Una caracterización puramente homológica de las álgebras de cuerdas de tipo de representación finito

Mariano Suárez-Álvarez Universidad de Buenos Aires — CONICET

> virtUMA 2020 21 al 25 de septiembre, 2020

Convenciones

- ► Fijamos un cuerpo de base k algebraicamente cerrado.
- ► Todas las álgebras son de dimensión finita.
- ► Todos los módulos son a izquierda y finitamente generados.

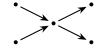
Un cociente admisible $A = \mathbb{k}Q/I$ de un álgebra de caminos sobre un carcaj Q es un álgebra de cuerdas si

- El ideal / está generado por caminos.
- Cada vértice de Q es fuente de a lo sumo dos flechas y destino de a lo sumo dos flechas.

- Para cada flecha α hay
 - a lo sumo una flecha β tal que $\alpha\beta \notin I$, y
 - a lo sumo una flecha γ tal que $\gamma \alpha \notin I$.

Un cociente admisible $A = \mathbb{k}Q/I$ de un álgebra de caminos sobre un carcaj Q es un álgebra de cuerdas si

- El ideal / está generado por caminos.
- ► Cada vértice de *Q* es fuente de a lo sumo dos flechas y destino de a lo sumo dos flechas.

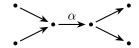


- Para cada flecha α hay
 - a lo sumo una flecha β tal que $\alpha\beta \notin I$, y
 - a lo sumo una flecha γ tal que $\gamma \alpha \notin I$.

Un cociente admisible $A = \mathbb{k}Q/I$ de un álgebra de caminos sobre un carcaj Q es un álgebra de cuerdas si

- El ideal / está generado por caminos.
- ► Cada vértice de Q es fuente de a lo sumo dos flechas y destino de a lo sumo dos flechas.

- ightharpoonup Para cada flecha lpha hay
 - a lo sumo una flecha β tal que $\alpha\beta \notin I$, y
 - a lo sumo una flecha γ tal que $\gamma \alpha \not\in I$.



- ▶ I. M. Gelfand, V. A. Ponomarev 1968: representaciones del grupo de Lorentz $\leadsto \mathbb{C}[x,y]/(xy)$. Indecomposable representations of the Lorentz group. Usp. Mat. Nauk,23, 1968, pp. 3–60.
- C. M. Ringel: representaciones modulares de 2-grupos dihedrales.
 The indecomposable representations of the dihedral 2-groups. Math Ann. 214, 19–34 (1975).
- ▶ M.C.R. Butler, C.M. Ringel: algebras de cuerdas en general. Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra 15 (1987), no. 1-2, 145–179.

- ▶ I. M. Gelfand, V. A. Ponomarev 1968: representaciones del grupo de Lorentz $\leadsto \mathbb{C}[x,y]/(xy)$. Indecomposable representations of the Lorentz group. Usp. Mat. Nauk,23, 1968, pp. 3–60.
- C. M. Ringel: representaciones modulares de 2-grupos dihedrales.
 The indecomposable representations of the dihedral 2-groups. Math. Ann. 214, 19–34 (1975).
- ▶ M.C.R. Butler, C.M. Ringel: algebras de cuerdas en general. Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra 15 (1987), no. 1-2, 145–179.

- I. M. Gelfand, V. A. Ponomarev 1968: representaciones del grupo de Lorentz → C[x, y]/(xy). Indecomposable representations of the Lorentz group. Usp. Mat. Nauk,23, 1968, pp. 3–60.
- C. M. Ringel: representaciones modulares de 2-grupos dihedrales.
 The indecomposable representations of the dihedral 2-groups. Math. Ann. 214, 19–34 (1975).
- ▶ M.C.R. Butler, C.M. Ringel: algebras de cuerdas en general. Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra 15 (1987), no. 1-2, 145–179.

- ► Álgebras biseriales especiales Auslander, Reiten, Skowrońsky, Waschbüsch, Assem, . . .
- Algebras gentiles
 Assem, Skowrońsky (iterated tilted algebras of type \tilde{A}_n), ...

