1 dx = 0,

⟨v3, u1⟩ = ∫
1

−1
x

3 ⋅ x dx = 2
5
,

⟨v3, u2⟩ = ∫
1

−1
x

3 ⋅ (x2 − 2
3
) dx = 0,

so we set

u3 ∶= v3 −
⟨v3, u0⟩
⟨u0, u0⟩

u0 −
⟨v3, u1⟩
⟨u1, u1⟩

u1 −
⟨v3, u2⟩
⟨u2, u2⟩

u2 = x3 − 3
5
x ,

and therefore

⟨u3, u3⟩ = ∫
1

−1
(x3 − 3

5
x)

2
dx = 8

175
.
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• Finally, we compute that

⟨v4, u0⟩ = ∫
1

−1
x
4 ⋅ 1 dx = 2

5
,

⟨v4, u1⟩ = ∫
1

−1
x
4 ⋅ x dx = 0,

⟨v4, u2⟩ = ∫
1

−1
x
4 ⋅ (x2 − 2

3
) dx = 0,

⟨v4, u4⟩ = ∫
1

−1
x
4 ⋅ (x3 − 3

5
x) dx = 16

105
,

so our last polynomial is

u4 ∶= v4 −
⟨v4, u0⟩
⟨u0, u0⟩

u0 −
⟨v4, u1⟩
⟨u1, u1⟩

u1 −
⟨v4, u2⟩
⟨u2, u2⟩

u2 −
⟨v4, u3⟩
⟨u3, u3⟩

u3 = X4 − 6
7
X

2 + 3
35

,

which has

⟨u4, u4⟩ = ∫
1

−1
(x4 − 6

7
x

2 + 3
35
)

2
dx = 128

11025
.

We thus obtain an orthogonal basis (u0, u1, u2, u3, u4) for our vector space, and normalizing its
elements an orthonormal ordered basis (q0, q1, q2, q3, q4).

i 0 1 2 3 4

ui 1 X X2 − 1
3 X3 − 3

5X X4 − 6
7X

2 + 3
35

qi
1√
2

√
3
2X

1
2

√
5
2 (3X

2 − 1) 1
2

√
7
2 (5X

3 − 3X) 3
8
√

2
(35X4 − 30X2 + 3)

The polynomials that we obtain in this way are scalar multiples of the so called Legendre poly-
nomials — named after Adrien-Marie Legendre (France, 1752–1833), who first studied them in
connection with his study of the Newtonian gravitation potential function — which have innu-
merable applications both in mathematics and in the natural and applied sciences.

§2.5. Orthogonal approximation

We saw earlier how an inner product on a vector space allows us to measure the distance between
any two points in that vector space. We will now generalize this a bit: we now want to measure the
distance from a vector to a set. Let V be an inner product space. If x is a vector in V and S is a
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non-empty subset of V , then the distance from x to S is the number

d(v , S) ∶= inf{d(x , y) ∶ y ∈ S}.

Let us remark that this makes sense: the set {d(x , y) ∶ y ∈ S} is a non-empty subset of [0,+∞),
so it has a well-determined infimum.

The following proposition shows how to compute this distance in the special case in which the
set S is a subspace of V .

{prop:vS}
Proposition 2.5.1. Let V be an inner product space, let S be a finite-dimensional subspace of V, and

let x ∈ V. If B = (x1, x2, . . . , xn) is an ordered orthonormal basis for S and

xS ∶=
n

∑
j=1
⟨x , x j⟩x j ,

then

(i) x − xS ⊥ S,

(ii) d(x , S) = d(x , xS),
(iii) d(x , xS) < d(x , y) for all y ∈ S ∖ {xS}, and

(iv) d(x , S)2 = ⟨x , x⟩ −
n

∑
i=1
∣⟨x , xi⟩∣2.

This proposition tells us that the vector xS is an element of S whose distance to x is equal
to d(x , S) and that it is moreover the only point of S with that property. We call the vector xS the
orthogonal projection of x onto the subspace S.

Proof. Let y ∈ S. As B is an orthonormal basis for S, we have y = ∑n
i=1⟨y, xi⟩xi and therefore

⟨x − xS , y⟩ = ⟨x −
n

∑
j=1
⟨x , x j⟩x j ,

n

∑
i=1
⟨y, xi⟩xi⟩

=
n

∑
i=1
⟨y, xi⟩⟨x , xi⟩ −

n

∑
j=1

n

∑
i=1
⟨x , x j⟩⟨y, xi⟩⟨x j , xi⟩

=
n

∑
i=1
⟨y, xi⟩⟨x , xi⟩ −

n

∑
j=1
⟨x , x j⟩⟨y, x j⟩ = 0.

This tells us that x − xS ⊥ S.
As xS ∈ S it is clear that d(x , S) ≤ d(x , xS). If, on the other hand, we have a vector y in S, then

d(x , y)2 = ∥x − y∥2

= ∥(x − xS) + (xS − y)∥2
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and, since x − xS ⊥ xS − y because xS − y ∈ S, this is
= ∥x − xS∥2 + ∥xS − y∥2

≥ ∥x − xS∥2,

so that d(x , y) ≥ d(x , xS). This tells us that d(x , S) ≥ d(x , xS), and proves the equality (ii).
If y ∈ S ∖ {xS}, then d(xS , y) > 0 and, just as before,

d(x , y)2 = d(x , xS)2 + d(xS , y)2 > d(x , xS)2,

so that d(x , y) > d(x , xS). Finally,

d(x , S)2 = d(x , xS)2 = ∥x − xS∥2 = ⟨x −
n

∑
i=1
⟨x , xi⟩xi , x −

n

∑
j=1
⟨x , x j⟩x j⟩

= ⟨x , x⟩ −
n

∑
j=1
⟨x , ⟨x , x j⟩x j⟩ −

n

∑
i=1
⟨⟨x , xi⟩xi , x⟩ +

n

∑
i=1

n

∑
j=1
⟨⟨x , xi⟩xi , ⟨x , x j⟩x j⟩

= ⟨x , x⟩ −
n

∑
j=1
⟨x , x j⟩⟨x , x j⟩ −

n

∑
i=1
⟨x , xi⟩⟨xi , x⟩ +

n

∑
i=1

n

∑
j=1
⟨x , xi⟩⟨x , x j⟩⟨xi , x j⟩.

Since the ordered basis (x1, x2, . . . , xn) is orthonormal, this is the same as

⟨x , x⟩ −
n

∑
j=1
⟨x , x j⟩⟨x , x j⟩ −

n

∑
i=1
⟨x , xi⟩⟨xi , x⟩ +

n

∑
i=1
⟨x , xi⟩⟨x , xi⟩.

The first and third sums that appear here cancel each other, and therefore this expression has the
same value as

⟨x , x⟩ −
n

∑
i=1
⟨x , xi⟩⟨xi , x⟩ = ⟨x , x⟩ −

n

∑
i=1
⟨x , xi⟩⟨x , xi⟩ = ⟨x , x⟩ −

n

∑
i=1
∣⟨x , xi⟩∣2.

The equality that appears in the last part of the property is therefore true.

Let us consider two simple examples of this result.

Example 2.5.2. Let us consider the vector space R2 with its usual inner product, its 1-dimensional
subspace S spanned by the vector v = (2, 3), and the vector x = (0, 3). Normalizing v we obtain
the unit vector w = (2/

√
5, 1/
√
5), and the one-element sequence B = (w) is therefore an

orthonormal basis for S. According to the proposition, the point

xS ∶= ⟨x ,w⟩w = (
14
5
,

7
5
)
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is the point of S at the minimum distance from x, and that minimum distance is

d(x , S) = d(x , xS) = ∥x − xS∥ =
4√
5
.

S

x

xS

Example 2.5.3. Let us now consider the vector space R[X]≤4 of all real polynomials of degree
at most 4 endowed with the inner product ⟨−,−⟩ ∶ R[X]≤4 ×R[X]≤4 → R that on each pair of
polynomials p and q takes the value

⟨p, q⟩ = ∫
1

−1
p(x)q(x)dx .

Let us consider the subspace S ∶= {1, X , X2} of R[X]≤2, whose elements are the polynomials of
degree at most 1. Of course, B = (1, X , X2) is an ordered basis for S, and using the Gram–Schmidt
orthonormalization procedure we can find immediately that B′ = (p0, p1, p2), with

p0 =
1√
2
, p1 =

√
3
2
X , p2 =

1
2

√
5
2
(3X2 − 1) ,

is an orthonormal ordered basis for S.
Let q = aX4 + bX3 + cX2 + dX + e be an arbitrary element of R[X]≤4. We can compute that

⟨q, p0⟩ = ∫
1

−1
(ax4 + bx3 + cx2 + dx + e) ⋅ 1√

2
dx =

√
2(a

5
+ c

3
+ e) ,

⟨q, p1⟩ = ∫
1

−1
(ax4 + bx3 + cx2 + dx + e) ⋅

√
3
2
X dx =

√
2
3
(3
5
b + d) ,

⟨q, p2⟩ = ∫
1

−1
(ax4 + bx3 + cx2 + dx + e) ⋅ 1

2

√
5
2
(3X2 − 1) dx =

√
2
5
(4

7
a + 2

3
c) .

