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Graphs
A graph is a pair G = (V ,E ) with
▶ V a set
▶ E a set of two element subsets of V

Example (A little example)

G = (V ,E ) with

V = {1, 2, 3, 4, 5},
E =

{
{1, 2}, {2, 3}, {3, 4}, {4, 1}, {3, 5}

}
.
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Example (A little example)
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.



Graphs

Example (The Coxeter graph)

V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28},

E =
{
{1, 2}, {1, 14}, {1, 24}, {2, 3}, {2, 8}, {3, 4}, {3, 28}, {4, 5},
{4, 27}, {5, 6}, {5, 26}, {6, 7}, {6, 17}, {7, 8}, {7, 25}, {8, 9},
{9, 10}, {9, 22}, {10, 11}, {10, 16}, {11, 12}, {11, 28},
{12, 13}, {12, 26}, {13, 14}, {13, 25}, {14, 15}, {15, 16},
{15, 27}, {16, 17}, {17, 18}, {18, 19}, {18, 24}, {19, 20},
{19, 28}, {20, 21}, {20, 25}, {21, 22}, {21, 27}, {22, 23},
{23, 24}, {23, 26}

}



Graphs

Example (The Coxeter graph)
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Graphs

Example (The Coxeter graph)



Graphs

Example (The Coxeter graph)

Coxeter, H. S. M. My Graph. Proc. London Math. Soc. 46, 117-136, 1983.



Graphs

Example (A little example)

G = (V ,E ) with

V = {1, 2, 3, 4, 5},
E =

{
{1, 2}, {2, 3}, {3, 4}, {4, 1}, {3, 5}

}
.
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Graphs

Example (van Cleemput–Zamfirescu graphs)

van Cleemput, N. and Zamfirescu, C. T. Regular Non-Hamiltonian Polyhedral Graphs.
Appl. Math. Comput. 338 192-206, 2018.



Graphs
We write n for the number of vertices of a graph.

We will almost always suppose that the set of vertices is

V = {1, 2, 3, . . . , n}.



The adjacency matrix
The adjacency matrix of a graph G = (V ,E ) is the matrix

A = (ai,j) ∈ Mn(R), ai,j =

{
1 if {i , j} ∈ E ;
0 if not.

Example

A =


0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 0
0 0 1 0 0





The adjacency matrix
The adjacency matrix of a graph G = (V ,E ) is the matrix

A = (ai,j) ∈ Mn(R), ai,j =

{
1 if {i , j} ∈ E ;
0 if not.

Example

1

2

3

4

5 A =


0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 0
0 0 1 0 0





The adjacency matrix
The entries of A have a very simple combinatorial interpretation:

ai,j = #{paths from i to j of length 1}.

Example

1

2

3

4

5 A =


0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 0
0 0 1 0 0





The adjacency matrix
The observation generalizes:

Lemma
If ℓ ∈ N0 and Aℓ = (a

(ℓ)
i,j ), then

a
(ℓ)
i,j = #{paths from i to j of length 1}.



The adjacency matrix
The observation generalizes:

Lemma
If ℓ ∈ N0 and Aℓ = (a

(ℓ)
i,j ), then

a
(ℓ)
i,j = #{paths from i to j of length 1}.

Example (A little example)

1

2

3

4

5 A =


0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 0
0 0 1 0 0





The adjacency matrix
The observation generalizes:

Lemma
If ℓ ∈ N0 and Aℓ = (a

(ℓ)
i,j ), then

a
(ℓ)
i,j = #{paths from i to j of length 1}.

Example (A little example)

1

2

3

4

5 A2 =


2 0 2 0 0
0 2 0 2 1
2 0 3 0 0
0 2 0 2 1
0 1 0 1 1





The adjacency matrix
The observation generalizes:

Lemma
If ℓ ∈ N0 and Aℓ = (a

(ℓ)
i,j ), then

a
(ℓ)
i,j = #{paths from i to j of length 1}.