- ► Álgebras biseriales especiales Auslander, Reiten, Skowrońsky, Waschbüsch, Assem, . . .
- Algebras gentiles Assem, Skowrońsky (iterated tilted algebras of type \tilde{A}_n), ...

- Conocemos explícitamente todos los módulos indescomponibles: strings y bands.
- Teoría de representación mansa.
 Es fácil decidir cuándo el tipo es finito o doméstico
- Conocemos todas las sucesiones de Auslander-Reiten en la categoría de módulos.
- ► Sabemos cómo son las componentes conexas del carcaj de Auslander—Reiten.
 - ¡Pueden ser muy complicadas!

- Conocemos explícitamente todos los módulos indescomponibles: strings y bands.
- Teoría de representación mansa.
 Es fácil decidir cuándo el tipo es finito o doméstico.
- Conocemos todas las sucesiones de Auslander-Reiten en la categoría de módulos.
- Sabemos cómo son las componentes conexas del carcaj de Auslander—Reiten.
 - ¡Pueden ser muy complicadas!

- Conocemos explícitamente todos los módulos indescomponibles: strings y bands.
- Teoría de representación mansa.
 Es fácil decidir cuándo el tipo es finito o doméstico.
- Conocemos todas las sucesiones de Auslander-Reiten en la categoría de módulos.
- Sabemos cómo son las componentes conexas del carcaj de Auslander—Reiten.
 - ¡Pueden ser muy complicadas!

- Conocemos explícitamente todos los módulos indescomponibles: strings y bands.
- Teoría de representación mansa.
 Es fácil decidir cuándo el tipo es finito o doméstico.
- Conocemos todas las sucesiones de Auslander-Reiten en la categoría de módulos.
- Sabemos cómo son las componentes conexas del carcaj de Auslander-Reiten.

¡Pueden ser muy complicadas!

Butler-Ringel: el termino del medio de toda sucesión de Auslander-Reiten tiene a lo sumo dos sumandos indescomponibles.

Auslander-Reiten sequences with *few middle terms* and applications to string algebras, Comm. Algebra 15 (1987), no. 1-2, 145–179.

Problema

La definición de álgebra de cuerdas es horrible.

Teorema

Un álgebra A de tipo de representación finito es un álgebra de cuerdas si y solamente si cada vez que

$$0 \longrightarrow M \longrightarrow E \longrightarrow N \longrightarrow 0$$

es una extensión de A-módulos con M y N indescomponibles el módulo E es suma directa de a lo sumo dos sumandos indescomponibles.

La hipótesis de tipo de representación finito es *necesaria*.

Sea A un álgebra de tipo de representación finito que satisface la condición del teorema.

Queremos mostrar que es un álgebra de cadenas.

La hipótesis implica que $\alpha(A) \leq 2$.

Skowroński–Waschbüsch, Auslander–Reiter + trabajo extra.

Todo esto depende fuertemente de que A tenga tipo finito.

La recíproca:

Proposición

Si A es un álgebra de cuerdas de tipo de representación finito, entonces en toda sucesión exacta corta de A-módulos

$$0 \longrightarrow M \longrightarrow E \longrightarrow N \longrightarrow 0$$

en la que M y N son indescomponibles, el módulo E es suma directa de a lo sumo dos sumandos indescomponibles.

- La conclusión es cierta si la sucesión es casi escindida: Butler–Ringel nos dicen que $\alpha(A) \leq 2$.
- ► Si A es **gentil**, entonces

I. Çanakçı, D. Pauksztello, S. Schroll, On extensions for gentle algebras, Canadian Journal of Mathematics, 1-44. (2020)

describe una **base** de $\operatorname{Ext}_{\mathcal{A}}^1(M,N)$ para cada elección de indescomponibles M y N.

Para esas extensiones la conclusión es cierta... pero esto no es suficiente.