It follows from this that the orthogonal projection of the polynomial q onto the subspace S is

qS =
√

2(a
5
+ c

3
+ e) ⋅ p0 +

√
2
3
(3
5
b + d) ⋅ p1 +

√
2
5
(4

7
a + 2

3
c) ⋅ p2.
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§2.6. Orthogonal complements

Let V be an inner product space. If S is an arbitrary subset of V , then the orthogonal complement
of S is the subset

S
⊥ ∶= {x ∈ V ∶ x ⊥ s for all s ∈ S}.

The following proposition describes the basic properties of this construction.

{prop:perp}
Proposition 2.6.1. Let V be an inner product space.

(i) If S is a subset of V, then S⊥ is a subspace of V.

(ii) We have that 0⊥ = V and V⊥ = 0. {prop-part:perp:rev}

(iii) If S and T are two subsets of V such that S ⊆ T, then T⊥ ⊆ S⊥.

(iv) If S is a subset of V, then ⟨S⟩⊥ = S⊥. {prop:perp:cap}

(v) If S and T are two subspaces of V, then (S + T)⊥ = S⊥ ∩ T⊥.

Proof. (i) Let x and y be two elements of S⊥, and let a and b be two scalars in k. For each s ∈ S we
have that

⟨ax + by, s⟩ = a⟨x , s⟩ + b⟨y, s⟩ = 0,

because both summands are zero. This tells us that ax + by ∈ S⊥. As S⊥ is not empty, since 0 ∈ S⊥,
then this implies that S⊥ is a subspace of V .

(ii) Every vector is orthogonal to 0, so thatV ⊆ 0⊥. Thefirst equality in the statement is therefore
immediate. On the other hand, if x ∈ V⊥, then ⟨x , y⟩ = 0 for all y ∈ V and Proposition 2.1.6 tells
us that x = 0. Since of course 0 ∈ V⊥, this proves the second equality in the statement.

(iii) Let S and T be two subsets of V such that S ⊆ T . If y is an element of T⊥, then for each
s ∈ S we have that y ⊥ s, since s ∈ T , and therefore x ∈ S⊥. We thus have that T⊥ ⊆ S⊥, as we want.

(iv) Since S ⊆ ⟨S⟩, part (iii) of the proposition implies that ⟨S⟩⊥ ⊆ S⊥. Let, on the other hand, x
and y be elements of S⊥ and of ⟨S⟩, respectively. There exist then a non-negative integer n, elements
s1, s2, . . . , sn of S, and scalars λ1, λ2, . . . , λn in k such that y = ∑n

i=1 λisi and, as a consequence of
this,

⟨x , y⟩ = ⟨x ,
n

∑
i=1

λisi⟩ =
n

∑
i=1

λi⟨x , si⟩ = 0

because x ∈ S⊥. This proves that S⊥ ⊆ ⟨S⟩⊥.
(v) Let now S and T be two subspaces of V . As S and T are contained in S + T , part (ii) of the

proposition tells us that (S + T)⊥ ⊆ S⊥ and (S + T)⊥ ⊆ T⊥, so that (S + T)⊥ ⊆ S⊥ ∩ T⊥. On the
other hand, if x ∈ S⊥ ∩T⊥ and y ∈ S +T , so that there exist s ∈ S and t ∈ T such that y = s + t, then

⟨x , y⟩ = ⟨x , s + t⟩ = ⟨x , s⟩ + ⟨x , t⟩ = 0.

We see with this that x ∈ (S + T)⊥ and, in conclusion, that S⊥ ∩ T⊥ ⊆ (S + T)⊥.
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When S is a subset of an inner product space, we write S⊥⊥ ∶= (S⊥)⊥ and S⊥⊥⊥ ∶= (S⊥⊥)⊥. It
should be noticed that S⊥⊥⊥ is the same set as (S⊥)⊥⊥.

Proposition 2.6.2. Let V be an inner product space. If S is a subset of V, then {prop:perp2}

(i) S ∩ S⊥ ⊆ 0, {prop:perp2:2}

(ii) S ⊆ S⊥⊥, and

(iii) S⊥ = S⊥⊥⊥.

Proof. (i) If x ∈ S ∩ S⊥, then ⟨x , x⟩ = 0, since x ∈ S and x ∈ S⊥, and therefore x = 0.
(ii) If s ∈ S, then for all t ∈ S⊥ we have that s ⊥ t. This tells us that s ∈ (S⊥)⊥ = S⊥⊥.
(iii) We have just proved that S ⊆ S⊥⊥, so part (iii) of Proposition 2.6.1 implies that

S⊥⊥⊥ = (S⊥⊥)⊥ ⊆ S⊥. On the other hand, part (ii) tells us that also S⊥ ⊆ (S⊥)⊥⊥ = S⊥⊥⊥.

In the situation of Proposition (ii) in general the inclusion is strict. The equality does hold,
though, in a very important case:

{prop:perp2:fin}
Proposition 2.6.3. Let V be an inner product space. If S is a finite-dimensional subspace of V, then

V = S ⊕ S⊥ and S = S⊥⊥.

Proof. Let x ∈ V . According to Proposition 2.5.1, there is an xS ∈ S such that x − xS ⊥ S, that is,
such that x − xS ∈ S⊥. We then have that x = xS + (x − xS) ∈ S + S⊥ and therefore that V = S + S⊥.
As we know that also S ∩ S⊥ = 0, we can conclude that V = S ⊕ S⊥.

In order to prove that S = S⊥⊥ it is enough, in view of Proposition (ii), to show that S⊥⊥ ⊆ S.
Let then x be an element of S⊥⊥. As V = S ⊕ S⊥, there exist s ∈ S and t ∈ S⊥ such that x = s + t.
Since x ∈ S⊥⊥, we have that

0 = ⟨x , t⟩ = ⟨s + t, t⟩ = ⟨s, t⟩ + ⟨t, t⟩ = ⟨t, t⟩,

and therefore t = 0: this implies that x = s + t = s ∈ S.

An important corollary of this is obtained simply by taking dimensions:

Corollary 2.6.4. Let V be a finite-dimensional inner product space. If S ⊆ V is a subspace, then

dimV = dim S + dim S
⊥.

Proof. According to the proposition we have that V = S ⊕ S⊥, and taking dimensions we immedi-
ately obtain the equality in the corollary.

Before continuining we want to exhibit an example of a subspace S of an inner product
space V such that S⊥⊥ is different from S, in order to show that the inclusion asserted by part (ii)
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of Proposition (i) can be strict. Of course, in view of Proposition 2.6.3, such a subspace S must
necessary be infinite-dimensional.

{exam:perpperp}
Example 2.6.5. Let us consider the vector spaceF0(N) of all functions N0 → kwith finite support
endowed with the inner inner product that we described in Example 2.1.4. If f ∶ N0 → k is an
element of F0(N0), then the support σ( f ) is a finite subset of N0 and we can therefore consider
the scalar

ϕ( f ) ∶= ∑
n∈σ( f )

f (n).

In this way we obtain a function ϕ ∶F0(N0) → k. We remark that

if f is an element of F0(N0) and T is a finite subset of N0 such that σ( f ) ⊆ T,

then ϕ( f ) = ∑n∈T f (n). (2.6) {eq:sums}{eq:sums}

Indeed, in that situation we have that

∑
n∈T

f (n) = ∑
n∈σ( f )

f (n) + ∑
n∈T∖σ( f )

f (n)

because T is the disjoint union of σ( f ) and T ∖ σ( f ), and this is

= ∑
n∈σ( f )

f (n) = ϕ( f )

because clearly f (n) = 0 for all n ∈ T ∖ σ( f ).