Example (A little example)

1

2

3

4

5 A3 =


0 4 0 4 2
4 0 5 0 0
0 5 0 5 3
4 0 5 0 0
2 0 3 0 0





The adjacency matrix
The observation generalizes:

Lemma
If ℓ ∈ N0 and Aℓ = (a

(ℓ)
i,j ), then

a
(ℓ)
i,j = #{paths from i to j of length 1}.

Example (A little example)

1

2

3

4

5 A4 =


8 0 10 0 0
0 9 0 9 5
10 0 13 0 0
0 9 0 9 5
0 5 0 5 3





The adjacency matrix

Lemma
The number Cℓ of closed paths of length ℓ is

trAℓ = a
(ℓ)
1,1 + a

(ℓ)
2,2 + · · ·+ a(ℓ)n,n.



The adjacency matrix

Lemma
The number Cℓ of closed paths of length ℓ is

trAℓ = a
(ℓ)
1,1 + a

(ℓ)
2,2 + · · ·+ a(ℓ)n,n.

Example (A little example)

1

2

3

4

5

A2 =


2 0 2 0 0
0 2 0 2 1
2 0 3 0 0
0 2 0 2 1
0 1 0 1 1


trA2 = 10



The adjacency matrix

Lemma
The number Cℓ of closed paths of length ℓ is

trAℓ = a
(ℓ)
1,1 + a

(ℓ)
2,2 + · · ·+ a(ℓ)n,n.

Example (A little example)

1

2

3

4

5

A3 =


0 4 0 4 2
4 0 5 0 0
0 5 0 5 3
4 0 5 0 0
2 0 3 0 0


trA3 = 0



The adjacency matrix

Lemma
The number Cℓ of closed paths of length ℓ is

trAℓ = a
(ℓ)
1,1 + a

(ℓ)
2,2 + · · ·+ a(ℓ)n,n.

Example (A little example)

1

2

3

4

5

A4 =


8 0 10 0 0
0 9 0 9 5
10 0 13 0 0
0 9 0 9 5
0 5 0 5 3


trA4 = 42



The adjacency matrix
Linear algebra enters the picture

Since A = (ai,j) has

ai,j =

{
1 if {i , j} ∈ E ;
0 if not,

it is a symmetric real matrix and therefore
▶ it is diagonalizable over R with real eigenvalues, and
▶ there is a orthonormal basis of Rn of eigenvectors of A.

Definition
We let θ1, θ2, . . . , θn be the eigenvalues of A, indexed so that

θ1 ≥ θ2 ≥ · · · ≥ θn.

These numbers the eigenvalues of the graph G .
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0 if not,

it is a symmetric real matrix and therefore
▶ it is diagonalizable over R with real eigenvalues, and
▶ there is a orthonormal basis of Rn of eigenvectors of A.
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We let θ1, θ2, . . . , θn be the eigenvalues of A, indexed so that
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The adjacency matrix
Linear algebra enters the picture

We know there is an orthogonal matrix P such that

A = PDP−1, D =


θ1

θ2
. . .

θn

 .

In particular, for all ℓ we have

trAℓ = trDℓ = tr


θℓ1

θℓ2
. . .

θℓn





The adjacency matrix
Linear algebra enters the picture

Proposition
If θ1 ≥ θ2 ≥ · · · ≥ θn are the eigenvalues of G , then the number of closed
paths of length ℓ is

θℓ1 + θℓ2 + · · ·+ θℓn.