- La conclusión es cierta si la sucesión es casi escindida: Butler-Ringel nos dicen que $\alpha(A) \leq 2$.
- ► Si A es gentil, entonces

I. Çanakçı, D. Pauksztello, S. Schroll, On extensions for gentle algebras, Canadian Journal of Mathematics, 1-44. (2020)

describe una **base** de $\operatorname{Ext}_A^1(M,N)$ para cada elección de indescomponibles M y N.

Para esas extensiones la conclusión es cierta... pero esto no es suficiente.

Degeneraciones de módulos

Si $d \in \mathbb{N}_0$, hay

- una variedad algebraica afín $\operatorname{Rep}_d(A)$ de las estructuras de A-módulo sobre el espacio vectorial \mathbb{k}^d y
- ▶ una acción de $GL_d(\mathbb{k})$ sobre $Rep_d(A)$ por «cambio de base».

Todo A-módulo M de dimensión d es isomorfo a un punto p_M de $Rep_d(A)$.

Si M y N son A-módulos de dimensión d, decimos que M degenera en N si el punto p_N está en la clausura de la $\mathrm{GL}_d(\Bbbk)$ -órbita de p_M

Escribimos $M \rightsquigarrow N$.

Degeneraciones de módulos

Si $d \in \mathbb{N}_0$, hay

- una variedad algebraica afín $\operatorname{Rep}_d(A)$ de las estructuras de A-módulo sobre el espacio vectorial \mathbb{k}^d y
- ▶ una acción de $GL_d(\mathbb{k})$ sobre $Rep_d(A)$ por «cambio de base».

Todo A-módulo M de dimensión d es isomorfo a un punto p_M de $Rep_d(A)$.

Si M y N son A-módulos de dimensión d, decimos que M degenera en N si el punto p_N está en la clausura de la $\mathrm{GL}_d(\Bbbk)$ -órbita de p_M .

Escribimos $M \rightsquigarrow N$.

Degeneraciones de módulos

El ejemplo más sencillo (K. Bongartz):

Proposición

Si

$$0 \longrightarrow M \longrightarrow E \longrightarrow N \longrightarrow 0$$

es una sucesión exacta corta de A-módulos, entonces

$$E \rightsquigarrow M \oplus N$$
.

Degeneraciones de módulos

Escribamos |M| al número de sumandos directos indescomponibles de un módulo M.

En general, si $M \rightsquigarrow N$, no hay ninguna relación útil entre |M| y |N|.

Peor caso: Bongartz da ejemplos de módulos M con |M| arbitrariamente grande que degeneran en indescomponibles.

Degeneraciones de módulos

Usando ideas

C. Riedtmann, Degenerations for representations of quivers with relations, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 2, 275–301.

podemos probar el resultado central del trabajo:

Proposición

Sea A un álgebra de cuerdas de tipo de representación finito. Si $M \rightsquigarrow N$, entonces $|M| \leq |N|$.

La prueba depende totalmente en la teoría de Auslander-Reiten.

Proposición

Sea A un álgebra de cuerdas de tipo de representación finito. Si $M \rightsquigarrow N$, entonces $|M| \leq |N|$.

Proposición

 $Si \ 0 \longrightarrow M \longrightarrow E \longrightarrow N \longrightarrow 0$ es una sucesión exacta corta de A-módulos, entonces

$$E \rightsquigarrow M \oplus N$$
.

Si en

$$0 \longrightarrow M \longrightarrow E \longrightarrow N \longrightarrow 0$$

M y *N* son indescomponibles, entonces $|E| \le |M \oplus N| = 2$.

Tipo de representación infinito

Apoyándome en la descripción de los módulos indescomponibles de un álgebra de cuerdas y en algunos resultados de Ringel sobre *módulos genéricos* puedo probar:

Proposición

Si A es un álgebra de cuerdas de tipo de representación no doméstico, entonces hay extensiones

$$0 \longrightarrow M \longrightarrow E \longrightarrow N \longrightarrow 0$$

con M y N indescomponibles y |E| arbitrariamente grande.

Esto es una construcción explícita.