Let f ∶ N0 → k and g ∶ N0 → k be two elements of F0(N0), and let a and b be two elements
of k. As we noted in Example 2.1.4, we have that σ(a f + bg) ⊆ σ( f ) ∪ σ(g), and therefore
according to (2.6)

ϕ(a f + gb) = ∑
n∈σ( f )∪σ(g)

(a f + bg)(n)

= ∑
n∈σ( f )∪σ(g)

(a f (n) + bg(n))

= a ∑
n∈σ( f )∪σ(g)

f (n) + b ∑
n∈σ( f )∪σ(g)

g(n)

and since σ( f ) and σ(g) are of course contained in σ( f ) ∪ σ(g) that same observation tells us
that this is

= a ∑
n∈σ( f )

f (n) + b ∑
n∈σ(g)

g(n) = aϕ( f ) + bϕ(g).
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This tells us that the function ϕ ∶F0(N0) → k is linear and, in particular, that

S ∶= ker ϕ = { f ∈F0(N0) ∶ ϕ( f ) = 0}

is a subspace of F0(N0). In fact, it is a proper subspace. for example, the function u ∶ N0 → k such
that

u(n) =
⎧⎪⎪⎨⎪⎪⎩

1 if n = 0;
0 otherwise

has σ(u) = {0}, so that u ∈F0(N0), and

ϕ(u) = ∑
n∈σ(u)

u(n) = u(0) = 1,

so that u /∈ S.
We claim that

S
⊥ = 0. (2.7) {eq:sperp}{eq:sperp}

Assuming that, then we see that S⊥⊥ = 0⊥ = F0(N0) is different from S, and that we have the
example that we were looking for.

In order to prove (2.7) we fix an element f ∶ N0 → k of S⊥ and prove that it is necessarily the
zero function. Let k be a positive integer, and let g ∶ N0 → k be the function that for each n ∈ N0

has

g(n) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if n = 0;
−1 if n = k;
0 in any other case.

It is clear that σ(g) = {0, k}, a finite subset ofN0, so that g belongs to F0(N0), and moreover that

ϕ(g) = ∑
n∈σ(g)

g(n) = g(1) + g(k) = 0,

so that g is an element of the subspace S. As f belongs to S⊥, we have that

0 = ⟨ f , g⟩ = ∑
n∈σ( f )∩σ(g)

f (n) ⋅ g(n) = f (0) ⋅ g(0) + f (k) ⋅ g(k) = f (0) − f (k),

and therefore f (k) = f (0). We can therefore conclude from this that

f (k) = f (0) for all k ∈ N0.

If the number f (0) was different from zero, then this would tell us that f (k) ≠ 0 for all k ∈ N0,
so that σ( f ) = N0, and this is absurd, as f belongs to F0(N0). We thus see that we must have
f (0) = 0 and therefore that in fact f (k) = 0 for all k ∈ N0, so that f = 0, as we wanted.
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§2.7. Orthogonal projections

An endomorphism p ∶ V → V of an vector space V is a projection if p2 = p. The identity map
idV ∶ V → V and the zero map 0V ∶ V → V are clearly projections: we call them the trivial
projections. The most basic two properties of projections are given by the following lemma.

Lemma 2.7.1. Let V be a vector space. If p ∶ V → V is a projection, then {prop:pi:proy:1}

(i) a vector x ∈ V is in the image of p if and only if x = p(x), and {prop:pi:proy:2}

(ii) there is a decomposition V = img p⊕ ker p.

Proof. Let p ∶ V → V be a projection.
(i) If x is in the image of p, so that there is a y ∈ V such that p(y) = x, then

p(x) = p2(x) = p(y) = x. Conversely, it is clear that if p(x) = x then x is in img p.
(ii) If x ∈ V , then p(x − p(x)) = p(x) − p2(x) = 0, so x − p(x) ∈ ker p and

x = p(x) + (x − p(x)) ∈ img p + ker p.

We see in this way that V = img p + ker p. This sum is direct: if x ∈ img p ∩ ker p, then because
x ∈ img p the first part tells us that x = p(x) and, because x ∈ ker p, this implies that x = 0.

The second part of this lemma tells us that a projection p ∶ V → V determines a direct sum
decomposition V = img p⊕ ker p of its domain V . Our next result can be viewed as a converse of
that statement: it tells us that any direct sum decomposition V = S ⊕ T of a vector space V as a
direct sum of two of its subspaces arises in that way from a projection.

{prop:proy:ik}
Proposition 2.7.2. Let V be a vector space and let S be a subspace of V. If T is a complement of S

in V, then there exists exactly one projection p ∶ V → V such that img p = S and ker p = T.

Proof. Let us suppose that T is a complement of S in V , so that V = S ⊕ T . There is a function
p ∶ V → V such that whenever x ∈ V and s ∈ S and t ∈ T are the unique vectors in S and T ,
respectively, such that x = s + t has p(x) = s. Let us show that p is a projection that satifsied the
conditions in the statement.

• Let x and y be vectors in V and let a, b ∈ k be scalars. If s1, s2 ∈ S and t1, t2 ∈ T are such
that x = s1 + t1 and y = s2 + t2, then p(x) = s1, p(y) = s2 and, since

ax + by = (as1 + bs2) + (at1 + bt2)

with as1 + bs2 ∈ S and at1 + bts ∈ T ,

p(ax + by) = as1 + bs2 = ap(x) + bp(y).
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This tells us that the function p is linear.
• If x ∈ V , s ∈ S and t ∈ T are such that x = s + t, then p(x) = s ∈ S: it follows from this

that img p ⊆ S. On the other hand, if s ∈ S, then it is clear that p(s) = s and, therefore, that
S ⊆ img p. We see in this way that img p = S and that p2 = p, so that p is a projection with
image equal to S.

• Finally, if x ∈ V is an element of ker p and s ∈ S and t ∈ T are such that x = s + t, then
0 = p(x) = s: this tells us that x = t ∈ T and, in consequence, that ker p ⊆ T . Conversely, if
t ∈ T then the definition of p implies immediately that p(t) = 0: we thus have that ker p = T .

Let us suppose now that q ∶ V → V is another projector such that img q = S and ker q = T .
If x ∈ V and s ∈ S and t ∈ T are such that x = s + t, then since s ∈ img q, from Proposition (i)
we know that s = q(s); on the other hand, since t ∈ ker q we have that q(t) = 0. It follows from
this that q(x) = q(s) + q(t) = s = p(s). We thus see that q = p, and this proves the uniqueness
claimed by the proposition.

A consequence of this proposition is that we usually have many projections on a vector space.
For example, we have the following result:

Corollary 2.7.3. Every subspace of a finite-dimensional vector space V is the image of a projection

p ∶ V → V.

In fact, the hypothesis that the vector space V be finite-dimensional is not necessary for this
to be true. We will not prove this here.

Proof. Let V be a finite-dimensional vector space and let S be a subspace of V . We know that
there exists a subspace T of V such that V = S ⊕ T , and Proposition 2.7.2 tells us that there is a
projection p ∶ V → V such that img p = S and ker p = T . This proves the corollary.

It should be noticed that, in fact, a subspace S of a vector space V is, in general, the image
of many projections p ∶ V → V , for unless S is 0 or V there are many subspaces T of V such
that V = S ⊕ T .

{exam:pt}

Example 2.7.4. Let us consider the vector space R2 and its subspace S = ⟨(1, 0)⟩. For every t ∈ R
the subspace Tt ∶= ⟨(t, 1)⟩ is such that R2 = S ⊕ Tt , and the linear map

pt ∶ (x , y) ∈ R2 ↦ (x − ty, 0) ∈ R2

can be easily seen to be a projection such that img pt = S and ker pt = Tt . Moreover, if p ∶ R2 → R2

is a projection such that img p = S, then there exists exactly one scalar t ∈ k such that p = pt .
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Exercise 2.7.5. Verify all the claims made in Example 2.7.4

Let V be now an inner product space. We say that a projection p ∶ V → V is orthogonal if
img p ⊥ ker p.

{prop:op}
Proposition 2.7.6. Let V be an inner product space. A projection p ∶ V → V is orthogonal if and

only if (img p)⊥ = ker p and (ker p)⊥ = img p.

Proof. Let p ∶ V → V be a projection. If the condition of the proposition is satisfied, then
ker p = (img p)⊥ and, of course, we thus have that img p ⊥ ker p. That condition is therefore
sufficient.

To show that it is also necessary, let us suppose that the projection p is orthogonal. We then
have that img p ⊥ ker p and thus that img p ⊆ ker p⊥ and ker p ⊆ img p⊥. We will show that in
fact the two equalities hold. Let x be an element of (ker p)⊥. As p is a projection, we know that
V = img p⊕ ker p, so that we can find y ∈ img p y z ∈ ker p be such that x = y + z. We then have
that

0 = ⟨x , z⟩ = ⟨y + z, z⟩ = ⟨y, z⟩ + ⟨z, z⟩,

and the first summand in this last expression is zero because img p ⊥ ker p. We see that ⟨z, z⟩ = 0,
so that z = 0 and x = x + y = y ∈ img p. We can conclude from this that (ker p)⊥ ⊆ img p.

In exactly the same way we can show that (img p)⊥ ⊆ ker p.

Exercise 2.7.7. Complete the proof of Proposition 2.7.6.