The adjacency matrix
Linear algebra enters the picture

Example

1

2

3

4

5 A =


0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 0
0 0 1 0 0


χA(t) = t5 − 5t3 + 2t,

−
√

1
2

(
5 +

√
17
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√
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1
2

(
5 −

√
17

)
,

√
1
2

(
5 +

√
17

)



The adjacency matrix
Linear algebra enters the picture

Example

1

2

3

4

5

Cℓ = (1 + (−1)ℓ)

((
1
2

(
5 +

√
17
))ℓ/2

+

(
1
2

(
5 −

√
17
))ℓ/2

)

C2ℓ ∼ 2
(

1
2

(
5 +

√
17
))ℓ/2

∼ 2 · 1.46143ℓ



The adjacency matrix
Linear algebra enters the picture

Example

1

2

3

4

5

Cℓ = (1 + (−1)ℓ)

((
1
2

(
5 +

√
17
))ℓ/2

+

(
1
2

(
5 −

√
17
))ℓ/2

)

C2ℓ ∼ 2
(

1
2

(
5 +

√
17
))ℓ/2

∼ 2 · 1.46143ℓ



The adjacency matrix
Linear algebra enters the picture

Proposition
The number of closed paths of length ℓ is

Cℓ ∼ ρℓ

with ρ := max{|θ1|, . . . , |θn|}.



The spectral theory of graphs
Our subject is the following problem:

Problem
Study the graph G by looking at properties of the sequence

σ(G ) = (θ1, θ2, . . . , θn)

of its eigenvalues and the corresponding eigenvectors.

The part of mathematics that deals with this is the

spectral theory of graphs.



Spectra

Example

1

2

3

4

5


0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 0
0 0 1 0 0


χ(X ) = t5 − 5t3 + 2t

σ =

{
0,±

√
1
2

(
5 ±

√
17
)}

= {−2.135 . . . ,−0.662 . . . , 0, 0.662 . . . , 2.135 . . . }



Spectra

Example (The Petersen graph)

χ(X ) = t10 − 15t8 + 75t6 − 24t5 − 165t4 + 120t3 + 120t2 − 160t + 48

σ = {−2,−2,−2,−2, 1, 1, 1, 1, 1, 3}



Spectra

Example (The Coxeter graph)

χ(X ) = t28 − 42t26 + 777t24 − 8344t22 − 48t21

+ 57666t20 + 1232t19 − 268716t18 − 13104t17

+ 860314t16 + 74256t15 − 1893960t14

− 239568t13 + 2827965t12 + 433776t11

− 2790970t10 − 396816t9 + 1772925t8

+ 118192t7 − 719376t6 + 44352t5 + 170464t4

− 37632t3 − 16128t2 + 7168t − 768

σ = {−1 −
√

2,−1 −
√

2,−1 −
√

2,−1 −
√

2,−1 −
√

2,−1 −
√

2,

− 1,−1,−1,−1,−1,−1,−1,
√

2 − 1,
√

2 − 1,
√

2 − 1,
√

2 − 1,
√

2 − 1,
√

2 − 1, 2, 2, 2, 2, 2, 2, 2, 2, 3}



The spectral theory of graphs
The diameter

The diameter of a graph is the maximal distance between its vertices.

Example

Example



The spectral theory of graphs
The diameter

The diameter of a graph is the maximal distance between its vertices.

Example

1

2

3

4

5

Example



The spectral theory of graphs
The diameter

Proposition
If G is connected and d is its diameter, then G has at least d + 1
different eigenvalues.

Proof. Let t be the number of distinct eigenvalues.

Since A is diagonalizable, its minimal polynomial has degree t, and there
are real numbers α0, . . . , αt−1 such that

At = α0A
0 + α1A+ · · ·+ αt−1A

t−1.

Suppose t ≤ d and let i and j be two vertices such that dist(i , j) = t.
Then

a
(t)
i,j > 0 and a

(k)
i,j = 0 if k < t.

This is absurd.



The spectral theory of graphs
The diameter

Proposition
If G is connected and d is its diameter, then G has at least d + 1
different eigenvalues.

Proof. Let t be the number of distinct eigenvalues.

Since A is diagonalizable, its minimal polynomial has degree t, and there
are real numbers α0, . . . , αt−1 such that

At = α0A
0 + α1A+ · · ·+ αt−1A

t−1.

Suppose t ≤ d and let i and j be two vertices such that dist(i , j) = t.
Then

a
(t)
i,j > 0 and a

(k)
i,j = 0 if k < t.

This is absurd.



