Applications of the change-of-rings spectral sequence to the computation of Hochschild cohomology

Mariano Suárez-Alvarez mariano@dm.uba.ar

Mar del Plata, March 6-17, 2006

Operations on cohomology

Theorem

Let A be an algebra, M, $N \in {}_{A}\text{Mod}$ and $d \ge 0$. Let $\mathcal{O} = (\mathcal{O}^p)_{p \ge 0}$ be a sequence of natural transformations of functors of A-modules

$$\mathcal{O}^p: \operatorname{\mathsf{Ext}}^p_A(N,-) o \operatorname{\mathsf{Ext}}^{p+d}_A(M,-).$$

Assume that, for each short exact sequence $P' \rightarrow P \twoheadrightarrow P''$, the following diagram commutes:

$$\operatorname{Ext}_{A}^{p}(N, P'') \xrightarrow{\partial} \operatorname{Ext}_{A}^{p+1}(N, P')$$

$$\downarrow^{\mathcal{O}^{p}} \qquad \qquad \downarrow^{\mathcal{O}^{p+1}} \qquad \downarrow^{\mathcal{O}^{p+1}}$$

$$\operatorname{Ext}_{A}^{p+d}(M, P'') \xrightarrow{\partial} \operatorname{Ext}_{A}^{p+d+1}(M, P')$$

Then there exists exactly one $Y(\mathcal{O}) \in \operatorname{Ext}\nolimits_A^d(M,N)$ such that

$$\mathcal{O}^p(-)=(-)\circ Y(\mathcal{O}).$$

Operations on cohomology

Corollary

There is an isomorphism of bifunctors of A-modules

$$Y: \mathsf{sOp}^{ullet}_{\mathcal{A}}(-,-) \cong \mathsf{Ext}^{ullet}_{\mathcal{A}}(-,-).$$

Corollary

Let A be an algebra and $d \ge 0$. Let $\mathcal{O} = (\mathcal{O}^p)_{p \ge 0}$ be a sequence of natural transformations of functors of A-bimodules

$$\mathcal{O}^p: H^p(A,-) \to H^{p+d}(A,-)$$

which commutes with boundary maps. Then there exists exactly one $Y(\mathcal{O}) \in HH^d(A)$ such that

$$\mathcal{O}^p(-) = (-) \smile Y(\mathcal{O}).$$

Change of rings

Corollary

Let $\phi: A \to B$ be a map of rings, and let $M \in {}_{A}\mathsf{Mod}.$ For each $q \geq 1$ there is a unique class

$$\zeta^q \in \operatorname{Ext}^2_B(\operatorname{Tor}_{q-1}^A(B,M),\operatorname{Tor}_q^A(B,M))$$

such that the differential

$$d_2^{p,q}:\operatorname{\mathsf{Ext}}\nolimits^p_B(\operatorname{\mathsf{Tor}}\nolimits^A_q(B,M),-)\to\operatorname{\mathsf{Ext}}\nolimits^{p+2}_B(\operatorname{\mathsf{Tor}}\nolimits^A_{q-1}(B,M),-)$$

of the spectral sequence

$$E_2^{p,q} = \operatorname{Ext}_B^p(\operatorname{Tor}_q^A(B,M), -) \Rightarrow \operatorname{Ext}_A^{ullet}(M, -)$$

is given on $\alpha \in \operatorname{Ext}_B^p(\operatorname{Tor}_q^A(B,M),-)$ by

$$d_2^{p,q}(\alpha) = \alpha \circ \zeta^q.$$

Change of rings

Theorem

Let $\phi:A\to B$ be an epimorphism of algebras. There exists a spectral sequence, functorial on B-bimodules,

$$E_2^{p,q} \cong \operatorname{Ext}_{B^e}^p(\operatorname{Tor}_q^A(B,B),-) \Rightarrow H^{\bullet}(A,-)$$

which has $E_2^{\bullet,0} \cong H^{\bullet}(B,-)$.

For each $q \ge 1$ there exists a unique class

$$\zeta^q \in \operatorname{Ext}^2_{B^e}(\operatorname{Tor}_{q-1}^A(B,B),\operatorname{Tor}_q^A(B,B))$$

such that $d_2^{p,q}(-) = (-) \circ \zeta^q$.