We proved above that every finite-dimensional subspace of a vector space is the image of a
projection, and that in fact in most cases there are many projections that have it as image. If we
restrict ourselves to orthogonal projections this changes:

{prop:proyector}
Proposition 2.7.8. Let V be an inner product space. If S is a finite-dimensional subspace of V,

then there exists exactly one orthogonal projection p ∶ V → V such that img p = S. Moreover, that

projection p has ker p = S⊥ and, if B = (x1, . . . , xn), is an orthonormal order basis for S, then for

every x ∈ V we have that

p(x) =
n

∑
i=1
⟨x , xi⟩xi .

Proof. Let S be a finite-dimensional subspace of V and let B = (x1, . . . , xn) be an ordered
ortonormal basis for S. The function p ∶ V → V such that p(x) = ∑n

i=1⟨x , xi⟩xi for each x ∈ V is
clearly linear and, according to Proposition 2.5.1, has x − p(x) ∈ S⊥ for each x ∈ V .
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If x ∈ ker p, then x = x − p(x) ∈ S⊥ and, conversely, if x ∈ S⊥, so that in particular, ⟨x , xi⟩ = 0
for each i ∈ {1, . . . , n}, then p(x) = ∑n

i=1⟨x , xi⟩xi = 0. We see with this that ker p = S⊥. From the
definition of p it is clear that img p ⊆ S. On the other hand, if x ∈ S, then Corollary 2.3.6 tells us
that x = ∑n

i=1⟨x , xi⟩xi because B is an ortonormal basis for S and, as a consequence of this, that
x = p(x) ∈ img p. It follows from this that img p = S and that p2 = p, as we want.

§2.8. Riesz’s representation theorem

Let us recall that ifV is a vector space, then the dual space ofV is the vector spaceV∗ ∶= hom(V , k)
of all linear functions V → k.

{lema:Phi}
Lemma 2.8.1. Let V be an inner product space, and for each y ∈ V let us consider the function

ϕy ∶ x ∈ V ↦ ⟨x , y⟩ ∈ k.

(i) For each y ∈ V the function ϕy is linear, so that it is an element of the dual space V∗.

(ii) The function Φ ∶ y ∈ V ↦ ϕy ∈ V∗ is injective and semilinear, that is, whenever y and y′ are

elements of V and a one of k we have that

Φ(y + y′) = Φ(y) +Φ(y′), Φ(ay) = aΦ(y).

Proof. (i) Let y be an element of V . If x, x′ ∈ V and a, b ∈ k, then

ϕy(ax + bx′) = ⟨ax + bx′, y⟩ = a⟨x , y⟩ + b⟨x′, y⟩ = aϕy(x) + bϕy(x′),

so the function ϕy is linear.
(ii) Let y and y′ be elements of V . For each element y of V we have that

ϕy+y′(x) = ⟨x , y + y′⟩ = ⟨x , y⟩ + ⟨x , y′⟩ = ϕy(x) + ϕy′(x) = (ϕy + ϕy′)(x),

so Φ(y + y′) = ϕy+y′ = ϕy + ϕy′ = Φ(y) +Φ(y′). In a similar way, if y ∈ V and a ∈ k, then for
each x ∈ V we have that

ϕay(x) = ⟨y, ay⟩ = a⟨x , y⟩ = aϕy(x) = (aϕy)(x),

so that Φ(ay) = ϕay = aϕy = aΦ(y). This proves that the function Φ is semilinear.
Finally, if y and y′ are element of V such that Φ(y) = Φ(y′), then for all x ∈ V we have that

⟨x , y − y′⟩ = ⟨x , y⟩ − ⟨x , y′⟩ = Φ(y)(x) −Φ(y′)(x) = 0,

and then y − y′ = 0, that is, y = y′. We can therefore conclude that the function Φ is injective.
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The following result is known as Riesz’s Representation Theorem, because a version of it was
proved by Frigyes Riesz (1880–1956, Hungary).

{teorema:riesz}
Theorem 2.8.2. Let V be a finite-dimensional inner products space. For every element f of V∗ there

exists a unique vector x f ∈ V such that ϕx f
= x, that is, such that for every x ∈ V we have

f (x) = ⟨x , x f ⟩. (2.8) {eq:riesz}{eq:riesz}

We cannot remove the hypothesis that the vector space V be finite-dimensional that appears
here, since the resulting statement is false.

Proof. Let f be an element of V∗. Let n be the dimension of V , let B = (x1, . . . , xn) be an
orthonormal ordered basis for V , and let us consider the vector

x f ∶=
n

∑
i=1

f (xi)xi .

If x ∈ V , then x = ∑n
i=1⟨x , xi⟩xi and therefore

f (x) = f (
n

∑
i=1
⟨x , xi⟩xi) =

n

∑
i=1
⟨x , xi⟩ f (xi) = ⟨x ,

n

∑
i=1

f (xi)xi⟩ = ⟨x , x f ⟩.

This tells us that the vector x f satisfies the condition (2.8). On the other hand, if x′
f
∈ V is another

vector that satisfies that condition, then for all x ∈ V we have that

⟨x , x f − x′f ⟩ = ⟨x , x f ⟩ − ⟨x , x′f ⟩ = f (x) − f (x) = 0,

and this is only possible if x f = x′f . This proves the uniqueness claimed in the theorem.

An immediate consequence of this result is the surjectivity of the function Φ of Lemma 2.8.1.

Corollary 2.8.3. The function Φ ∶ V → V∗ of Lemma 2.8.1 is a bijection.

Proof. Indeed, Theorem 2.8.2 tells us that the function Φ is surjective, and we already know that it
is injective.
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§2.9. Adjoint functions

Let V andW be two inner product spaces. We will sometimes write ⟨−,−⟩V and ⟨−,−⟩W for the
inner products of V and of W , to be explicit about which inner product we have in mind, but
most often we will wrote both of them in the form ⟨−,−⟩, leaving the reader to use the context to
figure out to which inner product we are referring.

If f ∶ V →W is a linear map, then we say that a linear function g ∶W → V , in the opposite
direction, is adjoint to f if for every v ∈ V and every w ∈W we have that

⟨ f (x), y⟩W = ⟨x , g(y)⟩V .

Example 2.9.1. Let V be any inner product space, and let λ ∈ k be a scalar. The linear map
f ∶ x ∈ V ↦ λx ∈ V has g ∶ y ∈ V ↦ λy ∈ V as an adjoint. Indeed, whenever x and y are elements
of V , we have that

⟨ f (x), y⟩ = ⟨λx , y⟩ = λ⟨x , y⟩ = ⟨x , λy⟩ = ⟨x , g(y)⟩,

and this means that g is an adjoint for f .

Example 2.9.2. Let us consider the vector space R2 endowed with its standard inner product, and
the maps f ∶ (x , y) ∈ R2 ↦ (0, x , y) ∈ R3 and g ∶ (x , y, z) ∈ R3 ↦ (y, z) ∈ R2. If v = (x , y) ∈ R2

and w = (x′, y′, z′) ∈ R3, then we have that

⟨ f (v),w⟩ = ⟨(0, x , y), (x′, y′, z′)⟩ = xy′ + yz′ = ⟨(x , y), (u′, z′)⟩ = ⟨v , g(w)⟩,

and this tells us that the map g is adjoint to f .

We will show below that in often encountered situations linear maps do have adjoints. For
now, we simply note that a linear map can have at most one adjoint:

Lemma 2.9.3. Let V and W be two inner product spaces. A linear map f ∶ V →W has at most one

adjoint.

In view of this, whenever a linear map f ∶ V →W has an adjoint map, it has exactly one, and
we will write it in the form f ∗ ∶W → V .

Proof. Let f ∶ V →W be a linear map, and let us suppose that g, g′ ∶W → V are two linear maps
adjoint to f . If y ∈W , then for all x ∈ V we have that

⟨x , g(y) − g′(y)⟩V = ⟨x , g(y)⟩V − ⟨x , g′(y)⟩V = ⟨ f (x), y⟩W − ⟨ f (x), y⟩W = 0,

so that g(y) = g′(y). We can conclude from this that g = g′.
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When dealing with adjoints it is useful to know that going from a map to its adjoint is a
semilinear, involutive operation: this is precisely the content of the following result:

Proposition 2.9.4. Let V and W be two inner product spaces.

(i) If f , g ∶ V →W are two linear maps that have adjoints, then for each a, b ∈ k the linear map

a f + bg ∶ V →W has an adjoint and, in fact, we have that (a f + bg)∗ = a f ∗ + b g∗.
(ii) If f ∶ V → W is a linear map that has an adjoint, then the map f ∗ ∶ W → V also has an

adjoint and ( f ∗)∗ = f .

Proof. (i) If x ∈ V and y ∈W , then

⟨(a f + bg)(x), y⟩ = ⟨a f (x) + b f (x), y⟩ = a⟨ f (x), y⟩ + b⟨g(x), y⟩
= a⟨x , f ∗(y)⟩ + b⟨x , g∗(y)⟩ = ⟨x , a f

∗(y) + b g∗(y)⟩
= ⟨x , (a f

∗ + b g∗)(y)⟩.