The spectral theory of graphs
Regular graphs

A graph is regular if all its vertices have the same number of neighbors.
That number is then the degree of G .

Example



The spectral theory of graphs
Regular graphs

Proposition
Let G be a connected graph.
▶ If G is regular of degree k , then θ1 = k .
▶ If G is not regular, then

kmin < k < θ1 < kmax

In any case, θ1 is a simple eigenvalue.

Proof. The hypothesis means that

A · 1 = k · 1.

Moreover, if t > k , then the matrix

t · In − A

is strictly diagonally dominant, so it is inversible.
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The spectral theory of graphs
Regular graphs

Proposition
Let G be a connected graph.
▶ If G is regular of degree k , then θ1 = k .
▶ If G is not regular, then

kmin < k < θ1 < kmax

In any case, θ1 is a simple eigenvalue.

Proof. The hypothesis means that

A · 1 = k · 1.

Moreover, if t > k , then the matrix

t · In − A

is strictly diagonally dominant, so it is inversible.



The spectral theory of graphs
Regular graphs

Proposition

G is regular if and only if
n∑

i=1

θ2
i = n · θ1.

Proof. If G is regular of degree k , then θ1 = k and

n∑
i=1

θ2
i = trA2 = #{closed parths of length 2} = n · k = n · θ1.

Conversely, if the condition holds, then

k =
1
n
trA2 =

1
n

n∑
i=1

θ2
i = θ1

so the proposition tells us that the graph is regular.



The spectral theory of graphs
Regular graphs

Proposition

G is regular if and only if
n∑
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θ2
i = n · θ1.

Proof. If G is regular of degree k , then θ1 = k and

n∑
i=1

θ2
i = trA2 = #{closed parths of length 2} = n · k = n · θ1.

Conversely, if the condition holds, then

k =
1
n
trA2 =

1
n

n∑
i=1

θ2
i = θ1

so the proposition tells us that the graph is regular.



The spectral theory of graphs
The largest eigenvalue

Since

k < θ1

graphs with small θ1 should be very simple. . .

Suppose G is connected.
▶ If θ1 = 0 then G = K1.
▶ If 0 < θ1 ≤ 1, then G = K2 and θ1 = 1.
▶ If 1 < θ1 ≤

√
2, then G is a path of length 3 and θ1 =

√
2.



The spectral theory of graphs
The largest eigenvalue

Using Frobenius–Perron theory one can prove:

Proposition
If H is obtained from G by removing a vertex, then

θ1(H) < θ1(G ).



The spectral theory of graphs
The largest eigenvalue

Theorem
Si G connected and θ1 = 2, then it is one of

Ân, n ≥ 2 D̂n, n ≥ 4

Ê6 Ê7 Ê8

These are the extended Dynkin diagrams.



The spectral theory of graphs
The largest eigenvalue

Theorem
Si G connected and θ1 < 2, then it is one of

Ân, n ≥ 2 D̂n, n ≥ 4

Ê6 Ê7 Ê8

These are the Dynkin diagrams.



The spectral theory of graphs
The independence number

The independence number α(G ) is the maximum cardinal of a set of
vertices which are not neighbors of each other.

Example

Theorem
We have that

α(G ) ≤ #{i : θi ≥ 0}, α(G ) ≤ #{i : θi ≤ 0}



The spectral theory of graphs
The independence number

The independence number α(G ) is the maximum cardinal of a set of
vertices which are not neighbors of each other.

Example

Theorem
We have that

α(G ) ≤ #{i : θi ≥ 0}, α(G ) ≤ #{i : θi ≤ 0}



The spectral theory of graphs
The chromatic number

The chromatic number χ(G ) is the minimum number of colors with
which we can paint the vertices so that

no two neighbors have the same color

Example



The spectral theory of graphs
The chromatic number

Theorem
Suppose G is connected with some edge.
▶ χ(G ) ≤ 1+ θ1, and the equality holds if and only if G is complete or

an odd cycle.

▶ χ(G ) ≥ 1 − θ1

θn
.