If ϕ is surjective and $I = \ker \phi$, $\operatorname{Tor}_1^A(B,B) \cong I/I^2$ and

$$\zeta^1 \in \operatorname{Ext}_{B^e}^2(B, I/I^2) = H^2(B, I/I^2)$$

is the class of the infinitesimal extension

$$0 \longrightarrow I/I^2 \longrightarrow A/I^2 \longrightarrow B \longrightarrow 0$$

Monogenic algebras

Theorem

Let k be a field and fix a monic $f = \sum_{i=0}^{N} a_i X^i \in k[X]$. Let d = (f, f'), pick $q \in k[X]$ such that f = qd, and put

$$u = q^2 \sum_{i=0}^{N} a_i \frac{i(i-1)}{2} X^{i-2} = q^2 \Delta_2(f).$$

Let A = k[X]/(f).

There is an isomorphism of graded commutative algebras

$$HH^{\bullet}(A) \cong \frac{k[x_0, \tau_1, \zeta_2]}{(f(x), d(x)\tau, f'(x)\zeta, \tau^2 - u(x)\zeta)}.$$

Monogenic algebras

Proposition

Let

$$w = \sum_{i=0}^{N} \sum_{\substack{s,t \geq 0 \\ s+t+1=i}} a_i \overline{(s+1)X^s q} X^t.$$

The Gerstenhaber Lie structure on $HH^{\bullet}(A)$ is such that

$$[\tau, x] = q(x),$$

$$[\zeta, \tau] = w(x)\zeta,$$

$$[x, x] = [\tau, \tau] = [\tau, \zeta] = [x, \zeta] = 0.$$

Theorem

Let $\phi: A \to B$ be an epimorphism of algebras. The following statements are equivalent:

- a) $\phi: A \rightarrow B$ is a homological epimorphism;
- b) $\operatorname{Tor}_+^A(B, M) = 0$ for all $M \in {}_A\operatorname{\mathsf{Mod}};$
- c) $Tor_{+}^{A}(B,B) = 0;$
- d) $\phi^e: A^e \to B^e$ is a homological epimorphism.

When they hold, there is an isomorphism of functors of B-bimodules

$$H^{\bullet}(B,-) \xrightarrow{\cong} H^{\bullet}(A,-).$$

Nice ideals

Corollary

Let $\phi: A \to B$ be a surjective homological epimorphism and let $I = \ker \phi$. There is a long exact sequence

$$\cdots \to \operatorname{Ext}\nolimits_{A^{\mathbf{e}}}^{p}(A,I) \to HH^{p}(A) \to HH^{p}(B) \to \operatorname{Ext}\nolimits_{A^{\mathbf{e}}}^{p+1}(A,I) \to \cdots$$

Nice ideals

Proposition

Let $\phi: A \to B$ be a surjective homological epimorphism such that $I = \ker \phi$ is A-flat on one side. Then $H^0(B,-) \cong H^0(A,-)$ on ${}_B\mathsf{Mod}_B$ and there is a natural long exact sequence of functors of B-bimodules

$$\cdots \longrightarrow H^{p}(B,-) \longrightarrow H^{p}(A,-) \longrightarrow$$

$$\longrightarrow \operatorname{Ext}_{A^{\mathbf{e}}}^{p-1}(I/I^{2},-) \xrightarrow{\smile \zeta} H^{p+1}(B,-) \longrightarrow \cdots$$

with $\zeta \in H^2(B, I/I^2)$ the class of the infinitesimal extension

$$0 \longrightarrow I/I^2 \longrightarrow A/I^2 \longrightarrow B \longrightarrow 0$$

Nice ideals

Lemma

Let $\phi: A \to B$ be a surjective morphism of algebras and put $I = \ker \phi$. Then

$$\operatorname{Tor}_q^A(B,B) \cong \begin{cases} B, & \text{if } q=0; \\ I/I^2, & \text{if } q=1; \\ \ker\left(I \otimes_A I \xrightarrow{\mu} I\right), & \text{if } q=2; \\ \operatorname{Tor}_{q-2}^A(I,I), & \text{if } q>2. \end{cases}$$

Nice ideals: an example

Let A = kQ/J be an admissible quotient of the path algebra on a quiver Q and let $e \in Q_0$.

Assume

- ► Every minimal relation in *J* involving a path passing through *e* also involves a path not passing through *e*; and
- e is on no oriented cycle of Q.

Then $I = AeA \triangleleft A$ is homological and, if B = A/I, there is a long exact sequence

$$\cdots \longrightarrow \operatorname{Ext}_{A}^{p}(D(eA), Ae) \longrightarrow HH^{p}(A) \longrightarrow$$

$$\longrightarrow HH^{p}(B) \longrightarrow \operatorname{Ext}_{A}^{p+1}(D(eA), Ae) \longrightarrow \cdots$$