This tells us that the linear function a f ∗ + b g∗ ∶ V →W is adjoint to a f + gb, so that the latter
has an adjoint and (a f + bg)∗ = a f ∗ + b g∗.

(ii) If x ∈ V and y ∈W , then

⟨ f ∗(x), y⟩ = ⟨y, f ∗(x)⟩ = ⟨ f (y), x⟩ = ⟨x , f (y)⟩,

and with this we see that f ∶ V →W is adjoint to f ∗ ∶W → V , that is, that ( f ∗)∗ = f .

The operation of taking adjoints is also compatible with composition, in the following sense:

Proposition 2.9.5.
(i) If V is an inner product space, then the identity function idV ∶ V → V has an adjoint and, in

fact, (idV)∗ = idV .
(ii) If V, W and U are inner product spaces and f ∶ V →W and g ∶W → U are linear maps that

have adjoints, then the composition g ○ f ∶ V → U has an adjoint and (g ○ f )∗ = f ∗ ○ g∗.

Proof. To prove the first part it is enough that we observe that whenever x and y are elements
of V we have that

⟨idV(x), y⟩ = ⟨x , y⟩ = ⟨x , idV(y)⟩,

so that idV is adjoint to itself, that is, (idV)∗ = idV . On the other hand, if f ∶ V → W and
g ∶W → U are linear functions that have adjoints, then for every x ∈ V and every y ∈ U we have
that

⟨(g ○ f )(x), y⟩ = ⟨g( f (x)), y⟩ = ⟨ f (x), g∗(y)⟩ = ⟨x , f ∗(g∗(y))⟩ = ⟨x , ( f ∗ ○ g∗)(y)⟩.
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This means that g ○ f has f ∗ ○ g∗ as an adjoint, so that (g ○ f )∗ = f ∗ ○ g∗.

We will use now Riesz’s Representation Theorem 2.8.2 to show that a linear map between inner
product spaces with finite-dimensional domain has an adjoint.

{thm:adjoint}
Theorem 2.9.6. Let V and W be inner product spaces. If V is finite-dimensional, then every linear

map f ∶ V →W has an adjoint.

Proof. Let us suppose that V is finite-dimensional and consider a linear map f ∶ V →W . If y ∈W ,
then then function

ψy ∶ x ∈ V ↦ ⟨ f (x), y⟩W ∈ k

is linear, so Theorem 2.8.2 tells us that there exists exactly one vector f ∗(y) in V with the property
that ψy(x) = ⟨x , f ∗(y)⟩V for all x ∈ V . In this way we see that there is a function f ∗ ∶ W → V

such that for all x ∈W and every y ∈ V we have

⟨ f (x), y⟩V = ⟨x , f ∗(y)⟩W .

To show that this map f ∗ is an adjoint to f , and with that complete the proof of the theorem, we
have to show that f ∗ is a linear function.

• Let y, y′ ∈W . Whenever x ∈ V we have that

⟨x , f ∗(y + y′)⟩V = ⟨ f (x), y + y′⟩W = ⟨ f (x), y⟩W + ⟨ f (x), y′⟩W
= ⟨x , f ∗(y)⟩W + ⟨x , f ∗(y′)⟩W = ⟨x , f ∗(y) + f

∗(y)⟩W ,

and this implies that f ∗(y + y′) = f ∗(y) + f ∗(y′).
• On the other hand, if y ∈W and λ ∈ k, then for each x ∈W we have that

⟨x , f ∗(λy)⟩V = ⟨ f (x), λy⟩W = ⟨λ f (x), y⟩W = ⟨ f (λx), y⟩W = ⟨λx , f ∗(y)⟩V
= ⟨x , λ f ∗(y)⟩V ,

so that f ∗(λw) = λ f ∗(w).
We thus see that the map f ∗ is indeed linear, as we wanted.

One way to describe a linear map is by giving its matrix with respect to a pair of bases of its
domain and codomain. The following proposition does this for the adjoint of a map.

{prop:pi:adj:mat}
Proposition 2.9.7. Let V and W be finite-dimensional inner product spaces, and let B and B′ be

orthonormal ordered bases for V and for W ′, respectively. If f ∶ V →W is a linear map, then the
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matrix of the adjoint map f ∗ ∶W → V with respect to the bases B′ and B is

[ f ∗]B′B = ([ f ]BB′)t.

Proof. Let us suppose that the bases for V and W are B = (x1, . . . , xm) and B′ = (y1, . . . , yn),
and that the matrix of f with respect to them is [ f ]BB′ = (ai, j) ∈Mn,m(k). If i ∈ {1, . . . ,m} and
j ∈ {1, . . . , n}, then

⟨ f ∗(y j), xi⟩ = ⟨xi , f ∗(y j)⟩ = ⟨ f (xi), y j⟩ = ⟨
m

∑
k=1

ak,i yk , y j⟩ =
m

∑
k=1

ak,i⟨yk , y j⟩ = a j,i

because the basis B′ is orthonormal, and therefore ⟨ f ∗(y j), xi⟩ = a j,i . According toCorollary 2.3.6,
we can deduce from this that

f
∗(y j) =

m

∑
i=1

a j,i xi .

and thus that the matrix of f ∗ with respect to the bases B′ and B is (a j,i)i, j, that is, the matrix
obtained from [ f ]BB′ by first transposing and then conjugating, as the proposition claims.

It is important to keep in mind that the equality claimed by the proposition is only valid, in
general, if the bases B and B′ are orthonormal.

Example 2.9.8. Let us consider the vector space k2 endowed with its standard inner product,
the matrix A = ( 0 1

0 0 ) ∈ M2(k), and the linear map f ∶ x ∈ k2 ↦ Ax ∈ k2. If B = (e1, e2) is the
standard ordered basis for k2, then [ f ]BB = A and, since B is in fact an orthonormal basis for k2,
that [ f ∗]BB = At. If now put e′2 ∶= e1 + e2, then B′ = (e1, e′2) is also an ordered basis for k2, but not
an orthonormal one, and we have [ f ]B′B′ = ( 0 1

0 0 ) while [ f ∗]B
′

B′ = ( −1 01 0 ).

Exercise 2.9.9. Let V andW be finite-dimensional inner product spaces. We proved in Theorem
2.9.6 that every linear map V →W has an adjoint and computed in Proposition 2.9.7 the matrix
of that adjoint with respect to a pair of orthonormal bases. We can reverse the reasoning and use
this idea to prove that adjoints exist.

Let f ∶ V → W be a linear map and let B and B′ be orthonormal bases for V and for W ,
respectively. Prove — without using Theorem 2.9.6 and Proposition 2.9.7 — that there is a unique
linear map g ∶W → V such that [g]BB′ = ([ f ]B

′
B )t and that it is an adjoint to f .

A linear map f ∶ V →W determines uniquely its adjoint f ∗ ∶W → V —when it has one, of
course — and therefore we should be able to answer any question about f ∗ by looking at f . The
following proposition deals with the description of the kernel and the image of f ∗.
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{prop:adj-im-ker}
Proposition 2.9.10. Let V and W be two inner product spaces. If f ∶ V →W is a linear map that

has an adjoint, then

(i) ker f ∗ = (img f )⊥,
(ii) img f ∗ ⊆ (ker f )⊥, and
(iii) (img f ∗)⊥ ⊆ ker f .

If additionally V is finite-dimensional, then we also have that

(iv) img f ∗ = ker f ⊥.

Proof. (i) Let x ∈ ker f ∗. If y ∈ img f , so that there exists a z ∈ V such that f (z) = y, then
⟨y, x⟩ = ⟨ f (z), x⟩ = ⟨z, f ∗(x)⟩ = 0. This tells us that x ∈ (img f )⊥. Conversely, if x ∈ (img f )⊥,
then for all y ∈ V we have that ⟨y, f ∗(x)⟩ = ⟨ f (y), x⟩ = 0, so that f ∗(x) = 0, that is, x ∈ ker f ∗.

(ii) Let x ∈ img f ∗, so that there is a y ∈ V such that x = f ∗(y). For each z ∈ ker f we have
that ⟨z, x⟩ = ⟨z, f ∗(y)⟩ = ⟨ f (z), x⟩ = 0, so x ∈ (ker f )⊥: this shows that img f ∗ ⊆ ker f ⊥.

(iii) Let x ∈ (img f ∗)⊥. If y ∈ V , then ⟨ f (x), y⟩ = ⟨x , f ∗(y)⟩ = 0, so f (x) = 0. We can
conclude from this that (img f ∗)⊥ ⊆ ker f ∗.

(iv) Let us suppose now that V is finite-dimensional. According to part (ii) of this propo-
sition, we have that img f ∗ ⊆ (ker f )⊥, and part (iii) of Proposition 2.6.1 then implies that also
ker f = (ker f )⊥⊥ ⊆ (img f ∗)⊥. Together with part (iii) of this proposition this lets us conclude
that, in fact, ker f = (img f ∗)⊥. Similarly, according to part(iii), we have that (img f ∗)⊥ ⊆ ker f ,
so part (iii) of Proposition 2.6.1 tells us that also (ker f )⊥ ⊆ (img f ∗)⊥⊥ = img f ∗: this and part (ii)
allow us to conclude that (ker f )⊥ = img f ∗.

In general, the equality of part (iv) of Proposition 2.9.10 does not hold.

Proposition 2.9.11. Let V be a finite-dimensional inner product space, and let f ∶ V → V be a linear

map. If λ ∈ k is an eigenvalue for f , then λ is an eigenvalue for f ∗.

Proof. Let λ be an element of k such that λ is not an eigenvalue of f ∗, so that the linear map
f ∗ − λ ⋅ idV ∶ V → V is injective and, therefore, bijective. There is then a linear map g ∶ V → V

such that idV = ( f ∗ − λ ⋅ idV) ○ g, and thus also

idV = id∗V = g∗ ○ ( f ∗ − λ ⋅ idV)∗ = g∗ ○ ( f − λ ⋅ idV).

The map f − λ ⋅ idV is therefore injective, and this tells us that the number λ is not an eigenvalue
of f . This proves the contraposition of the claim of the proposition.

This proposition tells us that the eigenvalues of the adjoint of an endomorphism f ∶ V → V

of a finite-dimensional vector space are the conjugates of the eigenvalues of f , but does not say
anything about the corresponding eigenvectors. In general, if λ is an eigenvector of f , then there
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is very little relation between the eigenvectors of f with eigenvalue λ and the eigenvectors of f ∗

with eigenvalue λ.

§2.10. Self-adjoint linear maps

Let V be an inner product space. A linear map f ∶ V → V that is its own adjoint is said to be
self-adjoint. In other words, we say that f is self-adjoint if for all x and y in V we have that

⟨ f (x), y⟩ = ⟨x , f (y)⟩.
{prop:auto}

Proposition 2.10.1. Let V be a finite-dimensional inner product space and let B be an orthonormal

ordered basis for V. A linear map f ∶ V → V is self-adjoint if and only if

[ f ]BB = ([ f ]BB)t.

In particular,

(i) if k = R, then f is self-adjoint if and only if the matrix [ f ]BB is symmetric, and

(ii) if k = C, then f is self-adjoint if and only if the matrix [ f ]BB is hermitian.

Proof. Let f ∶ V → V . According to Proposition 2.9.7, we have that [ f ∗]BB = [ f ]BB , and it follows
from this that f = f ∗ exactly when [ f ]BB = ([ f ]BB)t.

A useful class of examples of self-adjoint maps is that of orthonormal projections, as the
following result shows:

Proposition 2.10.2. Let V be an inner product space. A projection p ∶ V → V is orthogonal if and

only if it is self-adjoint.

Proof. Let p ∶ V → V be a projection, and let us suppose at first that it is orthogonal. Let x, y ∈ V .
As V = img p ⊕ ker p, there are x′, y′ ∈ img p and x′′, y′′ ∈ ker p such that x = x′ + x′′ and
y = y′ + y′′. Moreover, we have that p(x) = x′, p(y) = y′ and, according to the hypothesis, that
img p ⊥ ker p, so ⟨x′, y′′⟩ = ⟨x′′, y′⟩ = 0. Using all this we find that que

⟨p(x), y⟩ = ⟨x′, y′ + y′′⟩ = ⟨x′, y′⟩ + ⟨x′, y′′⟩ = ⟨x′, y′⟩ = ⟨x′, y′⟩ + ⟨x′′, y′⟩
= ⟨x′ + x′′, y′⟩ = ⟨x , p(y)⟩,

and therefore that p is its own adjoint.
Let us suppose next that the projection p is self-adjoint. If x ∈ img p and y ∈ ker p, then the
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self-adjointness of p implies that ⟨x , y⟩ = ⟨p(x), y⟩ = ⟨x , p(y)⟩ = 0. We can therefore conclude
that img p ⊥ ker p, so that the projection p is an orthogonal one.

We want to study the diagonalizability of self-adjoint maps. A first step is the following
proposition that gives information about the eigenvalues and eigenvectors of such a map.

{prop:pi:auto}
Proposition 2.10.3. Let V be an inner product space, and let f ∶ V → V be a self-adjoint linear map. {prop:pi:auto:real}

(i) Every eigenvalue of f is a real number. {prop:pi:auto:perp}

(ii) If x and y are eigenvectors for f corresponding to different eigenvalues, then x ⊥ y.

Proof. (i) Let λ ∈ k be an eigenvalue of f , and let x ∈ V un autovector for f with eigenvalue λ. We
then have that

λ⟨x , x⟩ = ⟨λx , x⟩ = ⟨ f (x), x⟩ = ⟨x , f (x)⟩ = ⟨x , λx⟩ = λ⟨x , x⟩

and, since ⟨x , x⟩ ≠ 0, this implies that λ = λ, so that λ ∈ R.
(ii) Let x, y ∈ V be eigenvectors with eigenvalues λ, µ ∈ k, respectively, and suppose that λ ≠ µ.

From part (i) we know that λ, µ ∈ R, and therefore

λ⟨x , y⟩ = ⟨λx , y⟩ = ⟨ f (x), y⟩ = ⟨x , f (y)⟩ = ⟨x , µy⟩ = µ⟨x , y⟩ = µ⟨x , y⟩.

It folows from this that (λ − µ)⟨x , y⟩ = 0 and, since λ ≠ µ, that ⟨x , y⟩ = 0.

Apart from being real, the single most important property of the eigenvalues of a self-adjoint
linear map is that they exist — at least when we are working with a finite dimensional vector space.

Proposition 2.10.4. Let V be a finite-dimensional inner product space. A self-adjoint map f ∶ V → V

has at least one eigenvalue.

Proof. If k = C then we know that every linear map V → V has an eigenvalue, so in that case
there is nothing to prove — and, in fact, in this case we do not need the hypothesis. We assume
from now on that k = R.

Let n ∶= dimV , let B be an orthonormal basis for V , and let A = [ f ]B ∈ Mn(R). As f is self-
adjoint, the matrix A is symmetric. Let us consider the endomorphism g ∶ x ∈ Cn ↦ Ax ∈ Cn of
the complex vector spaceCn, and let B′ be the standard ordered basis ofCn, which is orthonormal
with respect to the standar inner product on that space. As [g]B′ = A = At = [g]tB′ = [g

∗]B′
because the matrix A is real and symmetric, the map g is self-adjoint and its eigenvalues are real.
This tells us that all the roots of the characteristic polynomial χg ∈ C[X] are real. Since the field C
is algebraically closed, there is therefore some real number λ ∈ R such that χg(λ) = 0.

Now, the characteristic polynomial χ f of f coincides with the characteristic polynomial χA
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of A, and this one coincides in turn with the characteristic polynomial χg of g: it follows from this
that χ f (λ) = χg(λ) = 0, so that λ is an eigenvalue for f .

Putting together what we have done so far we can prove the most important property of the
self-adjoint endomorphisms of finite-dimensional inner product spaces:

{prop:pi:auto:diag}
Proposition 2.10.5. Let V be a finite-dimensional inner product space. If f ∶ V → V is a self-adjoint

endomorphism of V, then there exists an orthonormal ordered basis B for V whose elements are

eigenvectors for f , so that the matrix [ f ]B is diagonal.

Proof. We will proceed by induction with respecto to the number dimV . If dimV = 0, then there
is nothing to prove, and this establishes the base case. Let us then suppose that n = dimV is a
positive integer.

Let f ∶ V → V be a self-adjoint linear map. According to the previous proposition, there exists
an eigenvalue λ ∈ k, and therefore there exists a non-zero vector x1 ∈ V ∖ 0 such that f (x1) = λx1.
In fact, we can suppose that ∥x∥ = 1 — if that is not the case, we can simply replace x1 by x1/∥x1∥.

Let nowW ∶= ⟨x1⟩⊥. If x ∈W , then

⟨ f (x), x1⟩ = ⟨x , f (x1)⟩ = ⟨x , λx1⟩ = λ⟨x , x1⟩ = 0,

so that f (x) ∈W : this tells us that the subspaceW is f -invariant, and that we can thus consider
the restriction fW ∶W →W of f toW . Let us viewW as an inner product space with the inner
product ⟨−,−⟩W obtained by restricting that of V . For all vector x and y inW we have that

⟨ fW(x), y⟩W = ⟨ f (x), y⟩ = ⟨x , f (y)⟩ = ⟨x , fW(y)⟩W ,

and the endomorphism fW ofW is therefore self-adjoint. As dimW = dimV − 1, we can induc-
tively suppose that there is an orthonormal ordered basis (x2, . . . , xn) ofW whose elements are
eigenvectors for fW . It follows immediately from this that B = (x1, . . . , xn) is an orthonormal
ordered basis for V whose elements are eigenvectors for f , and this proves the proposition.

We can go a bit further and show that the property of the proposition actually characterizes
self-adjoint linear maps:

Corollary 2.10.6. Let V be a finite-dimensional inner product space. A linear function f ∶ V → V is

self-adjoint if and only if there exists an orthonormal ordered basis B such that the matrix [ f ]BB is

diagonal and real.

Proof. The necessity of the condition is a consequence of Proposition 2.10.5 and part (i) of Propo-
sition 2.10.3. Its sufficiency, on the other hand, follows immediately from Proposition 2.9.7.
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§2.11. Normal linear maps

Let V be an inner product space. A linear map f ∶ V → V is normal if it has an adjoint and
commutes with it, so that

f
∗
f = f f

∗.

It is clear that a self-adjoint map is normal, but the converse is false.

{ejemplo:alpha}

Example 2.11.1. Let us consider the vector space R2 endowed with its standard inner product, and
let B be the standard ordered bases, which is orthonormal. Let α ∈ R and let f ∶ R2 → R2 be the
linear map such that

[ f ]B = (
cos α sin α
− sin α cos α

)

As B is an orthonormal ordered basis, we know that

[ f ∗]B = ([ f ]BB)t = (
cos α − sin α
sin α cos α

) ,

and a direct calculation shows that [ f ∗]B[ f ]B = I2 = [ f ]B[ f ∗]B , so thatr manera que
f ∗ f = idV = f f ∗. We thus see that f is normal. It is clear, on the other hand, that f ∗ = f

if and only if sin α = − sin α, and this happens if and only if α is an integer multiple of π.

The class of normal maps generalizes that of self-adjoint maps, and one can expect it to have
similar properties. The following result is what corresponds to Proposition 2.10.3:

{prop:adj-lambda}
Proposition 2.11.2. Let V be an inner product space, let f ∶ V → V be a normal linear map, and let

x ∈ V and λ ∈ k. The following statements are equivalent:

(a) x is an eigenvector for f with eigenvalue λ.

(b) x is an eigenvector for f ∗ with eigenvalue λ.

Proof. Let g = f − λidV . We know that g has an adjoint, and that in fact g∗ = f ∗ − λidV . Since
f es normal, we can compute that

g g
∗ = ( f − λidV)( f ∗ − λidV)
= f f

∗ − λ f ∗ − λ f + λλ
= f
∗
f − λ f − λ f ∗ + λλ

= ( f ∗ − λidV)( f − λidV)
= g∗g ,
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so that g is also normal. Using this we see that

∥g(x)∥2 = ⟨g(x), g(x)⟩ = ⟨x , g∗(g(x))⟩ = ⟨x , g(g∗(x))⟩ = ⟨g∗(x), g∗(x)⟩ = ∥g∗(x)∥2,

and it follows from this that g(v) = 0 exactly when g∗(v) = 0. In view of the definition of g,
this means that f (v) = λv exactly when f ∗(v) = λv, and this is precisely what the proposition
asserts.

Corresponding to the diagonalizability of self-adjoint linear maps, we have here that normal
maps are diagonalizable, but only in the complex case.

{teorema:normales}
Theorem 2.11.3. Let V be a finite-dimensional complex inner product space. If f ∶ V → V is

a normal linear map, then there exists an orthonormal ordered basis for V whose elements are

eigenvectors for f .

Proof. We proceed by induction with respect to the dimension of V , noting that when dimV = 0
there is nothing to prove. Let then V be a non-zero finite-dimensional complex inner product
space. As C is algebraically closed, there exist λ ∈ C and x1 ∈ V such that ∥x1∥ = 1 and f (x1) = λx1.
According to Proposition 2.11.2, we also have that f ∗(x1) = λx1.

LeW ∶= ⟨x⟩⊥. If y ∈W , then y ⊥ x and we have that

⟨ f (y), x⟩ = ⟨y, f ∗(x)⟩ = ⟨y, λx⟩ = λ⟨y, x⟩ = 0
and

⟨ f ∗(y), x⟩ = ⟨y, f (x)⟩ = ⟨y, λx⟩ = λ⟨y, x⟩ = 0.

We thus see that the subspaceW is f - and f ∗-invariant and that, in particular, we can consider
the restrictions fW , ( f ∗)W ∶W →W . If ⟨−,−⟩W is the inner product of the subspaceW , then for
all x and y inW we have that

⟨ fW(x), y⟩W = ⟨ f (x), y⟩ = ⟨x , f ∗(y)⟩ = ⟨x , ( f ∗)W(y)⟩W ,

and this tells us that fW ∶ W → W has ( f ∗)W ∶ W → W as adjoint, so that ( fW)∗ = ( f ∗)W .
Moreover, if x ∈W , we have

fW(( fW)∗(x)) = fW(( f ∗)W(x)) = f ( f ∗(x)) = f
∗( f (x)) = ( f ∗)W( fW(x)),

and we thus have that fW( fW)∗ = ( fW)∗ fW , so that fW is normal.
The map fW ∶W →W is therefore a normal endomorphism of the complex inner product

spaceW . As dimW = dimV − 1, we can inductively suppose that there is an orthonormal ordered
basis (v2, . . . , vn) for W whose elements are eigenvectors for fW . Of course, it follows from this
that (v1, . . . , vn) is an orthonormal ordered basis for V whose elements are eigenvectors for f .
This completes the induction and proves the proposition.
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The theorem tells us that that a normal endomorphism is diagonalizable with respect to an
orthonormal ordered basis, and this property in fact characterizes normality:

Corollary 2.11.4. Let V be a finite-dimensional complex inner product space, and let f ∶ V → V be

a linear map. The following two statements are equivalent:

(a) The function f is normal.

(b) There exists an orthonormal ordered basis of V whose elements are eigenvectors for f .

Proof. The implication (a)⇒ (b) is precisely the claim of Theorem 2.11.3. Let us prove the converse
implication.

Let us suppose that B is an orthonormal ordered basis for V whose elements are eigenvectors
for f , so that the matrix [ f ]B is diagonal. As [ f ∗]B = [ f ]tB is also diagonal, the matrices [ f ]B
and [ f ∗]B commute and, therefore, the maps f and f ∗ commute: in other words, the map f is
normal.

Example 2.11.5. In Theorem 2.11.3 the hypothesis that the vector space be complex is imporant.
Indeed, the linear function f ∶ R2 → R2 constructed in Example 2.11.1 is normal for all α ∈ R but
does not have any eigenvector if α is not an integer multiple of π.

§2.12. Orthogonal and unitary linear maps

If V is an inner product space, and f ∶ V → V is an endomorphism of V such that

⟨ f (x), f (y)⟩ = ⟨x , y⟩

for all x, y ∈ V , we say that f is unitary when the field k is C and that it is orthogonal when the
field k is R.

The unitary or orthogonal endomorphisms of an inner product space are those that preserve
its inner product, and therefore they also preserve the norm associated to that inner product. The
following result shows that this last condition is also sufficient for unitarity or orthogonality:

Proposition 2.12.1. Let V be an inner product space, and let f ∶ V → V be an endomorphism of V.

The following statements are equivalent:

(a) The function f is unitary if k = C or orthogonal if k = R.
(b) For every x ∈ V we have that ∥ f (x)∥ = ∥x∥.
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Proof. (a)⇒ (b) If f is unitary or orthogonal, and x ∈ V , then

∥ f (x)∥ =
√
⟨ f (x), f (x)⟩ =

√
⟨x , x⟩ = ∥x∥.

(b)⇒ (a) Let us suppose that for every x ∈ V we have that ∥ f (x)∥ = ∥x∥, and let x and y be
two elements of V . If k = R, the Corollary 2.2.2 allows us to compute that

⟨ f (x), f (y)⟩ = 1
4∥ f (x) + f (y)∥2 − 1

4∥ f (x) − f (y)∥2 = 1
4∥ f (x + y)∥

2 − 1
4∥ f (x − y)∥

2

and the hypothesis implies that this is

= 1
4∥x + y∥

2 − 1
4∥x − y∥

2 = ⟨x , y⟩,

so that f is orthogonal. Similarly, if k = C that same corollary tells us that

⟨ f (x), f (y)⟩
= 1

4∥ f (x) + f (y)∥2 − 1
4∥ f (x) − f (y)∥2 i

4∥ f (x) + i f (y)∥
2 − i

4∥ f (x) − i f (y)∥
2

= 1
4∥ f (x + y)∥

2 − 1
4∥ f (x − y)∥

2 + i

4∥ f (x + iy)∥
2 − i

4∥ f (x − iy)∥
2

= 1
4∥x + y∥

2 − 1
4∥x − y∥

2 + i

4∥x + iy∥
2 − i

4∥x − iy∥
2

= ⟨x , y⟩,

so that f is in this case unitary.

We can characterize unitary and orthogonal maps in terms of their adjoints:

Proposition 2.12.2. Let V be an inner product space, and let f ∶ V → V be an endomorphism of V

that admits an adjoint map f ∗ ∶ V → V. The following statements are equivalent:

(a) The endomorphism f is unitary if k = C or orthogonal if k = R.
(b) We have that f ∗ ○ f = idV = f ○ f ∗, so that f ∗ is invertivle and has f −1 = f ∗.

Proof. (a)⇒ (b) If f is unitary or orthogonal and x ∈ V , for each y ∈ V we have that

⟨( f ∗ ○ f )(x), y⟩ = ⟨ f ∗( f (x)), y⟩ = ⟨ f (x), f (y)⟩ = ⟨x , y⟩,

so that ( f ∗ ○ f )(x) = x: this shows that f ∗ ○ f = idV . A similar argument shows that f ○ f ∗ = idV .
(b)⇒ (a) Let us suppose that f ∗ ○ f = idV and f ○ f ∗ = idV . Ifx, y ∈ V , then

⟨ f (x), f (y)⟩ = ⟨ f ∗( f (x)), y⟩ = ⟨x , y⟩,

and this tells us that f is unitary or orthogonal, depending on the case.

We can also characterize unitary or orthogonal maps in terms of what they do to orthonormal
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bases:
{prop:f-orth}

Proposition 2.12.3. Let V be a finite-dimensional inner product space, and let f ∶ V → V be a linear

map. The following statements are equivalent:

(a) The endomorphism f is unitary if k = C or orthogonal if k = R.
(b) There exists an orthonormal ordered basis (v1, . . . , vn) of V such that ( f (v1), . . . , f (vn)) is

also an orthonormal ordered basis for V.

(c) For every orthonormal ordered basis (v1, . . . , vn) of V, the sequence ( f (v1), . . . , f (vn)) is
also an orthonormal ordered basis for V.

Proof. (c)⇒ (b) Let us suppose that the statement (c) holds. We know there exists an orthonormal
ordered basis (v1, . . . , vn) for V , and the hypothesis implies that ( f (v1), . . . , f (vn)) is also an
orthonormal ordered basis for V : this means that the statement (b) holds.

(b)⇒ (a) Let us suppose that there is an orthonormal ordered basis (v1, . . . , vn) of V such
that ( f (v1), . . . , f (vn)) is also an orthonormal basis, so that ⟨ f (vi), f (v j)⟩ = δi, j for all i and j

in {1, . . . , n}. Let x and y be two vectors in V , and let a1, . . . , an and b1, . . . , vn be scalars in k such
that x = ∑n

i=1 aivi and y = ∑n
i=1 bivi . We then have that

⟨x), y)⟩ = ⟨
n

∑
i=1

aivi ,
n

∑
j=1

b jv j⟩ =
n

∑
i=1

n

∑
j=1

aib j⟨vi , v j⟩ =
n

∑
i=1

aib j

and

⟨ f (x), f (y)⟩ = ⟨
n

∑
i=1

ai f (vi),
n

∑
j=1

b j f (v j)⟩ =
n

∑
i=1

n

∑
j=1

aib j⟨ f (vi), f (v j)⟩ =
n

∑
i=1

aib j ,

so that in fact ⟨ f (x), f (y)⟩ = ⟨x , y⟩. This shows that f is unitary or orthogonal.
(a) ⇒ (c) Let us suppose finally that f is unitary or orthogonal, and let (v1, . . . , vn)

be an orthonormal ordered basis for V . For all i and j in {1, . . . , n} we then have that
⟨ f (vi), f (v j)⟩ = ⟨vi , v j⟩ = δi, j, and this tells us that the sequence (v1, . . . , vn) is orthonormal: in
particular, it is linearly independent and, since n = dimV , a basis of V .

§2.13. Orthogonal and unitary matrices

What we did in the previous sections with self-adjoint, normal, unitary and orthogonal linear
maps has variants for matrices that are very useful. We deal with that here.

Let n ∈ N and let us consider the real vector space Rn and the complex vector space Cn

endowed with their standard inner products.
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• We say that a matrix A ∈Mn(R) is orthogonal if whenever x and y are vectors inRn we have
that ⟨Ax ,Ay⟩ = ⟨x , y⟩. We write On(R) for the set of all orthogonal matrices in Mn(R).

• Similarly, we say that a matrix A ∈ Mn(C) is unitary if for each x, y ∈ Cn we have that
⟨Ax ,Ax⟩ = ⟨x , y⟩. We write Un(C) for the set of all unitary matrices in Mn(C).

The following proposition shows that the unitarity/orthogonality of matrices is closel related to
the unitarity/orthogonality of linear maps, and gives two useful criteria to check those properties.

Proposition 2.13.1. Let n ∈ N and let us consider the real vector space Rn and the complex vector

space Cn endowed with their standard inner products.

(i) If A ∈Mn(R), then the following statements are equivalent:

(a) The matrix A is orthogonal.

(b) The linear function fA ∶ x ∈ Rn ↦ Ax ∈ Rn is orthogonal.

(c) We have that AAt = In = AtA.

(d) The set of columns of A is an orthonormal basis for Rn.

(ii) If A ∈Mn(C), the the following statements are equivalent:

(a) The matrix A is unitary.

(b) The linear function fA ∶ x ∈ Cn ↦ Ax ∈ Cn is unitary.

(c) We have that AAt = In = AtA.

(d) The set of columns of A is an orthonormal basis for Cn.

Proof. We will only prove the first part of the proposition, as the proof of the second one is
completely similar. Let us fix a matrix A in Mn(R).

(a)⇔ (b) For all x and y inRn we of course have that ⟨ fA(x), fA(y)⟩ = ⟨Ax ,Ay⟩, so if one of
the two sides of this equality is equal to ⟨x , y⟩ so is the other one. This tells us that the matrix A is
orthogonal if and only if the liner map fA is an orthogonal.

(b)⇒ (c) Let us suppose that the function fA is orthogonal, so that fA and its adjoint f ∗
A
are

mutually inverse. If B is the standard ordered basis of Rn, then we have that [ fA]B = A and
[ f ∗

A
]B = [ fA]tB = At , and we thus have that

AA
t = [ fA]B[ f ∗A]B = [ fA f ∗A]B = [idV ]B = In

and
A

t
A = [ f ∗A]B = [ fA]B[ f ∗A fA]B = [idV ]B = In .

(c) ⇒ (d) Let us suppose that AtA = In, and write v1, . . . , vn for the columns of A, which
are elements of Rn. For all i and j in {1, . . . , n} the (i , j)th entry of the product AtA is ⟨vi , v j⟩,
and this means that if AtA = In then the sequence (v1, . . . , vn) is orthonormal and therefore an
orthonormal ordered basis for Rn.

(d)⇒ (b) Finally, let us suppose that the columns v1, . . . , vn are an orthonormal basis for Rn.
The standard ordered basis (e1, . . . , en) of Rn is orthonormal, and we have that fA(ei) = vi for
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each i ∈ {1, . . . , n}: in view of Proposition 2.12.3 we can conclude from this that the map fA is
orthogonal.

Our results about diagonalization of self-adjoint linear maps have the following consequence
for matrices:

Proposition 2.13.2. Let n ∈ N.
(i) If A ∈Mn(R) is a symmetric matrix, then there exists an orthogonal matrix C ∈ On(R) such

that CtAC is diagonal.

(ii) If A ∈Mn(C) is a hermitian matrix, then there exists a unitary matrix C ∈ Un(C) such that

C∗AC is diagonal.

Proof.

The following result — which is a direct consequence of the Gram–Schmidt orthonormaliza-
tion process — tells us that an arbitrary matrix in Mn(k) has a factorization as a product of an
orthogonal or unitary matrix and an upper triangles matrix. This factorization is usually known
as the QR-factorization and is of great interest in applications. For example, it is very often used
when solving linear equations or least squares optimization problems, and it is the basis of the so
called QR-algorithm to compute the eigenvalues of a real matrix.

Proposition 2.13.3. Let n ∈ N and let A ∈Mn(k).
(i) There are a matrix Q that is orthogonal if k = R and unitary if k = C, and an upper triangular

matrix R ∈Mn(k) such that A = QR.

(ii) If A is invertible, then we can choose these matrices Q and R so that the entries along the

diagonal of R are positive real numbers, and in that case both Q and R are uniquely determined

by A.

Proof.
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